Afsar, Baris
2013-03-01
Various studies have shown that sodium intake is related to increased blood pressure. However, the relationship between sodium intake and cognitive function and depression has not previously been studied. The objective of this study was to investigate the relationship between 24-h sodium excretion with cognitive function, depression and sleep quality in patients newly diagnosed with essential hypertension. All patients underwent history taking, physical examination, blood pressure measurement, 12-lead ECG evaluation, routine urine analysis, biochemical analysis and 24-h urine collection to measure urinary sodium and protein excretion and creatinine clearance, evaluation of cognitive function, depressive behaviour and sleep quality. In total, 119 patients newly diagnosed with essential hypertension (50 men and 69 women aged 54.2 ± 16.1 years) were enrolled. The 24-h urinary sodium excretion of the patients was 204.0 ± 240.4 mEq/day. The Standardized Mini Mental State Examination (SMMSE), Pittsburgh Sleep Quality Index and Beck Depression Inventory scores of the patients were 26.0 ± 2.7, 5.6 ± 3.1 and 21.6 ± 13.5, respectively. Spearman correlation analysis revealed that 24-h urinary sodium excretion was correlated with age (rho -0.258, p = 0.005), systolic blood pressure (rho 0.219, p = 0.017), diastolic blood pressure (rho 0.195, p = 0.034), creatinine clearance (rho 0.414, p < 0.0001) and SMMSE score (rho -0.257, p = 0.005). Stepwise linear regression of independent factors revealed that gender (p < 0.0001), creatinine clearance (p < 0.0001), systolic blood pressure (p = 0.031) and SMMSE score (p < 0.0001) were independently related to logarithmically converted 24-h sodium excretion. The current study demonstrated that better cognitive function, but not depressive behaviour and sleep disturbance, is related to decreased sodium intake as evaluated by 24-h urinary sodium excretion. Studies are needed to highlight the mechanisms regarding the relationship between cognitive function and sodium intake.
Huang, Feng; Yu, Peng; Yuan, Yin; Li, Qiaowei; Lin, Fan; Gao, Zhonghai; Chen, Falin; Zhu, Pengli
2016-10-11
Many studies showed an association between dietary salt intake, blood pressure and increased CVD risk. The potential reason may be related to vascular structural and functional changes, through alterations in endothelial function. The central retinal arteriolar equivalent and urinary albumin reflected vascular endothelial dysfunction in different part of the body. The urinary sodium-creatinine ratio of causal urine specimens could represent the 24-h urinary sodium intake to estimate sodium intake. The 24-h sodium excretion was estimated by urinary sodium-creatinine ratio. Urinary albumin-creatinine ratio (UACR), reflecting renal arterial damage, was also determined. The central retinal arteriolar equivalent (CRAE) was detected by fundus photography and was further analyzed by semi-quantitative software. Participants included 951 hypertensive patients with the average sodium excretion of 11.62 ± 3.01 g. The sodium excretion was significantly higher (P < 0.01) in the hypertensive as compared to that of the non-hypertensive participants. Prevalence of hypertension was increased with increasing sodium excretion. The sodium excretion was positively correlated with systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively (r = 0.20 and 0.14; P < 0.01). Furthermore, UACR and CRAE were significantly (P < 0.01) different within the sodium excretion quartiles (Q1-Q4). After adjusting the confounding variables, such as age and sex, the binary logistic regression analysis showed that sodium excretion was an independent factor of UACR and CRAE (P < 0.01). Our results suggest that sodium excretion in the hypertensive participants were higher. The high sodium excretion was related with the renal arterial damage as well as retinal arteriolar changes.
Renal Function of Rats in Response to 37 Days of Head-Down Tilt
NASA Technical Reports Server (NTRS)
Wang, Tommy J.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
Spaceflight induces changes in human renal function, suggesting similar changes may occur in rats. Since rats continue to be the prime mammalian model for study in space, the effects of chronic microgravity on rat renal function should be clarified. Acute studies in rats using the ground-based microgravity simulation model, head-down tilt (HDT), have shown increases in glomerular filtration rate (GFR), electrolyte excretion, and a diuresis. However, long term effects of HDT have not been studied extensively. This study was performed to elucidate rat renal function following long-term simulated microgravity. Chronic exposure to HDT will cause an increase in GFR and electrolyte excretion in rats, similar to acute exposures, and lead to a decrease in the fractional excretion of filtered electrolytes. Experimental animals (HDT, n=10) were tail-suspended for 37 days and renal function compared to ambulatory controls (AMB, n=10). On day 37 of HDT, GFR, osmolal clearance, and electrolyte excretion were decreased, while plasma osmolality and free water clearance were increased. Urine output remained similar between groups. The fractional excretion of the filtered electrolytes was unchanged except for a decrease in the percentage of filtered calcium excreted. Chronic exposure to HDT results in decreased GFR and electrolyte excretion, but the fractional excretion of filtered electrolytes remained primarily unaffected.
The arginine-creatine pathway is disturbed in children and adolescents with renal transplants.
Andrade, Fernando; Rodríguez-Soriano, Juan; Prieto, José Angel; Elorz, Javier; Aguirre, Mireia; Ariceta, Gema; Martin, Sergio; Sanjurjo, Pablo; Aldámiz-Echevarría, Luis
2008-08-01
Cardiovascular disease is an important cause of morbidity in recipients of renal transplants. The aim of the present study was to analyze the status of the arginine-creatine pathway in such patients, given the relationship between the arginine metabolism and both renal function and the methionine-homocysteine cycle. Twenty-nine children and adolescents (median age 13, range 6-18 years), who had received a renal allograft 14.5-82.0 months before, were recruited for the study. On immunosuppressive therapy, all patients evidenced an adequate level of renal function. Plasma concentrations of homocysteine and glycine were significantly higher, whereas urinary excretions of guanidinoacetate and creatine were significantly lower than controls. Urinary excretions of guanidinoacetate and creatine correlated positively with creatinine clearance. Urinary excretion of creatine was negatively correlated with plasma concentration of homocysteine. The demonstration of disturbances in the arginine-creatine pathway in patients with well-functioning renal transplants and in absence of chronic renal failure represents a novel finding. We speculate that the low urinary excretion of guanidinoacetate and creatine is probably related to the nephrotoxic effect of immunosuppressive therapy and to defective methylation associated with the presence of hyperhomocysteinemia.
Nakhoul, Nazih; Hering-Smith, Kathleen S.
2015-01-01
Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304
Sodium Restriction in Patients With CKD: A Randomized Controlled Trial of Self-management Support.
Meuleman, Yvette; Hoekstra, Tiny; Dekker, Friedo W; Navis, Gerjan; Vogt, Liffert; van der Boog, Paul J M; Bos, Willem Jan W; van Montfrans, Gert A; van Dijk, Sandra
2017-05-01
To evaluate the effectiveness and sustainability of self-managed sodium restriction in patients with chronic kidney disease. Open randomized controlled trial. Patients with moderately decreased kidney function from 4 hospitals in the Netherlands. Regular care was compared with regular care plus an intervention comprising education, motivational interviewing, coaching, and self-monitoring of blood pressure (BP) and sodium. Primary outcomes were sodium excretion and BP after the 3-month intervention and at 6-month follow-up. Secondary outcomes were protein excretion, kidney function, antihypertensive medication, self-efficacy, and health-related quality of life (HRQoL). At baseline, mean sodium excretion rate was 163.6±64.9 (SD) mmol/24 h; mean estimated glomerular filtration rate was 49.7±25.6mL/min/1.73m 2 ; median protein excretion rate was 0.8 (IQR, 0.4-1.7) g/24 h; and mean 24-hour ambulatory systolic and diastolic BPs were 129±15 and 76±9mmHg, respectively. Compared to regular care only (n=71), at 3 months, the intervention group (n=67) showed reduced sodium excretion rate (mean change, -30.3 [95% CI, -54.7 to -5.9] mmol/24 h), daytime ambulatory diastolic BP (mean change, -3.4 [95% CI, -6.3 to -0.6] mmHg), diastolic office BP (mean change, -5.2 [95% CI, -8.4 to -2.1] mmHg), protein excretion (mean change, -0.4 [95% CI, -0.7 to -0.1] g/24h), and improved self-efficacy (mean change, 0.5 [95% CI, 0.1 to 0.9]). At 6 months, differences in sodium excretion rates and ambulatory BPs between the groups were not significant, but differences were detected in systolic and diastolic office BPs (mean changes of -7.3 [95% CI, -12.7 to -1.9] and -3.8 [95% CI, -6.9 to -0.6] mmHg, respectively), protein excretion (mean changes, -0.3 [95% CI, -0.6 to -0.1] g/24h), and self-efficacy (mean change, 0.5 [95% CI, 0.0 to 0.9]). No differences in kidney function, medication, and HRQoL were observed. Nonblinding, relatively low response rate, and missing data. Compared to regular care only, this self-management intervention modestly improved outcomes, although effects on sodium excretion and ambulatory BP diminish over time. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
[Renal excretion of methylene-diphosphate-technium-99m. Preliminary observations].
Vattimo, A; Martini, G
1983-11-30
The purpose of this study is to elucidate the mechanism of the renal excretion of 99mTc-MDP in man. We compared the renal clearance of 99mTc-MDP and 51Cr-EDTA (glomerular filtration rate agent). Since the 99mTc-MDP is bound to the plasma protein, the free fraction was calculated by dialysis. The clearances were obtained by single-injection technique. The plasma disappearance of the tracers was resolved into three exponential functions and area was calculated. The clearance was calculated by dividing the amount of the tracers excreted during the first four hours and the plasma area. In this study no difference was found in the clearance of the two agents. These findings suggest that the renal excretion of diphosphonate is related to the glomerular filtration rate.
Non-absorbable antibiotics for managing intestinal gas production and gas-related symptoms.
Di Stefano, M; Strocchi, A; Malservisi, S; Veneto, G; Ferrieri, A; Corazza, G R
2000-08-01
Simethicone, activated charcoal and antimicrobial drugs have been used to treat gas-related symptoms with conflicting results. To study the relationship between gaseous symptoms and colonic gas production and to test the efficacy of rifaximin, a new non-absorbable antimicrobial agent, on these symptoms. Intestinal gas production was measured by hydrogen (H2) and methane (CH4) breath testing after lactulose in 21 healthy volunteers and 34 functional patients. Only the 34 functional patients took part in a double-blind, double-dummy controlled trial, receiving, at random, rifaximin (400 mg b.d per 7 days), or activated charcoal (400 mg b.d per 7 days). The following parameters were evaluated at the start of the study and 1 and 10 days after therapy: bloating, abdominal pain, number of flatus episodes, abdominal girth, and cumulative breath H2 excretion. Hydrogen excretion was greater in functional patients than in healthy volunteers. Rifaximin, but not activated charcoal, led to a significant reduction in H2 excretion and overall severity of symptoms. In particular, in patients treated with rifaximin, a significant reduction in the mean number of flatus episodes and of mean abdominal girth was evident. In patients with gas-related symptoms the colonic production of H2 is increased. Rifaximin significantly reduces this production and the excessive number of flatus episodes.
Kaneko, Chihiro; Ogura, Jiro; Sasaki, Shunichi; Okamoto, Keisuke; Kobayashi, Masaki; Kuwayama, Kaori; Narumi, Katsuya; Iseki, Ken
2017-03-01
A high intake of fructose increases the risk for hyperuricemia. It has been reported that long-term fructose consumption suppressed renal uric acid excretion and increased serum uric acid level. However, the effect of single administration of fructose on excretion of uric acid has not been clarified. We used male Wistar rats, which were orally administered fructose (5g/kg). Those rats were used in each experiment at 12h after administration. Single administration of fructose suppressed the function of ileal uric acid excretion and had no effect on the function of renal uric acid excretion. Breast cancer resistance protein (BCRP) predominantly contributes to intestinal excretion of uric acid as an active homodimer. Single administration of fructose decreased BCRP homodimer level in the ileum. Moreover, diphenyleneiodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), recovered the suppression of the function of ileal uric acid excretion and the Bcrp homodimer level in the ileum of rats that received single administration of fructose. Single administration of fructose decreases in BCRP homodimer level, resulting in the suppression the function of ileal uric acid excretion. The suppression of the function of ileal uric acid excretion by single administration of fructose is caused by the activation of Nox. The results of our study provide a new insight into the mechanism of fructose-induced hyperuricemia. Copyright © 2016 Elsevier B.V. All rights reserved.
Screening of alginate lyase-excreting microorganisms from the surface of brown algae.
Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng
2017-12-01
Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.
Neural mechanisms in body fluid homeostasis.
DiBona, G F
1986-12-01
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, is located in the left atrial wall, which has a well-defined compliance relating intravascular volume to filling pressure. The left atrial mechanoreceptor responds to changes in wall left atrial tension by discharging into afferent vagal fibers. These fibers have suitable central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and redistribution of the extracellular fluid volume. Efferent renal sympathetic nerve activity undergoes appropriate changes to facilitate renal sodium excretion during sodium surfeit and to facilitate renal sodium conservation during sodium deficit. By interacting with other important determinants of renal sodium excretion (e.g., renal arterial pressure), changes in efferent renal sympathetic nerve activity can significantly modulate the final renal sodium excretion response with important consequences in pathophysiological states (e.g., hypertension, edema-forming states).
Fernández, Carmen; Araque, Carolina; Méndez, Jorge; Angulo, Luisa; Fargier, Bernardo
2007-06-01
The adolescent nephronophthisis (NPH3) is a variant of the nephronophthisis. In Venezuela, one to three patients have been registered each year, all of them belonging to the same family tree. The objective of this study was to evaluate the function of the proximal convoluted tubule in NPHP3 carriers; using the beta2M as biological marker. Eight carriers, 7 heterozygotes and 1 homozygote, with normal renal function were compared with a 10 healthy subjects (control group). Serum beta2 microglobulin (beta2M), urinary beta2M, the quotient urinary beta2M/urinary creatinine and the beta2M fractional excretion were determinated. The filtered beta2M and the percentage of reabsortion were calculated. We observed an increase in the plasmatic concentration of beta2M but not related with a decrease of the glomerular filtration. The urinary beta2M, the beta2M/urinary creatinine relation and the fractional excretion of beta2M were normal. The filtered load of beta2M was elevated without increase in the excretion or percentage of reabsortion. We conclude that in our group of NPH3 carriers, functional changes in the proximal convoluted tubule, when measured by urinary excretion of beta2M, were absent. This finding suggests the existence of other mechanism of uptake or degradation of the substance in the proximal convoluted tubule, which have yet to be elucidated.
Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E
2008-01-01
The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.
Lee, Gwenyth O; McCormick, Benjamin J J; Seidman, Jessica C; Kosek, Margaret N; Haque, Rashidul; Olortegui, Maribel Paredes; Lima, Aldo A M; Bhutta, Zulfiqar A; Kang, Gagandeep; Samie, Amidou; Amour, Caroline; Mason, Carl J; Ahmed, Tahmeed; Yori, Pablo Peñataro; Oliveira, Domingos B; Alam, Didar; Babji, Sudhir; Bessong, Pascal; Mduma, Estomih; Shrestha, Sanjaya K; Ambikapathi, Ramya; Lang, Dennis R; Gottlieb, Michael; Guerrant, Richard L; Caulfield, Laura E; For The Mal-Ed Network Investigators
2017-07-01
The lactulose mannitol (LM) dual sugar permeability test is the most commonly used test of environmental enteropathy in developing countries. However, there is a large but conflicting literature on its association with enteric infection and host nutritional status. We conducted a longitudinal cohort using a single field protocol and comparable laboratory procedures to examine intestinal permeability in multiple, geographically diverse pediatric populations. Using a previously published systematic review to guide the selection of factors potentially associated with LM test results, we examined the relationships between these factors and mucosal breach, represented by percent lactulose excretion; absorptive area, represented by percent mannitol excretion; and gut barrier function, represented by the L/M ratio. A total of 6,602 LM tests were conducted in 1,980 children at 3, 6, 9, and 15 months old; percent lactulose excretion, percent mannitol excretion, and the L/M ratio were expressed as age- and sex-specific normalized values using the Brazil cohort as the reference population. Among the factors considered, recent severe diarrhea, lower socioeconomic status, and recent asymptomatic enteropathogen infections were associated with decreased percent mannitol excretion and higher L/M ratios. Poorer concurrent weight-for-age, infection, and recent breastfeeding were associated with increased percent lactulose excretion and increased L/M ratios. Our results support previously reported associations between the L/M ratio and factors related to child nutritional status and enteropathogen exposure. These results were remarkably consistent across sites and support the hypothesis that the frequency of these exposures in communities living in poverty leads to alterations in gut barrier function.
Ferry, N; Geoffroy, J; Pozet, N; Cuisinaud, G; Benzoni, D; Zech, P Y; Sassard, J
1988-01-01
1. The kinetics of a single oral dose (300 mg) of cicletanine a new antihypertensive drug with diuretic properties, and its effects on the urinary excretion of electrolytes and of the major stable metabolites of prostacyclin and thromboxane A2 were studied in patients with normal renal function (n = 6), mild (n = 9) and severe (n = 10) renal insufficiency. 2. In normotensive subjects with normal renal function, cicletanine was rapidly and regularly absorbed, its apparent elimination half-life established around 7 h, and both its renal clearance (0.4 ml min-1) and its cumulative renal excretion (0.85% of the administered dose), were low. Mild renal insufficiency did not significantly alter these parameters, while severe renal impairment reduced the renal clearance and the cumulative urinary excretion of cicletanine and increased its apparent elimination half-life (31 h). However the area under the plasma curve was not changed due to reduced plasma concentrations in these patients. 3. Cicletanine induced a rapid and marked (four fold as a mean) increase in the urinary excretion of water, sodium and potassium which lasted for 6 to 10 h, in subjects with normal renal function. Renal insufficiency did not alter the slope of the calculated plasma concentration-effects curves but reduced the maximum effect observed for water, sodium and potassium. 4. A single oral dose of cicletanine did not change the urinary excretion of 6-keto-prostaglandin F1 alpha and thromboxane B2 in the three groups of patients studied, the basal values of which being found to be closely related to the creatinine clearance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3358898
Lee, Gwenyth O.; McCormick, Benjamin J. J.; Seidman, Jessica C.; Kosek, Margaret N.; Haque, Rashidul; Olortegui, Maribel Paredes; Lima, Aldo A. M.; Bhutta, Zulfiqar A.; Kang, Gagandeep; Samie, Amidou; Amour, Caroline; Mason, Carl J.; Ahmed, Tahmeed; Yori, Pablo Peñataro; Oliveira, Domingos B.; Alam, Didar; Babji, Sudhir; Bessong, Pascal; Mduma, Estomih; Shrestha, Sanjaya K.; Ambikapathi, Ramya; Lang, Dennis R.; Gottlieb, Michael; Guerrant, Richard L.; Caulfield, Laura E.
2017-01-01
Abstract. The lactulose mannitol (LM) dual sugar permeability test is the most commonly used test of environmental enteropathy in developing countries. However, there is a large but conflicting literature on its association with enteric infection and host nutritional status. We conducted a longitudinal cohort using a single field protocol and comparable laboratory procedures to examine intestinal permeability in multiple, geographically diverse pediatric populations. Using a previously published systematic review to guide the selection of factors potentially associated with LM test results, we examined the relationships between these factors and mucosal breach, represented by percent lactulose excretion; absorptive area, represented by percent mannitol excretion; and gut barrier function, represented by the L/M ratio. A total of 6,602 LM tests were conducted in 1,980 children at 3, 6, 9, and 15 months old; percent lactulose excretion, percent mannitol excretion, and the L/M ratio were expressed as age- and sex-specific normalized values using the Brazil cohort as the reference population. Among the factors considered, recent severe diarrhea, lower socioeconomic status, and recent asymptomatic enteropathogen infections were associated with decreased percent mannitol excretion and higher L/M ratios. Poorer concurrent weight-for-age, infection, and recent breastfeeding were associated with increased percent lactulose excretion and increased L/M ratios. Our results support previously reported associations between the L/M ratio and factors related to child nutritional status and enteropathogen exposure. These results were remarkably consistent across sites and support the hypothesis that the frequency of these exposures in communities living in poverty leads to alterations in gut barrier function. PMID:28719336
Renal function in sheep during infusion of alkali metal ions into the renal artery.
Beal, A M; Harrison, F A
1975-01-01
1. The effect on renal function of 1 M solutions of LiCl, NaCl, KCl, RbCl and CsCl and 3 M-NaCl infused close-arterially to the kidney for 10 min at 0-7ml./min has been studied in nine experiments on four unilaterally nephrectomized sheep. The levels of flow, electrolyte concentration and electrolyte excretion in the urine were measured before, during and for 50 min after the infusions. 2. The infusion of 1-M-NaCl produced little change in urine flow and composition whereas 3 M-NaCl resulted in relatively small increases in urine flow and sodium excretion. 3. The infusion of lithium, potassium, rubidium and caesium resulted in marked increases in urine flow, urinary sodium concentration and excretion, urinary potassium excretion and osmolal clearance while the urinary potassium concentration decreased. 4. Changes in urine flow and urinary pH during the infusions of all the alkali ions except sodium were consistent with increased urinary bicarbonate excretion. 5. The osmolal clearance was increased by the infusion of lithium, potassium, rubidium and caesium, but equivalent increases in the rate of solutefree water reabsorption did not occur. 6. The infusion of caesium resulted in a depression of the glomerular filtration rate (G.F.R.) which was not observed when the other alkali ions were infused. 7. The effects of lithium, potassium and rubidium on urine flow and composition were rapid in onset and the residual effects on these ions, on cessation of infusion, were relatively short. The effects on caesium were slow in onset and prolonged in duration. 8. It was concluded that lithium, potassium, rubidium, and caesium altered urine flow and electrolyte excretion by acting upon common mechanisms which were predominantly intra-renal and located in the proximal segment of the nephron. PMID:236381
Acute and cumulative effects of carboplatin on renal function.
Sleijfer, D. T.; Smit, E. F.; Meijer, S.; Mulder, N. H.; Postmus, P. E.
1989-01-01
Carboplatin, a cisplatinum analogue, has no reported nephrotoxicity in phase I/II studies, assessed by creatinine clearance. We prospectively determined renal function in 10 untreated lung cancer patients with normal baseline renal function, treated with carboplatin 400 mg m-2 day 1 and vincristine 2 mg day 1 and 8 every 4 weeks (max. five cycles) by means of clearance studies with 125I-sodium thalamate and 131I-hippurate to determine GFR and ERPF respectively. Tubular damage was monitored by excretion of tubular enzymes and relative beta 2-microglobulin clearance. During the first course no changes in renal function were seen. After the second course a significant fall in GFR and ERPF started, ultimately leading to a median decrease in GFR of 19.0% (range 6.8-38.7%) and in ERPF of 14% (range 0-38.9%). No increases in the excretion of tubular enzymes or changes in the relative beta 2-microglobulin clearances were seen. We conclude from our data that carboplatin causes considerable loss of renal function. Monitoring renal function in patients treated with multiple courses of carboplatin is warranted. PMID:2679841
You, Li; Zhu, Xiangzhu; Shrubsole, Martha J.; Fan, Hong; Chen, Jing; Dong, Jie; Hao, Chuan-Ming; Dai, Qi
2011-01-01
Background Urinary excretion of bisphenol A (BPA) and alkylphenols (APs) was used as a biomarker in most previous studies, but no study has investigated whether urinary excretion of these environmental phenols differed by renal function. Objective We estimated the association between renal function and urinary excretion of BPA and APs. Methods Analyses were conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2003–2006. Renal function was measured as estimated glomerular filtration rate (eGFR) calculated by the Modification of Diet in Renal Disease (MDRD) Study equation and by the newly developed Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Regression models were used to calculate geometric means of urinary BPA and APs excretion by eGFR category (≥ 90, 60–90, < 60 mL/min/m2) after adjusting for potential confounding factors. Results When we used the MDRD Study equation, participants without known renal disease (n = 2,573), 58.2% (n = 1,499) had mildly decreased renal function or undiagnosed chronic kidney disease. The adjusted geometric means for urinary BPA excretion decreased with decreasing levels of eGFR (p for trend = 0.04). The associations appeared primarily in females (p for trend = 0.03). Urinary triclosan excretion decreased with decreasing levels of eGFR (p for trend < 0.01) for both males and females, and the association primarily appeared in participants < 65 years of age. The association between BPA and eGFR was nonsignificant when we used the CKD-EPI equation. Conclusions Urinary excretion of triclosan, and possibly BPA, decreased with decreasing renal function. The associations might differ by age or sex. Further studies are necessary to replicate our results and understand the mechanism. PMID:21147601
Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong
2016-07-01
The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Branched-chain ketoacids secreted by glioblastoma cells via MCT1 modulate macrophage phenotype.
Silva, Lidia Santos; Poschet, Gernot; Nonnenmacher, Yannic; Becker, Holger M; Sapcariu, Sean; Gaupel, Ann-Christin; Schlotter, Magdalena; Wu, Yonghe; Kneisel, Niclas; Seiffert, Martina; Hell, Rüdiger; Hiller, Karsten; Lichter, Peter; Radlwimmer, Bernhard
2017-12-01
Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched-chain ketoacids (BCKAs), metabolites of branched-chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA-generating branched-chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor-excreted BCKAs can be taken up and re-aminated to BCAAs by tumor-associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor-excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti-proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs. © 2017 The Authors.
Sodium and potassium excretion are related to bone mineral density in women with coeliac disease.
Turner, Kirsty M; Clifton, Peter M; Keogh, Jennifer B
2015-04-01
Women with coeliac disease may have a lower bone mineral density due to the malabsorption of calcium before diagnosis. A high sodium excretion is associated with increased calcium and bone loss. Our aim was to describe the bone mineral density (BMD) and sodium excretion in women with coeliac disease. In a cross-sectional study BMD of the lumbar spine and hip was assessed by dual energy X-ray absorptiometry. Sodium, potassium and calcium excretion were measured from a 24 h urine collection. In 33 women (51 ± 16 yr) BMD was 1.14 ± 0.19 g/cm(2) and 0.94 ± 0.14 g/cm(2) at the lumbar spine and hip respectively. Age matched Z-scores were -0.1 ± 1.2 and -0.3 ± 1.1 at lumbar spine and hip respectively. Sodium excretion was 107 ± 51 mmol/d; 14 (42%) had a sodium excretion >100 mmol Na/d (145 ± 45 mmol/d). Potassium and calcium excretion were 87 ± 25 mmol/d and 4.1 ± 2.0 mmol/d respectively. In women with Na excretion >100 mmol Na/d, Ca excretion was significantly greater than those with <100 mmol/d (4.9 ± 2.0 vs 3.4 ± 1.8, p < 0.05). Sodium excretion and BMI were positively correlated (r = 0.61, p < 0.001) as were sodium and calcium excretion (r = 0.43, p < 0.05). Sodium excretion was inversely related to femoral neck BMD (t = -2.4 p = 0.023) after adjustment for weight, age, years since diagnosis and potassium excretion. Weight, but no other variable, was a predictor of BMD at the lumbar spine (t = 2.58 p = 0.018). Sodium excretion was inversely related and potassium excretion positively related to femoral neck density which was similar to age matched women without coeliac disease. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Neural mechanisms of volume regulation.
DiBona, G F
1983-05-01
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, has a well-defined compliance relating intravascular volume to filling pressure and responds to changes in wall tension by discharging into afferent vagal fibers. These fibers have appropriate central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and the redistribution of the extracellular fluid volume.
NASA Astrophysics Data System (ADS)
Omar, Ali Zainal; Maulood, Ismail M.
2017-09-01
The renin-angiotensin system (RAS), one of the most important hormonal systems, controls the kidney functions by regulating fluid volume, and electrolyte balance. The current study included the effects of kinin-kallikrein system (KKS) and its interaction with both angiotensin converting enzyme (ACE) and endothelin converting enzyme (ECE) on some of kidney function test parameters. In the present experiment, rats were divided into six groups, the first group was infused with normal saline, the second group was L-NG-Nitroarginine methyl ester (L-NAME) treated rats, third group was bradykinin (BK), forth group was captopril (ACEi), fifth group was phosphoramidon (ECEi), sixth group was a combination of BK with phosphoramidon. L-NAME was intravenously infused for one hour to develop systematic hypertension in male rats. After one hour of infusion, the results showed that L-NAME significantly increased serum creatinine. While, it decreased glomerular filtration rate (GFR), and K+ excretion rate. Moreover, BK increased packed cell volume PCV%, serum creatinine and K+ ion concentration. While, it reduced GFR, serum Ca+2 ion concentration, K+ and Na+ excretion rates. On the other hand, captopril infusion showed its effect by reduction in GFR, serum Ca+2 ion and electrolyte excretion rates. Phosphoramidon an ECEi dramatically reduced serum Ca+2 ion, but it increased pH, GFR and Ca+2 excretion rate. The results suggested that BK and Captopril each alone severely reduces GFR value. Interestingly, inhibition of ET-1 production via phosphoramidon could markedly elevate GFR values.
Kagiyama, Shuntaro; Koga, Tokushi; Kaseda, Shigeru; Ishihara, Shiro; Kawazoe, Nobuyuki; Sadoshima, Seizo; Matsumura, Kiyoshi; Takata, Yutaka; Tsuchihashi, Takuya; Iida, Mitsuo
2009-10-01
Increased salt intake may induce hypertension, lead to cardiac hypertrophy, and exacerbate heart failure. When elderly patients develop heart failure, diastolic dysfunction is often observed, although the ejection fraction has decreased. Diabetes mellitus (DM) is an established risk factor for heart failure. However, little is known about the relationship between cardiac function and urinary sodium excretion (U-Na) in patients with DM. We measured 24-hour U-Na; cardiac function was evaluated directly during coronary catheterization in type 2 DM (n = 46) or non-DM (n = 55) patients with preserved cardiac systolic function (ejection fraction > or = 60%). Cardiac diastolic and systolic function was evaluated as - dp/dt and + dp/dt, respectively. The average of U-Na was 166.6 +/- 61.2 mEq/24 hour (mean +/- SD). In all patients, stepwise multivariate regression analysis revealed that - dp/dt had a negative correlation with serum B-type natriuretic peptide (BNP; beta = - 0.23, P = .021) and U-Na (beta = - 0.24, P = .013). On the other hand, + dp/dt negatively correlated with BNP (beta = - 0.30, P < .001), but did not relate to U-Na. In the DM-patients, stepwise multivariate regression analysis showed that - dp/dt still had a negative correlation with U-Na (beta = - 0.33, P = .025). The results indicated that increased urinary sodium excretion is associated with an impairment of cardiac diastolic function, especially in patients with DM, suggesting that a reduction of salt intake may improve cardiac diastolic function.
Kinnunen, U; Vihko, V
1991-01-01
Free time, work and background data were related to night-rest catecholamine excretion rates in a teacher group (n = 137) during an autumn term. The explained interindividual variance increased slightly towards the end of the term. Adrenaline excretion was predicted better than noradrenaline, notedly by coffee consumption, amount of physical activity, and subjective stress feelings which explained 16% of the variance in adrenaline excretion during night rest. However, the results indicated that the differences in catecholamine excretion during night rest remained mostly unpredictable.
High Prolactin Excretion in Patients with Diabetes Mellitus and Impaired Renal Function.
Triebel, Jakob; Moreno-Vega, Aura Ileana; Vázquez-Membrillo, Miguel; Nava, Gabriel; García-Franco, Renata; López-Star, Ellery; Baldivieso-Hurtado, Olivia; Ochoa, Daniel; Macotela, Yazmín; Bertsch, Thomas; Martinez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.
Fenton, Tanis R; Eliasziw, Misha; Tough, Suzanne C; Lyon, Andrew W; Brown, Jacques P; Hanley, David A
2010-05-10
The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Urine pH and urine acid excretion do not predict osteoporosis risk.
Alteration of renal function of rats following spaceflight.
Wade, C E; Morey-Holton, E
1998-10-01
Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.
Regulatory Mutants at the his1 Locus of Yeast
Lax, Carol; Fogel, Seymour; Cramer, Carole
1979-01-01
The his1 gene in Saccharomyces cerevisiae codes for phosphoribosyl transferase, an allosteric enzyme that catalyzes the initial step in histidine biosynthesis. Mutants that specifically alter the feedback regulatory function were isolated by selecting his1 prototrophic revertants that overproduce and excrete histidine. The prototrophs were obtained from diploids homoallelic for his1–7 and heterozygous for the flanking markers thr3 and arg6. Among six independently derived mutant isolates, three distinct levels of histidine excretion were detected. The mutants were shown to be second-site alterations mapping at the his1 locus by recovery of the original auoxtrophic parental alleles. The double mutants, HIS1–7e, are dominant with respect to catalytic function but recessive in regulatory function. When removed from this his1–7 background, the mutant regulatory site (HIS1–e) still confers prototrophy but not histidine excretion. To yield the excretion phenotype, the primary and altered secondary sites are required in cis array. Differences in histidine excretion levels correlate with resistance to the histidine analogue, triazoalanine. PMID:385447
Alteration of renal function of rats following spaceflight
NASA Technical Reports Server (NTRS)
Wade, C. E.; Morey-Holton, E.
1998-01-01
Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.
Roh, Hyun Cheol; Collier, Sara; Deshmukh, Krupa; Guthrie, James; Robertson, J. David; Kornfeld, Kerry
2013-01-01
Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF) family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals. PMID:23717214
Shibata, Katsumi; Yamazaki, Marika; Matsuyama, Yukiyo
2016-07-18
The present study was conducted to survey functional biomarkers for evaluation of niacin nutritional status. Over 500 enzymes require niacin as a coenzyme. Of these, we chose the tryptophan degradation pathway. To create niacin-deficient animals, quinolinic acid phosphoribosyltransferase-knock out mice were used in the present study because wild type mice can synthesize nicotinamide from tryptophan. When the mice were made niacin-deficient, the urinary excretion of xanthurenic acid (XA) was extremely low compared with control mice; however, it increased according to the recovery of niacin nutritional status. The urinary excretion of kynurenic acid (KA) was the reverse of XA. Kynurenine 3-monooxygenase, which needs NADPH, was thought to be suppressed by niacin deficiency. Thus, we calculated the urinary excretion ratio of XA:KA as a functional biomarker of niacin nutrition. The ratio increased according to recovering niacin nutritional status. Low values equate with low niacin nutritional status.
Keeler, Richard F.; Lovelace, Stuart A.
1959-01-01
The urinary excretion of silicon in the rat was found to be enhanced beyond normal levels by the administration of various chemical forms of silicon. The excretion was enhanced to a much greater degree by the administration of ethyl silicate than by magnesium trisilicate, sodium metasilicate, or water glass. The tolerance level of rats to sustained daily doses of ethyl silicate fed via stomach tube was approximately 15 to 30 mg. of silicon per rat per day. Urinary silicon excretion was found to be a straight line function of the concentration of ethyl silicate administered, via stomach tube, with approximately 18 per cent of the administered silicon appearing in the urine at all levels tested. Using sustained dietary additions of ethyl silicate as a means of enhancing urine silicon levels, artificial siliceous urinary calculi were consistently produced on zinc pellets implanted in the bladders of rats. PMID:13654631
Renal handling of sodium and water in the hypothyroid rat
Michael, Ulrich F.; Barenberg, Robert L.; Chavez, Rafaelita; Vaamonde, Carlos A.; Papper, Solomon
1972-01-01
Hypothyroid rats were examined with conventional renal clearance and micropuncture techniques to elicit the mechanism and site within the nephron responsible for the increased salt and water excretion observed in these animals. When compared with age-matched control rats, a decrease in inulin clearance of 30% (P < 0.001) and in Hippuran clearance of 32% (P < 0.005) was observed in the hypothyroid rats. Absolute excretion of sodium and water was increased 3-fold (P < 0.02) and 2-fold (P < 0.025), respectively, while fractional excretion of sodium and water was increased 4.3-fold (P < 0.02) and 2.9-fold (P < 0.05), respectively, in the hypothyroid animals. Fractional proximal reabsorption of sodium as assessed from proximal tubular fluid to plasma ratios of inulin ([TF/P]IN) was found to be decreased by 28% (P < 0.001) in the hypothyroid rats. Superficial single nephron filtration rate was reduced proportionately to the decrease in total filtration rate in the hypothyroid rats. These data indicate that the proximal tubule is one of the sites of diminished sodium and water reabsorption in the hypothyroid rat. The data also suggest that the observed decrease in glomerular filtration rate in the hypothyroid animals is not caused by a decrease in the number of functioning nephrons and that the observed increase in sodium and water excretion is not caused by a redistribution of filtrate from juxtamedullary to superficial nephrons. Although the exact mechanisms of the observed changes in proximal tubular function remain unknown, the data suggest that they are probably related to the lack of thyroid hormone. Whatever their mechanism, it appears that the enhanced sodium and water excretion observed in the hypothyroid animals must be determined by further reduction in tubular sodium reabsorption in the distal nephron. PMID:5024038
Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.
Capps, Krista A; Flecker, Alexander S
2013-01-01
Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.
Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System
Capps, Krista A.; Flecker, Alexander S.
2013-01-01
Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems. PMID:23342083
Schär, Manuel Y.; Corona, Giulia; Soycan, Gulten; Dine, Clemence; Kristek, Angelika; Alsharif, Sarah N. S.; Behrends, Volker; Lovegrove, Alison; Shewry, Peter R.
2017-01-01
Scope Wholegrain has been associated with reduced chronic disease mortality, with oat intake particularly notable for lowering blood cholesterol and glycemia. To better understand the complex nutrient profile of oats, we studied urinary excretion of phenolic acids and avenanthramides after ingestion of oat bran in humans. Methods and results After a 2‐d (poly)phenol‐low diet, seven healthy men provided urine 12 h before and 48 h after consuming 60 g oat bran (7.8 μmol avenanthramides, 139.2 μmol phenolic acids) or a phenolic‐low (traces of phenolics) control in a crossover design. Analysis by ultra‐high performance liquid chromatography (UPLC)–MS/MS showed that oat bran intake resulted in an elevation in urinary excretion of 30 phenolics relative to the control, suggesting that they are oat bran‐derived. Mean excretion levels were elevated between 0–2 and 4–8 h, following oat bran intake, and amounted to a total of 33.7 ± 7.3 μmol total excretion (mean recovery: 22.9 ± 5.0%), relative to control. The predominant metabolites included: vanillic acid, 4‐ and 3‐hydroxyhippuric acids, and sulfate‐conjugates of benzoic and ferulic acids, which accounted collectively for two thirds of total excretion. Conclusion Oat bran phenolics follow a relatively rapid urinary excretion, with 30 metabolites excreted within 8 h of intake. These levels of excretion suggest that bound phenolics are, in part, rapidly released by the microbiota. PMID:29024323
McSorley, Kaitlin A; Rutter, Allison; Cumming, Robert; Zeeb, Barbara A
2016-12-01
Phragmites australis, Puccinnellia nuttalliana (salt accumulators), and Spartina pectinata (salt excretor) were investigated based on their relative abilities to phytoextract chloride from a cement kiln dust landfill in Bath, ON. Salt tolerance mechanisms were found to affect phytoextraction performance. On the basis of accumulation alone, P. australis had the greatest phytoextraction efficiency compared to the other two species due to its high biomass (despite having the lowest shoot ion concentrations). Conversely, when weekly salt excretion on the leaf surfaces of S. pectinata was accounted for over an eight week period from July to August 2014, removal of Cl - increased by 160% surpassing the extraction ability of P. australis by nearly 60%. Energy dispersive spectroscopy analysis of the excreted salt particles on S. pectinata indicates that they were composed of the plant macronutrient, potassium and micronutrient, chloride. Wind re-distribution of these nutrients may actually have beneficial effects on the environment, as they are required by both plants and animals for various metabolic functions. This is the first study to demonstrate salt excretion for the remediation of an industrially salinized landfill in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.
Cummings, J H; Wiggins, H S; Jenkins, D J; Houston, H; Jivraj, T; Drasar, B S; Hill, M J
1978-01-01
Epidemiological observations and animal experiments suggest that large bowel cancer is related to serveral factors. Among them, high dietary intakes of animal fat, the presence in the colon of relatively high levels of bile acids, specific patterns of intestinal microflora, slow transit through the gut, and low stool weights. Under metabolic conditions we have observed the effect on these variables of dietes containing 62 or 152 g/day of fat mainly of animal origin in six healthy young men over 4-wk periods. No change attributable to the diet was observed in the subjects' bowel habit, fecal weight, mean transit time through the gut, or in the excretion of dry matter. Total fecal bile acid excretion was significantly higher on the high fat diet (320 +/- 120 mg/day) than on the low fat diet (139.7) +/- 63 mg/day) t test = 7.78 P less than 0.001 as also was the total fecal fatty acid excretion, 3.1+/-0.71 and 1.14+/-0.35 g/day, respectively t test = 11.4 P less than 0.001). The fecal microflora including the nuclear dehydrogenating clostridia were unaltered by the dietary changes as was fecal beta-glucuronidase activity. Dietary changes which increase animal fat intake clearly influence fecal bile acid excretion in a way that would favor the development of large bowel cancer if current theories prove to be true. Dietary fat however has no effect on overall colonic function so other components of the diet must be responsible for the observed associations of bowel cancer with slow transit and reduced fecal bulk. PMID:659584
Excreting and non-excreting grasses exhibit different salt resistance strategies
Moinuddin, Muhammad; Gulzar, Salman; Ahmed, Muhammad Zaheer; Gul, Bilquees; Koyro, Hans-Werner; Khan, Muhammad Ajmal
2014-01-01
The combination of traits that makes a plant successful under saline conditions varies with the type of plant and its interaction with the environmental conditions. Knowledge about the contribution of these traits towards salt resistance in grasses has great potential for improving the salt resistance of conventional crops. We attempted to identify differential adaptive response patterns of salt-excreting versus non-excreting grasses. More specifically, we studied the growth, osmotic, ionic and nutrient (carbon/nitrogen) relations of two salt-excreting (Aeluropus lagopoides and Sporobolus tremulus) and two non-excreting (Paspalum paspalodes and Paspalidium geminatum) perennial C4 grasses under non-saline and saline (0, 200 and 400 mM NaCl) conditions. Growth and relative growth rate decreased under saline conditions in the order P. geminatum > S. tremulus = A. lagopoides > P. paspalodes. The root-to-shoot biomass allocation was unaffected in salt-excreting grasses, increased in P. paspalodes but decreased in P. geminatum. Salt-excreting grasses had a higher shoot/root Na+ ratio than non-excreting grasses. K+, Ca2+ and Mg2+ homoeostasis remained undisturbed among test grasses possibly through improved ion selectivity with rising substrate salinity. Salt-excreting grasses increased leaf succulence, decreased ψs and xylem pressure potential, and accumulated proline and glycinebetaine with increasing salinity. Higher salt resistance of P. paspalodes could be attributed to lower Na+ uptake, higher nitrogen-use efficiency and higher water-use efficiency among the test species. However, P. geminatum was unable to cope with salt-induced physiological drought. More information is required to adequately document the differential strategies of salt resistance in salt-excreting and non-excreting grasses. PMID:24996428
de Verdal, Hugues; Narcy, Agnès; Bastianelli, Denis; Chapuis, Hervé; Même, Nathalie; Urvoix, Séverine; Le Bihan-Duval, Elisabeth; Mignon-Grasteau, Sandrine
2011-08-17
Poultry production has been widely criticized for its negative environmental impact related to the quantity of manure produced and to its nitrogen and phosphorus content. In this study, we investigated which traits related to excretion could be used to select chickens for lower environmental pollution.The genetic parameters of several excretion traits were estimated on 630 chickens originating from 2 chicken lines divergently selected on apparent metabolisable energy corrected for zero nitrogen (AMEn) at constant body weight. The quantity of excreta relative to feed consumption (CDUDM), the nitrogen and phosphorus excreted, the nitrogen to phosphorus ratio and the water content of excreta were measured, and the consequences of such selection on performance and gastro-intestinal tract (GIT) characteristics estimated. The genetic correlations between excretion, GIT and performance traits were established. Heritability estimates were high for CDUDM and the nitrogen excretion rate (0.30 and 0.29, respectively). The other excretion measurements showed low to moderate heritability estimates, ranging from 0.10 for excreta water content to 0.22 for the phosphorus excretion rate. Except for the excreta water content, the CDUDM was highly correlated with the excretion traits, ranging from -0.64 to -1.00. The genetic correlations between AMEn or CDUDM and the GIT characteristics were very similar and showed that a decrease in chicken excretion involves an increase in weight of the upper part of the GIT, and a decrease in the weight of the small intestine. In order to limit the environmental impact of chicken production, AMEn and CDUDM seem to be more suitable criteria to include in selection schemes than feed efficiency traits.
Adlimoghaddam, Aida; Boeckstaens, Mélanie; Marini, Anna-Maria; Treberg, Jason R.; Brassinga, Ann-Karen C.; Weihrauch, Dirk
2015-01-01
ABSTRACT The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW−1 day−1) and very little urea (0.21±0.004 µmol gFW−1 day−1). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H+-ATPase (subunit A) and Na+/K+-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H+-ATPase, carbonic anhydrase, Na+/K+-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l−1 NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na+/K+-ATPase also increased significantly in response to 1 mmol l−1 NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins. PMID:25740900
Reynolds, V; Jenner, D A; Palmer, C D; Harrison, G A
1981-01-01
The paper gives the results of the number of analyses of aspects of life-style and dietary patterns of members of the Otmoor population, in relation to their catecholamine excretion rates. The data reported here are restricted to males. Feelings of boredom were associated with low adrenaline excretion rates. Reported physical tiredness was associated with low adrenaline levels, while mental tiredness seems to be related to high adrenaline levels. People who regarded themselves as having a competitive personality, as being faced by a large number of life challenges, as having to meet self-set deadlines, as choosing to focus on more than one task at the same time, or as being under time pressure had high rates. Cigarette smoking and coffee consumption were related to high adrenaline excretion rates. Taken together these variables can explain 16-20% of variance in adrenaline excretion. Smoking and coffee consumption are of primary importance. The results of similar analyses of noradrenaline are reported.
Desmopressin resistant nocturnal polyuria secondary to increased nocturnal osmotic excretion.
Dehoorne, Jo L; Raes, Ann M; van Laecke, Erik; Hoebeke, Piet; Vande Walle, Johan G
2006-08-01
We investigated the role of increased solute excretion in children with desmopressin resistant nocturnal enuresis and nocturnal polyuria. A total of 42 children with monosymptomatic nocturnal enuresis and significant nocturnal polyuria with high nocturnal urinary osmolality (more than 850 mmol/l) were not responding to desmopressin. A 24-hour urinary concentration profile was obtained with measurement of urine volume, osmolality, osmotic excretion and creatinine. The control group consisted of 100 children without enuresis. Based on osmotic excretion patients were classified into 3 groups. Group 1 had 24-hour increased osmotic excretion, most likely secondary to a high renal osmotic load. This was probably diet related since 11 of these 12 patients were obese. Group 2 had increased osmotic excretion in the evening and night, probably due to a high renal osmotic load caused by the diet characteristics of the evening meal. Group 3 had deficient osmotic excretion during the day, secondary to extremely low fluid intake to compensate for small bladder capacity. Nocturnal polyuria with high urinary osmolality in our patients with desmopressin resistant monosymptomatic nocturnal enuresis is related to abnormal increased osmotic excretion. This may be explained by their fluid and diet habits, eg daytime fluid restriction, and high protein and salt intake.
Quijada-Rodriguez, Alex R.; Treberg, Jason R.
2015-01-01
Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)−1·h−1 ammonia and 14.7 ± 1.9 nmol·gFW−1·h−1 urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na+/K+-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na+/K+-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na+/K+-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms. PMID:26180186
Quijada-Rodriguez, Alex R; Treberg, Jason R; Weihrauch, Dirk
2015-09-15
Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)(-1)·h(-1) ammonia and 14.7 ± 1.9 nmol·gFW(-1)·h(-1) urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na(+)/K(+)-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na(+)/K(+)-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na(+)/K(+)-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms. Copyright © 2015 the American Physiological Society.
Expert review on poliovirus immunity and transmission.
Duintjer Tebbens, Radboud J; Pallansch, Mark A; Chumakov, Konstantin M; Halsey, Neal A; Hovi, Tapani; Minor, Philip D; Modlin, John F; Patriarca, Peter A; Sutter, Roland W; Wright, Peter F; Wassilak, Steven G F; Cochi, Stephen L; Kim, Jong-Hoon; Thompson, Kimberly M
2013-04-01
Successfully managing risks to achieve wild polioviruses (WPVs) eradication and address the complexities of oral poliovirus vaccine (OPV) cessation to stop all cases of paralytic poliomyelitis depends strongly on our collective understanding of poliovirus immunity and transmission. With increased shifting from OPV to inactivated poliovirus vaccine (IPV), numerous risk management choices motivate the need to understand the tradeoffs and uncertainties and to develop models to help inform decisions. The U.S. Centers for Disease Control and Prevention hosted a meeting of international experts in April 2010 to review the available literature relevant to poliovirus immunity and transmission. This expert review evaluates 66 OPV challenge studies and other evidence to support the development of quantitative models of poliovirus transmission and potential outbreaks. This review focuses on characterization of immunity as a function of exposure history in terms of susceptibility to excretion, duration of excretion, and concentration of excreted virus. We also discuss the evidence of waning of host immunity to poliovirus transmission, the relationship between the concentration of poliovirus excreted and infectiousness, the importance of different transmission routes, and the differences in transmissibility between OPV and WPV. We discuss the limitations of the available evidence for use in polio risk models, and conclude that despite the relatively large number of studies on immunity, very limited data exist to directly support quantification of model inputs related to transmission. Given the limitations in the evidence, we identify the need for expert input to derive quantitative model inputs from the existing data. © 2012 Society for Risk Analysis.
Bilirubin metabolism in the fetus
Bernstein, Ralph B.; Novy, Miles J.; Piasecki, George J.; Lester, Roger; Jackson, Benjamin T.
1969-01-01
Bilirubin metabolism was studied in dog and monkey fetuses. Bilirubin-3H was administered to fetal animals in utero by prolonged intravenous infusion. Fetal plasma disappearance, hepatic uptake, biliary excretion, and placental transfer of bilirubin-3H were measured. Bilirubin metabolism and excretion in the fetus was much less efficient than in the adult. Fetal plasma levels of tritium were elevated for prolonged periods, and the combined rate of placental and fetal hepatic excretion was lower than normal values for adult hepatic excretion. Species differences were noted. Hepatic conjugation and excretion appeared to be the primary mechanism of fetal metabolism in the dog. In contrast, the amounts of conjugated bilirubin-3H excreted in fetal monkey bile were negligible. Small amounts of 3H-labeled bilirubin derivatives were excreted in fetal bile, but 10 times as much of the administered material was transferred intact across the placenta and excreted by the maternal liver. The relationship of this functional difference to known anatomic and biochemical species differences is discussed. Preliminary observations on alternate routes of fetal bilirubin metabolism were obtained. Images PMID:4980771
Lever, Michael; McEntyre, Christopher J; George, Peter M; Slow, Sandy; Elmslie, Jane L; Lunt, Helen; Chambers, Stephen T; Parry-Strong, Amber; Krebs, Jeremy D
2014-10-01
Betaine deficiency is a probable cardiovascular risk factor and a cause of elevated homocysteine. Urinary betaine excretion is increased by fibrate treatment, and is also often elevated in diabetes. Does fibrate further increase betaine excretion in diabetes, and does it affect the plasma concentrations and excretions of related metabolites and of other osmolytes? Samples from a previous study of type 2 diabetes were selected if participants were taking bezafibrate (n = 32). These samples were compared with participants matched for age and gender and not on a fibrate (comparator group, n = 64). Betaine, related metabolites, and osmolytes were measured in plasma and urine samples from these 96 participants. Median urinary betaine excretion in those on bezafibrate was 5-fold higher than in the comparator group (p < 0.001), itself 3.5-fold higher than the median reported for healthy populations. In the bezafibrate group, median dimethylglycine excretion was higher (9-fold, p < 0.001). Excretions of choline, and of the osmolytes myo-inositol, taurine and glycerophosphorylcholine, were not significantly different between groups. Some participants excreted more betaine than usual dietary intakes. Several betaine fractional clearances were >100 %. Betaine excretion correlated with excretions of the osmolytes myo-inositol and glycerophosphorylcholine, and also with the excretion of choline and N,N-dimethylglycine, but it was inconclusive whether these relationships were affected by bezafibrate therapy. Increased urinary betaine excretions in type 2 diabetes are further increased by fibrate treatment, sometimes to more than their dietary intake. Concurrent betaine supplementation may be beneficial.
A physiologic-based approach to the evaluation of a patient with hyperkalemia.
Palmer, Biff F
2010-08-01
Hyperkalemia generally is attributable to cell shifts or abnormal renal potassium excretion. Cell shifts account for transient increases in serum potassium levels, whereas sustained hyperkalemia generally is caused by decreased renal potassium excretion. Impaired renal potassium excretion can be caused by a primary decrease in distal sodium delivery, a primary decrease in mineralocorticoid level or activity, or abnormal cortical collecting duct function. Excessive potassium intake is an infrequent cause of hyperkalemia by itself, but can worsen the severity of hyperkalemia when renal excretion is impaired. Before concluding that a cell shift or renal defect in potassium excretion is present, pseudohyperkalemia should be excluded. Copyright (c) 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Effects of positive acceleration /+Gz/ on renal function and plasma renin in normal man
NASA Technical Reports Server (NTRS)
Epstein, M.; Shubrooks, S. J., Jr.; Fishman, L. M.; Duncan, D. C.
1974-01-01
The effects of positive radial centrifugation (+Gz) on plasma resin activity (PRA) and renal function were assessed in 15 normal male subjects under carefully controlled conditions of Na, K, and water intake. Twenty minutes of +2.0 Gz resulted in significant decreases in the mean rate of sodium excretion and creatine clearance and in a doubling of PRA in seven sodium-depleted subjects (10 meq Na intake). In eight sodium-replete subjects (200 mq Na intake), 30 min of +2.0 Gz was also associated with a decrease in the mean rate of sodium excretion. As a consequence of a concurrent decrease in creatine clearance, the fractional excretion of sodium during centrifugation did not differ from control, suggesting that the changes in Na excretion were mediated primarily by renal hemodynamic factors, although enhanced renal tubular sodium reabsorption may also have played a role.
Liu, Shucheng; Yu, Ying; Gao, Yang; Yang, Xiong; Pang, Zili
2016-04-01
The objectives of the study were to evaluate changes in ureteral stent-related symptoms and urinary glycosaminoglycan (GAG) excretion after alfuzosin treatment, and to further investigate the relationship between stent-related symptoms and loss of urinary GAGs. Seventy consecutive patients scheduled for unilateral retrograde ureteroscopy with stent placement were recruited. Patients were randomly assigned to treatment with alfuzosin 10 mg/day or placebo for 3 weeks starting on the third postoperative day. The ureteral stent was removed when treatment stopped. International Prostate Symptom Score (IPSS), visual analog scale (VAS) score, and urinary GAG excretion were determined before treatment at 1, 2, and 3 weeks after treatment, and at 3 weeks after stent removal. Fifty-nine patients completed the study. IPSS, VAS score, and urinary GAG excretion were significantly lower in the alfuzosin group, compared with the placebo group, at 1, 2, and 3 weeks after treatment (P < 0.01). In both groups, IPSS, VAS score, and urinary GAG excretion were significantly lower at 3 weeks after stent removal compared with those before stent removal. No significant differences in IPSS, VAS score, or urinary GAG excretion were observed between the two groups at baseline and 3 weeks after stent removal (P > 0.05). Positive correlations were found between urinary GAG excretion (R(2) = 0.65, P < 0.001) and IPSS and between urinary GAG excretion and VAS score (R(2) = 0.33, P < 0.001). Stent placement contributes to loss of urinary GAGs. However, alfuzosin effectively reduces such loss and improves ureteral stent-related symptoms. Loss of urinary GAGs plays a role in these symptoms.
Schütten, Monica T J; Kusters, Yvo H A M; Houben, Alfons J H M; Scheijen, Jean L J M; van de Waarenburg, Marjo P H; Schalkwijk, Casper G; Joris, Peter J; Plat, Jogchum; Mensink, Ronald P; de Leeuw, Peter W; Stehouwer, Coen D A
2018-02-01
Impaired insulin-mediated muscle microvascular recruitment (IMMR) may add to the development of insulin resistance and hypertension. Increased aldosterone levels have been linked to these obesity-related complications in severely to morbidly obese individuals and to impaired microvascular function in experimental studies. To investigate whether aldosterone levels are associated with IMMR, insulin sensitivity, and blood pressure in lean and moderately abdominally obese men, and to study the effect of weight loss. In 25 lean and 53 abdominally obese men, 24-hour blood pressure measurement was performed, and aldosterone levels were measured using ultra-performance liquid chromatography tandem mass spectrometry. Insulin sensitivity was assessed by determining whole-body glucose disposal during a hyperinsulinemic clamp. IMMR in forearm skeletal muscle was measured with contrast-enhanced ultrasonography. These assessments were repeated in the abdominally obese men following an 8-week weight loss or weight stable period. Sodium excretion and aldosterone levels were similar in lean and abdominally obese participants, but sodium excretion was inversely associated with aldosterone concentration only in the lean individuals [lean, β/100 mmol sodium excretion (adjusted for age and urinary potassium excretion) = -0.481 (95% confidence interval, -0.949 to -0.013); abdominally obese, β/100 mmol sodium excretion = -0.081 (95% confidence interval, -0.433 to 0.271); P for interaction = 0.02]. Aldosterone was not associated with IMMR, insulin sensitivity, or blood pressure and was unaffected by weight loss. In moderately abdominally obese men, the inverse relationship between sodium excretion and aldosterone concentration is less than that in lean men but does not translate into higher aldosterone levels. The absolute aldosterone level does not explain differences in microvascular and metabolic insulin sensitivity and blood pressure between lean and moderately abdominally obese men. Copyright © 2017 Endocrine Society
Kato, Koji; Hasegawa, Yoshitaka; Iwata, Katsuya; Ichikawa, Takuya; Yahara, Tohru; Tsuji, Satoshi; Sugiura, Masayuki; Yamaguchi, Jun-Ichi
2016-08-01
Hyperbilirubinemia (HB) is sometimes encountered following bile-duct cannulation in rats. It possibly originates from the reduced functioning of multidrug resistance-associated protein 2 (Mrp2) and subsequent adaptive alterations in the expression of Mrp3 and the organic anion transporting polypeptides (Oatps). Our aim was to clarify the importance of excluding bile-duct-cannulated (BDC) rats with HB for proper conduct of drug excretion studies. We detected HB [serum total bilirubin concentration (TBIL) ≥0.20 mg/dl] in 16% of all BDC rats prepared. The serum activities of aspartate aminotransferase, alanine aminotransferase, leucine aminopeptidase, and alkaline phosphatase were within the respective normal ranges in the BDC rats with mild HB (TBIL, 0.20-0.79 mg/dl), indicating the absence of hepatic failure. In the pharmacokinetics of pravastatin, an Oatps/Mrp2 probe drug in the BDC rats, the apparent volume of distribution and the clearance were smaller in the mild HB group as compared with the normal group, suggesting the reduction of apparent hepatic uptake and hepatobiliary elimination. The biliary excretion (percentage of dose) was significantly reduced by 54%, suggesting that the biliary efflux activity via Mrp2 was reduced to a greater extent relative to metabolic activity in hepatocytes. The serum γ-glutamyltransferase (GGT) activity correlated with TBIL and inversely correlated with biliary excretion of pravastatin, a finding which could serve as a clue to uncover the regulatory system involving cooperation between GGT and Mrp2. In conclusion, BDC rats with HB, however mild, should be excluded from drug excretion studies to avoid the risk of underestimation of the biliary excretion of drugs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Suslova, Klara G; Sokolova, Alexandra B; Efimov, Alexander V; Miller, Scott C
2013-03-01
Americium-241 (²⁴¹Am) is the second most significant radiation hazard after ²³⁹Pu at some of the Mayak Production Association facilities. This study summarizes current data on the accumulation, distribution, and excretion of americium compared with plutonium in different organs from former Mayak PA workers. Americium and plutonium were measured in autopsy and bioassay samples and correlated with the presence or absence of chronic disease and with biological transportability of the aerosols encountered at different workplaces. The relative accumulation of ²⁴¹Am was found to be increasing in the workers over time. This is likely from ²⁴¹Pu that increases with time in reprocessed fuel and from the increased concentrations of ²⁴¹Am and ²⁴¹Pu in inhaled alpha-active aerosols. While differences were observed in lung retention with exposures to different industrial compounds with different transportabilities (i.e., dioxide and nitrates), there were no significant differences in lung retention between americium and plutonium within each transportability group. In the non-pulmonary organs, the highest ratios of ²⁴¹Am/²⁴¹Am + SPu were observed in the skeleton. The relative ratios of americium in the skeleton versus liver were significantly greater than for plutonium. The relative amounts of americium and plutonium found in the skeleton compared with the liver were even greater in workers with documented chronic liver diseases. Excretion rates of ²⁴¹Am in ‘‘healthy’’ workers were estimated using bioassay and autopsy data. The data suggest that impaired liver function leads to reduced hepatic ²⁴¹Am retention, leading to increased ²⁴¹Am excretion.
Coelho, J C; Tucker, R; Mattoon, J; Roberts, G; Waiting, D K; Mealey, K L
2009-10-01
P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.
Ecdysteroid excretion by adult Hymenolepis diminuta in vitro.
Mercer, J G; Munn, A E; Arme, C; Rees, H H
1987-12-01
Both patent and prepatent adult Hymenolepis diminuta excreted 20-hydroxyecdysone into the culture medium when maintained in vitro. Patent worms also excreted ecdysone and comparatively large quantities of unidentified immunoreactive material of a relatively apolar nature. This latter material was shown to be depleted from the endogenous free ecdysteroids of patent adults during the culture period. Ecdysteroid excretion was affected both qualitatively and quantitatively when culturing conditions were varied.
Katavetin, Pisut; Katavetin, Paravee; Susantitaphong, Paweena; Townamchai, Natavudh; Tiranathanagul, Khajohn; Tungsanga, Kriang; Eiam-Ong, Somchai
2010-08-01
Baseline urinary type IV collagen excretion was negatively correlated with the subsequent GFR change (r(s)=-0.39, p=0.04) in our cohort of 30 type 2 diabetic patients with proteinuria. Therefore, it could be used to predict subsequent declining renal function in type 2 diabetic patients with proteinuria. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Use, misuse and abuse of diuretics.
Bartoli, Ettore; Rossi, Luca; Sola, Daniele; Castello, Luigi; Sainaghi, Pier Paolo; Smirne, Carlo
2017-04-01
Resolution of edema requires a correct interpretation of body fluids-related renal function, to excrete the excess volume while restoring systemic hemodynamics and avoiding renal failure. In heart failure, the intensive diuresis should be matched by continuous fluids refeeding from interstitium to plasma, avoiding central volume depletion. The slowly reabsorbed ascites cannot refeed this contracted volume in cirrhosis: the ensuing activation of intrathoracic receptors, attended by increased adrenergic and Renin release, causes more avid sodium retention, producing a positive fluid and Na balance in the face of continuous treatment. High-dose-furosemide creates a defect in tubular Na causing diuresis adequate to excrete the daily water and electrolyte load in Chronic Renal Failure. Diuretic treatment requires care, caution and bedside "tricks" aimed at minimizing volume contraction by correctly assessing the homeostatic system of body fluids and related renal hemodynamics. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Changes of catecholamine excretion during long-duration confinement.
Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C
2002-06-01
Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.
Haneda, Masakazu; Koya, Daisuke; Kondo, Keiko; Tanaka, Sachiko; Arima, Hisatomi; Kume, Shinji; Nakazawa, Jun; Chin-Kanasaki, Masami; Ugi, Satoshi; Kawai, Hiromichi; Araki, Hisazumi; Uzu, Takashi; Maegawa, Hiroshi
2015-01-01
Background and objectives We investigated the association of urinary potassium and sodium excretion with the incidence of renal failure and cardiovascular disease in patients with type 2 diabetes. Design, setting, participants, & measurements A total of 623 Japanese type 2 diabetic patients with eGFR≥60 ml/min per 1.73 m2 were enrolled in this observational follow-up study between 1996 and 2003 and followed-up until 2013. At baseline, a 24-hour urine sample was collected to estimate urinary potassium and sodium excretion. The primary end point was renal and cardiovascular events (RRT, myocardial infarction, angina pectoris, stroke, and peripheral vascular disease). The secondary renal end points were the incidence of a 50% decline in eGFR, progression to CKD stage 4 (eGFR<30 ml/min per 1.73 m2), and the annual decline rate in eGFR. Results During the 11-year median follow-up period, 134 primary end points occurred. Higher urinary potassium excretion was associated with lower risk of the primary end point, whereas urinary sodium excretion was not. The adjusted hazard ratios for the primary end point in Cox proportional hazards analysis were 0.56 (95% confidence interval [95% CI], 0.33 to 0.95) in the third quartile of urinary potassium excretion (2.33–2.90 g/d) and 0.33 (95% CI, 0.18 to 0.62) in the fourth quartile (>2.90 g/d) compared with the lowest quartile (<1.72 g/d). Similar associations were observed for the secondary renal end points. The annual decline rate in eGFR in the fourth quartile of urinary potassium excretion (–1.3 ml/min per 1.73 m2/y; 95% CI, –1.5 to –1.0) was significantly slower than those in the first quartile (–2.2; 95% CI, –2.4 to –1.8). Conclusions Higher urinary potassium excretion was associated with the slower decline of renal function and the lower incidence of cardiovascular complications in type 2 diabetic patients with normal renal function. Interventional trials are necessary to determine whether increasing dietary potassium is beneficial. PMID:26563378
Dietary sodium intake and the risk of airway hyperreactivity in a random adult population.
Britton, J.; Pavord, I.; Richards, K.; Knox, A.; Wisniewski, A.; Weiss, S.; Tattersfield, A.
1994-01-01
BACKGROUND--High dietary sodium intake has been identified as a potential cause of asthma and airway hyperreactivity. This study was designed to test the hypothesis that dietary sodium intake is an independent determinant of the risk of hyperreactivity in the general population, and to assess the role of atopy in the association between these factors. METHODS--Airway reactivity to methacholine, atopy, 24 hour urinary sodium excretion, and self-reported smoking and symptom history were measured in a random sample of 1702 adults aged 18-70 from an administrative district of Nottingham. Hyperreactivity was defined as a PD20FEV1 of 12.25 mumol or less, and atopy was defined quantitatively as the mean allergen skin weal response to Dermatophagoides pteronyssinus, cat fur, and grass pollen, and categorically as the occurrence of any allergen response 1 mm or greater than the saline control. Multiple logistic regression analysis was used to estimate the independent relative odds of hyperreactivity, atopy, or symptoms in relation to sodium excretion in all 1702 subjects, and multiple linear regression to assess the independent relation between sodium excretion and mean allergen skin weal diameter, and the PD20 value amongst hyperreactive subjects. RESULTS--There was no relation between the relative odds of hyperreactivity to methacholine and 24 hour urinary sodium excretion, either before or after adjustment for age, smoking, allergen skin weal diameter, and sex, and similarly no relation if the analysis was restricted to men or women only. The relative odds of having at least one allergen skin test response 1 mm greater than the saline control were increased in relation to sodium excretion after adjustment for age, sex, and smoking by a ratio of 2.08 (95% CI 1.04 to 4.15) per log10 unit increase in sodium excretion, but there was no evidence of an association between sodium excretion and the occurrence of self-reported wheeze, hay fever, eczema, or asthma. There was no relation between 24 hour sodium excretion and the magnitude of the mean allergen skin weal response or the PD20 value. CONCLUSIONS--These findings do not support the hypothesis that a high dietary sodium intake is a risk factor for airway hyperreactivity or atopic disease in the general adult population. PMID:7940426
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muenter, Marc W.; Hoffner, Simone; Department of Nuclear Medicine, University of Heidelberg, Heidelberg
2007-03-01
Purpose: The aim of this study was to compare changes in salivary gland function after intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (RT), with or without Amifostine, for tumors of the head-and-neck region using quantitative salivary gland scintigraphy (QSGS). Methods and Materials: A total of 75 patients received pre- and post-therapeutic QSGS to quantify the salivary gland function. In all, 251 salivary glands were independently evaluated. Changes in the maximum uptake ({delta}U) and relative excretion rate ({delta}F) both pre- and post-RT were determined to characterize radiation-induced changes in the salivary gland function. In addition, dose-response curves were calculated. Results: In allmore » groups, maximum uptake and relative excretion rate were reduced after RT ({delta}U {<=}0 and {delta}F {<=}0). The reduction was significantly lower for IMRT than for conventional RT. For the parotid glands, the reduction was smaller for the IMRT-low than for the IMRT-high group. For the Amifostine-high and the conventional group the difference was significant only for one parameter ({delta}U, parotid and submandibular glands, p < 0.05). In contrast to this, the difference between the Amifostine-low and the conventional group was always significant or at least showed a clear trend for both changes in U and F. In regard to the endpoint 'reduction of the salivary gland excretion rate of more than 50%,' the dose-response curves yielded D{sub 50}-values of 34.2 {+-} 12.2 Gy for the conventionally treated group and 36.8 {+-} 2.9 Gy for the IMRT group. For the Amifostine group, an increased D{sub 50}-values of 46.3 {+-} 2.3 Gy was obtained. Conclusion: Intensity-modulated RT can significantly reduce the loss of parotid gland function when respecting a certain dose threshold. Conventional RT plus Amifostine prevents reduced salivary gland function only in the patient group treated with <40.6 Gy.« less
Moore, Jonathan W; Olden, Julian D
2017-05-01
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.
The effect of bedrest on adrenal function
NASA Technical Reports Server (NTRS)
Leach, C. S.; Hulley, S. B.; Rambaut, P. C.; Dietlein, L. F.
1973-01-01
Eight male subjects were subjected to continuous bedrest for 24-80 weeks for the purpose of studying metabolic responses. Three of the subjects did supine exercises daily during part of the study. Adrenal function was examined in relation to adrenal cortical and medullary excretions. The results reveal an increase in hydrocortisone throughout the test period, a decrease in norepinephrine and no change in epinephrine. These data suggest that exercise could decrease the severity of deconditioning caused by bedrest.
Catecholamine, Corticosteroid and Ketone Excretion in Exercise and Hypoxia,
OHCS excretion tended to be higher during the experimental period and subsequently lower overnight during the hypoxia week. Ketosis occurred in two...subjects. In one of these it could be readily related to previous extraneous stress. Excretion of unidentified ketones in overnight urines was sometimes suspected and occurred beyond doubt following gross ketosis . (Author)
Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.
2012-01-01
Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.
Polonium assimilation and retention in mule deer and pronghorn antelope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sejkora, K.J.
Excretion kinetics and tissue distribution of polonium-210 in mule deer and pronghorn were studied. Each animal in a captive herd of 7 mule deer and 2 pronghorn received an intraruminal injection of 4.4 ..mu..Ci of polonium chloride. Feces and urine were collected periodically over a 43-day period and daily excretion rate for each pathway was regressed as a function of time. Assimilation fractions of 0.40 and 0.51 were calculated for mule deer (n=2) and 0.60 for a pronghorn. Body burden retention functions were calculated from integrated excretion rate functions. Polonium burdens in muscle, liver, and kidney were calculated as amore » fraction of body burden from serially-sacrificed animals. Background tissue burdens in mule deer were comparable to those of other ruminants reported in the literature. Hypothetical cases were assumed which combined feeding rate of mule deer, forage concentrations of polonium, retention function, tissue burden fraction, and human intake to estimate human radiation dose. 26 references.« less
Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System
Calunga, José Luis; Zamora, Zullyt B.; Borrego, Aluet; del Río, Sarahí; Barber, Ernesto; Menéndez, Silvia; Hernández, Frank; Montero, Teresita; Taboada, Dunia
2005-01-01
Chronic renal failure (CRF) represents a world health problem. Ozone increases the endogenous antioxidant defense system, preserving the cell redox state. The aim of this study is to evaluate the effect of ozone/oxygen mixture in the renal function, morphology, and biochemical parameters, in an experimental model of CRF (subtotal nephrectomy). Ozone/oxygen mixture was applied daily, by rectal insufflation (0.5 mg/kg) for 15 sessions after the nephrectomy. Renal function was evaluated, as well as different biochemical parameters, at the beginning and at the end of the study (10 weeks). Renal plasmatic flow (RPF), glomerular filtration rate (GFR), the urine excretion index, and the sodium and potassium excretions (as a measurement of tubular function) in the ozone group were similar to those in Sham group. Nevertheless, nephrectomized rats without ozone (positive control group) showed the lowest RPF, GFR, and urine excretion figures, as well as tubular function. Animals treated with ozone showed systolic arterial pressure (SAP) figures lower than those in the positive control group, but higher values compared to Sham group. Serum creatinine values and protein excretion in 24 hours in the ozone group were decreased compared with nephrectomized rats, but were still higher than normal values. Histological study demonstrated that animals treated with ozone showed less number of lesions in comparison with nephrectomized rats. Thiobarbituric acid reactive substances were significantly increased in nephrectomized and ozone-treated nephrectomized rats in comparison with Sham group. In the positive control group, superoxide dismutase (SOD) and catalase (CAT) showed the lowest figures in comparison with the other groups. However, ozone/oxygen mixture induced a significant stimulation in the enzymatic activity of CAT, SOD, and glutathione peroxidase, as well as reduced glutathione in relation with Sham and positive control groups. In this animal model of CRF, ozone rectal administrations produced a delay in the advance of the disease, protecting the kidneys against vascular, hemorheological, and oxidative mechanisms. This behavior suggests ozone therapy has a protective effect on renal tissue by downregulation of the oxidative stress shown in CRF. PMID:16192672
Increased urinary excretion of acidic mucopolysaccharides in exophthalmos
Winand, Roger J.
1968-01-01
The excretion of mucopolysaccharides normally found in urine (chondroitin, chondroitin sulfates A and C, keratosulfate, and heparitin sulfate) is increased approximately twofold in patients with progresive exophthalmos. A threefold elevation of total serum mucopolysaccharides is also found. These increases are unrelated to thyroid function. PMID:4235688
Chang, Jae-Hyung; Paik, Seung-Yeol; Mao, Lan; Eisner, William; Flannery, Patrick J; Wang, Liming; Tang, Yuping; Mattocks, Natalie; Hadjadj, Samy; Goujon, Jean-Michel; Ruiz, Phillip; Gurley, Susan B; Spurney, Robert F
2012-01-01
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process.
Chang, Jae-Hyung; Paik, Seung-Yeol; Mao, Lan; Eisner, William; Flannery, Patrick J.; Wang, Liming; Tang, Yuping; Mattocks, Natalie; Hadjadj, Samy; Goujon, Jean-Michel; Ruiz, Phillip; Gurley, Susan B.; Spurney, Robert F.
2012-01-01
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process. PMID:22496773
Lee, Yu-Ji; Cho, Seong; Kim, Sung Rok; Jang, Hye Ryoun; Lee, Jung Eun; Huh, Wooseong; Kim, Dae Joong; Oh, Ha Young; Kim, Yoon-Goo
2011-10-01
Activation of the rennin-angiotensin system (RAS) is thought to contribute to hypertension and proteinuria, and eventually to the progression of chronic kidney disease (CKD). Recent evidence suggests that urinary angiotensinogen (UAGT) excretion reflects activation of the intrarenal RAS. This study was performed to determine the effect of losartan on proteinuria and UAGT excretion in non-diabetic patients with CKD with non-nephrotic-range proteinuria. Thirty-two patients with non-nephrotic-range proteinuria (0.045-0.23 g/mmol creatinine) and normal renal function between April 2005 and April 2006 were randomised to a losartan (n=17) or a control (n=15) group. Patients in the losartan group received losartan 50 mg/day, and the doses were titrated up to 100 mg/day after 6 weeks. Serum and urinary angiotensinogen concentrations were measured by sandwich ELISA. The primary end point was the percentage change in proteinuria. The secondary end points were changes in estimated glomerular filtration rate and UAGT excretion. The follow-up period was 24 months. Baseline characteristics in the two groups were similar. After 24 months, losartan had reduced urinary protein excretion by 43% (from mean±SD 0.13±0.04 to 0.073±0.03 g/mmol, p<0.0001), but proteinuria had not changed in the control group. The percentage change in mean arterial pressure did not differ between the groups. Losartan decreased logarithmically converted UAGT excretion (from 1.58±0.47 to 1.00±0.52, p=0.001). Estimated glomerular filtration rate decreased significantly only in the control group. Losartan significantly decreased proteinuria and UAGT excretion, and preserved renal function in non-diabetic patients with CKD.
Ammonia and urea handling by early life stages of fishes.
Zimmer, Alex M; Wright, Patricia A; Wood, Chris M
2017-11-01
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes. © 2017. Published by The Company of Biologists Ltd.
2010-01-01
Background The objective of this study was to investigate whether the 13C-phenylalanine breath test could be useful for the evaluation of hepatic function in elderly volunteers and patients with chronic hepatitis B and liver cirrhosis. Methods L-[1-13C] phenylalanine was administered orally at a dose of 100 mg to 55 elderly patients with liver cirrhosis, 30 patients with chronic hepatitis B and 38 elderly healthy subjects. The breath test was performed at 8 different time points (0, 10, 20, 30, 45, 60, 90, 120 min) to obtain the values of Delta over baseline, percentage 13CO2 exhalation rate and cumulative excretion (Cum). The relationships of the cumulative excretion with the 13C-%dose/h and blood biochemical parameters were investigated. Results The 13C-%dose/h at 20 min and 30 min combined with the cumulative excretion at 60 min and 120 min correlated with hepatic function tests, serum albumin, hemoglobin, platelet and Child-Pugh score. Prothrombin time, total and direct bilirubin were significantly increased, while serum albumin, hemoglobin and platelet, the cumulative excretion at 60 min and 120 min values decreased by degrees of intensity of the disease in Child-Pugh A, B, and C patients (P < 0.01). Conclusions The 13C-phenylalanine breath test can be used as a non-invasive assay to evaluate hepatic function in elderly patients with liver cirrhosis. The 13C-%dose/h at 20 min, at 30 min and cumulative excretion at 60 min may be the key value for determination at a single time-point. 13C-phenylalanine breath test is safe and helpful in distinguishing different stages of hepatic dysfunction for elderly cirrhosis patients. PMID:20459849
Herrera M, L Gerardo; Ramirez P, Nicte; Miron M, Leticia
2006-01-01
We determined the effect of water and nitrogen intake on nitrogenous waste composition in the nectarivorous Pallas's long-tongued bat Glossophaga soricina (Phyllostomidae) to test the hypothesis that bats reduce excretion of urea nitrogen and increase the excretion of ammonia nitrogen as nitrogen intake decreases and water intake decreases. Because changes in urine nitrogen composition are expected only in animals whose natural diets are low in nitrogen and high in water content, we also measured maintenance nitrogen requirements (MNR). We hypothesized that, similar to other plant-eating vertebrates, nectarivorous bats have low MNR. Our nitrogen excretion hypothesis was partly proved correct. There was an increase in the proportion of N excreted as ammonia and a decrease in the proportion excreted as urea in low-nitrogen diets. The proportion of N excreted as ammonia and urea was independent of water intake. Most individuals were ureotelic (n = 28), and only a few were ureo-ammonotelic (n = 3) or ammonotelic (n = 2). According to our nitrogen requirement hypothesis, apparent MNR (60 mg kg(-0.75) d(-1)) and truly digestible MNR (54 mg N kg(-0.75) d(-1)) were low. A decrease in urea excretion in low-nitrogen diets may result from urea recycling from liver to the gut functioning as a nitrogen salvage system in nectarivorous bats. This mechanism probably contributes to the low MNR found in Pallas's long-tongued bats.
Behavioral and perceived stressor effects on urinary catecholamine excretion in adult Samoans.
Bergey, Meredith R; Steele, Matthew S; Bereiter, David A; Viali, Satupaitea; McGarvey, Stephen T
2011-01-01
The effects of perceptions and behaviors related to culturally patterned socioeconomic obligations on catecholamine excretion rates were studied in a cross-sectional sample of Samoan adults. A total of 378 participants, ages 29-62 years, from 9 villages throughout Samoa, provided timed overnight urine specimens, and self-reported perceptions and behaviors associated with contributions to one's family, aiga, and chief, matai, and communal gift exchanges, fa'alavelave. Urinary norepinephrine and epinephrine excretion rates were measured by high performance liquid chromatography with electrochemical detection. Age (≤40 vs. >40 years) and gender-specific regression models were estimated to detect associations with catecholamine excretion. Young women who contribute more to their matai, who consider fa'alavelave to be a financial strain, and who view their contribution to their matai to be "just right," had significantly higher residence-adjusted norepinephrine excretion. Young women who contribute more to their matai, who consider fa'alavelave to be a financial strain, and who consider their contribution to their aiga not to be a burden, had higher epinephrine excretion. Older men who contribute more to their aiga and who perceive their contribution to their aiga to be "just right" had increased residence-adjusted epinephrine excretion. Individual-level perceptions and behaviors related to traditional socioeconomic obligations are a significant correlate of increased overnight catecholamine excretion rates. Higher excretion rates may be attributed to psychosocial stress arousal associated with a discordance between personal desires for upward social mobility, and family and community-based socioeconomic obligations. Changes in patterns of individual-level psychosocial stress arousal may contribute to cardiovascular disease risk in modernizing Samoans. Copyright © 2011 Wiley-Liss, Inc.
Algal culture studies related to a Closed Ecological Life Support System (CELSS)
NASA Technical Reports Server (NTRS)
Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.
1982-01-01
Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.
Spaleniak, Sebastian; Korzeniewska-Dyl, Irmina; Moczulski, Dariusz
2014-10-01
The early loss of renal function in patients with type 1 diabetes may begin before proteinuria. Only 30% of patients with diabetes manifest overt proteinuria. According to the previous studies, increased urinary albumin excretion, which is considered a classic marker of progression of diabetic kidney disease, can regress to normal urine albumin excretion. The current studies conducted in patients with type 1 diabetes without increased urine albumin excretion showed that the uric acid concentration was an independent factor for the development of diabetic kidney disease. The aim of study was to assess the impact of uric acid concentration and to identify risk factors of the early glomerular filtration loss in patients with type 1 diabetes and normal urinary albumin excretion. 147 patients (61 women and 86 men) with type 1 diabetes without increased urine albumin excretion were analysed. GFR (gromerular filtration rate) was estimated based on the serum cystatin C concentration. Centile charts were used to determine the variation of uric acid concentration depending on GFR and gender. The mean value of the filtration rate for the study group was 117 ml/min/m2. The uric acid level above 90th percentile in relation to GFR was diagnosed in 8.2% of women and 0% of men, between 90th and 50th percentile in 44.3 % of women and 5.8% of men and below 50th percentile in 47.5% of women and 94.2% of men. Contrary to men in women higher serum acid concentration was strongly associated with higher glomerular filtration rate. Hyperfiltraion was diagnosed in 15 of women and 19 of men. The high normal uric acid concentration in women with type 1 diabetes might play a crucial role in development of hyperfiltration.
Poucher, S M; Karim, F
1991-01-01
1. The effect of direct electrical stimulation of the renal efferent nerves upon renal haemodynamics and function was studied in greyhounds anaesthetized with chloralose and artificially ventilated. The left kidney was neurally and vascularly isolated, and perfused with blood from one of the femoral arteries at a constant pressure of 99 +/- 1 mmHg. Renal blood flow was measured with a cannulating electromagnetic flow probe placed in the perfusion circuit, glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and solute excretion by osmometry. Beta-Adrenergic receptor activation was blocked by the infusion of dl-propranolol (17 micrograms kg-1 min-1). The peripheral ends of the ligated renal nerves were stimulated at 0.5, 1.0, 1.5 and 2.0 Hz. 2. At 0.5 Hz frequency only osmolar excretion was significantly reduced (10.3 +/- 3.2%, P less than 0.05, n = 6). Reductions in sodium excretion (53.6 +/- 8.5%, P less than 0.01, n = 6) and water excretion (26.9 +/- 8.0%, P less than 0.05, n = 6) and further reductions of osmolar excretion (20.7 +/- 3.7%, P less than 0.01, n = 6) were observed at 1.0 Hz; however, these were observed in the absence of significant changes in renal blood flow and glomerular filtration rate. Significant reductions were observed in glomerular filtration rate at 1.5 Hz (16.3 +/- 4.1%, P less than 0.02, n = 5) and in renal blood flow at 2.0 Hz (13.1 +/- 4.0%, P less than 0.05, n = 5). Further reductions in urine flow and sodium excretion were also observed at these higher frequencies. 3. These results clearly show that significant changes in renal tubular function can occur in the absence of changes in renal blood flow and glomerular filtration rate when the renal nerves are stimulated electrically from a zero baseline activity up to a frequency of 1.5 Hz. Higher frequencies caused significant changes in both renal haemodynamics and function. PMID:2023113
Kundu, Mila C.; May, Margaret C.; Chosich, Justin; Bradford, Andrew P.; Lasley, Bill; Gee, Nancy; Santoro, Nanette; Appt, Susan E.; Polotsky, Alex J.
2015-01-01
The objective of the current study was to characterize luteal function in vervet monkeys. Urine from 12 adult female vervets housed at an academic research center was collected for 10 weeks from single-caged monkeys in order to assess evidence of luteal activity (ELA) as determined by urinary excretion of pregnanediol glucuronide (Pdg) and estrone conjugates (E1c). Dual energy X-ray absorptiometry (DXA) was performed on the monkeys to assess body composition, bone density, and fat mass. Menstrual cyclicity was determined using records of vaginal bleeding. ELA was observed in 9 monkeys and was characterized by a late follicular rise in E1c followed by a progressive increase in Pdg excretion. Mean menstrual cycle length was 26.7 ± 3.8 days and the average day of luteal transition was 14 ± 1.8. Three monkeys without ELA had a clearly defined E1c rise (mean 12-fold from nadir) followed by an E1c drop that was not accompanied by Pdg rise and coincided with vaginal bleeding. Among the 9 ELA monkeys, excretion of E1c tended to negatively associate with fat mass, although this finding did not reach statistical significance (r = −0.61, p = 0.08). Similar to women, vervet monkeys experience an increase in E1c late in the follicular phase of the menstrual cycle which is followed by a subsequent luteal Pdg peak. Assessment of urinary reproductive hormones allows for identification of cardinal menstrual cycle events; thus, the similarity of vervet cycles to human menstrual cycles makes them a useful model for obesity-related human reproductive impairment. PMID:23278149
Bond, P.A.; Jenner, F.A.
1974-01-01
1 Administration of lithium ions to rats, either acutely by intraperitoneal injection or chronically in food, causes increased excretion of 2-oxoglutarate and citrate. 2 Chronic administration in food of rubidium and caesium causes decreased excretion of 2-oxoglutarate and citrate. 3 The effects described are not due to changes in urine volume, nor pH, nor are they simply related to the excretion of the injected ion. 4 Acute administration of lithium caused an increased level of 2-oxoglutarate in kidney and reduced the ratio of glutamate to 2-oxoglutarate. 5 Renal gluconeogenesis in slices was only slightly affected by either acute administration of lithium to the animals or by its presence in the incubation medium of renal slices. PMID:4425767
Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas
2016-01-01
In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892
Song, Guosheng; Hao, Jiali; Liang, Chao; Liu, Teng; Gao, Min; Cheng, Liang; Hu, Junqing; Liu, Zhuang
2016-02-05
Molybdenum oxide (MoOx) nanosheets with high near-infrared (NIR) absorbance and pH-dependent oxidative degradation properties were synthesized, functionalized with polyethylene glycol (PEG), and then used as a degradable photothermal agent and drug carrier. The nanosheets, which are relatively stable under acidic pH, could be degraded at physiological pH. Therefore, MoOx-PEG distributed in organs upon intravenous injection would be rapidly degraded and excreted without apparent in vivo toxicity. MoOx-PEG shows efficient accumulation in tumors, the acidic pH of which then leads to longer tumor retention of those nanosheets. Along with the capability of acting as a photothermal agent for effective tumor ablation, MoOx-PEG can load therapeutic molecules with high efficiencies. This concept of inorganic theranostic nanoagent should be relatively stable in tumors to allow imaging and treatment, while being readily degradable in normal organs to enable rapid excretion and avoid long-term retention/toxicity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced renal prostaglandin production in the dog. I. Effects on renal function.
Tannenbaum, J; Splawinski, J A; Oates, J A; Nies, A S
1975-01-01
The changes in renal function produced by endogenous synthesis of prostaglandins by the kidney were evaluated by infusing sodium arachidonate, the prescursor of the prostaglandins, into one renal artery of the dog. These changes were compared with those produced by similar infusions on performed prostaglandin (PG) E2 and F2alpha.PGE2given at 0.01-0.3 mug/kg min--1 produced dose-related increases in urine flow, sodium and potassium excretion, free water clearance, and renal blood flow. The glomerular filtration rage increased only at the lowest dose and the calculated filtration fraction fell. Arachidonic acid at 1.0-30.0 mug/kg min--1 similarly produced dose-related increases in electrolyte excretion, but the increase in renal blood flow was much less than that produced by PGE2 and there were no changes in glomerular filtration rate, filtration fraction, or free water clearances. PGF2alpha had essentially no effects at infusion rates of 0.03-1.0 mug/kg min--1. All renal effects of arachidonic acid were inhibited by simultaneous infusions of an inhibitor of prostaglandin synthetase, 5, 8, 11,14-eicosatetraynoic acid (20:4). None of the effects produced by PGE2 were inhibited by 20:4. These results indicate that enhanced endogenous renal prostaglandin synthesis, which can be produced by arachidonate infusion, results in significant alterations of renal function. This finding strengthens the hypothesis that renal prostaglandins formed in vivo have physiological importance as regulators of renal function.
Functional characterization of Aquaporin-like genes in the human bed bug Cimex lectularius.
Tsujimoto, Hitoshi; Sakamoto, Joyce M; Rasgon, Jason L
2017-06-12
The bed bug Cimex lectularius is a blood-feeding re-emerging annoyance pest insect that has the ability to transmit Trypanosoma cruzi under experimental laboratory conditions. Aquaporins (AQPs) are water channel proteins that are essential in biological organisms. C. lectularius are constantly exposed to water-related stress, suggesting that AQPs may offer novel control avenues. We identified and cloned four AQPs from C. lectularius, assessed tissue and lifestage-specific expression, and characterized biochemical functions in vitro and in vivo. We identified an efficient water-specific AQP (ClAQP1), two aquaglyceroporins (ClGlp1 and ClGlp2) and a homolog of Drosophila melanogaster big brain (ClBib). ClGlp1 was only functional when co-expressed with the water-specific AQP. Simultaneous RNAi gene silencing of ClAQP1 and ClGlp1 significantly reduced water and urea excretion post blood feeding. The Bib homologue was enriched in embryos, exclusively expressed in ovaries, and when silenced, dramatically increased bug fecundity. Our data demonstrate that AQPs have critical roles in excretion, water homeostasis and reproduction in C. lectularius, and could be potential targets for control in this notorious pest.
Depleted uranium exposure and health effects in Gulf War veterans
Squibb, Katherine S; McDiarmid, Melissa A
2006-01-01
Health effects stemming from depleted uranium (DU) exposure in a cohort of Gulf War veterans who were in or on US Army vehicles hit by friendly fire involving DU munitions are being carefully monitored through the Baltimore Veterans Affairs (VA) DU Follow-Up Program initiated in 1993. DU exposure in this cohort has been directly measured using inductively coupled plasma-mass spectrometer (ICP-MS) isotopic analysis for DU in urine specimens. Soldiers with embedded DU fragments continue to excrete elevated concentrations of U in their urine, documenting ongoing systemic exposure to U released from their fragments. Biennial surveillance visits provide a detailed health assessment that includes basic clinical measures and surveillance for early changes in kidney function, an expected target organ for U. Tests also include measurements of genotoxicity and neuroendocrine, neurocognitive and reproductive function. With the exception of the elevated urine U excretion, no clinically significant expected U-related health effects have been identified to date. Subtle changes in renal function and genotoxicity markers in veterans with urine U concentrations greater than 0.1 μg−1 creatinine, however, indicate the need for continued surveillance of these DU-exposed veterans. PMID:16687268
Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins
Morra, Rosa; Del Carratore, Francesco; Muhamadali, Howbeer; Horga, Luminita Gabriela; Halliwell, Samantha
2018-01-01
ABSTRACT The apparent mislocalization or excretion of cytoplasmic proteins is a commonly observed phenomenon in both bacteria and eukaryotes. However, reports on the mechanistic basis and the cellular function of this so-called “nonclassical protein secretion” are limited. Here we report that protein overexpression in recombinant cells and antibiotic-induced translation stress in wild-type Escherichia coli cells both lead to excretion of cytoplasmic protein (ECP). Condition-specific metabolomic and proteomic analyses, combined with genetic knockouts, indicate a role for both the large mechanosensitive channel (MscL) and the alternative ribosome rescue factor A (ArfA) in ECP. Collectively, the findings indicate that MscL-dependent protein excretion is positively regulated in response to both osmotic stress and arfA-mediated translational stress. PMID:29382730
NASA Technical Reports Server (NTRS)
Meehan, J. R.; Henry, J. P.
1973-01-01
Responses of an innervated and a contralateral chronically denervated kidney to mild positive pressure breathing are compared for saline volume expansions in chloralose anesthetized dogs. It is shown that mild pressure breathing significantly reduces sodium excretion, urine flow, free water clearance, and PAH clearance. After 20 minutes of positive pressure breathing, both kidney responses are identical suggesting the release of natriuretic hormone which reduces renal function in addition to the demonstrated change in renal nerve activity. Increase of the left atrial pressure through balloon obstruction of the mitral orifice increases urine flow, sodium excretion and PAH clearance; inflation of the balloon and positive pressure breathing again depresses renal function. Preliminary evidence indicates that receptors in the right atrium are more severely affected by pressure breathing than those in the left atrium.
Owman, T
1979-01-01
The excretion of sodium and meglumine diatrizoate was examined following one or two weeks of unilateral ureteric occlusion. No difference between the two diatrizoate salts was found. A slow compensatory increase of the function of the intact kidney occurred, but after two weeks it was still insufficient at high blood concentration levels.
Johner, S A; Boeing, H; Thamm, M; Remer, T
2015-12-01
The assessment of urinary excretion of specific nutrients (e.g. iodine, sodium) is frequently used to monitor a population's nutrient status. However, when only spot urines are available, always a risk of hydration-status-dependent dilution effects and related misinterpretations exists. The aim of the present study was to establish mean values of 24-h creatinine excretion widely applicable for an appropriate estimation of 24-h excretion rates of analytes from spot urines in adults. Twenty-four-hour creatinine excretion from the formerly representative cross-sectional German VERA Study (n=1463, 20-79 years old) was analysed. Linear regression analysis was performed to identify the most important influencing factors of creatinine excretion. In a subsample of the German DONALD Study (n=176, 20-29 years old), the applicability of the 24-h creatinine excretion values of VERA for the estimation of 24-h sodium and iodine excretion from urinary concentration measurements was tested. In the VERA Study, mean 24-h creatinine excretion was 15.4 mmol per day in men and 11.1 mmol per day in women, significantly dependent on sex, age, body weight and body mass index. Based on the established 24-h creatinine excretion values, mean 24-h iodine and sodium excretions could be estimated from respective analyte/creatinine concentrations, with average deviations <10% compared with the actual 24-h means. The present mean values of 24-h creatinine excretion are suggested as a useful tool to derive realistic hydration-status-independent average 24-h excretion rates from urinary analyte/creatinine ratios. We propose to apply these creatinine reference means routinely in biomarker-based studies aiming at characterizing the nutrient or metabolite status of adult populations by simply measuring metabolite/creatinine ratios in spot urines.
Relation of Urinary Calcium and Magnesium Excretion to Blood Pressure
Kesteloot†, Hugo; Tzoulaki, Ioanna; Brown, Ian J.; Chan, Queenie; Wijeyesekera, Anisha; Ueshima, Hirotsugu; Zhao, Liancheng; Dyer, Alan R.; Unwin, Robert J.; Stamler, Jeremiah; Elliott, Paul
2011-01-01
Data indicate an inverse association between dietary calcium and magnesium intakes and blood pressure (BP); however, much less is known about associations between urinary calcium and magnesium excretion and BP in general populations. The authors assessed the relation of BP to 24-hour excretion of calcium and magnesium in 2 cross-sectional studies. The International Study of Macro- and Micro-Nutrients and Blood Pressure (INTERMAP) comprised 4,679 persons aged 40–59 years from 17 population samples in China, Japan, the United Kingdom, and the United States, and the International Cooperative Study on Salt, Other Factors, and Blood Pressure (INTERSALT) comprised 10,067 persons aged 20–59 years from 52 samples around the world. Timed 24-hour urine collections, BP measurements, and nutrient data from four 24-hour dietary recalls (INTERMAP) were collected. In multiple linear regression analyses, urinary calcium excretion was directly associated with BP. After adjustment for multiple confounders (including weight, height, alcohol intake, calcium intake, urinary sodium level, and urinary potassium intake), systolic BP was 1.9 mm Hg higher per each 4.1 mmol per 24 hours (2 standard deviations) of higher urinary calcium excretion (associations were smaller for diastolic BP) in INTERMAP. Qualitatively similar associations were observed in INTERSALT analyses. Associations between magnesium excretion and BP were small and nonsignificant for most of the models examined. The present data suggest that altered calcium homoeostasis, as exhibited by increased calcium excretion, is associated with higher BP levels. PMID:21624957
Lower potassium intake is associated with increased wave reflection in young healthy adults
2014-01-01
Background Increased potassium intake has been shown to lower blood pressure (BP) even in the presence of high sodium consumption however the role of dietary potassium on vascular function has received less attention. The aim of this study was to evaluate the relationship between habitual intake of sodium (Na) and potassium (K) and measures of arterial stiffness and wave reflection. Methods Thirty-six young healthy adults (21 M, 15 F; 24 ± 0.6 yrs; systolic BP 117 ± 2; diastolic BP 63 ± 1 mmHg) recorded their dietary intake for 3 days and collected their urine for 24 hours on the 3rd day. Carotid-femoral pulse wave velocity (PWV) and the synthesis of a central aortic pressure waveform (by radial artery applanation tonometry and generalized transfer function) were performed. Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Results Subjects consumed an average of 2244 kcals, 3763 mg Na, and 2876 mg of K. Average urinary K excretion was 67 ± 5.3 mmol/24 hr, Na excretion was 157 ± 11 mmol/24 hr and the average Na/K excretion ratio was 2.7 ± 0.2. An inverse relationship between AI and K excretion was found (r = -0.323; p < 0.05). A positive relationship between AI and the Na/K excretion ratio was seen (r = 0.318; p < 0.05) while no relationship was noted with Na excretion alone (r = 0.071; p > 0.05). Reflection magnitude, the ratio of reflected and forward waves, was significantly associated with the Na/K excretion ratio (r = 0.365; p <0.05) but not Na or K alone. PWV did not correlate with Na or the Na/K excretion ratio (p > 0.05) but showed an inverse relationship with K excretion (r = -0.308; p < 0.05). Conclusions These data suggest that lower potassium intakes are associated with greater wave reflection and stiffer arteries in young healthy adults. PMID:24775098
Vasopressin regulates renal calcium excretion in humans
Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel
2015-01-01
Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256
Limitation on the use of amiloride in early renal failure.
Knauf, H; Reuter, K; Mutschler, E
1985-01-01
The effect of a single oral dose of 10 mg amiloride was studied on urinary excretion of Na+, K+, Ca++ and Mg++ in healthy subjects and in patients with varying degrees of renal impairment. Amiloride produced a moderate diuresis and sodium excretion, and a slight calciuresis. Urinary excretion of potassium was significantly reduced as compared to the controls. Despite its diuretic and natriuretic effects, amiloride did not change the excretion of Mg++ as compared to the pretreatment period. When the creatinine clearance was below 50 ml/min, the net excretion of Na+ and Ca++ was drastically reduced. However, K+ retention and neutrality of Mg++ excretion were maintained down to end-stage renal disease. In the healthy volunteers the mean elimination half-life of amiloride was 20 h, and it rose to about 100 h in end-stage renal disease. This was because about 3/4 of native amiloride was eliminated through the kidney. Nonrenal elimination of amiloride was calculated to amount to only 1/4 of the total elimination. Therefore, the anticaliuretic amiloride is a valuable comedication in subjects with normal kidney function to prevent K+ and Mg++ loss. However, its use is hazardous if plasma creatinine is raised.
Low-level cadmium exposure and effects on kidney function
Wallin, Maria; Sallsten, Gerd; Lundh, Thomas; Barregard, Lars
2014-01-01
Objectives The nephrotoxicity of cadmium at low levels of exposure, measured by urinary cadmium, has recently been questioned since co-excretion of cadmium and proteins may have causes other than cadmium toxicity. The aim of this study was to explore the relation between kidney function and low or moderate cadmium levels, measured directly in kidney biopsies. Methods We analysed cadmium in kidney biopsies (K-Cd), blood (B-Cd) and urine (U-Cd) from 109 living kidney donors in a cross-sectional study. We measured glomerular filtration rate (GFR), cystatin C in serum, albumin, β-2-microglobulin (B2M), retinol-binding protein (RBP), α-1-microglobulin (A1M), N-acetyl-β-d-glucosaminidase and kidney injury molecule 1 (KIM-1) in 24 h and overnight urine. Results We found significant positive associations between A1M excretion and K-Cd in multiple regression models including age, sex, weight, smoking and urinary flow rate. This association was also present in never-smokers. A1M was also positively associated with B-Cd and U-Cd. GFR and the other biomarkers of kidney function were not associated with K-Cd. GFR estimated from serum cystatin C showed a very poor correlation with measured GFR. KIM-1, RBP and possibly albumin were positively associated with U-Cd, but only in overnight urine. No associations were found with B2M. Conclusions Our results suggest that A1M in urine is a sensitive biomarker for effects of low-level cadmium exposure. A few associations between other renal biomarkers and U-Cd, but not K-Cd, were probably caused by physiological co-excretion or chance. PMID:25286916
Is reversal of endothelial dysfunction by tea related to flavonoid metabolism?
Hodgson, Jonathan M; Puddey, Ian B; Burke, Valerie; Croft, Kevin D
2006-01-01
Dietary flavonoids can improve endothelial function, but the response varies between individuals. Wide variability is also seen in flavonoid O-methylation, a major pathway of flavonoid metabolism. The O-methylation of flavonoids could alter activity, and thus influence any effect on endothelial function. The objective of the current analysis was to investigate whether variability in the endothelial function response to ingestion of tea, a rich source of flavonoids, is related to the degree of O-methylation of flavonoids. This relationship was investigated in two studies in which endothelium-dependent flow-mediated dilatation (FMD) of the brachial artery was assessed and urinary 4-O-methylgallic acid (4OMGA) excretion was used as a marker of the O-methylation of tea-derived flavonoids. In the first study, amongst participants consuming five cups of tea per day for 4 weeks, the degree of increase in 4OMGA excretion was inversely associated with the change in FMD responses (r -078, P=0.008). In the second study, there was a significant difference in the FMD responses to acute ingestion of three cups of tea between individuals with a low (
Nephrogenous Cyclic Adenosine Monophosphate as a Parathyroid Function Test
Broadus, Arthur E.; Mahaffey, Jane E.; Bartter, Frederic C.; Neer, Robert M.
1977-01-01
Nephrogenous cyclic AMP (NcAMP), total cyclic AMP excretion (UcAMP), and plasma immunoreactive parathyroid hormone (iPTH), determined with a multivalent antiserum, were prospectively measured in 55 control subjects, 57 patients with primary hyperparathyroidism (1°HPT), and 10 patients with chronic hypoparathyroidism. In the group with 1° HPT, NcAMP was elevated in 52 patients (91%), and similar elevations were noted in subgroups of 26 patients with mild (serum calcium ≤10.7 mg/dl) or intermittent hypercalcemia, 19 patients with mild renal insufficiency (mean glomerular filtration rate, 64 ml/min), and 10 patients with moderate renal insufficiency (mean glomerular filtration rate, 43 ml/min). Plasma iPTH was increased in 41 patients (73%). The development of a parametric expression for UcAMP was found to be critically important in the clinical interpretation of results for total cAMP excretion. Because of renal impairment in a large number of patients, the absolute excretion rate of cAMP correlated poorly with the hyperparathyroid state. Expressed as a function of creatinine excretion, UcAMP was elevated in 81% of patients with 1° HPT, but the nonparametric nature of the expression led to a number of interpretive difficulties. The expression of cAMP excretion as a function of glomerular filtration rate was developed on the basis of the unique features of cAMP clearance in man, and this expression, which provided elevated values in 51 (89%) of the patients with 1° HPT, avoided entirely the inadequacies of alternative expressions. Results for NcAMP and UcAMP in nonazotemic and azotemic patients with hypoparathyroidism confirmed the validity of the measurements and the expressions employed. PMID:197123
Lancelot, Eric
2016-11-01
Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of a deep compartment of distribution for the GBCAs. The rate constant γ of gadoterate meglumine (0.107 hour) is 5 times higher than that of the linear agents (0.020 ± 0.008 hour), indicating a much faster blood clearance for the macrocyclic GBCA. Similar results were obtained in the preclinical studies. A strong correlation was shown between the γ values of the different products and their respective thermodynamic stability constants (Ktherm). Greater clearance rates of Gd from murine bone were also found after gadoterate meglumine or gadoteridol injection (0.131-0.184 day) than after administration of the linear agents (0.004-0.067 day). The concentrations of Gd in the bone marrow (CBM) from animals exposed to either gadoterate meglumine or gadodiamide are higher than those in the bone (CB) for at least 24 hours. Moreover, the ratio of concentrations (CBM/CB) at 4 hours is significantly lower with the former agent than the latter (1.9 vs 6.5, respectively). Using a nonconventional pharmacokinetic approach, we showed that gadoterate meglumine undergoes a much faster residual excretion from the body than the linear GBCAs, a process that seems related to the thermodynamic stability of the different chelates. Gadolinium dissociation occurs in vivo for some linear chelates, a mechanism that may explain their long-term retention and slow release from bone. Potential consequences in terms of bone toxicity warrant further investigations.
Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che
2015-01-01
Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4+) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems. PMID:26716070
Kauker, M L; Crofton, J T; Share, L; Nasjletti, A
1984-01-01
To study the relationship between vasopressin and the renal kallikrein-kinin system we measured the rate of excretion of kinins into the urine of anesthetized rats during conditions of increased and decreased vasopressin level. The excretion of immunoreactive kinins in Brattleboro rats with hereditary diabetes insipidus (DI) (24 +/- 3 pg min-1 kg-1) was lower than in the control Long Evans (LE) rats (182 +/- 22 pg min-1 kg-1; P less than 0.05). The DI rats also exhibited negligible urinary excretion of immunoreactive vasopressin, reduced urine osmolality, and increased urine flow and kininogenase excretion. In LE rats, volume expansion by infusion of 0.45% NaCl-2.5% dextrose to lower vasopressin secretion reduced (P less than 0.05) kinin excretion, vasopressin excretion, and urine osmolality to 41, 26, and 15% of their respective control values, while increasing (P less than 0.05) urine flow and kininogenase excretion. On the other hand, the infusion of 5% NaCl, which promotes vasopressin secretion, increased (P less than 0.05) the urinary excretion of kinins and vasopressin to 165 and 396% of control, while increasing (P less than 0.05) urine flow and kininogenase excretion. Infusion of vasopressin (1.2 mU/h, intravenous) enhanced (P less than 0.05) kinin excretion by two to threefold in DI rats and in LE rats during volume expansion with 0.45% NaCl-2.5% dextrose, while decreasing urine flow and increasing urine osmolality. This study demonstrates that the urinary excretion of immunoreactive kinins varies in relation to the urinary level of vasopressin, irrespective of urine volume and osmolality and of the urinary excretions of sodium and kininogenase. The study suggests a role for vasopressin in promoting the activity of the renal kallikrein-kinin system in the rat. PMID:6561201
Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats.
Velazquez, D V O; Xavier, H S; Batista, J E M; de Castro-Chaves, C
2005-05-01
Diuretic and uricosuric properties have traditionally been attributed to corn silk, stigma/style of Zea mays L. Although the diuretic effect was confirmed, studies of the plant's effects on renal function or solute excretion were lacking. Thus, we studied the effects of corn silk aqueous extract on the urinary excretion of water, Na+, K+, and uric acid. Glomerular and proximal tubular function and Na+ tubular handling were also studied. Conscious, unrestrained adult male rats were housed in individual metabolic cages (IMC) with continuous urine collection for 5 and 3 h, following two protocols. The effects of 25, 50, 200, 350, and 500 mg/kg body wt. corn silk extract on urine volume plus Na+ and K+ excretions were studied in water-loaded conscious rats (2.5 ml/100 g body wt.) in the IMC for 5 h (Protocol 1). Kaliuresis was observed with doses of 350 (100.42 +/- 22.32-120.28 +/- 19.70 microEq/5 h/100 g body wt.; n = 13) and 500 mg/kg body wt. (94.97+/- 29.30-134.32 +/- 39.98 microEq/5h/100 g body wt.; n = 12; p<0.01), and the latter dose resulted in diuresis as well (1.98 +/- 0.44-2.41 +/- 0.41 ml/5 h/100 g body wt.; n = 12; p<0.05). The effects of a 500 mg/kg body wt. dose of corn silk extract on urine volume, Na+, K+ and uric acid excretions, and glomerular and proximal tubular function, were measured respectively by creatinine (Cler) and Li+ (ClLi) clearances and Na+ tubular handling, in water-loaded rats (5 ml/100 g body wt.) in the IMC for 3 h (Protocol 2). Clcr (294.6 +/- 73.2, n = 12, to 241.7 +/- 48.0 microl/ min/100 g body wt.; n = 13; p<0.05) and the Na+ filtered load (41.9 +/- 10.3, n = 12, to 34.3 +/- .8, n = 13, p<0.05) decreased and ClLi and Na+ excretion were unchanged, while K+ excretion (0.1044 +/- 0.0458, n=12, to 0.2289 +/- 0.0583 microEq/min/100 body wt.; n = 13; p<0.001) increased. For Na+ tubular handling, the fractional proximal tubular reabsorption (91.5 +/- 3.5, n = 12, to 87.5 +/- 3.4%; n = 13; p<0.01) decreased, and both fractional distal reabsorptions--I and II--increased (96.5 +/- 1.5, n = 12, to 97.8 +/- 0.9%; n = 13; p<0.01; and 8.2 +/- 3.5, n = 12, to 12.2 +/- 3.4%, n = 13, p<0.01, respectively). To summarize, in water-loaded conscious rats (2.5 ml/100 body wt.), corn silk aqueous extract is diuretic at a dose of 500 mg/kg body wt. and kaliuretic at doses of 350 and 500 mg/kg body wt. In water-loaded conscious rats (5.0 ml/100 g body wt.), corn silk aqueous extract is kaliuretic at a dose of 500 mg/kg body wt., but glomerular filtration and filtered load decrease without affecting proximal tubular function, Na+, or uric acid excretion.
Berglund, Fredrik; Forster, Roy P.
1958-01-01
A characterization was attempted of the mechanisms involved in the tubular transport of inorganic divalent ions by the aglomerular kidney of Lophius, attention being paid particularly to the possible existence of transport maxima (Tm) and to competition for transport among related substances undergoing tubular excretion. Excretory rates of divalent ions in non-treated fish during standard laboratory conditions paralleled spontaneous changes in urine flow. Tm rates of excretion were reached for magnesium, sulfate, and thiosulfate with corresponding plasma levels of 2 to 5, 5 to 17, and 4 to 12 µM/ml. respectively. Elevation of magnesium chloride levels in plasma markedly depressed calcium excretion; sodium thiosulfate similarly depressed sulfate excretion. Experimental observations suggest the existence of a transport system for divalent cations separate from another for divalent anions. Within each transport system the ion with the higher excretion rate depressed competitively transfer of the other ion. Neither system was influenced by probenecid (benemid) in doses which markedly depressed the simultaneous excretion rate of p-aminohippuric acid. PMID:13491814
Di Giacopo, Andrea; Rubio-Aliaga, Isabel; Cantone, Alessandra; Artunc, Ferruh; Rexhepaj, Rexhep; Frey-Wagner, Isabelle; Font-Llitjós, Mariona; Gehring, Nicole; Stange, Gerti; Jaenecke, Isabel; Mohebbi, Nilufar; Closs, Ellen I; Palacín, Manuel; Nunes, Virginia; Daniel, Hannelore; Lang, Florian; Capasso, Giovambattista; Wagner, Carsten A
2013-12-15
Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 (rBAT) and SLC7A9 (b(0,+)AT). Gene targeting of the catalytic subunit (Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b(0,+). No remarkable gene expression changes were observed in other amino acid transporters and the peptide transporters in the intestine and kidney. Furthermore, the glomerular filtration rate (GFR) was reduced by 30% in knockout animals compared with wild-type animals. The fractional excretion of arginine was increased as expected (∼100%), but fractional excretions of lysine (∼35%), ornithine (∼16%), and cystine (∼11%) were less affected. Loss of function of b(0,+)AT reduced transport of cystine and arginine in renal BBMVs and completely abolished the exchanger activity of dibasic amino acids with neutral amino acids. In conclusion, loss of Slc7a9 function decreases the GFR and increases the excretion of several amino acids to a lesser extent than expected with no clear regulation at the mRNA and protein level of alternative transporters and no increased renal epithelial uptake. These observations indicate that transporters located in distal segments of the kidney and/or metabolic pathways may partially compensate for Slc7a9 loss of function.
Genetic African Ancestry and Markers of Mineral Metabolism in CKD
Parsa, Afshin; Isakova, Tamara; Scialla, Julia J.; Chen, Jing; Flack, John M.; Nessel, Lisa C.; Gupta, Jayanta; Bellovich, Keith A.; Steigerwalt, Susan; Sondheimer, James H.; Wright, Jackson T.; Feldman, Harold I.; Kusek, John W.; Lash, James P.; Wolf, Myles
2016-01-01
Background and objectives Disorders of mineral metabolism are more common in African Americans with CKD than in European Americans with CKD. Previous studies have focused on the differences in mineral metabolism by self-reported race, making it difficult to delineate the importance of environmental compared with biologic factors. Design, setting, participants, & measurements In a cross-sectional analysis of 3013 participants of the Chronic Renal Insufficiency Cohort study with complete data, we compared markers of mineral metabolism (phosphorus, calcium, alkaline phosphatase, parathyroid hormone, fibroblast growth factor 23, and urine calcium and phosphorus excretion) in European Americans versus African Americans and separately, across quartiles of genetic African ancestry in African Americans (n=1490). Results Compared with European Americans, African Americans had higher blood concentrations of phosphorus, alkaline phosphatase, fibroblast growth factor 23, and parathyroid hormone, lower 24-hour urinary excretion of calcium and phosphorus, and lower urinary fractional excretion of calcium and phosphorus at baseline (P<0.001 for all). Among African Americans, a higher percentage of African ancestry was associated with lower 24-hour urinary excretion of phosphorus (Ptrend<0.01) in unadjusted analyses. In linear regression models adjusted for socio-demographic characteristics, kidney function, serum phosphorus, and dietary phosphorus intake, higher percentage of African ancestry was significantly associated with lower 24-hour urinary phosphorus excretion (each 10% higher African ancestry was associated with 39.6 mg lower 24-hour urinary phosphorus, P<0.001) and fractional excretion of phosphorus (each 10% higher African ancestry was associated with an absolute 1.1% lower fractional excretion of phosphorus, P=0.01). Conclusions A higher percentage of African ancestry was independently associated with lower 24-hour urinary phosphorus excretion and lower fractional excretion of phosphorus among African Americans with CKD. These findings suggest that genetic variability might contribute to racial differences in urinary phosphorus excretion in CKD. PMID:26912553
Genetic African Ancestry and Markers of Mineral Metabolism in CKD.
Gutiérrez, Orlando M; Parsa, Afshin; Isakova, Tamara; Scialla, Julia J; Chen, Jing; Flack, John M; Nessel, Lisa C; Gupta, Jayanta; Bellovich, Keith A; Steigerwalt, Susan; Sondheimer, James H; Wright, Jackson T; Feldman, Harold I; Kusek, John W; Lash, James P; Wolf, Myles
2016-04-07
Disorders of mineral metabolism are more common in African Americans with CKD than in European Americans with CKD. Previous studies have focused on the differences in mineral metabolism by self-reported race, making it difficult to delineate the importance of environmental compared with biologic factors. In a cross-sectional analysis of 3013 participants of the Chronic Renal Insufficiency Cohort study with complete data, we compared markers of mineral metabolism (phosphorus, calcium, alkaline phosphatase, parathyroid hormone, fibroblast growth factor 23, and urine calcium and phosphorus excretion) in European Americans versus African Americans and separately, across quartiles of genetic African ancestry in African Americans (n=1490). Compared with European Americans, African Americans had higher blood concentrations of phosphorus, alkaline phosphatase, fibroblast growth factor 23, and parathyroid hormone, lower 24-hour urinary excretion of calcium and phosphorus, and lower urinary fractional excretion of calcium and phosphorus at baseline (P<0.001 for all). Among African Americans, a higher percentage of African ancestry was associated with lower 24-hour urinary excretion of phosphorus (Ptrend<0.01) in unadjusted analyses. In linear regression models adjusted for socio-demographic characteristics, kidney function, serum phosphorus, and dietary phosphorus intake, higher percentage of African ancestry was significantly associated with lower 24-hour urinary phosphorus excretion (each 10% higher African ancestry was associated with 39.6 mg lower 24-hour urinary phosphorus, P<0.001) and fractional excretion of phosphorus (each 10% higher African ancestry was associated with an absolute 1.1% lower fractional excretion of phosphorus, P=0.01). A higher percentage of African ancestry was independently associated with lower 24-hour urinary phosphorus excretion and lower fractional excretion of phosphorus among African Americans with CKD. These findings suggest that genetic variability might contribute to racial differences in urinary phosphorus excretion in CKD. Copyright © 2016 by the American Society of Nephrology.
Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.
2013-01-01
Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916
Jónasson, H; Basu, S; Andersson, B; Kindahl, H
1984-04-01
Responses to intravenous injections of an endotoxin (E. coli-lipopolysaccharide, 1 microgram/kg b.wt.) and endogenous pyrogen were studied in euhydrated and hyperhydrated goats. The biphasic febrile response to the endotoxin was associated with a pronounced increase in the renal excretion of measured prostaglandin (PG) metabolites (11-ketotetranor PGF metabolites). This increase was time-correlated with the elevation of the rectal temperature, and (in hyperhydrated animals) with an inhibition of the water diuresis and an increase in renal excretion of arginine vasopressin (AVP). Other effects of the endotoxin were an immediate depression of renal Na and K excretion followed by the development of pronounced natriuresis, and a reduction of plasma Fe and Zn concentrations. The appearance of the febrile reactions (peripheral vasoconstriction and shivering) was accompanied by miosis. The maximum elevation of the rectal temperature was significantly greater during euhydration than during hyperhydration. Also endogenous pyrogen elicited miosis concomitant with febrile reactions, and an elevation of the renal excretion of PG metabolites which was closely correlated in time with the monophasic febrile response, and (during hyperhydration) with temporary inhibition of the water diuresis and an increase in the renal AVP excretion. However, the responses were much weaker than the corresponding endotoxin effects. No appreciable changes in renal excretion of Na and K were observed in response to the endogenous pyrogen. It is concluded that the observed effects on renal cation excretion were manifestations of direct endotoxin influences on kidney function.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Geelen, G.; Kravik, S. E.; Hadj-Aissa, A.; Vincent, M.; Sem-Jacobsen, C. W.; Greenleaf, J.; Gharib, C.
1987-01-01
It is shown that inflation for 3 hr of an antigravity suit that covered the legs and abdomen of normal standing subjects results in significant increases in urine flow, osmolar and free water clearances, total and fractional sodium excretion, and potassium excretion, while glomerular filtration rate and renal plasma flow are transiently increased. Such changes in kidney function are the consequence of the increase in thoracic blood volume induced by inflation which also results in an immediate increase in blood pressure and reflex bradycardia, together with a progressive lowering of plasma renin activity and aldosterone. The changes in kidney excretory patterns brought about by suit inflation appear to be similar in nature and magnitude to those observed during water immersion or in the early phase of bed rest, situations known to result in a headward redistribution of blood.
Relative oral efficacy and acute toxicity of hydroxypyridin-4-one iron chelators in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, J.B.; Morgan, J.; Hoyes, K.P.
1990-12-01
The relationship between the oral efficacy and the acute toxicity of hydroxypyridin-4-one iron chelators has been investigated to clarify structure-function relationships of these compounds in vivo and to identify compounds with the maximum therapeutic safety margin. By comparing 59Fe excretion following oral or intraperitoneal administration of increasing doses of each chelator to iron-overloaded mice, the most effective compounds have been identified. These have partition coefficients (Kpart) above 0.3 in the iron-free form with a trend of increasing oral efficacy with increasing Kpart values (r = .6). However, this is achieved at a cost of increasing acute toxicity, as shown bymore » a linear correlation between 59Fe excretion increase per unit dose and 1/LD50 (r = .83). A sharp increase in the LD50 values is observed for compounds with Kpart values above 1.0, suggesting that such compounds are unlikely to possess a sufficient therapeutic safety margin. Below a Kpart of 1.0, acute toxicity is relatively independent of lipid solubility. All the compounds are less toxic by the oral route than by the intraperitoneal route, although iron excretion is not significantly different by these two routes. At least five compounds (CP51, CP94, CP93, CP96, and CP21) are more effective orally than the same dose of intraperitoneal desferrioxamine (DFO) (P less than or equal to .02) or orally administered L1(CP20) (P less than or equal to .02).« less
Tak, Lineke M; Bakker, Stephan J L; Rosmalen, Judith G M
2009-07-01
In persons with functional somatic symptoms (FSS), no conventionally defined organic pathology is apparent. It has been suggested that complex interactions of psychological, physiological, and social factors are involved in the etiology of FSS. One of the physiological mechanisms that may contribute to FSS is the function of the hypothalamic-pituitary-adrenal (HPA)-axis. This study investigates the association of HPA-axis function with cross-sectional presence and prospective development of FSS in the general population. This study was performed in a population-based cohort of 741 male and female adults (mean age 53.1, S.D. 10.9). Participants completed the somatization section of the Composite International Diagnostic Interview (CIDI) in which the presence of 43 FSS is surveyed. In addition to the total number of FSS, bodily system FSS clusters with musculoskeletal, gastrointestinal, cardiorespiratory, and general symptoms were constructed. HPA-axis function was assessed by measuring 24-h urinary free cortisol (24-h UFC) excretion. Follow-up measurements were performed approximately 2 years later. All analyses were adjusted for age, gender, body mass index, smoking, alcohol use, depression, exercise frequency, and urinary volume. Regression analysis detected no cross-sectional association between 24-h UFC excretion and the number of FSS (beta=-0.021, t=-0.521, p=0.603). In addition, 24-h UFC excretion was not associated with any of the bodily system FSS clusters (all p>0.050). Furthermore, 24-h UFC excretion did not predict new-onset FSS in the 2-year follow-up period (beta=0.021, t=0.566, p=0.572). We conclude that this study does not provide evidence for an association between altered HPA-axis function, as indexed by 24-h UFC, and FSS in the general population. We conclude that this study does not provide evidence for an association between altered HPA-axis function, as indexed by 24-h UFC, and FSS in the general population.
Changes of corticosteroid spectrum in urine in members of crew of spaceship "Soyuz-22".
Tigranian, R A; Voronin, L I
1980-03-01
The urinary excretion of 17-hydroxycorticosteroids and the relations between the glucocorticoids in urine and their precursors as well as between 17-hydroxycorticoids and 17-hydroxycorticoids and 17-dehydroxycorticosteroids was measured in two subjects before and after 8 days flight in spaceship "Soyuz-22". During a readaptation period after the space flight activation of the glucocorticoid function of adrenals was observed which was accompanied by signs of stress and relative deficiency of 11-hydroxylation in glucocorticoid synthesis. The assumptions on possible causes of observed changes are discussed.
Sawant, Pramilla D; Kumar, Suja Arun; Wankhede, Sonal; Rao, D D
2018-06-01
In-vitro bioassay monitoring generally involves analysis of overnight urine samples (~12 h) collected from radiation workers to estimate the excretion rate of radionuclides from the body. The unknown duration of sample collection (10-16 h) adds to the overall uncertainty in computation of internal dose. In order to minimize this, IAEA recommends measurement of specific gravity or creatinine excretion rate in urine. Creatinine is excreted at a steady rate with normally functioning kidneys therefore, can be used as a normalization factor to infer the duration of collection and/or dilution of the sample, if any. The present study reports the chemical procedure standardized and its application for the estimation of creatinine as well as creatinine co-efficient in normal healthy individuals. Observations indicate higher inter-subject variability and lower constancy in daily excretion of creatinine for the same subject. Thus creatinine excretion rate may not be a useful indicator for extrapolating to 24 h sample collection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Plasma potassium and diurnal cyclic potassium excretion in the rat.
Rabinowitz, L; Berlin, R; Yamauchi, H
1987-12-01
The relation of the plasma potassium concentration to the daily cyclic variation in potassium excretion was examined in undisturbed, unanesthetized male Sprague-Dawley rats maintained on a liquid diet in a 12-h light-dark environment. Potassium excretion increased from a light-phase minimum of 16 mu eq/h to a peak of 256 mu eq/h 3 h after the beginning of the dark phase. Plasma potassium concentration in arterial blood, sampled in rats at 90-min intervals during these changes in potassium excretion, showed no significant change and was in the range 4.50-4.99 meq/liter. In adrenalectomized rats receiving aldosterone and dexamethasone at constant basal rates by implanted pumps, the daily cycle of potassium excretion was the same as in the intact rats, and plasma potassium was not significantly different when measured at the time of minimum and maximum rates of potassium excretion (4.79 +/- 0.42 vs 5.16 +/- 0.47 meq/liter, mean +/- SD). These results indicate that plasma potassium concentration is not the efferent factor controlling diurnal cyclic changes in potassium excretion in adrenal intact rats and may not be the only significant factor in adrenalectomized-steroid replaced rats.
Hypokalemic paralysis in a young obese female.
Chiang, Wen-Fang; Hsu, Yu-Juei; Chang, Chin-Chun; Lin, Shih-Hua
2012-08-16
Profound hypokalemia with paralysis usually poses a diagnostic and therapeutic challenge. We report on a 28-y-old obese Chinese female presenting with sudden onset of flaccid quadriparesis upon awaking in the morning. There is no family history of hyperthyroidism. She experienced body weight loss of 7 kg in 2 months. The most conspicuous blood biochemistry is marked hypokalemia (1.8 mmol/l) and hypophosphatemia (0.5 mmol/l) associated with low urine K(+) and phosphate excretion. Surreptitious laxatives and/or diuretics abuse-related hypokalemic paralysis were tentatively made. However, her relatively normal blood acid-base status and the absence of low urine Na(+) and/or Cl(-) excretion made these diagnoses unlikely. Furthermore, she developed rebound hyperkalemia (5.7 mmol/l) after only 80 mmol K(+) supplementation. Thyroid function test confirmed hyperthyroidism due to Graves' disease. Control of the hyperthyroidism completely abolished her periodic paralysis. Thyrotoxic periodic paralysis (TPP) should be kept in mind as a cause of paralysis in female, even with obesity, despite its predominance in adult males. Copyright © 2012 Elsevier B.V. All rights reserved.
Bansal, Nisha; Hsu, Chi-yuan; Zhao, Shoujun; Whooley, Mary A.; Ix, Joachim H.
2011-01-01
In patients with prevalent coronary heart disease (CHD), studies have found a paradoxical relationship in that patients with higher body mass index (BMI) have lower mortality. One possibility is that individuals with higher BMI have greater muscle mass; and higher BMI may be a marker of better overall health status. We evaluated whether the paradoxical association of BMI with mortality in CHD patients is attenuated when accounting for urinary creatinine excretion, a marker of muscle mass. The Heart and Soul Study is an observational study of outpatients with stable CHD designed to investigate the influence of psychosocial factors on the progression of CHD. Outpatient 24-hour timed urine collections were obtained. Participants were followed up for death for 5.9 (± 1.9) years. Cox proportional hazards models evaluate the association between sex-specific BMI quintiles and mortality. There were 886 participants in our study population. Participants in higher quintiles of BMI were younger, more likely to have diabetes mellitus and hypertension and had higher urinary creatinine excretion rate. Compared to the lowest BMI quintile, subjects in higher BMI quintiles were less likely to die during follow-up. Adjustment for major demographic variables, traditional cardiovascular risk factors and kidney function did not attenuate the relationship. Additional adjustment for urinary creatinine excretion rate did not materially change the association between BMI and all-cause mortality. In conclusion, low muscle mass and low BMI are each associated with greater all-cause mortality, however low muscle mass does not appear to explain why CHD patients with low BMI have worse survival. PMID:21529727
USDA-ARS?s Scientific Manuscript database
The main objective of this trial is to determine the partitioning of nitrogen (N) from different feed ingredients in milk, feces, and urine. This abstract focuses on relative excretion of N in feces and urine. Twelve multiparous late-lactation Holstein cows (means±SD; 264±18 days in milk) were fed a...
Molecular Mechanisms and Regulation of Urinary Acidification
Kurtz, Ira
2015-01-01
The H+ concentration in human blood is kept within very narrow limits, ~ 40 nM, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: 1) reabsorb HCO3− that is filtered through the glomeruli to prevent its excretion in the urine; 2) generate a sufficient quantity of new HCO3− to compensate for the loss of HCO3− resulting from dietary metabolic H+ loads and loss of HCO3− in the urea cycle; and 3) excrete HCO3− (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~ 60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level. PMID:25428859
Auer, B L; Auer, D; Rodgers, A L
1998-03-01
The present study was undertaken to determine the effect of ingestion of large doses of vitamin C on urinary oxalate excretion and on a number of other biochemical and physicochemical risk factors associated with calcium oxalate urolithiasis. A further objective was to determine urinary ascorbate excretion and to relate it qualitatively to ingested levels of the vitamin and oxalate excretion. Ten healthy males participated in a protocol in which 4 g ascorbic acid was ingested for 5 days. Urines (24 h) were collected prior to, during and after the protocol. The urine collection procedure was designed to allow for the analysis of oxalate in the presence and absence of an EDTA preservative and for the analysis of ascorbic acid by manual titration using 2,6 dichlorophenolindophenol. Physicochemical risk factors such as the calcium oxalate relative supersaturation and Tiselius risk index were calculated from urine composition. The results showed that erroneously high analytical oxalate levels occur in the asence of preservative. In the preserved samples there was no significant increase in oxalate excretion at any stage of the protocol. Ascorbate excretion increased when vitamin C ingestion commenced but levelled out after 24 hours suggesting that saturation of the metabolic pool is reached within 24 hours after which ingested ascorbic acid is excreted unmetabolized in the urine. While transient statistically significant changes occurred in some of the biochemical risk factors, they were not regarded as being clinically significant. There were no changes in either the calcium oxalate relative supersaturation or Tiselius risk index. It is concluded that ingestion of large doses of ascorbic acid does not affect the principal risk factors associated with calcium oxalate kidney stone formation.
Decrease in Urinary Creatinine Excretion in Early Stage Chronic Kidney Disease
Tynkevich, Elena; Flamant, Martin; Haymann, Jean-Philippe; Metzger, Marie; Thervet, Eric; Boffa, Jean-Jacques; Vrtovsnik, François; Houillier, Pascal; Froissart, Marc; Stengel, Bénédicte
2014-01-01
Background Little is known about muscle mass loss in early stage chronic kidney disease (CKD). We used 24-hour urinary creatinine excretion rate to assess determinants of muscle mass and its evolution with kidney function decline. We also described the range of urinary creatinine concentration in this population. Methods We included 1072 men and 537 women with non-dialysis CKD stages 1 to 5, all of them with repeated measurements of glomerular filtration rate (mGFR) by 51Cr-EDTA renal clearance and several nutritional markers. In those with stage 1 to 4 at baseline, we used a mixed model to study factors associated with urinary creatinine excretion rate and its change over time. Results Baseline mean urinary creatinine excretion decreased from 15.3±3.1 to 12.1±3.3 mmol/24 h (0.20±0.03 to 0.15±0.04 mmol/kg/24 h) in men, with mGFR falling from ≥60 to <15 mL/min/1.73 m2, and from 9.6±1.9 to 7.6±2.5 (0.16±0.03 to 0.12±0.03) in women. In addition to mGFR, an older age, diabetes, and lower levels of body mass index, proteinuria, and protein intake assessed by urinary urea were associated with lower mean urinary creatinine excretion at baseline. Mean annual decline in mGFR was 1.53±0.12 mL/min/1.73 m2 per year and that of urinary creatinine excretion rate, 0.28±0.02 mmol/24 h per year. Patients with fast annual decline in mGFR of 5 mL/min/1.73 m2 had a decrease in urinary creatinine excretion more than twice as big as in those with stable mGFR, independent of changes in urinary urea as well as of other determinants of low muscle mass. Conclusions Decrease in 24-hour urinary creatinine excretion rate may appear early in CKD patients, and is greater the more mGFR declines independent of lowering protein intake assessed by 24-hour urinary urea. Normalizing urine analytes for creatininuria may overestimate their concentration in patients with reduced kidney function and low muscle mass. PMID:25401694
Okuda, Masayuki; Asakura, Keiko; Sasaki, Satoshi
2017-11-28
We investigated whether home environment, salt knowledge, and salt-use behavior were associated with urinary sodium (Na) excretion in Japanese secondary school students. Students (267; mean age, 14.2 years) from Suo-Oshima, Japan, collected three overnight urine samples and completed a salt environment/knowledge/behavior questionnaire. A subset of students ( n = 66) collected, on non-consecutive days, two 24 h urine samples, and this subset was used to derive a formula for estimating 24 h Na excretion. Generalized linear models were used to examine the association between salt environment/knowledge/behavior and Na excretions. Students that had salt or soy sauce placed on the dining table during meals excreted more Na than those that did not ( p for trend < 0.05). A number of foods to which the students added seasonings were positively associated with Na excretion ( p for trend = 0.005). The students who frequently bought foods at convenience stores or visited restaurants excreted more Na in urine than those who seldom bought foods ( p for trend < 0.05). Knowledge about salt or discretionary seasoning use was not significantly associated with Na excretion. The associations found in this study indicate that home environment and salt-use behavior may be a target for a public health intervention to reduce salt intake of secondary school students.
Okuda, Masayuki; Asakura, Keiko; Sasaki, Satoshi
2017-01-01
We investigated whether home environment, salt knowledge, and salt-use behavior were associated with urinary sodium (Na) excretion in Japanese secondary school students. Students (267; mean age, 14.2 years) from Suo-Oshima, Japan, collected three overnight urine samples and completed a salt environment/knowledge/behavior questionnaire. A subset of students (n = 66) collected, on non-consecutive days, two 24 h urine samples, and this subset was used to derive a formula for estimating 24 h Na excretion. Generalized linear models were used to examine the association between salt environment/knowledge/behavior and Na excretions. Students that had salt or soy sauce placed on the dining table during meals excreted more Na than those that did not (pfor trend < 0.05). A number of foods to which the students added seasonings were positively associated with Na excretion (pfor trend = 0.005). The students who frequently bought foods at convenience stores or visited restaurants excreted more Na in urine than those who seldom bought foods (pfor trend < 0.05). Knowledge about salt or discretionary seasoning use was not significantly associated with Na excretion. The associations found in this study indicate that home environment and salt-use behavior may be a target for a public health intervention to reduce salt intake of secondary school students. PMID:29182529
Baker, J T; Solomon, S
1976-01-01
1. The ability of maturing rats to excrete a sodium load was studied by micropuncture and clearance procedures. 2. During control conditions, no change of glomerular filtration rate or sodium excretion was observed for the time period of the entire procedure (P greater than 0-20). During the infusion of hypertonic (4%) sodium chloride, fractional sodium excretion was 0-08 +/- 0-01 in rats 21-30 days old and 0-14 +/- 0-01 (P less than 0-01) in adults. However, the depression of proximal tubular water re-absorption was equal in both groups (P greater than 0-20). 3. Proximal glomerulotubular balance for water re-absorption was similar in all groups (P less than 0-20). Since end proximal tubular water excretion and depression of fractional water excretion were the same in all animals, differences of urinary sodium excretion during development are probably due to differences of function of segments beyond the proximal tubule during development. 4. Fractional potassium excretion was reduced in young rats (0-17 +/- 0-04) during hypertonic sodium chloride infusion, compared to adults (0-24 +/- 0-01, P less than 0-05). 5. Passage time of fast green through cortical segments in seconds is prolonged in young rats during control conditions. Similar decreases of passage time were seen in all groups during hypertonic sodium chloride infusion. No segmental differences of passage time were seen during developmental. 6. No difference in the relationship between fractional sodium and water excretion was seen during development of the renal response to hypertonic sodium chloride infusion. Thus, altered sensitivity to sodium chloride osmotic diuresis does not exist during maturation in rats. PMID:945839
Handa, R K; Johns, E J
1985-01-01
Stimulation of the renal sympathetic nerves in pentobarbitone anaesthetized rats achieved a 13% reduction in renal blood flow, did not change glomerular filtration rate, but reduced urine flow by 37%, absolute sodium excretion by 37%, and fractional sodium excretion by 34%. Following inhibition of converting enzyme with captopril (0.38 mmol kg-1 h-1), similar nerve stimulation reduced both renal blood flow and glomerular filtration rate by 16%, and although urine flow and absolute sodium excretion fell by 32 and 31%, respectively, the 18% fall in fractional sodium excretion was significantly less than that observed in the absence of captopril. Renal nerve stimulation at low levels, which did not change either renal blood flow or glomerular filtration rate, reduced urine flow, and absolute and fractional sodium excretions by 25, 26 and 23%, respectively. In animals receiving captopril at 0.38 mmol kg-1 h-1, low-level nerve stimulation caused small increases in glomerular filtration rate of 7% and urine flow of 12%, but did not change either absolute or fractional sodium excretions. At one-fifth the dose of captopril (0.076 mmol kg-1 h-1), low-level nerve stimulation did not change renal haemodynamics but decreased urine flow, and absolute and fractional sodium excretions by 10, 10 and 8%, respectively. These results showed that angiotensin II production was necessary for regulation of glomerular filtration rate in the face of modest neurally induced reductions in renal blood flow and was compatible with an intra-renal site of action of angiotensin II preferentially at the efferent arteriole. They also demonstrated that in the rat the action of the renal nerves to decrease sodium excretion was dependent on angiotensin II. PMID:3005558
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrecl, Milka; Ursic, Matjaz; Pogacnik, Azra
This study employed the gas chromatography with electron capture detection to determine residual levels and excretion patterns of two pairs of structurally diverse polychlorinated biphenyl (PCB) congeners (IUPAC Nos. 54, 80, 155, and 169) administered to lactating sheep by intramuscular injection. PCB levels and excretion patterns in blood, milk, and faeces were time-dependent and differed from the composition of PCB congeners administered. Lactational transfer substantially exceeded the faecal transfer. Between days 3 and 7, the amount of PCB congeners 54 and 169 excreted in milk was around 50- and 800-fold higher than the amount of these two congeners excreted viamore » faeces. During the same period, the relative contribution of co-planar PCB congeners (80 and 169) in PCB pattern decreased in blood and increased in milk and faeces compared with non-planar PCBs (54 and 155). On day 3, the ratio PCB 169 to 54 was 7-fold higher in milk than in faeces. PCB congeners with log K{sub ow} values under 6.5 reached peaks of their excretion in milk within the first three days after administration, while the super-lipophilic PCB 169 congener with log K{sub ow} value of over 7 has not reached the plateau until day 10, but afterwards, its level remained relatively high throughout the observation period. During the 57-day follow-up period, the excretion of PCB 80, 155, and 169 in milk was 4.5-, 14-, and 46-fold greater compared with PCB 54. Differences in levels and patterns were explained with some physico-chemical properties of individual PCB congeners, such as lipophilicity, planarity, metabolic stability, sorption/diffusion properties.« less
Application of path analysis to urinary findings of cadmium-induced renal dysfunction.
Abe, T; Kobayashi, E; Okubo, Y; Suwazono, Y; Kido, T; Shaikh, Z A; Nogawa, K
2001-01-01
In order to identify some causal relations among various urinary indices of cadmium-induced renal dysfunction, such as glucose, total protein, amino nitrogen, beta 2-microglobulin (beta 2-m), metallothionein (MT), and cadmium (Cd), we applied path analysis method to previous epidemiological studies targeting the residents of the Cd-polluted Kakehashi River basin of Ishikawa Prefecture, Japan. We obtained a diagram-termed path model, representing some causal relations among the above urinary indices. It shows that urinary Cd is located at the beginning point in the diagram, and Cd-induced renal dysfunction develops in the following order: Cd exposure-->increase of beta 2-m and/or MT excretion-->increase of amino-N and/or total protein excretion-->increase of glucose excretion. It was proved mathematically, that in the case of both males and females, increased excretions of beta 2-m and/or MT were the most sensitive urinary indices of the early stage of chronic Cd-induced renal dysfunction.
Salivary glucose concentration and excretion in normal and diabetic subjects.
Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah
2009-01-01
The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.
A proteolytic modification of AIM promotes its renal excretion
Yamazaki, Tomoko; Sugisawa, Ryoichi; Hiramoto, Emiri; Takai, Ryosuke; Matsumoto, Ayaka; Senda, Yoshie; Nakashima, Katsuhiko; Nelson, Peter S.; Lucas, Jared M.; Morgan, Andrew; Li, Zhenghua; Yamamura, Ken-ichi; Arai, Satoko; Miyazaki, Toru
2016-01-01
Apoptosis inhibitor of macrophage (AIM, encoded by cd5l) is a multi-functional circulating protein that has a beneficial role in the regulation of a broad range of diseases, some of which are ameliorated by AIM administration in mice. In blood, AIM is stabilized by association with IgM pentamers and maintains its high circulating levels. The mechanism regulating the excessive accumulation of blood AIM remains unknown, although it is important, since a constitutive increase in AIM levels promotes chronic inflammation. Here we found a physiological AIM-cleavage process that induces destabilization of AIM and its excretion in urine. In blood, IgM-free AIM appeared to be cleaved and reduced in size approximately 10 kDa. Cleaved AIM was unable to bind to IgM and was selectively filtered by the glomerulus, thereby excreted in urine. Amino acid substitution at the cleavage site resulted in no renal excretion of AIM. Interestingly, cleaved AIM retained a comparable potency with full-length AIM in facilitating the clearance of dead cell debris in injured kidney, which is a key response in the recovery of acute kidney injury. Identification of AIM-cleavage and resulting functional modification could be the basis for designing safe and efficient AIM therapy for various diseases. PMID:27929116
Renal effects of fresh water-induced hypo-osmolality in a marine adapted seal
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Wade, C. E.; Costa, D. P.; Ortiz, C. L.
2002-01-01
With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.
Fibroblast growth factor 23 and renal function among young and healthy individuals.
Bernasconi, Raffaele; Aeschbacher, Stefanie; Blum, Steffen; Mongiat, Michel; Girod, Marc; Todd, John; Estis, Joel; Nolan, Niamh; Renz, Harald; Risch, Lorenz; Conen, David; Risch, Martin
2018-05-01
Fibroblast growth factor 23 (FGF-23), an osteocyte hormone involved in the regulation of phosphate metabolism, is associated with incident and progressive chronic kidney disease. We aimed to assess the association of FGF-23 with renal parameters, vascular function and phosphate metabolism in a large cohort of young and healthy individuals. Healthy individuals aged 25-41 years were included in a prospective population-based study. Fasting venous blood and morning urinary samples were used to measure plasma creatinine, cystatin C, endothelin-1, phosphate and plasma FGF-23 as well as urinary creatinine and phosphate. Multivariable regression models were constructed to assess the relationship of FGF-23 with parameters of renal function, endothelin-1 and fractional phosphate excretion. The median age of 2077 participants was 37 years, 46% were males. The mean estimated glomerular filtration rate (eGFR - CKD-EPI creatinine-cystatin C equation) and fractional phosphate excretion were 110 mL/min/1.73 m2 and 8.7%, respectively. After multivariable adjustment, there was a significant inverse relationship of FGF-23 with eGFR (β per 1 log-unit increase -3.81; 95% CI [-5.42; -2.20]; p<0.0001). Furthermore, we found a linear association between FGF-23 and endothelin-1 (β per 1 log-unit increase 0.06; [0.01, 0.11]; p=0.01). In addition, we established a significant relationship of FGF-23 with fractional phosphate excretion (β per 1 log-unit increase 0.62; [0.08, 1.16]; p=0.03). Increasing plasma FGF-23 levels are strongly associated with decreasing eGFR and increasing urinary phosphate excretion, suggesting an important role of FGF-23 in the regulation of kidney function in young and healthy adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xinjin; Meng, Qiang; Liu, Qi
2013-09-01
We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less
Assessment of urinary betaine as a marker of diabetes mellitus in cardiovascular patients.
Schartum-Hansen, Hall; Ueland, Per M; Pedersen, Eva R; Meyer, Klaus; Ebbing, Marta; Bleie, Øyvind; Svingen, Gard F T; Seifert, Reinhard; Vikse, Bjørn E; Nygård, Ottar
2013-01-01
Abnormal urinary excretion of betaine has been demonstrated in patients with diabetes or metabolic syndrome. We aimed to identify the main predictors of excretion in cardiovascular patients and to make initial assessment of its feasibility as a risk marker of future diabetes development. We used data from 2396 patients participating in the Western Norway B-vitamin Intervention Trial, who delivered urine and blood samples at baseline, and in the majority at two visits during follow-up of median 39 months. Betaine in urine and plasma were measured by liquid-chromatography-tandem mass spectrometry. The strongest determinants of urinary betaine excretion by multiple regression were diabetes mellitus, age and estimated glomerular filtration rate; all p<0.001. Patients with diabetes mellitus (n = 264) had a median excretion more than three times higher than those without. We found a distinct non-linear association between urinary betaine excretion and glycated hemoglobin, with a break-point at 6.5%, and glycated hemoglobin was the strongest determinant of betaine excretion in patients with diabetes mellitus. The discriminatory power for diabetes mellitus corresponded to an area under the curve by receiver-operating characteristics of 0.82, and betaine excretion had a coefficient of reliability of 0.73. We also found a significant, independent log-linear relation between baseline betaine excretion and the risk of developing new diabetes during follow-up. The good discriminatory power for diabetes, high test-retest stability and independent association with future risk of new diabetes should motivate further investigation on the role of betaine excretion in risk assessment and long-term follow-up of diabetes mellitus.
Normén, L; Laerke, H N; Jensen, B B; Langkilde, A M; Andersson, H
2001-01-01
The ketohexose D-tagatose is a new sweetener with a low energy content. This low energy content may be due to either low absorption of the D-tagatose or decreased absorption of other nutrients. The aims of this study were to measure the excretion of D-tagatose from the human small bowel, to calculate the apparent absorption of D-tagatose, and to study the effects of D-tagatose on the small-bowel excretion of other carbohydrates. A controlled diet was served for 2 periods of 2 d during 3 consecutive weeks to 6 ileostomy subjects. In one of the periods, 15 g D-tagatose was added to the diet daily. Duplicate portions of the diet and ileostomy effluents were freeze-dried and analyzed to calculate the apparent net absorption of D-tagatose and carbohydrates. Median D-tagatose excretion was 19% (range: 12-31%), which corresponded to a calculated apparent absorption of 81% (69-88%). Of the total amount of D-tagatose excreted [2.8 g (1.7-4.4 g)], 60% (8-88%) was excreted within 3 h. Between 3 and 5 h, 32% (11-82%) was excreted. Excretion of wet matter increased by 41% (24-52%) with D-tagatose ingestion. Sucrose and D-glucose excretion increased to a small extent, whereas no significant changes were found in the excretion of dry matter, energy, starch, or D-fructose. The apparent absorption of 15 g D-tagatose/d was 81%. D-Tagatose had only a minor influence on the apparent absorption of other nutrients.
Yan, Liuxia; Guo, Xiaolei; Wang, Huicheng; Zhang, Jiyu; Tang, Junli; Lu, Zilong; Cai, Xiaoning; Liu, Longjian; Gracely, Edward J; Ma, Jixiang
2016-12-01
Albuminuria is a risk factor for cardiovascular and renal disease. However, little is known about the association of 24 h urinary sodium and potassium excretion with albuminuria in China. The aim of this study was to examine this association by analyzing the data from 1,975 Chinese adults living in north China. Excretion of urinary sodium, potassium and albumin was assessed in a single 24-h urine sample for each participant. Height, weight, waist circumference and blood pressure were measured and body mass index was determined as weight divided by square height. Fasting blood sample was collected and fasting glucose was measured. The average 24-h urinary sodium and potassium excretion were 232 mmol and 40.8 mmol, resulting a mean sodium to potassium ratio of 6.7. The median (Q1-Q3) 24-h urinary albuminuria excretion was 6.1 mg (4.5-8.7 mg). Overall, urinary sodium excretion was positively associated with albumin excretion (β=0.029, p<0.001). This association was independent of major cardiovascular risk factors including age, gender, systolic blood pressure, body mass index, fasting glucose, waist circumference, hypertensive drug treatment, and smoking. Moreover, the relation of sodium and albumin was similar in the subgroups stratified by gender, adiposity and diabetic status. No significant associations of potassium excretion or sodium to potassium ratio with urinary albumin excretion were observed. In cross-sectional analyses, high sodium intake was shown to be associated with increased urinary albuminuria in the general Chinese adult population, supporting salt restriction for renal and cardiovascular health benefit.
Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk
2012-01-01
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474
Reducing the environmental impact of poultry breeding by genetic selection.
de Verdal, H; Mignon-Grasteau, S; Bastianelli, D; Même, N; Le Bihan-Duval, E; Narcy, A
2013-02-01
Improving the sustainability of poultry production involves limiting its environmental impact and maintaining effectiveness. It has recently been shown that genetic selection on the ability of chickens to digest wheat at 23 d of age can decrease chicken excretion without decreasing BW at this age. The aim of this study was to check whether selection on digestibility modified excretion and growth performance over the whole production cycle. The 2 divergent lines selected for high (D+) and low (D-) apparent metabolizable energy corrected for 0 N balance (AMEn) values were compared with a reference line used at the beginning of the selection experiment (RL) to evaluate the potential excretion improvement that could be expected with such selection. These 3 lines were therefore compared for growth and excretion (raw and relative to feed intake, fresh and dry excreta weights, and moisture content of excreta) from 4 to 53 d. Between 4 and 7 d, 17 and 21 d, and 49 and 53 d, AMEn and N and P excretion rates were also compared between the 3 lines. Furthermore, body composition (breast meat and abdominal fat yields), bone breaking strength, and meat quality traits (lightness, redness, yellowness, and ultimate pH) were compared between lines at 53 d. Over the whole rearing period, D+ birds excreted significantly less fresh and dry excreta (-56 and -61%) than D- and RL birds (-6 and -26%). Similarly, N and P excretion rates of D+ birds were 13% to 30% less than those of D- birds and 12% to 19% less than RL birds, depending on age. These excretion differences may be related to the differential development of the gastrointestinal tract. Differences between lines were already present at 7 d for relative gizzard weight and the weight of the upper to the lower part of the gastrointestinal tract ratio. Anatomic differences were maximum at 23 d for all traits except for relative weight of the duodenum. At slaughter age, BW, breast and fat yields, and meat color did not differ between D+ and RL birds, but D- birds were fatter than D+ and RL birds. Finally, ultimate meat pH was 1% to 2% greater in RL birds than in the D+ and D- lines. In conclusion, this study showed that selection of chickens for AMEn is a possible way to reduce the environmental impact of production over the whole rearing period without a negative impact on growth, body composition, or meat quality.
NASA Astrophysics Data System (ADS)
Szyper, James P.
1981-12-01
Freshly captured Sagitta enflata exhibited specific excretion rates of ammonium and phosphate (expressed as percentage body content of N or P per hour) that were not significantly related to the size of individual animals. The degree of crowding in experimental vessels was positively correlated with specific excretion rates of ammonium. Excretion rates, under conditions that precluded feeding, decreased sharply during the first several hours' incubation time, approaching the rates exhibited by animals starved overnight. The practice of holding freshly captured zooplankton for a time before determining excretion rates may seriously affect those rates, if the animals are unable to feed. Animals captured during the day in Kaneohe Bay, Hawaii, having no food items in their guts, had mean specific excretion rates (± S.D.) of 0·81±0·51% body content of N h -1 for ammonium, and 1·29±1·24% body content of P h -1 for phosphate. Minimal estimates of natural excretion rates, made from the first hour of incubation in further experiments, were 1·19±0·47% h -1 for nitrogen and 3·8±3·95% h -1 for phosphorus. Sagitta is not a large contributor to nutrient regeneration in Kaneohe Bay.
Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.
2013-01-01
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081
Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M
2000-10-27
The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p < 0.02), isoleucine (p < 0.03), and valine (p < 0.02) while their renal fractional excretion declined (p < 0.02, p < 0.01 resp.). Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p < 0.05) and a hyperbolic relationship between inulin clearance and fractional excretion of BCAA (p < 0.01) were seen. Moreover, a significant decrease in proteinuria (p < 0.02), plasma urea concentration and renal urea excretion and a rise in albumin level (p < 0.03) were noted. We conclude that in patients with CRI on a low protein diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.
Dosing of cytotoxic chemotherapy: impact of renal function estimates on dose.
Dooley, M J; Poole, S G; Rischin, D
2013-11-01
Oncology clinicians are now routinely provided with an estimated glomerular filtration rate on pathology reports whenever serum creatinine is requested. The utility of using this for the dose determination of renally excreted drugs compared with other existing methods is needed to inform practice. Renal function was determined by [Tc(99m)]DTPA clearance in adult patients presenting for chemotherapy. Renal function was calculated using the 4-variable Modification of Diet in Renal Disease (4v-MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Cockcroft and Gault (CG), Wright and Martin formulae. Doses for renal excreted cytotoxic drugs, including carboplatin, were calculated. The concordance of the renal function estimates according to the CKD classification with measured Tc(99m)DPTA clearance in 455 adults (median age 64.0 years: range 17-87 years) for the 4v-MDRD, CKD-EPI, CG, Martin and Wright formulae was 47.7%, 56.3%, 46.2%, 56.5% and 60.2%, respectively. Concordance for chemotherapy dose for these formulae was 89.0%, 89.5%, 85.1%, 89.9% and 89.9%, respectively. Concordance for carboplatin dose specifically was 66.4%, 71.4%, 64.0%, 73.8% and 73.2%. All bedside formulae provide similar levels of concordance in dosage selection for the renal excreted chemotherapy drugs when compared with the use of a direct measure of renal function.
Araki, S; Aono, H; Murata, K
1986-09-01
To investigate the effects of calcium disodium ethylenediamine tetra-acetate (CaEDTA) on the urinary excretion, erythrocyte, and plasma concentrations and exposure indicators of seven heavy metals, CaEDTA was administered by intravenous infusion to 20 workers exposed to lead, zinc, and copper. The workers' blood lead concentrations ranged from 22 to 59 micrograms/dl (mean 38 micrograms/dl (1.8 mumol/l]. The 24 hour urinary excretion of metals after CaEDTA administration (mobilisation yield) was on average 13 times the background excretion for lead, 11 times for zinc, 3.8 times for manganese, 3.4 times for cadmium, 1.3 times for copper, and 1.1 times for chromium; no significant increase was found for mercury. The mobilisation yield of lead (MPb) was significantly correlated with whole blood and erythrocyte concentrations and the urinary excretion of lead but not with its plasma concentration; similarly, the mobilisation yield of cadmium was significantly correlated with its erythrocyte concentration. In addition, MPb was significantly correlated with intra-erythrocytic enzyme delta-aminolaevulinic acid dehydratase activity and urinary coproporphyrin excretion. The relation between the mobilisation yield of heavy metals and their body burden (and toxic signs) is discussed in the light of these findings.
Araki, S; Aono, H; Murata, K
1986-01-01
To investigate the effects of calcium disodium ethylenediamine tetra-acetate (CaEDTA) on the urinary excretion, erythrocyte, and plasma concentrations and exposure indicators of seven heavy metals, CaEDTA was administered by intravenous infusion to 20 workers exposed to lead, zinc, and copper. The workers' blood lead concentrations ranged from 22 to 59 micrograms/dl (mean 38 micrograms/dl (1.8 mumol/l]. The 24 hour urinary excretion of metals after CaEDTA administration (mobilisation yield) was on average 13 times the background excretion for lead, 11 times for zinc, 3.8 times for manganese, 3.4 times for cadmium, 1.3 times for copper, and 1.1 times for chromium; no significant increase was found for mercury. The mobilisation yield of lead (MPb) was significantly correlated with whole blood and erythrocyte concentrations and the urinary excretion of lead but not with its plasma concentration; similarly, the mobilisation yield of cadmium was significantly correlated with its erythrocyte concentration. In addition, MPb was significantly correlated with intra-erythrocytic enzyme delta-aminolaevulinic acid dehydratase activity and urinary coproporphyrin excretion. The relation between the mobilisation yield of heavy metals and their body burden (and toxic signs) is discussed in the light of these findings. PMID:3092853
McMahon, T F; Stefanski, S A; Wilson, R E; Blair, P C; Clark, A M; Birnbaum, L S
1991-03-11
Experimental evidence suggests that the oxidative metabolites 2,3- and 2,5-dihydroxybenzoic acid (DIOH) may be responsible for the nephrotoxicity of salicylic acid (SAL). In the present study, enzymuria in conjunction with glucose (GLU) and protein (PRO) excretion were used as endpoints to compare the relative nephrotoxicity of SAL with 2,3- and 2,5-DIOH. In addition, the effect of age on enzymuria and GLU and PRO excretion following treatment with SAL or 2,3- and 2,5-DIOH was investigated because the elderly are at greater risk for SAL-induced nephrotoxicity. Three and 12-month male Fischer 344 rats were administered either no treatment, vehicle, SAL, 2,3-DIOH, or 2,5-DIOH at 500 mg/kg p.o. in 5 ml/kg corn oil/DMSO (5:1). Effects of these treatments on functional integrity of renal tissue was assessed from 0--72 h after dosing by measurement of urinary creatinine, GLU, and PRO, as well as excretion of proximal and distal tubular renal enzymes. Enzymes measured as indicators of proximal tubular damage were N-acetyl-beta-glucosaminidase (NAG), gamma glutamyltransferase (GGT), alanine aminotransferase (ALT), and alkaline phosphatase (AP), while urinary lactate dehydrogenase (LD) and aspartate aminotransferase (AST) were measured as indicators of distal tubular damage. In comparison to 3-month vehicle-treated rats, 2,3- and 2,5-DIOH caused a significant increase between 0-8 h in excretion of urinary GLU and activities of AST, NAG, and LD, with peak effects occurring between 4-8 h. Toxic effects of either metabolite were not evident beyond 24 h, and toxicity of 2,5-DIOH was significantly greater in comparison to 2,3-DIOH. SAL treatment resulted in similar effects on enzymuria as well as GLU and PRO excretion, but peak effects did not occur until 16-24 h, and often persisted until 72 h after dosing. Maximal enzymuria in response to SAL treatment was significantly greater in 12- vs. 3-month rats for AST, NAG, and LD. In response to 2,3-DIOH treatment, the maximal response was significantly greater in 12- vs. 3-month rats for LD and AST, and for NAG in response to 2,5-DIOH treatment. The results of this study suggest that both 2,3- and 2,5-DIOH are nephrotoxic metabolites of SAL, but implicate 2,5-DIOH as the more potent nephrotoxic metabolite. The relative lack of an age effect for 2,3- and 2,5-DIOH vs. SAL supports the hypothesis [2] that age-related differences in biotransformation of SAL, and not increased tissue sensitivity to 2,3- or 2,5-DIOH, contribute to the age-related increase in susceptibility to SAL-induced nephrotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, K.H. Jr.; Fehr, D.M.; Gelarden, R.T.
Salt intake is restricted under clinical conditions for which thiazide diuretics are customarily used. Dietary iodide intake offsets any effect of thiazide on iodide loss. However, our correlation coefficients relating Na+ to Cl- to I- excretion indicate that as thiazide administration or sodium chloride intake increases renal Na+ and Cl- excretion, I- reabsorption by the nephron coordinately decreases. Increased sodium chloride and water intake by the dog doubled I-excretion rates. Hydrochlorothiazide increased the sodium chloride and water enhanced I-excretion rate as much as eight-fold. Without added NaCl, hydrochlorothiazide increased the excretion rate of 131I by three- to eightfold, acutely. Withinmore » five to seven days after 131I oral administration, hydrochlorothiazide (1 or 2 mg/kg twice daily) doubled the rate of 131I disappearance from plasma, reduced the fecal output of 131I, and increased its rate of renal excretion. When hydrochlorothiazide was administered, as much 131I was excreted in the first 24 hours as occurred in 48 hours when sodium chloride and water were given without hydrochlorothiazide. Thiazide administration in customary clinical dosage twice a day with substantial sodium chloride and water for the first two days after exposure to 131I, should therefore facilitate the safe excretion of 131I. This accelerated removal of 131I might be enhanced even more if thyroid uptake of 131I is blocked by administration of potassium iodide, as judged by the greater 131I recovery from thyroidectomized dogs.« less
Pharmacology of the Phosphate Binder, Lanthanum Carbonate
Damment, Stephen JP
2011-01-01
Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in several experimental models. Lanthanum carbonate and aluminum hydroxide markedly increased excretion of [32P]-phosphate in feces and reduced excretion in urine in rats with normal renal function (p < 0.05), indicating good dietary phosphate-binding efficacy. In rats with chronic renal failure, lanthanum carbonate and aluminum hydroxide reduced urinary phosphate excretion to a greater degree and more rapidly than calcium carbonate, which in turn was more effective than sevelamer hydrochloride. The potential to induce adverse pharmacological effects was assessed systematically in mice, rats, and dogs with normal renal function using standard in vivo models. There was no evidence of any adverse secondary pharmacological effects of lanthanum carbonate on the central nervous, cardiovascular, respiratory, or gastrointestinal systems. These studies indicate that lanthanum carbonate is the more potent of the currently available dietary phosphate binders. No adverse secondary pharmacological actions were observed in vivo in a systematic evaluation at high doses. PMID:21332344
Bacharier, Leonard B; Raissy, Hengameh H; Wilson, Laura; McWilliams, Bennie; Strunk, Robert C; Kelly, H William
2004-06-01
To determine the safety of long-term (36 months) administration of an inhaled corticosteroid (budesonide) on hypothalamic-pituitary-adrenal (HPA) axis function in children with mild to moderate asthma. This was an ancillary study of the Childhood Asthma Management Program (CAMP). Sixty-three children who had mild to moderate asthma and were enrolled in CAMP underwent evaluation of HPA axis function before and 12 and 36 months after receiving continuous therapy with either an inhaled anti-inflammatory agent (budesonide 400 microg/day or nedocromil 16 mg/day) or placebo. HPA axis function was assessed by serum cortisol levels 30 and 60 minutes after 0.25 mg of adrenocorticotrophic hormone (ACTH) and 24-hour urinary free cortisol excretion. There were no differences in serum cortisol levels after ACTH stimulation between treatment groups, regardless of time after ACTH administration or months of follow-up. Urinary cortisol excretion per body surface area was similar in both treatment groups at 36 months, after adjusting for age at randomization, race, gender, and clinic. Cumulative inhaled corticosteroid exposure did not influence serum cortisol response to ACTH or urinary free cortisol excretion at 36 months. We found no effects of chronic budesonide treatment at a dose of 400 micro g/day on HPA axis function in children with mild to moderate asthma and demonstrated the absence of a cumulative effect on HPA axis function over a 3-year period.
Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.
2008-01-01
The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797
Assessment of Urinary Betaine as a Marker of Diabetes Mellitus in Cardiovascular Patients
Schartum-Hansen, Hall; Ueland, Per M.; Pedersen, Eva R.; Meyer, Klaus; Ebbing, Marta; Bleie, Øyvind; Svingen, Gard F. T.; Seifert, Reinhard; Vikse, Bjørn E.; Nygård, Ottar
2013-01-01
Abnormal urinary excretion of betaine has been demonstrated in patients with diabetes or metabolic syndrome. We aimed to identify the main predictors of excretion in cardiovascular patients and to make initial assessment of its feasibility as a risk marker of future diabetes development. We used data from 2396 patients participating in the Western Norway B-vitamin Intervention Trial, who delivered urine and blood samples at baseline, and in the majority at two visits during follow-up of median 39 months. Betaine in urine and plasma were measured by liquid-chromatography-tandem mass spectrometry. The strongest determinants of urinary betaine excretion by multiple regression were diabetes mellitus, age and estimated glomerular filtration rate; all p<0.001. Patients with diabetes mellitus (n = 264) had a median excretion more than three times higher than those without. We found a distinct non-linear association between urinary betaine excretion and glycated hemoglobin, with a break-point at 6.5%, and glycated hemoglobin was the strongest determinant of betaine excretion in patients with diabetes mellitus. The discriminatory power for diabetes mellitus corresponded to an area under the curve by receiver-operating characteristics of 0.82, and betaine excretion had a coefficient of reliability of 0.73. We also found a significant, independent log-linear relation between baseline betaine excretion and the risk of developing new diabetes during follow-up. The good discriminatory power for diabetes, high test-retest stability and independent association with future risk of new diabetes should motivate further investigation on the role of betaine excretion in risk assessment and long-term follow-up of diabetes mellitus. PMID:23936331
Wang, Yu; Lin, Zhijian; Zhang, Bing; Nie, Anzheng; Bian, Meng
2017-01-01
Excessive production and/or reduced excretion of uric acid could lead to hyperuricemia, which could be a major cause of disability. Hyperuricemia has received increasing attention in the last few decades due to its global prevalence. Cichorium intybus L., commonly known as chicory, is a perennial herb of the asteraceae family. It was previously shown to exert potent hypouricemic effects linked with decreasing uric acid formation in the liver by down-regulating the activity of xanthine oxidase, and increasing uric acid excretion by up-regulating the renal OAT3 mRNA expression. The present study aimed to evaluate its extra-renal excretion and possible molecular mechanism underlying the transporter responsible for intestinal uric acid excretion in vivo. Chicory was administered intragastrically to hyperuricemic rats induced by drinking 10% fructose water. The uricosuric effect was evaluated by determining the serum uric acid level as well as the intestinal uric acid excretion by HPLC. The location and expression levels of ATP-binding cassette transporter, sub-family G, member 2 (ABCG2) in jejunum and ileum were analyzed. The administration of chicory decreased the serum uric acid level significantly and increased the intestinal uric acid excretion obviously in hyperuricemic rats induced by 10% fructose drinking. Staining showed that ABCG2 was expressed in the apical membrane of the epithelium and glands of the jejunum and ileum in rats. Further examination showed that chicory enhanced the mRNA and protein expressions of ABCG2 markedly in a dose-dependent manner in jejunum and ileum. These findings indicate that chicory increases uric acid excretion by intestines, which may be related to the stimulation of intestinal uric acid excretion via down-regulating the mRNA and protein expressions of ABCG2.
Caravaca, Francisco; García-Pino, Guadalupe; Martínez-Gallardo, Rocío; Ferreira-Morong, Flavio; Luna, Enrique; Alvarado, Raúl; Ruiz-Donoso, Enrique; Chávez, Edgar
2013-01-01
Serum phosphate concentrations usually show great variability in patients with advanced chronic kidney disease (ACKD) not on dialysis. Diuretics treatment can have an influence over the severity of mineral-bone metabolism alterations related to ACKD, but their effect on serum phosphate levels is less known. This study aims to determine whether diuretics are independently associated with serum phosphate levels, and to investigate the mechanisms by which diuretics may affect phosphate metabolism. 429 Caucasian patients with CKD not on dialysis were included in this cross-sectional study. In addition to conventional serum biochemical measures, the following parameters of renal phosphate excretion were assessed: 24-hours urinary phosphate excretion, tubular maximum phosphate reabsorption (TmP), and fractional excretion of phosphate (FEP). 58% of patients were on treatment with diuretics. Patients on diuretics showed significantly higher mean serum phosphate concentration (4.78 ± 1.23 vs. 4.24 ± 1.04 mg/dl; P<.0001), and higher TmP per GFR (2.77 ± 0.72 vs. 2.43 ± 0.78 mg/dl; P<.0001) than those not treated with diuretics. By multivariate linear and logistic regression, significant associations between diuretics and serum phosphate concentrations or hyperphosphataemia remained after adjustment for potential confounding variables. In patients with the highest phosphate load adjusted to kidney function, those treated with diuretics showed significantly lower FEP than those untreated with diuretics. Treatment with diuretics is associated with increased serum phosphate concentrations in patients with ACKD. Diuretics may indirectly interfere with the maximum renal compensatory capacity to excrete phosphate. Diuretics should be considered in the studies linking the relationship between serum phosphate concentrations and cardiovascular alterations in patients with CKD.
Kovacevic, Larisa; Lu, Hong; Caruso, Joseph A; Govil-Dalela, Tuhina; Thomas, Ronald; Lakshmanan, Yegappan
2017-06-01
Using a proteomic approach, we aimed to identify and compare the urinary excretion of proteins involved in lipid transport and metabolism in children with kidney stones and hypercalciuria (CAL), hypocitraturia (CIT), and normal metabolic work-up (NM), and in healthy controls (HCs). Additionally, we aimed to confirm these results using ELISA, and to examine the relationship between the urinary excretion of selected proteins with demographic, dietary, blood, and urinary parameters. Prospective, controlled, pilot study of pooled urine from CAL, CIT, and NM versus age- and gender-matched HCs, using liquid chromatography-mass spectrometry. Relative protein abundance was estimated using spectral counting. Results were confirmed by ELISA performed on individual samples. Of the 1,813 proteins identified, 230 met the above criteria. Of those, 5 proteins (apolipoprotein A-II [APOA2]; apolipoprotein A-IV [APOA4]; apolipoprotein C-III [APOA3]; fatty acid-binding protein, liver [FABPL]; fatty acid-binding protein, adipocyte [FABP4]) involved in lipid metabolism and transport were found in the CAL group, with significant differences compared with HCs. ELISA analysis indicated statistically significant differences in the urinary excretion of APOC3, APOA4, and FABPL in the CAL group compared with HCs. Twenty-four-hour urinary calcium excretion correlated significantly with concentrations of ApoC3 (r = 0.77, p < 0.001), and FABPL (r = 0.80, p = 0.005). We provide proteomic data showing increased urinary excretion of lipid metabolism/transport-related proteins in children with kidney stones and hypercalciuria. These findings suggest that abnormalities in lipid metabolism might play a role in kidney stone formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krone, M.A.; Biggs, D.C.
1981-06-01
Madracis decactis corals were exposed for 17 days in laboratory aquaria to suspensions of 100 ppm drilling mud spiked with 0, 3, and 10 ppm ferrochrome lignosulfonate (FCLS). During the first week of exposure, these corals increased their oxygen consumption and ammonium excretion, relative to uncontaminated controls. These corals exposed to the highest enrichments of FCLS demonstrated the greatest increases in respiration and excretion and also the largest variations in respiration and excretion between individual experimental animals. Corals reached their highest average rates of respiration and excretion by the end of the first week of continuous exposure. Rates then decreasedmore » during the next week and, after a secondary increase in excretion and respiration between days 10-13 which was most pronounced in those corals exposed to FCLS enrichment, leveled off at near-initial rates by the end of the second week. All corals exposed to FCLS reacted by reducing their polyp expansion behavior, although only the two showed mass polyp mortality. When exposure to drill mud + FCLS was discontinued, respiration and excretion of surviving corals remained low and stable while their polyp activity returned to normal levels within 48 hours.« less
[Hormonal function of the ovaries in women with breast hyperplasia].
Arsen'eva, M G; Savchenko, O N; Stepanov, G S; Ryzhova, R K
1976-01-01
In females showing fibrous-cystic mastopathy and fibroadenomatosis of mammary glands a specific form of progesterone insufficiency- relative one, was revealed, a high persistantly maintained level of urine pregnandiol and blood progesterone in a luteal phase (indicating a high hormonal activity of the corpus luteum) being observed. But luteal transformations were insignificant both in endometrium and vaginal epithelium, a moderate hypoestrogenemia being noted in the first phase and increased estrogen excretion- in the second phase of the cycle.
Mechanisms of sterol uptake and transport in yeast.
Jacquier, Nicolas; Schneiter, Roger
2012-03-01
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms. Copyright © 2010. Published by Elsevier Ltd.
Dapagliflozin Aggravates Renal Injury via Promoting Gluconeogenesis in db/db Mice.
Jia, Yingli; He, Jinzhao; Wang, Liang; Su, Limin; Lei, Lei; Huang, Wei; Geng, Xiaoqiang; Zhang, Shun; Meng, Xiaolu; Zhou, Hong; Yang, Baoxue
2018-01-01
A sodium-glucose co-transporter-2 inhibitor dapagliflozin is widely used for lowering blood glucose and its usage is limited in type 2 diabetes mellitus patients with moderate renal impairment. As its effect on kidney function is discrepant and complicated, the aim of this study is to determine the effect of dapagliflozin on the progression of diabetic nephropathy and related mechanisms. Twelve-week-old male C57BL/6 wild-type and db/db mice were treated with vehicle or 1 mg/kg dapagliflozin for 12 weeks. Body weight, blood glucose, insulin tolerance, glucose tolerance, pyruvate tolerance and 24-hour urine were measured every 4 weeks. At 24 weeks of age, renal function was evaluated by blood urea nitrogen level, creatinine clearance, urine output, urinary albumin excretion, Periodic Acid-Schiff staining, Masson's trichrome staining and electron microscopy. Changes in insulin signaling and gluconeogenic key regulatory enzymes were detected using Western blot analysis. Dapagliflozin did not alleviate but instead aggravated diabetic nephropathy manifesting as increased levels of microalbuminuria, blood urea nitrogen, and glomerular and tubular damage in db/db mice. Despite adequate glycemic control by dapagliflozin, urinary glucose excretion increased after administration before 24 weeks of age and was likely associated with renal impairment. Increased urinary glucose excretion was mainly derived from the disturbance of glucose homeostasis with elevated hepatic and renal gluconeogenesis induced by dapagliflozin. Although it had no effect on insulin sensitivity and glucose tolerance, dapagliflozin further induced the expression of gluconeogenic key rate-limiting enzymes through increasing the expression levels of FoxO1 in the kidney and liver. These experimental results indicate that dapagliflozin aggravates diabetes mellitus-induced kidney injury, mostly through increasing gluconeogenesis. © 2018 The Author(s). Published by S. Karger AG, Basel.
Sodium intake and cardiac sympatho-vagal balance in young men with high blood pressure.
Tochikubo, Osamu; Nishijima, Kiyoko
2004-06-01
We have previously reported that a high sodium intake increases sleep-time blood pressure (BP) in young men. However, there are cases in which this relation does not apply. To account for them, we investigated the relation between sodium intake and cardiac sympatho-vagal balance (SVB) in young men with high BP. Sodium intake was estimated from the amount of urinary sodium excretion over 1 week. Twenty-four-hour (24-h) urinary sodium excretion (Salt24), 24-h ambulatory BP and ECG were obtained on the last day of the observation period. As an index of sodium intake, the expression In(Salt24/Cr24) (Cr24, 24-h urinary creatinine excretion) was used. From power-spectral analysis of ECG-RR intervals during sleep, we obtained the LF/HF ratio between the low-frequency component (LF) and the high frequency component (HF) and used it as an index of SVB. The subjects were male medical students divided into a normal BP group (N-group; n=103) and a high BP group (H-group; n=26, 24-h BP>125/75 mmHg). Mean In(Salt24/Cr24) and LF/HF in the H-group were significantly higher than those in the N-group (LF/HF: 1.86+/-0.44 [SD] vs. 1.37+/-0.30, p<0.001). The calculated discriminant function (D) for the H-group and N-group was D=1.6x + 5y - 11, where x is In(Salt24/Cr24) and y is LF/HF. This formula (D) resulted in high discriminant predictive accuracy (82%) between the groups. If D=0 (the value of the cut-off line determining separation of the groups), the relation y=-0.32x + 2.2 (negative relation between y and x) was obtained. These results suggest that excessive sodium intake in combination with accentuated SVB (LF/HF) increases BP in young men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.A.; Bryden, N.A.; Polansky, M.M.
1986-03-05
To determine if degree of training effects urinary Cr losses, Cr excretion of 8 adult trained and 5 untrained runners was determined on rest days and following exercise at 90% of maximal oxygen uptake on a treadmill to exhaustion with 30 second exercise and 30 second rest periods. Subjects were fed a constant daily diet containing 9 ..mu..g of Cr per 1000 calories to minimize changes due to diet. Maximal oxygen consumption of the trained runners was in the good or above range based upon their age and that of the untrained runners was average or below. While consuming themore » control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 ..mu..g/day (mean +/- SEM), respectively. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% of maximal oxygen consumption compared to nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 ..mu..g/day, respectively. Urinary Cr excretion of 5 untrained subjects was not altered following controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to maximal oxygen consumption and therefore degree of fitness.« less
Fedorova, Olga V.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; Fleenor, Bradley S.; Lakatta, Edward G.; Bagrov, Alexei Y.; Seals, Douglas R.
2013-01-01
Summary Background and objectives Systolic BP and large elastic artery stiffness both increase with age and are reduced by dietary sodium restriction. Production of the natriuretic hormone marinobufagenin, an endogenous α1 Na+,K+-ATPase inhibitor, is increased in salt-sensitive hypertension and contributes to the rise in systolic BP during sodium loading. Design, setting, participants, & measurements The hypothesis was that dietary sodium restriction performed in middle-aged/older adults (eight men and three women; 60±2 years) with moderately elevated systolic BP (139±2/83±2 mmHg) would reduce urinary marinobufagenin excretion as well as systolic BP and aortic pulse-wave velocity (randomized, placebo-controlled, and crossover design). This study also explored the associations among marinobufagenin excretion with systolic BP and aortic pulse-wave velocity across conditions of 5 weeks of a low-sodium (77±9 mmol/d) and 5 weeks of a normal-sodium (144±7 mmol/d) diet. Results Urinary marinobufagenin excretion (weekly measurements; 25.4±1.8 versus 30.7±2.1 pmol/kg per day), systolic BP (127±3 versus 138±5 mmHg), and aortic pulse-wave velocity (700±40 versus 843±36 cm/s) were lower during the low- versus normal-sodium condition (all P<0.05). Across all weeks, marinobufagenin excretion was related with systolic BP (slope=0.61, P<0.001) and sodium excretion (slope=0.46, P<0.001). These associations persisted during the normal- but not the low-sodium condition (both P<0.005). Marinobufagenin excretion also was associated with aortic pulse-wave velocity (slope=0.70, P=0.02) and endothelial cell expression of NAD(P)H oxidase-p47phox (slope=0.64, P=0.006). Conclusions These results show, for the first time in humans, that dietary sodium restriction reduces urinary marinobufagenin excretion and that urinary marinobufagenin excretion is positively associated with systolic BP, aortic stiffness (aortic pulse-wave velocity), and endothelial cell expression of the oxidant enzyme NAD(P)H oxidase. Importantly, marinobufagenin excretion is positively related to systolic BP over ranges of sodium intake typical of an American diet, extending previous observations in rodents and humans fed experimentally high-sodium diets. PMID:23929930
Chymotrypsin with sialendoscopy-assisted surgery for the treatment of chronic obstructive parotitis.
Sun, H-J; Xiao, J-Q; Qiao, Q-H; Bao, X; Wu, C-B; Zhou, Q
2017-07-01
Chronic obstructive parotitis (COP) is a common disease of the parotid gland. A total of 104 patients with COP were identified and randomized into a treatment group (52 cases) and a control group (52 cases). All patients underwent sialography and salivary gland scintigraphy (SGS) examinations before surgery. The patients in the treatment group received chymotrypsin combined with gentamicin via interventional sialendoscopy to irrigate the duct, and the control group received gentamicin alone. All patients were asked to record their pain on a visual analogue scale (VAS) before treatment and at 1 week, 2 weeks, 1 month, 3 months, and 6 months after surgery. The VAS score for pain intensity was decreased at 1 week post-treatment in both groups (P<0.05). Compared to the control group, the VAS score was lower in the treatment group at 1 week, 2 weeks, and 1 month post-treatment (P<0.05). The 6-month postoperative SGS results showed improved uptake and excretion in both groups (P<0.05). The treatment group exhibited higher scores for postoperative SGS excretion than the control group (P<0.05). The administration of chymotrypsin combined with gentamicin by sialendoscopy is effective for the treatment of non-stone-related COP and specifically improves the excretion function of the parotid gland. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats.
Kottwitz, Karin; Laschinsky, Niels; Fischer, Roland; Nielsen, Peter
2009-04-01
The bioavailability of chromium from Cr-picolinate (CrPic(3)) and Cr-chloride (CrCl(3)) was studied in rats using (51)Cr-labelled compounds and whole-body-counting. The intestinal absorption of Cr was twice as high from CrPic(3) (1.16% vs 0.55%) than from CrCl(3), however most of the absorbed (51)Cr from CrPic(3) was excreted into the urine within 24 h. After i.v. or i.p. injection, the whole-body retention curves fitted well to a multiexponential function, demonstrating that plasma chromium is in equilibrium with three pools. For CrPic(3), a large pool exists with a very rapid exchange (T (1/2) = <0.5 days), suggesting that CrPic(3) is absorbed as intact molecule, from which the main part is directly excreted by the kidney before degradation of the chromium complex in the liver can occur. CrCl(3) is less well absorbed but the rapid exchange pool is much smaller, resulting in even higher Cr concentrations in tissue such as muscle and fat. However, 1-3 days after application, the relative distribution of (51)Cr from both compounds was similar in all tissues studied, indicating that both compounds contribute to the same storage pool. In summary, the bioavailability of CrPic(3) in rats is not superior compared to CrCl(3).
Early Biochemical Effects of an Organic Mercury Fungicide on Infants: ``Dose Makes the Poison''
NASA Astrophysics Data System (ADS)
Gotelli, Carlos A.; Astolfi, Emilio; Cox, Christopher; Cernichiari, Elsa; Clarkson, Thomas W.
1985-02-01
Phenylmercury absorbed through the skin from contaminated diapers affected urinary excretion in infants in Buenos Aires. The effects were reversible and quantitatively related to the concentration of urinary mercury. Excretion of γ -glutamyl transpeptidase, an enzyme in the brush borders of renal tubular cells, increased in a dose-dependent manner when mercury excretion exceeded a ``threshold'' value. Urine volume also increased but at a higher threshold with respect to mercury. The results support the threshold concept of the systemic toxicity of metals. γ -Glutamyl transpeptidase is a useful and sensitive marker for preclinical effects of toxic metals.
Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.
Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An
2018-07-01
The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.
Schwarm, Angela; Ortmann, Sylvia; Wolf, Christian; Streich, W Jürgen; Clauss, Marcus
2009-11-01
Ruminants are characterized by an efficient particle-sorting mechanism in the forestomach (FRST) followed by selective rechewing of large food particles. For the nonruminating foregut fermenter pygmy hippo it was demonstrated that large particles are excreted as fast as, or faster than, the small particles. The same has been suggested for other nonruminating foregut fermenters. We determined the mean retention time of fluids and different-sized particles in six red kangaroos (Macropus rufus), seven collared peccaries (Pecari tajacu) and three colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii). We fed Co-EDTA as fluid and mordanted fiber as particle markers (Cr, Ce). Mean (+ or - SD) total tract retention time for fluids, small and large particles was 14 + or - 2, 29 + or - 10 and 30 + or - 9 hr in red kangaroos, 26 + or - 2, 34 + or - 5 and 32 + or - 3 hr in collared peccaries and 57 + or - 17, 55 + or - 19 and 54 + or - 19 hr in colobine monkeys, respectively. Large and small particles were excreted simultaneously in all species. There was no difference in the excretion of fluids and particles in the colobine monkeys, in contrast to the other foregut fermenters. In the nonprimate, nonruminant foregut fermenters, the difference in the excretion of fluids and small particles decreases with increasing food intake. On the contrary, ruminants keep this differential excretion constant at different intake levels. This may be a prerequisite for the sorting of particles in their FRST and enable them to achieve higher food intake rates. The functional significance of differential excretion of fluids and particles from the FRST requires further investigations.
Scharschmidt, Bruce F.; Schmid, Rudi
1978-01-01
Although the importance of mixed micelles in the solubilization and biliary excretion of lipids is established, little is known about a possible role of mixed micelles in the excretion of other biliary solutes. Ultrafiltration and ultracentrifugation techniques were used to investigate the interaction between substances that are excreted in bile and biliary mixed micelles. Substances (urea, erythritol, sucrose) excreted in bile at concentrations equal to, or less than, that in plasma did not show an association with mixed micelles, whereas substances (indocyanine green, iopanoic acid, rose bengal, unconjugated and conjugated sulfobromophthalein, and conjugated bilirubin) excreted in bile at high concentration relative to plasma did. The percentage of these latter substances in bile associated with micelles varied from 26 to 93% and was relatively independent of concentration. In addition to their association with mixed micelles, these test solutes formed self-aggregates that were stabilized primarily by ionic bonds, and only a small percentage (range = 0-5%) of these solutes were present in bile in the form of monomer or complexes small enough to pass a 5,000-mol wt membrane. These findings offer a possible explanation for the increase in sulfobromophthalein, bilirubin, and indocyanine green maximal biliary excretory rate produced by bile salt infusion, and suggest that the concentrative transport into bile of endogenous compounds and xenobiotics may result from their incorporation into mixed micelles and other macromolecular complexes. PMID:748371
Influence of Altered Mass Loading on Testosterone Levels and Testicular Mass
NASA Technical Reports Server (NTRS)
Wang, Tommy J.; Ortiz, R. M.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Effects of altered load on testosterone levels and testicular mass in mammals are not well defined. Two separate studies (loading;centrifuged; +2G(sub z) and unloading;hindlimb suspension;HLS) were conducted to provide a better understanding of the effects of mass loading on testosterone levels and testicular mass. Daily urine samples were collected, and testicular mass measured at the end of the study. +2G(sub z): Sprague-Dawley rats (230-250 g) were centrifuged for 12 days at +2G(sub z): 8 centrifuged (EC) and 8 off centrifuge controls (OCC). EC had lower body mass, however relative testicular mass was greater. EC exhibited an increase in excreted testosterone levels between days 2 (T2) and 6 (T6), and returned to baseline at T9. HLS: To assess the effects of unloading Sprague-Dawley rats (125-150 g) were studied for 12 days: 10 suspended (Exp) and 10 ambulatory (Ctl). Exp had lower body mass during the study, with reduced absolute and relative testicular mass. Exp demonstrated lower excreted testosterone levels from T5-T12. Conclusions: Loading appears to stimulate anabolism, as opposed to unloading, as indicated by greater relative testicular mass and excreted testosterone levels. Reported changes in muscle mass during loading and unloading coincide with similar changes in excreted testosterone levels.
2,5-Hexanedione excretion after occupational exposure to n-hexane.
Ahonen, I; Schimberg, R W
1988-01-01
The urinary excretion of the n-hexane metabolite 2,5-hexanedione (HD) was determined in four shoe factory workers during four workingdays that were preceded by four free days and followed by two free days. The correlation between excretion of HD and the n-hexane concentrations in the workroom air was evaluated. The air concentrations of n-hexane and those of acetone, toluene, and other organic solvents were monitored with charcoal tubes. All the urine from each worker was collected at freely chosen intervals during the experimental period and the following two free days. The samples were analysed by gas chromatography. The relative excretion of HD increased as the exposure to n-hexane increased, although it seemed that HD accumulated progressively in the body at the highest n-hexane concentrations and at higher total solvent concentrations. Images PMID:3342196
Adrenocortical responses of the Apollo 17 crew members
NASA Technical Reports Server (NTRS)
Leach, C. S.; Rambaut, P. C.; Johnson, P. C.
1974-01-01
Changes in adrenal activity of the three Apollo 17 crew members were studied during the 12.55-day mission and during selected post-recovery days. Aldosterone excretion was normal early and elevated later in the mission, probably causing a loss in total body exchangeable potassium. There was decreased 17-hydroxycorticosteroid excretion only during the early mission days for the two moon landers and throughout the mission for the other astronaut. Cortisol excretion was elevated on physically stressful mission days. At recovery, plasma ACTH was elevated without a similar increase in plasma cortisol. Angiotensin I activity was elevated at recovery in only one crewman. This crewman was the only one with a decreased extracellular fluid volume. These results indicate that the mission and its activities affect adrenal function of the crewmen.
Small, G.E.; Pringle, C.M.; Pyron, M.; Duff, J.H.
2011-01-01
Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 ??g/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 ??g/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates >10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied ???90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems. ?? 2011 by the Ecological Society of America.
Xu, Haiyan; Kulkarni, Kaustubh H.; Singh, Rashim; Yang, Zhen; Wang, Stephen W.J.; Tam, Vincent H.; Hu, Ming
2010-01-01
The purposes of this study were to investigate how efflux transporters and UDP-glucuronosyltransferases (UGT) affect the disposition of naringenin. A rat intestinal perfusion model with bile duct cannulation was used along with rat intestinal and liver microsomes. In the intestinal perfusion model, both absorption and subsequent excretion of naringenin metabolites were rapid and site-dependent (p < 0.05). Naringenin was absorbed the most in colon and its glucuronides were excreted the most in duodenum. In metabolism studies, the intrinsic clearance value of naringenin glucuronidation was the highest in jejunum microsomes, followed by liver, ileal and colonic microsomes. The rapid metabolism in microsomes did not always translate into more efficient excretion in the rat perfusion model, however, because of presence of rate-limiting efflux transporters. When used separately, MK-571 (an inhibitor of multidrug resistance-related protein 2 or Mrp2) or dipyridamole (an inhibitor of breast cancer resistance protein or Bcrp1) did not affect excretion of naringenin glucuronides, but when used together, they significantly (p < 0.05) decreased intestinal and biliary excretion of naringenin glucuronides. In conclusion, efflux transporters Mrp2 and Bcrp1 are shown to compensate for each other and enable the intestinal excretion of flavonoid (i.e., naringenin) glucuronides. PMID:19736994
Wood, Chris M; Bucking, Carol; Fitzpatrick, John; Nadella, Sunita
2007-11-15
In light of previous work showing a marked metabolic alkalosis ("alkaline tide") in the bloodstream after feeding in the dogfish shark (Squalus acanthias), we evaluated whether there was a corresponding net base excretion to the water at this time. In the 48 h after a natural voluntary meal (teleost tissue, averaging 5.5% of body weight), dogfish excreted 10,470 micromol kg(-1) more base (i.e. HCO3- equivalents) than the fasted control animals (which exhibited a negative base excretion of -2160 micromol kg(-1)). This large activation of branchial base excretion after feeding thereby prevented a potentially fatal alkalinization of the body fluids by the alkaline tide. The rate peaked at 330 micromol kg(-1) h(-1) at 12.5-24 h after the meal. Despite a prolonged 1.7-fold elevation in MO2 after feeding ("specific dynamic action"), urea-N excretion decreased by 39% in the same 48 h period relative to fasted controls. In contrast, ammonia-N excretion did not change appreciably. The N/O2 ratio declined from 0.51 in fasted animals to 0.19 in fed sharks, indicating a stimulation of N-anabolic processes at this time. These results, which differ greatly from those in teleost fish, are interpreted in terms of the fundamentally different ureotelic osmoregulatory strategy of elasmobranchs, and recent discoveries on base excretion and urea-retention mechanisms in elasmobranch gills.
Anthropometry-based 24-h urinary creatinine excretion reference for Chinese children
Wang, Wei; Du, Cong; Lin, Laixiang; Chen, Wen; Tan, Long; Shen, Jun; Pearce, Elizabeth N.; Zhang, Yixin; Gao, Min; Bian, Jianchao; Wang, Xiaoming; Zhang, Wanqi
2018-01-01
To establish 24-h urinary creatinine excretion reference ranges based on anthropometry in healthy Chinese children, a cross-sectional survey was conducted using twice-sampled 24-h urine and anthropometric variables. Age- and sex-specific 24-h creatinine excretion reference ranges (crude and related to individual anthropometric variables) were derived. During October 2013 and May 2014, urine samples were collected. Anthropometric variables were measured in the first survey. Data of 710 children (377 boys and 333 girls) aged 8–13 years who completed the study were analyzed. No significant difference was observed in 24-h urine volumes between the two samples (median [interquartile range): 855.0 [600.0–1272.0) mL vs. 900.0 [660.0–1220.0) mL, P = 0.277). The mean 24-h urine creatinine excretion was regarded as representative of absolute daily creatinine excretion in children. Sex-specific, body-weight-adjusted creatinine excretion reference values were 15.3 mg/kg/day (0.1353 mmol/kg/day) for boys and 14.3 mg/kg/day (0.1264 mmol/kg/day) for girls. Differences were significant between boys and girls within the same age group but not across different age groups within the same sex. Ideal 24-h creatinine excretion values for height were derived for potential determination of the creatinine height index. These data can serve as reference ranges to calculate ratios of analyte to creatinine. The creatinine height index can be used to assess somatic protein status. PMID:29791502
Burgos, S A; Fadel, J G; Depeters, E J
2007-12-01
The objectives of this study were to assess the relationship between urinary urea N (UUN) excretion (g/d) and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) content. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 +/- 26 d in milk (DIM); mean +/- standard deviation], mid (175 +/- 3 DIM), and late (221 +/- 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. Graded amounts of urea were added to the basal total mixed ration to linearly increase dietary CP content while maintaining similar concentrations of all other nutrients among treatments. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of urine as well as milk and blood sample collection. Dry matter intake and yields of milk, fat, protein, and lactose declined progressively with lactation stage and were unaffected by dietary CP content. Milk and plasma urea-N as well as UUN concentration and excretion increased in response to dietary CP content. Milk and urine urea-N concentration rose at increasing and decreasing rates, respectively, as a function of plasma urea-N. The renal urea-N clearance rate differed among lactation stages and dietary CP contents. The relationship between UUN excretion and MUN differed among lactation stages and diverged from linearity for cows in early and late lactation. However, these differences were restricted to very high MUN concentrations. Milk urea N may be a useful tool to predict the UUN excretion and ultimately NH(3) emission from dairy cattle manure.
Increased leukotriene E4 excretion in systemic mastocytosis.
Butterfield, Joseph H
2010-06-01
Cysteinyl leukotrienes such as LTE(4) are produced by mast cells, neutrophils, eosinophils, and macrophages. LTE(4) levels have not been reported in systemic mastocytosis, a disorder with a large increase in mast cell numbers. Urinary LTE(4) from patients referred for symptoms potentially due to mast cell degranulation or systemic mastocytosis was measured by a commercial cysteinyl leukotriene enzyme immunoassay kit. The diagnosis of systemic mastocytosis was established using current World Health Organization criteria. Compared with a control group of patients with various potential mast cell-related symptoms (e.g., "spells"), patients with systemic mastocytosis had a significant (P=.01) increase in urinary LTE(4) excretion, whether expressed as LTE(4) ng/g creatinine or as LTE(4) ng/24h. There was a moderate correlation of LTE(4) ng/24h with excretion of N-methyl histamine and serum tryptase but not with urinary 11beta-prostaglandin F(2alpha) (11beta-PGF(2alpha)) excretion. LTE(4) excretion is increased in patients with systemic mastocytosis and potentially contributes to clinical symptoms. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lednicky, John A.; Vilchez, Regis A.; Keitel, Wendy A.; Visnegarwala, Fehmida; White, Zoe S.; Kozinetz, Claudia A.; Lewis, Dorothy E.; Butel, Janet S.
2003-01-01
OBJECTIVE: To assess the frequency of shedding of polyomavirus JC virus (JCV) genotypes in urine of HIV-infected patients receiving highly active antiretroviral therapy (HAART). METHODS: Single samples of urine and blood were collected prospectively from 70 adult HIV-infected patients and 68 uninfected volunteers. Inclusion criteria for HIV-infected patients included an HIV RNA viral load < 1000 copies, CD4 cell count of 200-700 x 106 cells/l, and stable HAART regimen. PCR assays and sequence analysis were carried out using JCV-specific primers against different regions of the virus genome. RESULTS: JCV excretion in urine was more common in HIV-positive patients but not significantly different from that of the HIV-negative group [22/70 (31%) versus 13/68 (19%); P = 0.09]. HIV-positive patients lost the age-related pattern of JCV shedding (P = 0.13) displayed by uninfected subjects (P = 0.01). Among HIV-infected patients significant differences in JCV shedding were related to CD4 cell counts (P = 0.03). Sequence analysis of the JCV regulatory region from both HIV-infected patients and uninfected volunteers revealed all to be JCV archetypal strains. JCV genotypes 1 (36%) and 4 (36%) were the most common among HIV-infected patients, whereas type 2 (77%) was the most frequently detected among HIV-uninfected volunteers. CONCLUSION: These results suggest that JCV shedding is enhanced by modest depressions in immune function during HIV infection. JCV shedding occurred in younger HIV-positive persons than in the healthy controls. As the common types of JCV excreted varied among ethnic groups, JCV genotypes associated with progressive multifocal leukoencephalopathy may reflect demographics of those infected patient populations.
Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin
Spirito, Catherine M.; Daly, Sarah E.; Werner, Jeffrey J.
2018-01-01
ABSTRACT The antibiotic monensin is fed to dairy cows to increase milk production efficiency. A fraction of this monensin is excreted into the cow manure. Previous studies have found that cow manure containing monensin can negatively impact the performance of anaerobic digesters, especially upon first introduction. Few studies have examined whether the anaerobic digester microbiome can adapt to monensin during the operating time. Here, we conducted a long-term time series study of four lab-scale anaerobic digesters fed with cow manure. We examined changes in both the microbiome composition and function of the anaerobic digesters when subjected to the dairy antibiotic monensin. In our digesters, monensin was not rapidly degraded under anaerobic conditions. The two anaerobic digesters that were subjected to manure from monensin feed-dosed cows exhibited relatively small changes in microbiome composition and function due to relatively low monensin concentrations. At higher concentrations of monensin, which we dosed directly to control manure (from dairy cows without monensin), we observed major changes in the microbiome composition and function of two anaerobic digesters. A rapid introduction of monensin to one of these anaerobic digesters led to the impairment of methane production. Conversely, more gradual additions of the same concentrations of monensin to the other anaerobic digester led to the adaptation of the anaerobic digester microbiomes to the relatively high monensin concentrations. A member of the candidate OP11 (Microgenomates) phylum arose in this anaerobic digester and appeared to be redundant with certain Bacteroidetes phylum members, which previously were dominating. IMPORTANCE Monensin is a common antibiotic given to dairy cows in the United States and is partly excreted with dairy manure. An improved understanding of how monensin affects the anaerobic digester microbiome composition and function is important to prevent process failure for farm-based anaerobic digesters. This time series study demonstrates how anaerobic digester microbiomes are inert to low monensin concentrations and can adapt to relatively high monensin concentrations by redundancy in an already existing population. Therefore, our work provides further insight into the importance of microbiome redundancy in maintaining the stability of anaerobic digesters. PMID:29500266
Humalda, J K; Keyzer, C A; Binnenmars, S H; Kwakernaak, A J; Slagman, M C J; Laverman, G D; Bakker, S J L; de Borst, M H; Navis, G J
2016-08-01
Both a high dietary sodium and high phosphate load are associated with an increased cardiovascular risk in patients with chronic kidney disease (CKD), and possibly also in non-CKD populations. Sodium and phosphate are abundantly present in processed food. We hypothesized that (modulation of) dietary sodium is accompanied by changes in phosphate load across populations with normal and impaired renal function. We first investigated the association between sodium and phosphate load in 24-h urine samples from healthy controls (n = 252), patients with type 2 diabetes mellitus (DM, n = 255) and renal transplant recipients (RTR, n = 705). Secondly, we assessed the effect of sodium restriction on phosphate excretion in a nondiabetic CKD cohort (ND-CKD: n = 43) and a diabetic CKD cohort (D-CKD: n = 39). Sodium excretion correlated with phosphate excretion in healthy controls (R = 0.386, P < 0.001), DM (R = 0.490, P < 0.001), and RTR (R = 0.519, P < 0.001). This correlation was also present during regular sodium intake in the intervention studies (ND-CKD: R = 0.491, P < 0.001; D-CKD: R = 0.729, P < 0.001). In multivariable regression analysis, sodium excretion remained significantly correlated with phosphate excretion after adjustment for age, gender, BMI, and eGFR in all observational cohorts. In ND-CKD and D-CKD moderate sodium restriction reduced phosphate excretion (31 ± 10 to 28 ± 10 mmol/d; P = 0.04 and 26 ± 11 to 23 ± 9 mmol/d; P = 0.02 respectively). Dietary exposure to sodium and phosphate are correlated across the spectrum of renal function impairment. The concomitant reduction in phosphate intake accompanying sodium restriction underlines the off-target effects on other nutritional components, which may contribute to the beneficial cardiovascular effects of sodium restriction. (f) Registration numbers: Dutch Trial Register NTR675, NTR2366. Copyright © 2016. Published by Elsevier B.V.
Chittoor, Geetha; Haack, Karin; Mehta, Nitesh R; Laston, Sandra; Cole, Shelley A; Comuzzie, Anthony G; Butte, Nancy F; Voruganti, V Saroja
2017-01-17
Reduced renal excretion of uric acid plays a significant role in the development of hyperuricemia and gout in adults. Hyperuricemia has been associated with chronic kidney disease and cardiovascular disease in children and adults. There are limited genome-wide association studies associating genetic polymorphisms with renal urate excretion measures. Therefore, we investigated the genetic factors that influence the excretion of uric acid and related indices in 768 Hispanic children of the Viva La Familia Study. We performed a genome-wide association analysis for 24-h urinary excretion measures such as urinary uric acid/urinary creatinine ratio, uric acid clearance, fractional excretion of uric acid, and glomerular load of uric acid in SOLAR, while accounting for non-independence among family members. All renal urate excretion measures were significantly heritable (p <2 × 10 -6 ) and ranged from 0.41 to 0.74. Empirical threshold for genome-wide significance was set at p <1 × 10 -7 . We observed a strong association (p < 8 × 10 -8 ) of uric acid clearance with a single nucleotide polymorphism (SNP) in zinc finger protein 446 (ZNF446) (rs2033711 (A/G), MAF: 0.30). The minor allele (G) was associated with increased uric acid clearance. Also, we found suggestive associations of uric acid clearance with SNPs in ZNF324, ZNF584, and ZNF132 (in a 72 kb region of 19q13; p <1 × 10 -6 , MAFs: 0.28-0.31). For the first time, we showed the importance of 19q13 region in the regulation of renal urate excretion in Hispanic children. Our findings indicate differences in inherent genetic architecture and shared environmental risk factors between our cohort and other pediatric and adult populations.
Ganswindt, A; Palme, R; Heistermann, M; Borragan, S; Hodges, J K
2003-11-01
Adult male elephants periodically show the phenomenon of musth, a condition associated with increased aggressiveness, restlessness, significant weight reduction and markedly elevated androgen levels. It has been suggested that musth-related behaviours are costly and that therefore musth may represent a form of physiological stress. In order to provide data on this largely unanswered question, the first aim of this study was to evaluate different assays for non-invasive assessment of adrenocortical function in the male African elephant by (i) characterizing the metabolism and excretion of [3H]cortisol (3H-C) and [14C]testosterone (14C-T) and (ii) using this information to evaluate the specificity of four antibodies for determination of excreted cortisol metabolites, particularly with respect to possible cross-reactions with androgen metabolites, and to assess their biological validity using an ACTH challenge test. Based on the methodology established, the second objective was to provide data on fecal cortisol metabolite concentrations in bulls during the musth and non-musth condition. 3H-C (1 mCi) and 14C-T (100 microCi) were injected simultaneously into a 16 year old male and all urine and feces collected for 30 and 86 h, respectively. The majority (82%) of cortisol metabolites was excreted into the urine, whereas testosterone metabolites were mainly (57%) excreted into the feces. Almost all radioactive metabolites recovered from urine were conjugated (86% 3H-C and 97% 14C-T). In contrast, 86% and >99% of the 3H-C and 14C-T metabolites recovered from feces consisted of unconjugated forms. HPLC separations indicated the presence of various metabolites of cortisol in both urine and feces, with cortisol being abundant in hydrolysed urine, but virtually absent in feces. Although all antibodies measured substantial amounts of immunoreactivity after HPLC separation of peak radioactive samples and detected an increase in glucocorticoid output following the ACTH challenge, only two (in feces against 3alpha,11-oxo-cortisol metabolites, measured by an 11-oxo-etiocholanolone-EIA and in urine against cortisol, measured by a cortisol-EIA) did not show substantial cross-reactivity with excreted 14C-T metabolites and could provide an acceptable degree of specificity for reliable assessment of glucocorticoid output from urine and feces. Based on these findings, concentrations of immunoreactive 3alpha,11-oxo-cortisol metabolites were determined in weekly fecal samples collected from four adult bulls over periods of 11-20 months to examine whether musth is associated with increased adrenal activity. Results showed that in each male levels of these cortisol metabolites were not elevated during periods of musth, suggesting that in the African elephant musth is generally not associated with marked elevations in glucocorticoid output. Given the complex nature of musth and the variety of factors that are likely to influence its manifestation, it is clear, however, that further studies, particularly on free-ranging animals, are needed before a possible relationship between musth and adrenal function can be resolved. This study also clearly illustrates the potential problems associated with cross-reacting metabolites of gonadal steroids in EIAs measuring glucocorticoid metabolites. This has to be taken into account when selecting assays and interpreting results of glucocorticoid metabolite analysis, not only for studies in the elephant but also in other species.
Pascual, Jose Maria; Rodilla, Enrique; Gonzalez, Carmen; Pérez-Hoyos, Santiago; Redon, Josep
2005-06-01
The objective was to assess the temporal impact of factors related to the development of microalbuminuria during the follow-up of young adult normoalbuminurics with high-normal blood pressure or at stage 1 of essential hypertension. Prospective follow-up was conducted on 245 normoalbuminuric hypertensive subjects (mean age 40.9 years; 134 men; blood pressure 139.7/88.6 mm Hg; body mass index 28.5 kg/m2) never treated previously with antihypertensive drugs, with yearly urinary albumin excretion measurements, until the development of microalbuminuria. After enrollment, patients were placed on usual care including nonpharmacological treatment or with an antihypertensive drug regime to achieve a blood pressure of <135/85 mm Hg. Thirty subjects (12.2%) developed microalbuminuria after a mean follow-up of 29.9 months (range 12 to 144 months), 2.5 per 100 patients per year. Baseline urinary albumin excretion (hazard ratio, 1.07; P=0.006) and systolic blood pressure during the follow-up (hazard ratio, 1.03; P=0.008) were independent factors related to the follow-up urinary albumin excretion in a Cox proportional hazard model. A significant increase in the risk of developing microalbuminuria for urinary albumin excretion at baseline >15 mg per 24-hour systolic blood pressure >139 mm Hg and a positive trend in fasting glucose were observed in the univariate analyses. However, in the multivariate analysis, only the baseline urinary albumin excretion and the trend of fasting glucose were independently related to the risk of developing microalbuminuria. In mild hypertensives, the development of microalbuminuria was linked to insufficient blood pressure control and to a progressive increment of glucose values.
Minshall, Clare; Nadal, Jodie; Exley, Christopher
2014-01-01
It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.
Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders
Cordat, Emmanuelle; Chambrey, Régine; Dimke, Henrik; Eladari, Dominique
2016-01-01
Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport in the renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis. PMID:27468975
Peng, Yaguang; Li, Wei; Wang, Yang; Chen, Hui; Bo, Jian; Wang, Xingyu; Liu, Lisheng
2016-01-01
24-h urinary sodium excretion is the gold standard for evaluating dietary sodium intake, but it is often not feasible in large epidemiological studies due to high participant burden and cost. Three methods—Kawasaki, INTERSALT, and Tanaka—have been proposed to estimate 24-h urinary sodium excretion from a spot urine sample, but these methods have not been validated in the general Chinese population. This aim of this study was to assess the validity of three methods for estimating 24-h urinary sodium excretion using spot urine samples against measured 24-h urinary sodium excretion in a Chinese sample population. Data are from a substudy of the Prospective Urban Rural Epidemiology (PURE) study that enrolled 120 participants aged 35 to 70 years and collected their morning fasting urine and 24-h urine specimens. Bias calculations (estimated values minus measured values) and Bland-Altman plots were used to assess the validity of the three estimation methods. 116 participants were included in the final analysis. Mean bias for the Kawasaki method was -740 mg/day (95% CI: -1219, 262 mg/day), and was the lowest among the three methods. Mean bias for the Tanaka method was -2305 mg/day (95% CI: -2735, 1875 mg/day). Mean bias for the INTERSALT method was -2797 mg/day (95% CI: -3245, 2349 mg/day), and was the highest of the three methods. Bland-Altman plots indicated that all three methods underestimated 24-h urinary sodium excretion. The Kawasaki, INTERSALT and Tanaka methods for estimation of 24-h urinary sodium excretion using spot urines all underestimated true 24-h urinary sodium excretion in this sample of Chinese adults. Among the three methods, the Kawasaki method was least biased, but was still relatively inaccurate. A more accurate method is needed to estimate the 24-h urinary sodium excretion from spot urine for assessment of dietary sodium intake in China. PMID:26895296
Kozloski, G V; Stefanello, C M; Oliveira, L; Filho, H M N Ribeiro; Klopfenstein, T J
2017-02-01
A data set of individual observations was compiled from digestibility trials to examine the relationship between the duodenal purine bases (PB) flow and urinary purine derivatives (PD) excretion and the validity of different equations for estimating rumen microbial N (Nm) supply based on urinary PD in comparison with estimates based on duodenal PB. Trials (8 trials, = 185) were conducted with male sheep fitted with a duodenal T-type cannula, housed in metabolic cages, and fed forage alone or with supplements. The amount of PD excreted in urine was linearly related to the amount of PB flowing to the duodenum ( < 0.05). The intercept of the linear regression was 0.180 mmol/(d·kg), representing the endogenous excretion of PD, and the slope was lower than 1 ( < 0.05), indicating that only 0.43% of the PB in the duodenum was excreted as PD in urine. The Nm supply estimated by either approach was linearly related ( < 0.05) to the digestible OM intake. However, the Nm supply estimated through either of 3 published PD-based equations probably underestimated the Nm supply in sheep.
Identification and chromosomal localization of ecogenetic components of electrolyte excretion.
Dumas, Pierre; Kren, Vladimír; Krenová, Drahomíra; Pravenec, Michal; Hamet, Pavel; Tremblay, Johanne
2002-02-01
To determine to what extent urinary excretion of blood pressure-modulating electrolytes is genetically determined, and to identify their chromosomal localization. Twenty-six rat recombinant inbred strains (RIS) originating from reciprocal crosses of normotensive Brown Norway (BN.Lx) and spontaneously hypertensive rats (SHR) were used. A pilot experiment on a subset of strains determined that fasting decreases the impact of environmental noise and increases that of heritability. Twenty-four-hour urinary collections were obtained from fasting rats aged 6-12 weeks (3-8 rats per strain). Sodium (Na), potassium (K) and calcium (Ca) excretions were measured, and the Na/K ratio calculated. These phenotypes served as quantitative traits for the search of quantitative trait loci (QTLs) by scanning the RIS genome that was mapped with 475 polymorphic markers. Constant Na intake resulted in a low heritability for Na excretion, reflecting the environmental impact (intake = excretion), whereas fasting revealed a gradient among RIS indicative of the genetic component of the traits. In the fasting state, a locus on chromosome 14 was found to be significantly associated with K excretion (Alb, P = 0.00002, r = -0.69, logarithm of the odds score (LOD) 3.9), whereas another locus on chromosome 10 (D10Cebrp97s5, P = 0.0003, r = -0.69, LOD 3.0) and one on chromosome 6 (D6Cebrp97s14, P = 0.0007, r = -0.65, LOD 1.9) were more significantly associated with Na excretion and the Na/K ratio respectively. The observed correlations were all negative for Na, K and Na/K, indicating a higher excretion of Na and K and a greater Na/K ratio in rats bearing BN.Lx alleles at these loci, i.e. salt retention in fasting SHR. These three loci accounted for 47-55% of variance of their associated trait, suggesting that they are the main genetic determinants for these phenotypes in basal fasting conditions. Rats bearing the Y chromosome of SHR origin had significantly higher K excretion that, in turn, led to a significantly lower Na/K ratio. Finally, a locus on chromosome 7 was linked to Ca excretion, explaining 46% of the trait variance (D7Mit10, LOD score 3.0). RIS enabled us to determine QTLs for environmentally modulated traits such as Na, K and Ca excretions. We demonstrated that whereas urinary electrolytes are determined mainly by intake (environment) in a steady state, their excretion in an adaptive state (fasting) is predominantly genetically determined by distinct QTL on autosomes as well as the Y chromosome. Furthermore, the loci responsible for Na and K excretions act independently of the locus governing the relative excretion of Na/K. Thus, the salt-retaining aspects of some hypertensives may be, in large part, determined by genes responsible for renal excretion, the impact of which is predominant over the environment under acute challenge.
Cotler, S; Chen, S; Macasieb, T; Colburn, W A
1984-01-01
Oral, intraportal, iv doses of isotretinoin were administered to dogs before and after bile duct cannulation to determine the effect of route of administration and biliary excretion on the pharmacokinetics of this compound. Blood and bile samples were collected and analyzed for isotretinoin using a gradient elution high performance liquid chromatographic method. Blood concentrations were decreased after bile duct cannulation. Decreases in the area under the blood concentration-time curves were greatest following oral dosing, intermediate following intraportal dosing, and least following iv dosing. These results indicate that biliary excretion impacts on the blood profile of isotretinoin as a function of route of administration and that the differences are the result of differences in first pass clearance. In addition, the apparent bioavailability of isotretinoin was 14% in bile cannulated dogs and 54% in the intact (uncannulated) animals, suggesting that enterohepatic recycling of isotretinoin may contribute to its oral bioavailability. Isotretinoin was excreted in the bile; predominantly as a conjugate. The largest percentage (approximately 27%) of the dose was excreted in the bile following intraportal infusion, an intermediate percentage (approximately 8.5%) after iv dosing, and the smallest percentage (approximately 3.3%) after oral dosing. When the amount of drug excreted in bile as intact drug and conjugate is divided by the area under the systemic blood concentration--time curve, the resulting apparent biliary clearances following oral and intraportal administration were almost identical whereas the apparent biliary clearance after iv dosing was substantially less.(ABSTRACT TRUNCATED AT 250 WORDS)
Blázquez-Medela, Ana M.; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J.; Martínez-Salgado, Carlos; López-Novoa, José M.; López-Hernández, Francisco J.
2014-01-01
Background Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Methods Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Results Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Conclusions Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion. PMID:25148248
Blázquez-Medela, Ana M; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J; Martínez-Salgado, Carlos; López-Novoa, José M; López-Hernández, Francisco J
2014-01-01
Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.
Uric Acid Excretion Predicts Increased Blood Pressure Among American Adolescents of African Descent.
Mrug, Sylvie; Mrug, Michal; Morris, Anjana Madan; Reynolds, Nina; Patel, Anita; Hill, Danielle C; Feig, Daniel I
2017-04-01
Hyperuricemia predicts the incidence of hypertension in adults and its treatment has blood pressure (BP)-lowering effects in adolescents. To date, no studies have examined the predictive usage of hyperuricemia or urinary uric acid excretion on BP changes in adolescents. Mechanistic models suggest that uric acid impairs both endothelial function and vascular compliance, which would potentially exacerbate a myriad of hypertensive mechanisms, yet little is known about interaction of uric acid and other hypertension risk factors. The primary study was aimed at the effects of stress on BP in adolescents. A community sample of 84 low-income, urban adolescents (50% male, 95% African American, mean age = 13.36 ± 1 years) was recruited from public schools. Youth completed a 12-hour (overnight) urine collection at home and their BP was measured during rest and in response to acute psychosocial stress. Seventy-six of the adolescents participated in a follow-up visit at 1.5 years when their resting BP was reassessed. In this substudy, we assessed the relationship of renal urate excretion and BP reactivity. After adjusting for resting BP levels at baseline and other covariates, higher levels of uric acid excretion predicted greater BP reactivity to acute psychosocial stress and higher resting BP at 18 months. Urinary excretion of uric acid can serve as an alternative, noninvasive measure of serum uric acid levels that are predictive of BP changes. As hyperuricemia-associated hypertension is treatable, urban adolescents may benefit from routine screening for hyperuricemia or high uric acid excretion. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Wang, Chia-Yih; Carriquiry, Alicia L; Chen, Te-Ching; Loria, Catherine M; Pfeiffer, Christine M; Liu, Kiang; Sempos, Christopher T; Perrine, Cria G; Cogswell, Mary E
2015-05-01
High US sodium intake and national reduction efforts necessitate developing a feasible and valid monitoring method across the distribution of low-to-high sodium intake. We examined a statistical approach using timed urine voids to estimate the population distribution of usual 24-h sodium excretion. A sample of 407 adults, aged 18-39 y (54% female, 48% black), collected each void in a separate container for 24 h; 133 repeated the procedure 4-11 d later. Four timed voids (morning, afternoon, evening, overnight) were selected from each 24-h collection. We developed gender-specific equations to calibrate total sodium excreted in each of the one-void (e.g., morning) and combined two-void (e.g., morning + afternoon) urines to 24-h sodium excretion. The calibrated sodium excretions were used to estimate the population distribution of usual 24-h sodium excretion. Participants were then randomly assigned to modeling (n = 160) or validation (n = 247) groups to examine the bias in estimated population percentiles. Median bias in predicting selected percentiles (5th, 25th, 50th, 75th, 95th) of usual 24-h sodium excretion with one-void urines ranged from -367 to 284 mg (-7.7 to 12.2% of the observed usual excretions) for men and -604 to 486 mg (-14.6 to 23.7%) for women, and with two-void urines from -338 to 263 mg (-6.9 to 10.4%) and -166 to 153 mg (-4.1 to 8.1%), respectively. Four of the 6 two-void urine combinations produced no significant bias in predicting selected percentiles. Our approach to estimate the population usual 24-h sodium excretion, which uses calibrated timed-void sodium to account for day-to-day variation and covariance between measurement errors, produced percentile estimates with relatively low biases across low-to-high sodium excretions. This may provide a low-burden, low-cost alternative to 24-h collections in monitoring population sodium intake among healthy young adults and merits further investigation in other population subgroups. © 2015 American Society for Nutrition.
Corticosterone excretion patterns and affiliative behavior over development in ravens (Corvus corax)
Stöwe, Mareike; Bugnyar, Thomas; Schloegl, Christian; Heinrich, Bernd; Kotrschal, Kurt; Möstl, Erich
2015-01-01
Averse effects of social stress may be buffered by the presence of social allies, which mainly has been demonstrated in mammals and recently also in birds. However, effects of socio-positive behavior prior to fledging in relation to corticosterone excretion in altricial birds have not been investigated yet. We here monitored corticosterone excretion patterns in three groups of hand raised juvenile ravens (n=5, 6 and 11) in the nest, post-fledging (May–July) and when ravens would be independent from their parents (September–November). We related these corticosterone excretion patterns to socio-positive behavior. Behavioral data were collected via focal sampling in each developmental period considered. We analyzed amounts of excreted immunoreactive corticosterone metabolites (CM) using enzyme immuno assays. We collected fecal samples in each developmental period considered and evaluated the most appropriate assay via an isolation stress experiment. Basal CM was significantly higher during the nestling period than post-fledging or when birds were independent. The time nestlings spent allopreening correlated negatively with mean CM. Post-fledging, individuals with higher CM levels sat close to (distance <50 cm) conspecifics more frequently and tended to preen them longer. When birds were independent and a stable rank hierarchy was established, dominant individuals were preened significantly longer than subordinates. These patterns observed in ravens parallel those described for primates, which could indicate that animal species living in a complex social environment may deal with social problems in a similar way that is not restricted to mammals or primates. PMID:18022623
[Advance in treatment of hyperuricemia by Chinese medicine based on uric acid transporterome].
Zhou, Qi; Liu, Shu-min
2015-11-01
With the development of the quality of life, the morbidity of hyperuricemia is increasing year by year. At the same time, it appears that this disease attacks the young people currently. As the study of pathogenesis of hyperuricemia advanced, a series of uric acid transporters were found during this process. Meanwhile, the definition of transporterome was proposed. They were divided into three groups according to the functions: reabsorption proteins, excretion proteins and skeleton proteins. At moment, the drugs for hyperuricmia mainly include uric acid composition inhibitors and uric acid excretion promoters. Since the excretion of uric acid plays a leading role during the process of attack of hyperurecimia, it makes sense to explore Chinese medicines with clear mechanism targeting the transporterome. Therefore, this paper would focus on transporterome and summarize the mechanisms of Chinese medicines in treating hyperuricemia.
Studies of endocrine and affective functions in complex flight manoeuvres.
Pinter, E J; Peterfy, G; Cleghorn, J M
1975-01-01
Endocrine and metabolic changes, as well as affective functions, were studied in eight healthy volunteers anticipating and executing a prearranged sequence of aerobatic flight. Control measurements were made at complete physical and mental rest. The following were determined: anxiety and hostility levels, blood glucose, cholesterol, triglyceride, plasma free fatty acids (FFA), serum thyroxine (T4), corticosteroids, prolactin, growth hormone, immunoreactive insulin and urinary excretion of VMA. The pattern of response was uniform in all subjects. Significant changes were seen in plasma FFA, corticosteroids, growth hormone and immunoreactive insulin following aerobatic flight. Anticipation of flight induced anxiety arousal and significant directional changes in plasma FFA, corticosteroids, as well as in VMA excretion. Hostility scores were highest immediately upon termination of flight.
Kim, Hee Geun; Kong, Tae Young
2012-12-01
In general, internal exposure from tritium at pressurised heavy water reactors (PHWRs) accounts for ∼20-40 % of the total radiation dose. Tritium usually reaches the equilibrium concentration after a few hours inside the body and is then excreted from the body with an effective half-life in the order of 10 d. In this study, tritium metabolism was reviewed using its excretion rate in urine samples of workers at Korean PHWRs. The tritium concentration in workers' urine samples was also measured as a function of time after intake. On the basis of the monitoring results, changes in the tritium concentration inside the body were then analysed.
The Yanomami Indians in the INTERSALT Study.
Mancilha-Carvalho, Jairo de Jesus; Souza e Silva, Nelson Albuquerque
2003-03-01
To study the distribution and interrelationship among constitutional and biochemical variables with blood pressure (BP) in an population of Yanomami indians. To compare these findings with those of other populations. The Yanomami indians were part of the INTERSALT, a study comprising 10,079 males and females, aged from 20 to 59 years, belonging to 52 populations in 32 countries in Africa, the Americas, Asia, and Europe. Each of the 52 centers was required to accrue 200 individuals, 25 participants in each age group. The variables analyzed were as follows: age, sex, arterial BP, urinary sodium and potassium excretion (24-hour urine), body mass index, and alcohol ingestion. The findings in the Yanomami population were as follows: a very low urinary sodium excretion (0.9 mmol/24 h); mean systolic and diastolic BP levels of 95.4 mmHg and 61.4 mmHg, respectively; no cases of hypertension or obesity; and they have no knowledge of alcoholic beverages. Their BP levels do not elevate with age. The urinary sodium excretion relates positively and the urinary potassium excretion relates negatively to systolic BP. This correlation was maintained even when controlled for age and body mass index. A positive relation between salt intake and blood pressure was detected in the analysis of a set of diverse populations participating in the INTERSALT Study, including populations such as the Yanomami Indians. The qualitative observation of their lifestyle provided additional information.
Strauss, Michél; Smith, Wayne; Wei, Wen; Fedorova, Olga V.
2018-01-01
Marinobufagenin (MBG) is an endogenous steroidal α1-Na+K+-ATPase inhibitor. Because of its role in sodium handling, MBG has been associated with both antihypertensive and prohypertensive effects in normal physiology and pathology. MBG is positively associated with blood pressure in Dahl salt-sensitive rats exhibiting a similar hypertensive phenotype to black populations, characterized by impaired urinary Na+ excretion. However, clinical studies exploring blood pressure (BP)-related effects of MBG in black populations are scant. We determined whether the MBG/Na+ ratio (assessing the effectiveness of Na+ excretion resistance to MBG) is related to systolic BP (SBP) in young black men and women, compared to whites. We included 331 apparently healthy participants (20–30 years) (42.9% black, 43.8% men) on a habitual diet. We obtained 24-h and central SBP, and 24-h urinary Na+ and MBG levels. We found no ethnic differences in MBG, Na+ or MBG/Na+. MBG excretion correlated positively with Na+ excretion in all groups and to SBP in white men and black women (p ≤ 0.011). In black women only SBP related positively to MBG/Na+ in single and multi-variable adjusted regression models: central SBP (R2 = 0.26; ß = 0.28; p = 0.039), 24-h SBP (R2 = 0.46; ß = 0.30; p = 0.011), daytime (R2 = 0.38; ß = 0.28; p = 0.023) and nighttime SBP (R2 = 0.38; ß = 0.33; p = 0.009). In contrast, inverse associations of MBG/Na+ with nighttime SBP were evident in white women (r = −0.20; p = 0.038) but lost significance after multiple adjustments (R2 = 0.36; ß = −0.13; p = 0.12). We found independent positive associations of SBP with MBG/Na+ in black women. This data supports the concept that reduced MBG-mediated Na+ excretion can contribute to adverse hemodynamics. PMID:29335615
Creatinine, Arsenic Metabolism, and Renal Function in an Arsenic-Exposed Population in Bangladesh
Peters, Brandilyn A.; Hall, Megan N.; Liu, Xinhua; Neugut, Y. Dana; Pilsner, J. Richard; Levy, Diane; Ilievski, Vesna; Slavkovich, Vesna; Islam, Tariqul; Factor-Litvak, Pam; Graziano, Joseph H.; Gamble, Mary V.
2014-01-01
Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = −5.6, p = 0.07), however this association was not significant in the 2001 sample (b = −1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = −0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample. PMID:25438247
Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh.
Peters, Brandilyn A; Hall, Megan N; Liu, Xinhua; Neugut, Y Dana; Pilsner, J Richard; Levy, Diane; Ilievski, Vesna; Slavkovich, Vesna; Islam, Tariqul; Factor-Litvak, Pam; Graziano, Joseph H; Gamble, Mary V
2014-01-01
Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = -5.6, p = 0.07), however this association was not significant in the 2001 sample (b = -1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = -0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample.
The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores.
Patel, Kajal P; Luo, Frank J-G; Plummer, Natalie S; Hostetter, Thomas H; Meyer, Timothy W
2012-06-01
The uremic solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) are generated by colon bacteria acting on food components that escape absorption in the small bowel. The production of these potentially toxic compounds may thus be influenced by diet. This study examined whether production of PCS and IS is different in vegetarians and omnivores. The production of PCS and IS was assessed by measuring their urinary excretion rates in participants with normal kidney function. Studies were carried out in 15 vegetarians and 11 individuals consuming an unrestricted diet. Participants recorded food intake over 4 days and collected urine over the final 2 days of each of two study periods, which were 1 month apart. Average PCS excretion was 62% lower (95% confidence interval [95% CI], 15-83) and average IS excretion was 58% lower (95% CI, 39-71) in vegetarians than in participants consuming an unrestricted diet. Food records revealed that lower excretion of PCS and IS in vegetarians was associated with a 69% higher (95% CI, 20-139) fiber intake and a 25% lower (95% CI, 3-42) protein intake. PCS and IS excretion rates varied widely among individual participants and were not closely correlated with each other but tended to remain stable in individual participants over 1 month. PCS and IS production rates are markedly lower in vegetarians than in individuals consuming an unrestricted diet.
Urinary D-lactate excretion in infants receiving Lactobacillus johnsonii with formula.
Haschke-Becher, Elisabeth; Brunser, Oscar; Cruchet, Sylvia; Gotteland, Martin; Haschke, Ferdinand; Bachmann, Claude
2008-01-01
Supplementation with certain probiotics can improve gut microbial flora and immune function but should not have adverse effects. This study aimed to assess the risk of D-lactate accumulation and subsequent metabolic acidosis in infants fed on formula containing Lactobacillus johnsonii (La1). In the framework of a double-blind, randomized controlled trial enrolling 71 infants aged 4-5 months, morning urine samples were collected before and 4 weeks after being fed formulas with or without La1 (1 x 10(8)/g powder) or being breastfed. Urinary D- and L-lactate concentrations were assayed by enzymatic, fluorimetric methods and excretion was normalized per mol creatinine. At baseline, no significant differences in urinary D-/L-lactate excretion among the formula-fed and breastfed groups were found. After 4 weeks, D-lactate excretion did not differ between the two formula groups, but was higher in both formula groups than in breastfed infants. In all infants receiving La1, urinary D-lactate concentrations remained within the concentration ranges of age-matched healthy infants which had been determined in an earlier study using the same analytical method. Urinary L-lactate also did not vary over time or among groups. Supplementation of La1 to formula did not affect urinary lactate excretion and there is no evidence of an increased risk of lactic acidosis. Copyright 2008 S. Karger AG, Basel.
Nitrogen excretion factors of livestock in the European Union: a review.
Velthof, Gerard L; Hou, Yong; Oenema, Oene
2015-12-01
Livestock manures are major sources of nutrients, used for the fertilisation of cropland and grassland. Accurate estimates of the amounts of nutrients in livestock manures are required for nutrient management planning, but also for estimating nitrogen (N) budgets and emissions to the environment. Here we report on N excretion factors for a range of animal categories in policy reports by member states of the European Union (EU). Nitrogen excretion is defined in this paper as the total amount of N excreted by livestock per year as urine and faeces. We discuss the guidelines and methodologies for the estimation of N excretion factors by the EU Nitrates Directive, the OECD/Eurostat gross N balance guidebook, the EMEP/EEA Guidebook and the IPCC Guidelines. Our results show that N excretion factors for dairy cattle, other cattle, pigs, laying hens, broilers, sheep, and goats differ significantly between policy reports and between countries. Part of these differences may be related to differences in animal production (e.g. production of meat, milk and eggs), size/weight of the animals, and feed composition, but partly also to differences in the aggregation of livestock categories and estimation procedures. The methodologies and data used by member states are often not well described. There is a need for a common, harmonised methodology and procedure for the estimation of N excretion factors, to arrive at a common basis for the estimation of the production of manure N and N balances, and emissions of ammonia (NH3 ) and nitrous oxide (N2 O) across the EU. © 2015 Society of Chemical Industry.
Lehrner, Amy; Bierer, Linda M; Passarelli, Vincent; Pratchett, Laura C; Flory, Janine D; Bader, Heather N; Harris, Iris R; Bedi, Aarti; Daskalakis, Nikolaos P; Makotkine, Iouri; Yehuda, Rachel
2014-02-01
Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. Published by Elsevier Ltd.
Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors
Lehrner, Amy; Bierer, Linda M.; Passarelli, Vincent; Pratchett, Laura C.; Flory, Janine D.; Bader, Heather; Harris, Iris R.; Bedi, Aarti; Daskalakis, Nikolaos P.; Makotkine, Iouri; Yehuda, Rachel
2014-01-01
Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24 hour urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-hr urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. PMID:24485493
Wang, Long; Zhou, Mai-Tao; Chen, Cai-Yang; Yin, Wen; Wen, Da-Xiang; Cheung, Chi-Wai; Yang, Li-Qun; Yu, Wei-Feng
2017-01-13
Requirement for rocuronium upon surgery changes only minimally in patients with end-stage liver diseases. Our study consisted of both human and rat studies to explore the reason. The reduction rate of rocuronium infusion required to maintain neuromuscular blockade during the anhepatic phase (relative to paleohepatic phase) was examined in 16 children with congenital biliary atresia receiving orthotopic liver transplantation. Pharmacodynamics and pharmacokinetics of rocuronium were studied based on BDL rats. The role of increased Oatp2 and decrease Oatp1 expressions in renal compensation were explored. The reduction of rocuronium requirements significantly decreased in obstructively jaundiced children (24 ± 9 vs. 39 ± 11%). TOF50 in BDL rats was increased by functional removal of the kidneys but not the liver, and the percentage of rocuronium excretion through urine increased (20.3 ± 6.9 vs. 8.6 ± 1.8%), while that decreased through bile in 28d-BDL compared with control group. However, this enhanced renal secretion for rocuronium was eliminated by Oatp2 knock-down, rather than Oatp1 overexpression (28-d BDL vs. Oatp1-ShRNA or Oatp2-ShRNA, 20.3 ± 6.9 vs. 17.0 ± 6.6 or 9.3 ± 3.2%). Upon chronic/sub-chronic loss of bile excretion, rocuronium clearance via the kidneys is enhanced, by Oatp2 up-regulation.
An acute study on the relative gastro-intestinal absorption of a novel form of calcium ascorbate.
Bush, M J; Verlangieri, A J
1987-07-01
Several functions of L-ascorbic acid (vitamin C) have been suggested in addition to its role in the prevention of scurvy. Consequently, a controversy has arisen over the daily intake of the vitamin which will afford maximum benefits. Rapid cellular uptake and delayed renal excretion of ascorbic acid would be conducive to providing optimum cellular concentration for biochemical activity. ESTER-C (patent pending), a complex consisting of L-ascorbic acid and Ca++, has been recently developed by Inter-Cal Corporation (421 Miller Road, Prescott, AZ 86301). It has been proposed that the structure of ESTER-C may render it more readily absorbed and less rapidly excreted than the acid or salt form of the vitamin. To test this hypothesis, ESTER-C and L-ascorbic acid were administered to two groups of rats. Blood was sampled at 20, 40, 80, 160 and 240 minutes and plasma analyzed for ascorbic acid. As urine appeared in collection cups, it was tested qualitatively for the presence of ascorbic acid. The plasma concentration of ascorbic acid was higher in ESTER-C treated rats at 20, 40 and 80 minutes than in rats given L-ascorbic acid. Ascorbic acid was detected in the urine of animals administered ESTER-C later than in those treated with L-ascorbic acid. These results support the hypothesis that ESTER-C is absorbed more readily and excreted less rapidly than L-ascorbic acid.
Tanaka, Atsuko; Rugolo, Ligia M S S; Miranda, Antero F M; Trindade, Cleide E P
2006-01-01
This research was performed with the objective of investigating the renal effects on premature newborn infants of fortifying banked donor human milk. Clinical intervention trial, of the before-and-after type, involving 28 premature newborn infants split into two groups by postconceptional age at the start of the study: GI < 34 weeks (n = 14) and GII >or= 34 weeks (n = 14), and assessed at three sample points: S1, on unfortified donor human milk, S2, after 3 days, and S3, after 10-13 days on fortified donor human milk. Nutrient intake, weight gain, fractional sodium excretion, urinary osmolality and specific density were compared with two-way ANOVA for repeated measures. Fluids, energy and sodium intakes were similar for both groups, and weight gain was satisfactory. Among the preterms with < 34 weeks postconceptional age, serum sodium was lower at the end of the study and the fractional sodium excretion was elevated at the start and at the end of the study (S1 = 2.11+/-1.05; S2 = 1.25+/-0.64; S3 = 1.62+/-0.88), with a significant difference in relation to GII (S1 = 1.34+/-0.94; S2 = 0.90+/-0.54; S3 = 0.91+/-0.82). Osmolality and urinary specific density were normal, with no differences between groups or collection dates. No adverse effects on the renal function of these preterms were detected as a result of being fed fortified donor human milk.
Birken, S; Gawinowicz, M A; Maydelman, Y; Milgrom, Y
2001-10-01
The gonadotropins are a family of closely related heterodimeric glycoprotein hormones homologous in structure to disulfide-knot growth factors. Metabolic proteolytic processing in vivo of this disulfide cross-linked region results in urinary excretion of a residual highly stable core structure. The primary structure of the pituitary form of the hLH beta core was reported earlier, but it has proved difficult to isolate the urinary core, although antibodies to the pituitary core demonstrated its presence. By conventional and immunoaffinity methods, the urinary core has been isolated and its structure determined by both chemical and mass spectrometric methods. The urinary hLH beta core is the same as the pituitary-extracted hLH beta core, beta 6-40 disulfide bridged to beta 55-93, except that the pituitary core is more heterogeneous containing also beta 49-93. These findings imply a dual origin of urinary cores, both directly from a secreting tissue and by kidney processing of circulating hormone. We also found that pregnant chimpanzees excrete a CG beta core with a primary structure identical to that of the human CG beta core of pregnancy. In conclusion, gonadotropin core generation and urinary excretion of nearly identical gonadotropin metabolites is common among primates. Although possible biological functions of these core fragments remain unproven, they have diagnostic utility because of their stability and abundance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogen, K; Hamilton, T F; Brown, T A
2007-05-01
We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positivelymore » associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.« less
Di Stefano, Michele; Mengoli, Caterina; Bergonzi, Manuela; Klersy, Catherine; Pagani, Elisabetta; Miceli, Emanuela; Corazza, Gino Roberto
2015-06-01
The role of colonic methane production in functional bowel disorders is still uncertain. In small samples of irritable bowel syndrome (IBS) patients, it was shown that methane breath excretion correlates with clinical presentation and delayed gastrointestinal transit time. The aim of this study was to evaluate the relationship between intestinal production and breath excretion of CH4 and to correlate CH4 production with the presence and the severity of symptoms, in a large cohort of IBS patients and in a group of healthy volunteers. A group of 103 IBS patients and a group of 28 healthy volunteers were enrolled. The presence and severity of symptoms and gastrointestinal transit were evaluated in all subjects, who underwent breath H2/CH4 measurement for 7 h after lactulose to identify breath excretors of these gases; H2 and CH4 were also measured in rectal samples to identify colonic producers. Cumulative H2 and CH4 excretion and production were evaluated by the area under the time-concentration curve calculation (AUC). In IBS patients, CH4 was detected in rectal samples in 48 patients (47%), but only 27 of them (26% of the 103 enrolled patients) excreted this gas with breath. In CH4 producers, the prevalence and severity of symptoms and gastrointestinal transit time were not significantly different with respect to non-producers. IBS subtypes were homogeneously represented in CH4 producers and in non-producers. Healthy volunteers, compared with IBS patients, showed a significantly lower prevalence of CH4 excretion, whereas no difference was found in the prevalence of colonic CH4 production; moreover, in healthy volunteers compared with IBS, CH4 breath excretion and CH4 production were not different in quantitative terms. Our data show that colonic CH4 production is not associated with clinical presentation in IBS patients and does not correlate with symptom severity or with gastrointestinal transit time. Clinical inferences based on breath CH4 excretion should undergo an in-depth revision, as this method is not a good marker of CH4 colonic production.
Calcium and nitrogen balance, experiment M007
NASA Technical Reports Server (NTRS)
Whedon, G. D.; Lutwak, L.; Neuman, W. F.; Lachance, P. A.
1971-01-01
The collection of data on the response of the skeletal and muscular systems to 14-day space flights was evaluated for loss of calcium, nitrogen, and other metabolically related elements. Considerable interindividual variability was demonstrated in all experimental factors that were measured. Calcium balance became less positive and urinary phosphate excretion increased substantially in flight despite a reduction in phosphate intake. Patterns of excretion of magnesium, sodium, potassium, and chloride were different for each subject, and, in part, could be correlated with changes in adrenocortical steroid production. The principal hormonal change was a striking decrease during flight in the urinary excretion of 17-hydroxycortocosteroids. Dermal losses of calcium, magnesium, sulfate, and phosphate were insignificant during all three phases.
[Absence of effect of propranolol on urinary excretion of 3-methylhistidine in hyperthyroidism].
Beylot, M; Riou, J P; Sautot, G; Mornex, R
Lean body mass and muscle protein breakdown were evaluated in euthyroid and hyperthyroid subjects by measuring the urinary excretion of creatinine and 3-methylhistidine. Since catecholamines probably have an inhibitory effect on muscle protein catabolism through a beta-receptor mechanism, the effects of propranolol on 3-methylhistidine excretion were also evaluated in hyperthyroid subjects. Hyperthyroid subjects had a lower lean body mass (34.9 +/- 6.3 kg versus 47.7 +/- 8.9 kg, p less than 0.001) and a greater 3-methylhistidine excretion (25.1 +/- 7.4 versus 19.0 +/- 4.8 mumol/mmol creatinine, p less than 0.05) than euthyroid subjects. Propranolol administered orally to hyperthyroid subjects decreased pulse rate (p less than 0.01) and plasma triiodothyronine concentrations (from 5.40 +/- 2.28 to 3.61 +/- 1.61 nmol/l, p less than 0.01), but did not modify urinary 3-methylhistidine excretion (24.8 +/- 8.7 versus 25.1 +/- 7.4 mumol/mmol creatinine). These results suggest that muscle wasting in hyperthyroidism is related to increased protein catabolism. This increased protein breakdown is not modified by short term administration of propranolol, a beta-blocking agent widely used in the management of hyperthyroidism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hook, R.I. Jr.; Crossley, D.A. Jr.
1969-01-01
Understanding of radionuclide accumulation by insects requires careful assessment of assimilation and turnover rates. In separate experiments, three radionuclides (/sup 134/Cs, /sup 131/I or /sup 51/Cr) were fed to adult brown crickets for a 24-hr period. The insects were then transferred to nonradioactive food and their whole-body retention measured at 1-hr intervals. The retention of each radionuclide can be described by a sum of two exponential functions, a shorter one related to loss of unassimilated radionuclide from the gut and a longer one describing excretion of assimilated radionuclide from tissues. The shorter components had similar rates (half-time = about 4more » hr) for all three radionuclides, indicating that they were a measure of gut clearance time. Chromium had the lowest assimilation (6%) and cesium the highest (65%). Assimilated /sup 134/Cs and /sup 51/Cr were eliminated at moderate rates (biological half-lives of 62 and 83 hr, respectively) but assimilated /sup 131/I was stored rather than excreted. 18 references, 2 figures, 1 table.« less
Pharmacokinetics of [14C]methylglyoxal-bis-guanylhydrazone) in patients with leukemia.
Rosenblum, M G; Keating, M J; Yap, B S; Loo, T L
1981-05-01
Methylglyoxal-bis(guanylhydrazone) (MGBG; NSC 32946), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), currently being reevaluated for its clinical antileukemic activity. MGBG labeled with 14C in the guanylhydrazone moiety was administered i.v. (150 microCi; specific activity, 1.9 microCi/mumol; 20 mg total) to six patients with leukemia. All patients in the study had normal renal and hepatic function. [14C]MGBG underwent no in vivo metabolism; it disappeared from the plasma with an average terminal t 1/2 of 4.1 hr. The 72-hr cumulative urinary excretion was only 14.5 +/- 2.2% (S.E.M.) of the total radioactive dose. The apparent volume of distribution was 661 ml/kg and the total clearance rate was 21.2 ml/kg/min. The low urinary excretion rate and the relatively rapid plasma clearance suggest that MGBG may be sequestered in the body. Therefore, if MGBG is administered by a frequent treatment schedule, the prolonged biological half-life in humans may significantly contribute to its clinical toxicity.
A Novel Corynebacterium glutamicum l-Glutamate Exporter.
Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2018-03-15
Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to product excretion as well as product reuptake, making transporter engineering a useful strategy for strain improvement. The significance of our research is in identifying and characterizing a novel l-glutamate exporter from the industrial workhorse Corynebacterium glutamicum , which will enrich the understanding of l-glutamate excretion and provide a new target for studying bacterial amino acid transport and engineering transport reactions. Copyright © 2018 American Society for Microbiology.
Excretion and toxicity evaluation of 131I-Sennoside A as a necrosis-avid agent.
Yin, Zhiqi; Sun, Lidan; Jin, Qiaomei; Song, Shaoli; Feng, Yuanbo; Liao, Hong; Ni, Yicheng; Zhang, Jian; Liu, Wei
2017-11-01
1. Sennoside A (SA) is a newly identified necrosis-avid agent that shows capability for imaging diagnosis and tumor necrosis targeted radiotherapy. As a water-soluble compound, 131 I-Sennoside A ( 131 I-SA) might be excreted predominately through the kidneys with the possibility of nephrotoxicity. 2. To further verify excretion pathway and examine nephrotoxicity of 131 I-SA, excretion and nephrotoxicity were appraised. The pharmacokinetics, hepatotoxicity and hematotoxicity of 131 I-SA were also evaluated to accelerate its possible clinical translation. All these studies were conducted in mice with ethanol-induced muscular necrosis following a single intravenous administration of 131I-SA at 18.5 MBq/kg or 370 MBq/kg. 3. Excretion data revealed that 131 I-SA was predominately (73.5% of the injected dose (% ID)) excreted via the kidneys with 69.5% ID detected in urine within 72 h post injection. Biodistribution study indicated that 131 I-SA exhibited initial high distribution in the kidneys but subsequently a fast renal clearance, which was further confirmed by the results of autoradiography and single-photon emission computed tomography-computed tomography (SPECT-CT) imaging. The maximum necrotic to normal muscle ratio reached to 7.9-fold at 48 h post injection, which further verified the necrosis avidity of 131 I-SA. Pharmacokinetic parameters showed that 131 I-SA had fast blood clearance with an elimination half-life of 6.7 h. Various functional indexes were no significant difference (p > 0.05) between before administration and 1 d, 8 d, 16 d after administration. Histopathology showed no signs of tissue damage. 4. These data suggest 131 I-SA is a safe and promising necrosis-avid agent applicable in imaging diagnosis and tumor necrosis targeted radiotherapy.
Ethnicity is important for creatinine excretion among Inuit and Caucasians in Greenland.
Andersen, Stig; Dehnfeld, Marie; Laurberg, Peter
2015-01-01
Human nutrition, contamination and renal function are commonly assessed by the analysis of urine. A complete 24-hour urine sample is the ideal but it is inconvenient and unreliable. Thus, spot urine sampling with creatinine adjustment is widely used. Stratification for age and gender is recommended. Still, ethnicity may influence creatinine excretion. We collected 104 24-h urine samples among Inuit and non-Inuit living in Greenland. Completeness of sampling was checked by using para-amino benzoic acid (PABA) that also allowed for compensation of creatinine excretion when sampling was incomplete. We measured creatinine using the Jaffe method and PABA by the HPLC method. Participants were recruited from the capital city, a major town and a settlement (n = 36/48/20). They were aged 30-69 years with 78 Inuit and 26 non-Inuit. Inuit were smaller than non-Inuit (Caucasians): height, 163 vs. 177 cm, p < 0.001; weight, 71 vs. 84 kg, p = 0.001 with similar BMI. Creatinine excretion was lower in Inuit compared to non-Inuit (men, 1344/1807 mg/24 h; women 894/1259 mg/24 h; p = 0.002; 0.02). It was influenced by age (p < 0.001), gender (p < 0.001), weight (p = 0.001) and ethnicity (p = 0.030) while not by the intake of the protein-rich Inuit diet in the adjusted analysis. Creatinine excretion was described by: Inuit men, 1925 mg - (13.1 × age); Inuit women, 1701 mg - (17.0 × age). Inuit and Caucasians have different creatinine excretion. It is recommended to stratify by ethnicity in addition to adjustment for age and gender when using creatinine correction of spot urine samples.
Bi, Jianli; Contag, Stephen A; Chen, Kai; Su, Yixin; Figueroa, Jorge P; Chappell, Mark C; Rose, James C
2014-11-01
Prenatal glucocorticoid administration in clinically relevant doses reduces nephron number and renal function in adulthood and is associated with hypertension. Nephron loss in early life may predispose the kidney to other insults later but whether sex influences increases in renal susceptibility is unclear. Therefore, we determined, in male and female adult sheep, whether antenatal glucocorticoid (betamethasone) exposure increased 8-isoprostane (marker of oxidative stress) and protein excretion after acute nephron reduction and intrarenal infusions of angiotensin peptides. We also examined whether renal proximal tubule cells (PTCs) could contribute to alterations in 8-isoprostane excretion in a sex-specific fashion. In vivo, ANG II significantly increased 8-isoprostane excretion by 49% and protein excretion by 44% in male betamethasone- but not in female betamethasone- or vehicle-treated sheep. ANG-(1-7) decreased 8-isoprostane excretion but did not affect protein excretion in either group. In vitro, ANG II stimulated 8-isoprostane release from PTCs of male but not female betamethasone-treated sheep. Male betamethasone-exposed sheep had increased p47 phox abundance in the renal cortex while superoxide dismutase (SOD) activity was increased only in females. We conclude that antenatal glucocorticoid exposure enhances the susceptibility of the kidney to oxidative stress induced by ANG II in a sex-specific fashion and the renal proximal tubule is one target of the sex-specific effects of antenatal steroids. ANG-(1-7) may mitigate the impact of prenatal glucocorticoids on the kidney. P47 phox activation may be responsible for the increased oxidative stress and proteinuria in males. The protection from renal oxidative stress in females is associated with increased SOD activity. Copyright © 2014 the American Physiological Society.
Increased Renal Solute Excretion in Rats Following Space Flight
NASA Technical Reports Server (NTRS)
Wade, Charles E.; Moore, A. L.; Morey-Holton, E.
1995-01-01
Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.
Untersuchungen zum Harnsäuremetabolismus von Littorina littorea (Gastropoda)
NASA Astrophysics Data System (ADS)
Heil, K. P.; Eichelberg, D.
1983-12-01
Periwinkles, as typical inhabitants of sea-shores, are subjected to extreme changes of environmental conditions, which affect their excretion. In Littorina littorea uric acid, urea and ammonium were detected particularly in the kidney, but the only metabolite excreted was ammonium. Only the concentration of uric acid was dependent on the availability of water; decreasing periods of submersion during low tide and raised salinities caused a higher concentration of uric acid, while increasing periods of submersion and lowered salinities effected the opposite. Transfer of periwinkles within their intertidal habitat and laboratory experiments to test the effect of salinity showed that the concentration of uric acid in the kidney is adaptable. The dependence of uric acid concentration in the kidney on environmental conditions and the ammoniotelic excretion of L. littorea are discussed with regard to its particular living conditions. It is suggested that uric acid serves as nitrogen depot and has a particular function in osmoregulation.
Enantioselective Effect of Flurbiprofen on Lithium Disposition in Rats.
Uwai, Yuichi; Matsumoto, Masashi; Kawasaki, Tatsuya; Nabekura, Tomohiro
2017-01-01
Lithium is administered for treating bipolar disorders and is mainly excreted into urine. Nonsteroidal anti-inflammatory drugs inhibit this process. In this study, we examined the enantioselective effect of flurbiprofen on the disposition of lithium in rats. Pharmacokinetic experiments with lithium were performed. Until 60 min after the intravenous administration of lithium chloride at 30 mg/kg as a bolus, 17.8% of lithium injected was recovered into the urine. Its renal clearance was calculated to be 1.62 mL/min/kg. Neither creatinine clearance (Ccr) nor pharmacokinetics of lithium was affected by the simultaneous injection of (R)-flurbiprofen at 20 mg/kg. (S)-flurbiprofen impaired the renal function and interfered with the urinary excretion of lithium. The ratio of renal clearance of lithium to Ccr was decreased by the (S)-enantiomer. This study clarified that the (S)-flurbiprofen but not (R)-flurbiprofen inhibited the renal excretion of lithium in rats. © 2017 S. Karger AG, Basel.
Hu, Ke; Tu, Zuo-sheng; Lü, Sheng-qi; Li, Qing-quan; Chen, Xue-qin
2011-03-01
To investigate the urodynamic changes in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) and nocturnal polyuria. From Sept. 2002 to Jun. 2008, 23 patients with nocturnal polyuria were diagnosed as having OSAHS by polysomnography (PSG). The number and output of nocturia, the osmotic pressure and the excretion of Na(+) were recorded during both the PSG night and CPAP titrating night. Plasma levels of brain natriuretic peptide (BNP) and atrial natriuretic peptides (ANP) were also measured at 11PM in the 2 nights and 7AM in the next mornings. Urodynamic studies including urine flow, bladder pressure during filling, pressure-flow study during voiding and urethral pressure were carried out in these patients. Urodynamic studies were performed again after treatment with CPAP for 3 months. PSG showed that the patients with nocturnal polyuria had moderate to severe OSAHS, in which the apnea-hypopnea index (AHI) being 48 ± 15 events per hour. The number of nocturnal voiding during the PSG night was more than that during the CPAP titrating night. During the PSG night, the output of nocturia, the nocturia excretion of Na(+), ANP levels (at 7am in the next morning after PSG night) increased and the osmotic pressure of nocturia decreased. CPAP therapy could reverse these abnormalities. The main characteristics of urodynamics in these patients included weak detrusor contraction, hypoesthesia in filling cystometry, and decreased bladder compliance, and detrusor external sphincter dyssynergia. After 3 months of CPAP treatment, both the motility of the detrusor of bladder and the bladder compliance improved. CPAP therapy can effectively reverse the nocturnal polyuria in OSAHS patients. In OSAHS patients, the features of nocturia, including the changes of output, osmotic pressure and the excretion of Na(+), may be related to the secretion of high-level of ANP. During the course of chronic progressively OSAHS pathophysiology, detrusor function of bladder may be damaged. CPAP therapy could decrease the nocturnal excretion of ANP, and improve the motility of the detrusor of bladder.
The fate of sulfate in chronic heart failure
Koning, Anne M.; Meijers, Wouter C.; Minović, Isidor; Post, Adrian; Feelisch, Martin; Pasch, Andreas; Leuvenink, Henri G. D.; de Boer, Rudolf A.; Bakker, Stephan J. L.
2017-01-01
New leads to advance our understanding of heart failure (HF) pathophysiology are urgently needed. Previous studies have linked urinary sulfate excretion to a favorable cardiovascular risk profile. Sulfate is not only the end product of hydrogen sulfide metabolism but is also directly involved in various (patho)physiological processes, provoking scientific interest in its renal handling. This study investigates sulfate clearance in chronic HF (CHF) patients and healthy individuals and considers its relationship with disease outcome. Parameters related to renal sulfate handling were determined in and compared between 96 previously characterized CHF patients and sex-matched healthy individuals. Among patients, sulfate clearance was analyzed for associations with clinical and outcome parameters. In CHF patients, plasma sulfate concentrations are significantly higher, whereas 24-h urinary excretion, fractional excretion, and clearance of sulfate are significantly lower, compared with healthy individuals. Among patients, sulfate clearance is independently associated with diuretics use, creatinine clearance and 24-h urinary sodium excretion. Sulfate clearance is associated with favorable disease outcome [hazard ratio per SD increase 0.38 (95% confidence interval 0.23–0.63), P < 0.001]. Although significance was lost after adjustment for creatinine clearance, the decrease of sulfate clearance in patients is independent of this parameter, indicating that sulfate clearance is not merely a reflection of renal function. This exploratory study reveals aberrant sulfate clearance as a potential contributor to CHF pathophysiology, with reduced levels in patients and a positive association with favorable disease outcome. Further research is needed to unravel the nature of its involvement and to determine its potential as a biomarker and target for therapy. NEW & NOTEWORTHY Sulfate clearance is decreased in chronic heart failure patients compared with healthy individuals. Among patients, sulfate clearance is positively associated with favorable disease outcome, i.e., a decreased rehospitalization rate and increased patient survival. Hence, decreased sulfate clearance may be involved in the pathophysiology of heart failure. PMID:27923792
Rodriguez, Adrian; Costa-Bauza, Antonia; Saez-Torres, Concepcion; Rodrigo, Dolores; Grases, Felix
2015-11-01
To validate a simple method of urinary theobromine determination, to assess urinary theobromine levels in 80 healthy children and to relate these levels to consumption of cocoa products. Urine samples were diluted, directly injected into an HPLC system, separated by gradient elution on a C18 column, and detected by UV spectrometry. The method was validated for linearity, limits of detection and quantification, imprecision, accuracy, recovery and interferences. The proposed method was used to assess 12-h day and 12-h night urinary theobromine excretion by 80 healthy children, divided into four groups based on consumption of cocoa products. In addition, urinary excretion of magnesium and oxalate, also present in cocoa, was measured in these four groups. The method was linear to a theobromine concentration of 278μmol/L (50mg/L). LOD and LOQ for urine samples, diluted 1:5 (vol/vol) with water, were 1.1 and 3.6μmol/L respectively. Within-run and between-run imprecisions (CV) were each <2%. Average recovery was 99%, and analysis of a certified reference sample showed an error <2.5%. Theobromine excretion levels were significantly higher in healthy children with higher consumption of cocoa products (p<0.001), but oxalate (p=0.098) and magnesium (p=0.068) excretion levels did not differ significantly. This validated method resulted in urinary theobromine determination with 100% recovery, without sample pretreatment. Urinary theobromine levels in healthy children were directly related to their consumption of cocoa products. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Szczepańska-Konkel, M; Langner, G; Bednarczuk, G; Stiepanow-Trzeciak, A; Jankowski, M; Angielski, S
2003-06-01
Effects of Ap4A and NAD--precursor of adenosine, on renal plasma flow (RPF), glomerular filtration rate (GFR) and urine excretion were determined in the anaesthetised rats. Infusion of Ap4A or NAD (i.v., bolus--1 micromol/kg followed by 10 nmol/min/kg) decreased RPF and GFR (by 30 and 40%, respectively). In spite of GFR reduction during Ap4A infusion, the significant increase in sodium excretion and urine flow was noticed: fractional sodium (FENa) and urine excretion (FEurine) rose 15-fold and 2.5-fold in comparison with the control value, respectively. In contrast to Ap4A, NAD-induced decrease in GFR was associated with parallel decrease in sodium and urine excretion, thus the FENa and FEurine did not significantly change. Pretreatment with adenosine deaminase (adenosine degrading enzyme, 2 U/min/kg) or theophylline (P1-receptors antagonist, 0.2 mmol/min/kg) ceased responses to NAD, whereas Ap4A-induced changes were not affected. Pre-treatment with suramin (P2-receptors antagonist, (i.v., bolus--12 mg/kg followed by 1.2 mg/min/kg) completely abolished the renal effects of Ap4A. We conclude that Ap4A may exert specific action on renal function. It acts different from NAD that modified renal function through its hydrolysis product--adenosine. Ap4A might reduce glomerular filtration rate and evoke natriuresis and diuresis, and its effects are probably mediated through stimulation of P2-receptors.
Lever, Michael; McEntyre, Christopher J; George, Peter M; Slow, Sandy; Chambers, Stephen T; Foucher, Christelle
2014-01-01
Cross-sectional data suggest that bezafibrate increases betaine excretion in dyslipidemic patients. We aimed to demonstrate that fenofibrate induces increased betaine excretion in normal subjects and explore whether other 1-carbon metabolites and osmolytes are similarly affected. Urine was collected from 26 healthy adults before and after treatment with fenofibrate (145 mg/day for 6 weeks). Excretions of betaine, N,N-dimethylglycine, free choline, myo-inositol, taurine, trimethylamine-N-oxide, carnitine, and acetylcarnitine were measured by liquid chromatography with mass spectrometric detection. Fenofibrate increased the median betaine excretion from 7.5 to 25.8 mmol/mole creatinine (median increase 3-fold), P < .001. The median increase in N,N-dimethylglycine excretion was 2-fold (P < .001). Median choline excretion increased 12% (significant, P = .029). Participants with higher initial excretions tended to have larger increases (P < .001 in all 3 cases). Fenofibrate did not significantly change the median excretions of myo-inositol, taurine, trimethylamine-N-oxide, and carnitine. The excretion of acetylcarnitine decreased 4-fold on treatment, with no correlation between the baseline and after-treatment excretions. Changes in all urine components tested, except trimethylamine-N-oxide, positively correlated with changes in betaine excretion even when the median excretions before and after were not significantly different. Fibrates increase betaine, and to a lesser extent N,N-dimethylglycine and choline, excretion. Other osmolytes are not elevated. Because the increase in betaine excretion depends on the baseline excretion, large increases in excretion in the metabolic syndrome and diabetes (where baseline excretions are high) could be expected. Replacement with betaine supplements may be considered. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Saccharomyces cerevisiae proteinase A excretion and wine making.
Song, Lulu; Chen, Yefu; Du, Yongjing; Wang, Xibin; Guo, Xuewu; Dong, Jian; Xiao, Dongguang
2017-11-09
Proteinase A (PrA), the major protease in Saccharomyces cerevisiae, plays an essential role in zymogen activation, sporulation, and other physiological processes in vivo. The extracellular secretion of PrA often occurs during alcoholic fermentation, especially in the later stages when the yeast cells are under stress conditions, and affects the quality and safety of fermented products. Thus, the mechanism underlying PrA excretion must be explored to improve the quality and safety of fermented products. This paper briefly introduces the structure and physiological function of PrA. Two transport routes of PrA, namely, the Golgi-to-vacuole pathway and the constitutive Golgi-to-plasma membrane pathway, are also discussed. Moreover, the research history and developments on the mechanism of extracellular PrA secretion are described. In addition, it is briefly discussed that calcium homeostasis plays an important role in the secretory pathway of proteins, implying that the regulation of PrA delivery to the plasma membrane requires the involvement of calcium ion. Finally, this review focuses on the effects of PrA excretion on wine making (including Chinese rice wine, grape wine, and beer brewage) and presents strategies to control PrA excretion.
Aedes aegypti Rhesus glycoproteins contribute to ammonia excretion by larval anal papillae.
Durant, Andrea C; Chasiotis, Helen; Misyura, Lidiya; Donini, Andrew
2017-02-15
In larval Aedes aegypti , transcripts of the Rhesus-like glycoproteins AeRh50-1 and AeRh50-2 have been detected in the anal papillae, sites of ammonia (NH 3 /NH 4 + ) excretion; however, these putative ammonia transporters have not been previously localized or functionally characterized. In this study, we show that the AeRh50s co-immunolocalize with apical V-type H + -ATPase as well as with basal Na + /K + -ATPase in the epithelium of anal papillae. The double-stranded RNA-mediated knockdown of AeRh50-1 and AeRh50-2 resulted in a significant reduction in AeRh50 protein abundance in the anal papillae, and this was coupled to decreased ammonia excretion. The knockdown of AeRh50-1 resulted in decreased hemolymph [NH 4 + ] and pH whereas knockdown of AeRh50-2 had no effect on these parameters. We conclude that the AeRh50s are important contributors to ammonia excretion at the anal papillae of larval A. aegypti , which may be the basis for their ability to inhabit areas with high ammonia levels. © 2017. Published by The Company of Biologists Ltd.
Comparison of plutonium systemic distribution in rats and dogs with published data in humans.
Melo, Dunstana R; Weber, Waylon; Doyle-Eisele, Melanie; Guilmette, Raymond A
2014-11-01
This manuscript compares the behavior of monomeric (239)Pu(4+)-citrate injected intravenously in rats and dogs with a comparison of available humans' data. The experimental design for these two studies consisted of eight groups sacrificed at predetermined time-points post exposure. All organs and tissues as well as daily urinary and fecal excretion were analyzed. Liver and skeleton were the organs with the highest (239)Pu uptake in both species; 76% in dogs and 70% in rats at 24 hours (h) post IV administration. By the end of the study (28 days, d), the activity in skeleton and liver was 85% in dogs and 65% in rats. The urinary excretion function seems to be similar for rats, dogs and humans but the daily fecal to urinary excretion ratio differs between species. A rapid clearance from the liver of rats was observed compared to dogs. Skeleton-to-liver ratios are variable between species. Urinary and fecal excretion patterns for dogs are consistent with human data, indicating that dogs seem to represent better the (239)Pu behavior in humans. The data confirm that the better animal model to evaluate the efficacy of (239)Pu chelating compounds is the canine model.
Marine fisheries declines viewed upside down: human impacts on consumer-driven nutrient recycling.
Layman, Craig A; Allgeier, Jacob E; Rosemond, Amy D; Dahlgren, Craig P; Yeager, Lauren A
2011-03-01
We quantified how two human impacts (overfishing and habitat fragmentation) in nearshore marine ecosystems may affect ecosystem function by altering the role of fish as nutrient vectors. We empirically quantified size-specific excretion rates of one of the most abundant fishes (gray snapper, Lutjanus griseus) in The Bahamas and combined these with surveys of fish abundance to estimate population-level excretion rates. The study was conducted across gradients of two human disturbances: overfishing and ecosystem fragmentation (estuaries bisected by roads), to evaluate how each could result in reduced population-level nutrient cycling by consumers. Mean estimated N and P excretion rates for gray snapper populations were on average 456% and 541% higher, respectively, in unfished sites. Ecosystem fragmentation resulted in significant reductions of recycling rates by snapper, with degree of creek fragmentation explaining 86% and 72% of the variance in estimated excretion for dissolved N and P, respectively. Additionally, we used nutrient limitation assays and primary producer nutrient content to provide a simple example of how marine fishery declines may affect primary production. This study provides an initial step toward integrating marine fishery declines and consumer-driven nutrient recycling to more fully understand the implications of human impacts in marine ecosystems.
Urinary potassium excretion and risk of cardiovascular events.
Kieneker, Lyanne M; Gansevoort, Ron T; de Boer, Rudolf A; Brouwers, Frank P; Feskens, Edith Jm; Geleijnse, Johanna M; Navis, Gerjan; Bakker, Stephan Jl; Joosten, Michel M
2016-05-01
Observational studies on dietary potassium and risk of cardiovascular disease (CVD) have reported weak-to-modest inverse associations. Long-term prospective studies with multiple 24-h urinary samples for accurate estimation of habitual potassium intake, however, are scarce. We examined the association between urinary potassium excretion and risk of blood pressure-related cardiovascular outcomes. We studied 7795 subjects free of cardiovascular events at baseline in the Prevention of Renal and Vascular End-stage Disease study, a prospective, observational cohort with oversampling of subjects with albuminuria at baseline. Main cardiovascular outcomes were CVD [including ischemic heart disease (IHD), stroke, and vascular interventions], IHD, stroke, and new-onset heart failure (HF). Potassium excretion was measured in two 24-h urine specimens at the start of the study (1997-1998) and midway through follow-up (2001-2003). Baseline median urinary potassium excretion was 70 mmol/24 h (IQR: 56-84 mmol/24 h). During a median follow-up of 10.5 y (IQR: 9.9-10.8 y), a total of 641 CVD, 465 IHD, 172 stroke, and 265 HF events occurred. After adjustment for age and sex, inverse associations were observed between potassium excretion and risk [HR per each 26-mmol/24-h (1-g/d) increase; 95% CI] of CVD (0.87; 0.78, 0.97) and IHD (0.86; 0.75, 0.97), as well as nonsignificant inverse associations for risk of stroke (0.85; 0.68, 1.06) and HF (0.94; 0.80, 1.10). After further adjustment for body mass index, smoking, alcohol consumption, education, and urinary sodium and magnesium excretion, urinary potassium excretion was not statistically significantly associated with risk (multivariable-adjusted HR per 1-g/d increment; 95% CI) of CVD (0.96; 0.85, 1.09), IHD (0.90; 0.81, 1.04), stroke (1.09; 0.86, 1.39), or HF (0.99; 0.83, 1.18). No associations were observed between the sodium-to-potassium excretion ratio and risk of CVD, IHD, stroke, or HF. In this cohort with oversampling of subjects with albuminuria at baseline, urinary potassium excretion was not independently associated with a lower risk of cardiovascular events. © 2016 American Society for Nutrition.
Holl, R W; Grabert, M; Heinze, E; Debatin, K M
1998-05-01
To examine the relationship of objective smoking status to age, sex, longterm metabolic control, and urinary albumin excretion. Patients with type 1 diabetes who smoke are at increased risk to develop diabetic microvascular and macrovascular complications. While this has repeatedly been demonstrated in adults, smoking habits have rarely been investigated in adolescents. Urinary continine excretion has been determined by radioimmunoassay in 238 adolescents and young adults with type 1 diabetes. This biochemical parameter of nicotine use was related to age, to the number of cigarettes allegedly consumed per day, and to urinary albumin excretion. A total of 46 patients (19.3%) with urinary cotinine values > 500 ng/ml were classified as smokers. In 26 patients (10.9%), cotinine values between 100 and 500 ng/ml were found (infrequent smokers or environmental nicotine exposure), while the remaining 166 patients excreted < 100 ng/ml of cotinine in the urine (nonsmokers). Smokers were significantly older (20.2 +/- 0.6 years [mean +/- SE]) compared with the intermediate group (18.3 +/- 0.7 years) or with nonsmokers (15.9 +/- 0.4 years; P < 0.0001, Wilcoxon's signed-rank test). Of 46 smokers, 12 denied smoking cigarettes entirely, and among biochemically defined smokers, no correlation was present between urinary continine excretion and the reported number of cigarettes consumed per day. Urinary albumin excretion was significantly higher in smokers compared with nonsmokers (P < 0.003). These data demonstrate that cigarette smoking is common among German adolescents and young adults with type 1 diabetes in this study. Many patients deny nicotine use or refuse to disclose their smoking habits. Increased urinary albumin excretion is consistent with an increased risk of nephropathy in subjects with diabetes who smoke. Pediatricians in charge of adolescents with type 1 diabetes should actively discuss the risk of nicotine consumption with their patients.
Turnover and urinary excretion of free and acetylated MS-222 rainbow trout, Salmo gairdneri
Hunn, J.B.; Schoettger, R.A.; Willford, W.A.
1968-01-01
Rainbow trout (Salmo gairdneri) anesthetized in 100 mg/liter of M.S. 222 at 12 C excreted the drug in free and acetylated forms via the urine during a 24-hr recovery period in freshwater. Of the M.S. 222 excreted, 77-96% was acetylated. Blood levels of free drug in anesthetized trout approximated 75% of the anesthetic concentration, but the amount of acetylated M.S. 222 was relatively insignificant. The blood and urine were cleared of the two fractions of M.S. 222 in 8 and 24 hr respectively. Low levels of aromatic amines of natural origin occurred in blood and urine and were subtracted from measurements of M.S. 222. Intraperitoneal injections of 10-100 mg/kg of M.S. 222 did not induce anesthesia; however, the 24-hr pattern of drug excretion was similar to that observed after anesthesia by immersion. Only 15-21 % of the injected dose was found in the urine, suggesting a second route of drug elimination.
Castagnetta, L; Traina, A; Ciaccio, M; Carruba, G; Polito, L; Di Carlo, A
1985-12-01
Modulation of steroid status by conventional chemotherapy was studied in 31 breast cancer patients receiving CMF and in 31 age-matched breast cancer patients without any therapy, taken as controls. This was achieved through the study of oestrogen excretion profiles using previously identified parameters and referring not only to classical but also to the "other", namely catechol and unusual, oestrogen metabolites. After CMF treatment the premenopausal patients exhibit a modified excretion pattern, mainly concerning a marked and significant reduction of classical oestrogens, as shown by pattern indices. Because there is evidence that oestriol metabolism is not markedly affected by CMF treatment, such a significant decrease in classical oestrogens must be attributed to the secretory function, presumably ovarian ab origine. To the contrary, after treatment, pattern indices show significantly higher median values in postmenopausal patients. Mean oestriol ratio values also display a significant increase, thus supporting the hypothesis that conventional cytotoxic drugs may act by enhancing oestrogen metabolic rates. In fact, the postmenopausal treated subgroup proved to have significantly higher excretion levels of most of the oestrogens considered to date. Surprisingly, E1 + E1-S fractions were strongly reduced in this subgroup and this leads to the suggestion of an increased steroid metabolic rate by CMF treatment. However, comparing 9 breast cancer patients, when having had both short-term and non-short-term CMF treatment, the effects on steroid excretion patterns appear to arise at an early stage.
Urzúa, Ángel; Urbina, Mauricio A
2017-08-01
The estuarine crab Hemigrapsus crenulatus is a key benthic species of estuarine and intertidal ecosystems of the South Pacific, habitats that experience wide fluctuations in salinity. The physiological strategies that allow this crab to thrive under variable salinities, and how they change during the benthic stages of their life cycle, were evaluated under laboratory conditions. Oxygen consumption, ammonia excretion and the regulatory capacity of Na + through the normal range of environmental salinities (i.e. 5, 10, 15, 20, 25, 30) were evaluated in three size classes, ranging from juveniles to adults. In all sizes, the oxygen consumption, ammonia excretion and regulatory capacity of Na + decreased as salinity increased, with the highest values at 5 and the lowest values at 30 salinity. Bigger crabs showed a higher capacity to regulate Na + , as well as higher respiration and excretion rates compared to smaller crabs, suggesting that they are better equipped to exploit areas of the estuary with low salinity. Regardless of its size, H. crenulatus is a strong hyper regulator in diluted media (i.e. 5-20) while a conformer at salinities higher than 20. The regulatory capacity of Na + was positively related with oxygen consumption and ammonia excretion rates. These relationships between sodium regulation, respiration and excretion are interpreted as adaptive physiological mechanisms that allow H. crenulatus to maintain the osmotic and bioenergetic balance over a wide range of environmental salinities. Copyright © 2017 Elsevier Inc. All rights reserved.
Hishikawa, Shuji; Kobayashi, Eiji; Sugimoto, Koh-ichi; Miyata, Michio; Fujimura, Akio
2001-01-01
Aims To examine diurnal variation in biliary excretion of flomoxef. Methods Flomoxef (1 g) was injected intravenously in eight patients with percutaneous transhepatic cholangiography with drainage at 09.00 h and 21.00 h by a cross-over design with a 36 h washout period. Drained biliary fluid was collected for 6 h after each dosing. These patients still had mild to moderate hepatic dysfunction. Results Bile flow and bile acid excretion for 6 h after dosing did not differ significantly between the 09.00 h and 21.00 h treatments. The maximum concentration of biliary flomoxef was significantly greater and its total excretion for 6 h tended to be greater after the 21.00 h dose [maximum concentration (µg ml−1): 34.2 ± 29.9 (09.00 h dose) vs 43.5 ± 28.3 (21.00 h dose) (95% confidence interval for difference: 2.6∼15.9, P = 0.013); total excretion (mg 6 h−1): 1.4 ± 1.3 (09.00 h dose) vs 1.6 ± 1.2 (21.00 h dose) (95% confidence interval for difference: −26.8, 313.7, P = 0.087)]. The period that biliary flomoxef remained above the minimal inhibitory concentration did not differ significantly between the two treatment times. Conclusions These results suggest that biliary excretion of flomoxef shows diurnal variation. However, as the difference was relatively small, flomoxef could be given at any time of day without any dosage adjustments. PMID:11453891
Hishikawa, S; Kobayashi, E; Sugimoto , K; Miyata, M; Fujimura, A
2001-07-01
To examine diurnal variation in biliary excretion of flomoxef. Flomoxef (1 g) was injected intravenously in eight patients with percutaneous transhepatic cholangiography with drainage at 09.00 h and 21.00 h by a cross-over design with a 36 h washout period. Drained biliary fluid was collected for 6 h after each dosing. These patients still had mild to moderate hepatic dysfunction. Bile flow and bile acid excretion for 6 h after dosing did not differ significantly between the 09.00 h and 21.00 h treatments. The maximum concentration of biliary flomoxef was significantly greater and its total excretion for 6 h tended to be greater after the 21.00 h dose [maximum concentration (microg ml(-1)): 34.2 +/- 29.9 (09.00 h dose) vs 43.5 +/- 28.3 (21.00 h dose) (95% confidence interval for difference: 2.6 approximately 15.9, P = 0.013); total excretion (mg 6 h(-1)): 1.4 +/- 1.3 (09.00 h dose) vs 1.6 +/- 1.2 (21.00 h dose) (95% confidence interval for difference: -26.8, 313.7, P = 0.087)]. The period that biliary flomoxef remained above the minimal inhibitory concentration did not differ significantly between the two treatment times. These results suggest that biliary excretion of flomoxef shows diurnal variation. However, as the difference was relatively small, flomoxef could be given at any time of day without any dosage adjustments.
Parsons, T J; van Dusseldorp, M; Seibel, M J; van Staveren, W A
2001-01-01
Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by higher levels of serum osteocalcin and alkaline phosphatase and lower levels of urinary cross-links. Group differences in calciotropic hormones and mineral excretion were also investigated. Bone measurements, blood, and urine samples were obtained from 69 macrobiotic (34 girls, 35 boys) and 99 control (57 girls, 42 boys) subjects, aged 9-15. Bone turnover markers and 1,25(OH)2D reached maximal levels at pubertal stages 3-4, and decreased thereafter. After adjusting for puberty, age, and lean body mass, no group differences were found in markers of bone turnover, 1,25(OH)2D, PTH, or calcium excretion, but phosphate excretion was 23% lower in macrobiotic girls. After adjustment for puberty, 1,25(OH)2D was positively related to osteocalcin. In summary, we found no evidence for group differences in bone turnover, or catch up in relative bone mass, which might be due to the fact that 60% of subjects were still in early stages of puberty.
Liess, Antonia; Guo, Junwen; Lind, Martin I; Rowe, Owen
2015-11-01
Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Alemany, Marià; Remesar, Xavier
2014-01-01
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NO x ; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NO(x) and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Butteiger, Dustie N; Krul, Elaine S
2015-08-01
Custom diets are a convenient vector for oral administration of test articles, but the processing and physical form of a diet can affect its nutritional properties and how it is consumed. Here, the authors evaluated the feeding behavior and physiology of golden Syrian hamsters fed diets of either soy or caseinate protein in pelleted or powdered forms for 28 d to determine whether dietary processing and form mediates the physiological effects of dietary proteins. The authors compared body weight, food consumption, serum cholesterol concentration, serum triglyceride concentration, fecal weight and fecal excretion of bile acids between treatment groups. Hamsters fed powdered diets showed higher food consumption than hamsters fed pelleted diets, regardless of protein source. Hamsters fed soy pelleted diets showed lower serum cholesterol concentration and higher fecal excretion of bile acid than hamsters fed caseinate pelleted diets, and serum cholesterol concentration correlated strongly with fecal excretion of bile acid. This correlation suggests that the physiological effects of soy protein on cholesterol and excretion of bile acid might be related or similarly mediated through diet. The differences observed between hamsters on different diets indicate that dietary form can influence both feeding behavior and the physiological effects of a diet in hamsters.
Sabater, David; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Remesar, Xavier
2014-01-01
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NOx; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NOx and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability. PMID:24707502
Li, Yong; Sekula, Peggy; Wuttke, Matthias; Wahrheit, Judith; Hausknecht, Birgit; Schultheiss, Ulla T; Gronwald, Wolfram; Schlosser, Pascal; Tucci, Sara; Ekici, Arif B; Spiekerkoetter, Ute; Kronenberg, Florian; Eckardt, Kai-Uwe; Oefner, Peter J; Köttgen, Anna
2018-05-01
Background The kidneys have a central role in the generation, turnover, transport, and excretion of metabolites, and these functions can be altered in CKD. Genetic studies of metabolite concentrations can identify proteins performing these functions. Methods We conducted genome-wide association studies and aggregate rare variant tests of the concentrations of 139 serum metabolites and 41 urine metabolites, as well as their pairwise ratios and fractional excretions in up to 1168 patients with CKD. Results After correction for multiple testing, genome-wide significant associations were detected for 25 serum metabolites, two urine metabolites, and 259 serum and 14 urinary metabolite ratios. These included associations already known from population-based studies. Additional findings included an association for the uremic toxin putrescine and variants upstream of an enzyme catalyzing the oxidative deamination of polyamines ( AOC1 , P -min=2.4×10 -12 ), a relatively high carrier frequency (2%) for rare deleterious missense variants in ACADM that are collectively associated with serum ratios of medium-chain acylcarnitines ( P -burden=6.6×10 -16 ), and associations of a common variant in SLC7A9 with several ratios of lysine to neutral amino acids in urine, including the lysine/glutamine ratio ( P =2.2×10 -23 ). The associations of this SLC7A9 variant with ratios of lysine to specific neutral amino acids were much stronger than the association with lysine concentration alone. This finding is consistent with SLC7A9 functioning as an exchanger of urinary cationic amino acids against specific intracellular neutral amino acids at the apical membrane of proximal tubular cells. Conclusions Metabolomic indices of specific kidney functions in genetic studies may provide insight into human renal physiology. Copyright © 2018 by the American Society of Nephrology.
Strauss, Michél; Smith, Wayne; Wei, Wen; Fedorova, Olga V; Schutte, Aletta E
2018-03-01
Marinobufagenin (MBG) is an endogenous steroidal α1-Na + K + -ATPase inhibitor. Because of its role in sodium handling, MBG has been associated with both antihypertensive and prohypertensive effects in normal physiology and pathology. MBG is positively associated with blood pressure in Dahl salt-sensitive rats exhibiting a similar hypertensive phenotype to black populations, characterized by impaired urinary Na + excretion. However, clinical studies exploring blood pressure (BP)-related effects of MBG in black populations are scant. We determined whether the MBG/Na + ratio (assessing the effectiveness of Na + excretion resistance to MBG) is related to systolic BP (SBP) in young black men and women, compared to whites. We included 331 apparently healthy participants (20-30 years) (42.9% black, 43.8% men) on a habitual diet. We obtained 24-h and central SBP, and 24-h urinary Na + and MBG levels. We found no ethnic differences in MBG, Na + or MBG/Na + . MBG excretion correlated positively with Na + excretion in all groups and to SBP in white men and black women (p ≤ 0.011). In black women only SBP related positively to MBG/Na + in single and multi-variable adjusted regression models: central SBP (R 2 = 0.26; ß = 0.28; p = 0.039), 24-h SBP (R 2 = 0.46; ß = 0.30; p = 0.011), daytime (R 2 = 0.38; ß = 0.28; p = 0.023) and nighttime SBP (R 2 = 0.38; ß = 0.33; p = 0.009). In contrast, inverse associations of MBG/Na + with nighttime SBP were evident in white women (r = -0.20; p = 0.038) but lost significance after multiple adjustments (R 2 = 0.36; ß = -0.13; p = 0.12). We found independent positive associations of SBP with MBG/Na + in black women. This data supports the concept that reduced MBG-mediated Na + excretion can contribute to adverse hemodynamics.
Kirsch, Susanne H; Herrmann, Wolfgang; Rabagny, Yannick; Obeid, Rima
2010-12-15
Disorders in choline metabolism are related to disease conditions. We developed a stable-isotope dilution ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of acetylcholine (ACh), betaine, choline, and dimethylglycine (DMG). We used this method to measure concentrations of the analytes in plasma and urine in addition to other biological fluids after a protein precipitation by acetonitrile. The detection limits were between 0.35 nmol/L (for ACh in urine) and 0.34 μmol/L (for betaine in urine). ACh concentrations were not detectable in plasma. Intraassay and interassay coefficient of variation (CVs) were all <10.0% in biological fluids, except for DMG in cerebrospinal fluid (CV=12.44%). Mean recoveries in urine pool samples were between 99.2% and 103.9%. The urinary excretion of betaine, choline, and DMG was low, with approximately 50.0% higher excretion of choline in females compared to males. Median urinary excretion of ACh were 3.44 and 3.92 μmol/mol creatinine in males and females, respectively (p=0.689). Plasma betaine concentrations correlated significantly with urinary excretions of betaine (r=0.495, p=0.027) and choline (r=0.502, p=0.024) in females. Plasma choline concentrations correlated significantly with urinary excretion of ACh in males (r=0.419, p=0.041) and females (r=0.621, p=0.003). The new method for the simultaneous determination of ACh, betaine, choline, and DMG is sensitive, precise, and fast enough to be used in clinical investigations related to the methylation pathway. Copyright © 2010 Elsevier B.V. All rights reserved.
Uric acid, an important screening tool to detect inborn errors of metabolism: a case series.
Jasinge, Eresha; Kularatnam, Grace Angeline Malarnangai; Dilanthi, Hewa Warawitage; Vidanapathirana, Dinesha Maduri; Jayasena, Kandana Liyanage Subhashinie Priyadarshika Kapilani Menike; Chandrasiri, Nambage Dona Priyani Dhammika; Indika, Neluwa Liyanage Ruwan; Ratnayake, Pyara Dilani; Gunasekara, Vindya Nandani; Fairbanks, Lynette Dianne; Stiburkova, Blanka
2017-09-06
Uric acid is the metabolic end product of purine metabolism in humans. Altered serum and urine uric acid level (both above and below the reference ranges) is an indispensable marker in detecting rare inborn errors of metabolism. We describe different case scenarios of 4 Sri Lankan patients related to abnormal uric acid levels in blood and urine. CASE 1: A one-and-half-year-old boy was investigated for haematuria and a calculus in the bladder. Xanthine crystals were seen in microscopic examination of urine sediment. Low uric acid concentrations in serum and low urinary fractional excretion of uric acid associated with high urinary excretion of xanthine and hypoxanthine were compatible with xanthine oxidase deficiency. CASE 2: An 8-month-old boy presented with intractable seizures, feeding difficulties, screaming episodes, microcephaly, facial dysmorphism and severe neuro developmental delay. Low uric acid level in serum, low fractional excretion of uric acid and radiological findings were consistent with possible molybdenum cofactor deficiency. Diagnosis was confirmed by elevated levels of xanthine, hypoxanthine and sulfocysteine levels in urine. CASE 3: A 3-year-10-month-old boy presented with global developmental delay, failure to thrive, dystonia and self-destructive behaviour. High uric acid levels in serum, increased fractional excretion of uric acid and absent hypoxanthine-guanine phosphoribosyltransferase enzyme level confirmed the diagnosis of Lesch-Nyhan syndrome. CASE 4: A 9-year-old boy was investigated for lower abdominal pain, gross haematuria and right renal calculus. Low uric acid level in serum and increased fractional excretion of uric acid pointed towards hereditary renal hypouricaemia which was confirmed by genetic studies. Abnormal uric acid level in blood and urine is a valuable tool in screening for clinical conditions related to derangement of the nucleic acid metabolic pathway.
Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.
De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J
2007-12-01
Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.
Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart
Kjekshus, John K.; Mjøs, Ole D.
1972-01-01
Since elevation of plasma concentrations of free fatty acids (FFA) increases myocardial oxygen consumption without influencing mechanical performance in normal hearts, it was the purpose of this study to determine whether FFA would modify mechanical performance at limited oxygen supply. Left coronary blood flow was reduced by gradual clamping of a shunt from the left carotid artery until moderate ventricular dilatation supervened. Left ventricular systolic pressure (LVSP), its maximal rate of rise (dP/dt) and stroke volume (SV) were unchanged or slightly reduced. The ischemia resulted in a decrease in myocardial oxygen consumption (MVO2) from 9.7±1.1 ml/min to 7.9±0.8 ml/min, and myocardial lactate uptake was reduced or reversed to excretion. Increasing the plasma concentrations of FFA from 359±47 μEq/1 to 3688±520 μEq/1 by intravenous infusion of a triglyceride emulsion and heparin resulted in further ventricular dilatation, accompanied by increased excretion of lactate. The ventricular decompensation and enhancement of anaerobic myocardial metabolism associated with increased uptake of FFA was not related to changes in coronary flow, MVO2, or LVSP. dP/dt and SV were virtually unchanged. Intravenous infusion of glucose/insulin, which lowered plasma concentrations of FFA, reversed ventricular dilatation and lactate excretion. The data support the hypothesis that high concentrations of FFA play a significant role in increasing myocardial oxygen requirement and thereby promote depression of contractility of the hypoxic heart in experimental animals. Images PMID:5032525
[Salt, renal function and high blood pressure--reflections on a current issue].
Aurell, Mattias
2002-11-21
The role of salt intake for blood pressure control has been discussed for a long time. A brief review is given of some pertinent physiological facts to explain this relationship and evolutionary aspects of renal function are emphasized. Salt intake is very high in the modern society, often as high as 15 g sodium chloride per 24 hours while 3-6 g may be more than enough to maintain an adequate salt balance. If the kidneys cannot cope with this severe sodium overload, blood pressure will rise. Therefore, the kidneys' ability to excrete sodium is a key factor and the salt excretion capacity is the kidneys' major barostatic function. As barostats, the kidneys control the blood pressure by ultimately determining the sodium excretion. Reducing sodium intake is, however, difficult as more than 50% of the intake is contained in the food we buy such as bread, sausages, canned food, chips and fast-food. Food products should therefore be "salt declared", but information on this aspect is generally lacking. If the population's salt intake could be reduced by 50%, the prevalence of hypertension will be much reduced, perhaps also by as much as 50%. The cost to society for treating hypertension would be reduced accordingly. Salt intake is also an important aspect of the overweight problem among today's youth. Salt and overweight impose great health risks later in life. Preventive measures in this area must be given high priority in future health care work.
Dynamics of L-Carnitine in Plasma and Urine in Patients Undergoing Cisplatin Chemotherapy.
Gomi, Daisuke; Tanaka, Aika; Fukushima, Toshirou; Kobayashi, Takashi; Matsushita, Hirohide; Sekiguchi, Nodoka; Sakamoto, Akiyuki; Sasaki, Shigeru; Mamiya, Keiko; Koizumi, Tomonobu
2017-01-01
Several studies have indicated that cisplatin (cis-diamminedichloroplatinum II; CDDP) causes urinary excretion of L-carnitine (LC). However, the underlying cofactors affecting the increased urinary excretion remain unclear. The present study was performed to evaluate the dynamics of LC in plasma and urine after CDDP chemotherapy and to examine the relations with clinical parameters, such as gender, body mass index (BMI), and renal function. Twenty-two patients treated with CDDP therapy were selected. Blood and urine samples were taken from patients before starting CDDP treatment (day 0), on the next day (day 1), and on the seventh day (day 7). We measured plasma and urine concentrations of total, free, and acyl-LC, and examined the relationships with gender, age, treatment cycle, skeletal muscle mass, BMI, glomerular filtration rate, and change in creatinine concentration after CDDP administration. Both urinary and plasma concentrations of 3 types of LC increased markedly on day 1 and subsequently reverted to the pre-CDDP level on day 7. There was a positive correlation between the % changes in plasma and urine LC (correlation coefficient 0.59, p = 0.003) on day 1, but no significant relations were seen in other clinical parameters. CDDP transiently increased plasma LC levels. The mechanism seemed to involve recruitment for marked urinary loss of LC. However, these changes in plasma and urinary LC levels were not related to clinical factors, suggesting that the dynamics of LC were independent of preexisting physical parameters. © 2017 S. Karger AG, Basel.
Rare sugars, d-allulose, d-tagatose and d-sorbose, differently modulate lipid metabolism in rats.
Nagata, Yasuo; Mizuta, Narumi; Kanasaki, Akane; Tanaka, Kazunari
2018-03-01
Rare sugars including d-allulose, d-tagatose, and d-sorbose are present in limited quantities in nature; some of these rare sugars are now commercially produced using microbial enzymes. Apart from the anti-obesity and anti-hyperglycaemic activities of d-allulose, effects of these sugars on lipid metabolism have not been investigated. Therefore, we aimed to determine if and how d-tagatose and d-sorbose modulate lipid metabolism in rats. After feeding these rare sugars to rats, parameters on lipid metabolism were determined. No diet-related effects were observed on body weight and food intake. Hepatic lipogenic enzyme activity was lowered by d-allulose and d-sorbose but increased by d-tagatose. Faecal fatty acid excretion was non-significantly decreased by d-allulose, but significantly increased by d-sorbose without affecting faecal steroid excretion. A trend toward reduced adipose tissue weight was observed in groups fed rare sugars. Serum adiponectin levels were decreased by d-sorbose relative to the control. Gene expression of cholesterol metabolism-related liver proteins tended to be down-regulated by d-allulose and d-sorbose but not by d-tagatose. In the small intestine, SR-B1 mRNA expression was suppressed by d-sorbose. Lipid metabolism in rats varies with rare sugars. Application of rare sugars to functional foods for healthy body weight maintenance requires further studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Whites excrete a water load more rapidly than blacks.
Weder, Alan B; Gleiberman, Lillian; Sachdeva, Amit
2009-04-01
A recent report demonstrated a racial difference in response to furosemide compatible with increased ion reabsorption in the thick ascending limb of the loop of Henle in blacks. Urinary dilution is another function of the loop-diuretic-sensitive Na,K,2Cl cotransporter in the thick ascending limb, and racial differences in urinary diluting capacity have not been reported previously. We assessed diluting segment (cortical thick ascending limb and distal convoluted tubule) function in black and white normotensives in 2 studies using a water-loading approach. In both studies, we found that whites excreted a water load more rapidly than blacks. In the first study, the final free water clearance rates (mean+/-SD) were 7.3+/-4.7 mL/min in whites (n=17, 7 females and 10 males) and 3.8+/-3.6 mL/min in blacks (n=14, 9 females and 5 males; P<0.03). In the second study, final free water clearance rates were 8.3+/-2.6 mL/min in whites (n=17, 8 females and 9 males) and 6.4+/-1.8 mL/min in blacks (n=11, 8 females and 3 males; P<0.01). We found no evidence of a racial difference in renal proximal tubular fluid reabsorption as assessed by renal endogenous lithium clearance or in plasma vasopressin level that could explain the difference in free water excretion. We conclude that our observations are most consistent with a lower capacity of ion reabsorption in the renal diluting segment in blacks. Slower excretion of an acute water load may have been an advantage during natural selection of humans living in arid, hot climates.
Importance of colonic support for energy absorption as small-bowel failure proceeds.
Nordgaard, I; Hansen, B S; Mortensen, P B
1996-08-01
Digestive processes in the human colon are affected by the bacterial fermentation of malabsorbed carbohydrates and protein to short-chain fatty acids, which are absorbed and supply energy. Energy absorption was measured by assessing fecal bomb calorimetry in 148 patients with extremely different small-bowel lengths. Colectomy increased fecal loss of energy by 0.8 MJ/d and carbohydrate excretion fivefold in patients with a small-bowel length between normal and 150-200 cm. Patients with 100-150 cm small bowel, with and without a colon, excreted 1.3 +/- 0.3 and 4.7 +/- 0.5 MJ/d, respectively (P = 0.002), a difference of 3.4 MJ/d. Patients with < 100 cm small bowel excreted 3.1 +/- 0.4 and 8.0 +/- 1.3 MJ/d, respectively (P = 0.03), a difference of 4.9 MJ/d. Similar and highly significant differences were calculated by linear-regression analysis. Considerably less energy was excreted as carbohydrate than as fat in patients with preserved colonic function, probably because fermentation removed carbohydrate as absorbed short-chain fatty acids, whereas a comparable amount of energy was lost as carbohydrate and fat in patients without colonic function. The correlation between malabsorbed energy and small-bowel length was poor (r = -0.41) but increased when data for patients with and without a colon were separated (r = -0.56 and r = -0.58, respectively). Small-bowel length, however, was still an inaccurate measure of intestinal failure to absorb nutrient energy. In conclusion, colonic digestion may support energy supply with up to approximately 4.2 MJ/d as small-bowel failure proceeds, but it is of minor importance in patients with a small-bowel length > 200 cm or malabsorption < 2.1 MJ/d.
Parasite infection alters nitrogen cycling at the ecosystem scale.
Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R
2016-05-01
Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that nitrogen flux rates from the periphyton to the water column in high-snail density/high-infection ponds were up to 50% higher than low-infection ponds. By altering host nutrient assimilation/excretion flexibility, parasites could play a widespread, but currently unrecognized, role in ecosystem nutrient cycling, especially when parasite and host abundances are high and hosts play a central role in ecosystem nutrient cycling. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Hindle, M.; Peers, E. M.; Parry-Billings, M.; Chrystyn, H.
1997-01-01
Aims The number of dry powder inhaler (DPI) devices could increase because they are easier to use than a metered dose inhaler (MDI). Using urinary excretion, the relative bioavailability of salbutamol to the lungs and the body for a prototype DPI has been compared with an MDI. Methods A randomized, double-blind, two way crossover study compared the amount of salbutamol in the urine 30 min following inhalation of 2×100 μg salbutamol from a prototype DPI (Innovata Biomed Ltd, UK) and a Ventolin® (Allen and Hanburys Ltd, UK) MDI in 10 volunteers. The amount of salbutamol and its metabolite, the ester sulphate conjugate, renally excreted up to 24 h post inhalation was also determined to evaluate the relative bioavailability of salbutamol to the body. Results The mean (s.d.) 30 min post-treatment urinary excretion for the prototype DPI and MDI was 8.4 (2.6) and 5.0 (1.9) μg, respectively (P<0.001). The total amount of salbutamol and its ester metabolite excreted in the urine over the 24 h period after inhalation was 187.9 (77.6) and 137.6 (40.0) μg (P<0.05). Conclusions The prototype DPI delivered more salbutamol to the body and the lungs than a conventional MDI. This finding supports further development of the prototype DPI. The urinary salbutamol method is able to discriminate between two different inhalation systems. PMID:9088593
Health effects of long-term mercury exposure among chloralkali plant workers.
Frumkin, H; Letz, R; Williams, P L; Gerr, F; Pierce, M; Sanders, A; Elon, L; Manning, C C; Woods, J S; Hertzberg, V S; Mueller, P; Taylor, B B
2001-01-01
Inorganic mercury is toxic to the nervous system, kidneys, and reproductive system. We studied the health effects of mercury exposure among former employees of a chloralkali plant that operated from 1955 to 1994 in Georgia. Former plant workers and unexposed workers from nearby employers were studied. Exposure was assessed with a job-exposure matrix based on historical measurements and personnel records. Health outcomes were assessed with interviews, physical examinations, neurological and neurobehavioral testing, renal function testing, and urinary porphyrin measurements. Exposure-disease associations were assessed with multivariate modeling. Exposed workers reported more symptoms, and tended toward more physical examination abnormalities, than unexposed workers. Exposed workers performed worse than unexposed subjects on some quantitative tests of vibration sense, motor speed and coordination, and tremor, and on one test of cognitive function. Few findings remained significant when exposure was modeled as a continuous variable. Neither renal function nor porphyrin excretion was associated with mercury exposure. Mercury-exposed chloralkali plant workers reported more symptoms than unexposed controls, but no strong associations were demonstrated with neurological or renal function or with porphyrin excretion. Copyright 2001 Wiley-Liss, Inc.
Mechanism of Hyperkalemia-Induced Metabolic Acidosis.
Harris, Autumn N; Grimm, P Richard; Lee, Hyun-Wook; Delpire, Eric; Fang, Lijuan; Verlander, Jill W; Welling, Paul A; Weiner, I David
2018-05-01
Background Hyperkalemia in association with metabolic acidosis that are out of proportion to changes in glomerular filtration rate defines type 4 renal tubular acidosis (RTA), the most common RTA observed, but the molecular mechanisms underlying the associated metabolic acidosis are incompletely understood. We sought to determine whether hyperkalemia directly causes metabolic acidosis and, if so, the mechanisms through which this occurs. Methods We studied a genetic model of hyperkalemia that results from early distal convoluted tubule (DCT)-specific overexpression of constitutively active Ste20/SPS1-related proline-alanine-rich kinase (DCT-CA-SPAK). Results DCT-CA-SPAK mice developed hyperkalemia in association with metabolic acidosis and suppressed ammonia excretion; however, titratable acid excretion and urine pH were unchanged compared with those in wild-type mice. Abnormal ammonia excretion in DCT-CA-SPAK mice associated with decreased proximal tubule expression of the ammonia-generating enzymes phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase and overexpression of the ammonia-recycling enzyme glutamine synthetase. These mice also had decreased expression of the ammonia transporter family member Rhcg and decreased apical polarization of H + -ATPase in the inner stripe of the outer medullary collecting duct. Correcting the hyperkalemia by treatment with hydrochlorothiazide corrected the metabolic acidosis, increased ammonia excretion, and normalized ammoniagenic enzyme and Rhcg expression in DCT-CA-SPAK mice. In wild-type mice, induction of hyperkalemia by administration of the epithelial sodium channel blocker benzamil caused hyperkalemia and suppressed ammonia excretion. Conclusions Hyperkalemia decreases proximal tubule ammonia generation and collecting duct ammonia transport, leading to impaired ammonia excretion that causes metabolic acidosis. Copyright © 2018 by the American Society of Nephrology.
The tissue distribution and excretion study of paeoniflorin-6'-O-benzene sulfonate (CP-25) in rats.
Zhao, Mingyi; Zhou, Peng; Yu, Jun; James, Asenso; Xiao, Feng; Wang, Chun; Wei, Wei
2018-03-09
Paeoniflorin-6'-O-benzene sulfonate (code: CP-25) is a novel ester derivative of paeoniflorin (Pae). Compared to Pae, CP-25 has higher lipid solubility, bioavailability and better bioactivity. However, the tissue distribution and excretion of CP-25 still remain unknown. The LC-MS method was applied to investigate the tissue distribution and excretion of CP-25 in rats. As such, 50 mg/kg of CP-25 and Pae were administered to rats in multiple doses via an oral route. CP-25 and Pae were distributed widely and rapidly in all the tested tissues. Compared with Pae, the concentrations of CP-25 were almost increased evidently in most tissues. The highest CP-25 level was found in the liver (1476.33 ± 535.20 ng/g, male; 1970.38 ± 177.21 ng/g, female) at 3 h, and a high concentration of CP-25 was detected in male and female intestine, synovium, muscle, lung, and brain. Following a single oral dose of 50 mg/kg of CP-25 in rats, the total excretion of CP-25 was merely 21.8% (18.40, 3.19 and 0.22% for feces, bile and urine, respectively) in males; and was approximately 21.3% (14.04, 7.16 and 0.14% for feces, bile and urine, respectively) in females. The results indicated that the CP-25 concentration was higher in major tissues than Pae; CP-25 was primarily excreted through the feces; and there were gender-related differences in the tissue distribution and excretion.
Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling
Yu, Hao; Yang, Tao; Gao, Peng; Wei, Xing; Zhang, Hexuan; Xiong, Shiqiang; Lu, Zongshi; Li, Li; Wei, Xiao; Chen, Jing; Zhao, Yu; Arendshorst, William J.; Shang, Qianhui; Liu, Daoyan; Zhu, Zhiming
2016-01-01
High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na+ channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC. PMID:27173481
Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis.
Meijers, Wouter C; van der Velde, A Rogier; Ruifrok, Willem P; Schroten, Nicolas F; Dokter, Martin M; Damman, Kevin; Assa, Solmaz; Franssen, Casper F; Gansevoort, Ron T; van Gilst, Wiek H; Silljé, Herman H; de Boer, Rudolf A
2014-09-18
Galectin-3 is a biomarker for prognostication and risk stratification of patients with heart failure (HF). It has been suggested that renal function strongly relates to galectin-3 levels. We aimed to describe galectin-3 renal handling in HF. In Sprague-Dawley rats, we infused galectin-3 and studied distribution and renal clearance. Furthermore, galectin-3 was measured in urine and plasma of healthy controls, HF patients and hemodialysis patients. To mimic the human situation, we measured galectin-3 before and after the artificial kidney. Infusion in rats resulted in a clear increase in plasma and urine galectin-3. Plasma galectin-3 in HF patients (n=101; mean age 64 years; 93% male) was significantly higher compared to control subjects (n=20; mean age 58 years; 75% male) (16.6 ng/mL versus 9.7 ng/mL, P<0.001), while urinary galectin-3 in HF patients was comparable (28.1 ng/mL versus 35.1 ng/mL, P=0.830). The calculated galectin-3 excretion rate was lower in HF patient (2.3 mL/min [1.5 to 3.4] versus 3.9 mL/min [2.3 to 6.4] in control subjects; P=0.005). This corresponded with a significantly lower fractional excretion of galectin-3 in HF patients (2.4% [1.7 to 3.7] versus 3.0% [1.9 to 5.5]; P=0.018). These differences, however, were no longer significant after correction for age, gender, diabetes, and smoking. HF patients who received diuretics (49%) showed significantly higher aldosterone and galectin-3 levels. Hemodialysis patients (n=105; mean age 63 years; 65% male), without urinary galectin-3 excretion, had strongly increased median plasma galectin-3 levels (70.6 ng/mL). In this small cross-sectional study, we report that urine levels of galectin-3 are not increased in HF patients, despite substantially increased plasma galectin-3 levels. The impaired renal handling of galectin-3 in patients with HF may explain the described relation between renal function and galectin-3 and may account for the elevated plasma galectin-3 in HF. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Determination of neostigmine and pyridostigmine in the urine of patients with myasthenia gravis
Nowell, P. T.; Scott, Carol A.; Wilson, A.
1962-01-01
A method has been described for the estimation of neostigmine and pyridostigmine in urine by ion exchange treatment and colorimetric estimation of the blue complex produced when either of the drugs is made to react with bromophenol blue. Urine containing 2 μg/ml. or more of neostigmine or 3 μg/ml. or more of pyridostigmine can be quantitatively estimated. After intramuscular injection of neostigmine to patients with myasthenia gravis, up to 67% of the drug is excreted, whilst after oral administration less than 5% is excreted. When pyridostigmine is given by mouth, the amount of drug excreted in the urine varies between approximately 2 and 16%. It has been established by chromatographic analysis that the blue complexes formed under these conditions are due only to neostigmine and pyridostigmine respectively and that the quantitative estimation described is a true measure of the amount of these drugs excreted in the urine. The significance of these results is discussed in relation to the absorption and metabolism of the two drugs. PMID:14480648
Carnitine status in Thai adults.
Tanphaichitr, V; Lerdvuthisopon, N; Dhanamitta, S; Broquist, H P
1980-04-01
Plasma carnitine and urinary carnitine levels were measured in Thai adults living in Bangkok city and Ubol villages. The mean plasma carnitine and urinary carnitine levels expressed in micromoles per liter in Bangkok adults were higher than those in Ubol adults. Their mean plasma carnitine levels were 56.6 +/- 1.8 and 50.3 +/- 1.7 whereas urinary carnitine levels were 161 +/- 19 and 127 +/- 18 micromole/liter, respectively. The nutritional status in Ubol adults was inadequate. This was evidenced by the significant decrease in urinary creatinine excretion, serum albumin, and hematocrit levels. The dietary assessment agreed with the biochemical findings. Since rice, limiting in carnitine, was the main protein and energy source consumed by Ubol adults their inadequate carnitine status could be due to the low carnitine intake. Sex affects plasma carnitine levels in Bangkok adults and urinary carnitine excretion in both groups. This could be related to the lean body mass in which most of the body carnitine resides. This is supported by the higher urinary creatinine excretion in males and the significant positive correlation between carnitine excretion and creatinine-height index.
Masachessi, Gisela; Ganesh, Balasubramanian; Martinez, Laura C; Giordano, Miguel O; Barril, Patricia A; Isa, Maria B; Paván, Giorgio V; Mateos, Carlos A; Nates, Silvia V
2015-01-01
The present work provide data about the maintenance of picobirnavirus (PBV) infection during adulthood in a mammalian host. For this purpose PBV infection was studied in an adult orangutan (Pongo pygmaeus) by PAGE/SS, RT-PCR and nucleotide sequencing. PBV infection in the animal was asymptomatic and was characterized by interspaced silent and high/ low active viral excretion periods. The PBV strains excreted by the studied individual were identified as genogroup I and revealed a nucleotide identity among them of 64-81%. The results obtained allowed to arrive to a deeper understanding of the natural history of PBV infection, which seems to be characterized by new-born, juvenile and adult asymptomatic hosts which persistently excrete closely related strains in their feces. Consequently, picobirnaviruses could be considered frequent inhabitants of the gastrointestinal tract, leaving the question open about the molecular mechanisms governing persistent and asymptomatic coexistence within the host and the potential host suitability to maintain this relationship. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationship between plasma uridine and urinary urea excretion.
Ka, Tuneyoshi; Inokuchi, Taku; Tamada, Daisuke; Suda, Michio; Tsutsumi, Zenta; Okuda, Chihiro; Yamamoto, Asako; Takahashi, Sumio; Moriwaki, Yuji; Yamamoto, Tetsuya
2010-03-01
To investigate whether the concentration of uridine in plasma is related to the urinary excretion of urea, 45 healthy male subjects with normouricemia and normal blood pressure were studied after providing informed consent. Immediately after collection of 24-hour urine, blood samples were drawn after an overnight fast except for water. The contents of ingested foods during the 24-hour urine collection period were described by the subjects and analyzed by a dietician. Simple regression analysis showed that plasma uridine was correlated with the urinary excretions of urea (R = 0.41, P < .01), uric acid (R = 0.36, P < .05), and uridine (R = 0.30, P < .05), as well as uric acid clearance (R = 0.35, P < .05) and purine intake (R = 0.30, P < .05). In contrast, multiple regression analysis showed a positive relationship only between plasma uridine and urinary excretion of urea. These results suggest that an increase in de novo pyrimidine synthesis leads to an increased concentration of uridine in plasma via nitrogen catabolism in healthy subjects with normouricemia and normal blood pressure. (c) 2010 Elsevier Inc. All rights reserved.
Wierzba, Waldemar; Radowicki, Stanisław; Bojar, Iwona; Pinkas, Jarosław
2018-03-14
Phenol and 1-hydroxypyrene are biological markers of exposure to polycyclic aromatic hydrocarbons (PAH) that have certain negative effects on parenchymal organs such as the human placenta. The literature presents only few reports regarding the effects of elevated PAH levels on the functions of the human placenta. The aim of the work is to assess the effects of elevated PAH levels in excreted urine on the endocrine and metabolic functions of the human placenta obtained from a normal pregnancy. Tissue material from 50 afterbirths from Płock constituted a study group, whereas 50 afterbirths from Kutno constituted a control group. Immunohistochemical reactions with the peroxidase method using LSAB kits (DAKO, Denmark) were performed. The extent and intensity of reactions were analysed. The levels of phenols and 1-hydroxypyrene in the excreted urine of pregnant women (undergoing delivery) were detected using gas chromatography and colorimetry. The statistical analysis used the PQStat v.1.6.2 software; moreover, t-student and chi-square tests were used. Differences were considered to be significant at the significance level of 95% (p<0.05). The levels of phenol and 1-hydroxypyrene in the excreted urine were demonstrated to be statistically significantly higher in patients living in the area of Płock. Statistically lower expression of placental glutathione transferase and lower immunohistochemical demonstration of the placental phosphatase activity were observed in placentas from Płock. It has been demonstrated that the expression of the oestrogen receptor activity and placental gonadotropin is significantly higher in placentas from areas not contaminated with aromatic hydrocarbons (Kutno). The course of pregnancy in the environment with elevated levels of aromatic hydrocarbons leads to impaired placental functioning and reduced endocrine and metabolic activity of the placenta.
Intestinal bile acid malabsorption in cystic fibrosis.
O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E
1993-08-01
This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat or intestinal bacterial overgrowth.
Intestinal bile acid malabsorption in cystic fibrosis.
O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E
1993-01-01
This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat or intestinal bacterial overgrowth. PMID:8174969
Isoe, Jun; Scaraffia, Patricia Y.
2013-01-01
Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A. aegypti. The expression of arginase (AR) and urate oxidase (UO), either separately or simultaneously (ARUO) was silenced by RNAi. The amounts of several nitrogen compounds were quantified in excreta using mass spectrometry. Injection of mosquitoes with either dsRNA-AR or dsRNA-UO significantly decreased the expressions of AR or UO in the fat body (FB) and Malpighian tubules (MT). Surprisingly, the expression level of AR was increased when UO was silenced and vice versa, suggesting a cross-talk regulation between pathways. In agreement with these data, the amount of urea measured 48 h after blood feeding remained unchanged in those mosquitoes injected with dsRNA-AR or dsRNA-UO. However, allantoin significantly increased in the excreta of dsRNA-AR-injected females. The knockdown of ARUO mainly led to a decrease in urea and allantoin excretion, and an increase in arginine excretion. In addition, dsRNA-AR-injected mosquitoes treated with a specific nitric oxide synthase inhibitor showed an increase of UO expression in FB and MT and a significant increase in the excretion of nitrogen compounds. Interestingly, both a temporary delay in the digestion of a blood meal and a significant reduction in the expression of several genes involved in ammonia metabolism were observed in dsRNA-AR, UO or ARUO-injected females. These results reveal that urea synthesis and excretion in A. aegypti are tightly regulated by a unique cross-talk signaling mechanism. This process allows blood-fed mosquitoes to regulate the synthesis and/or excretion of nitrogen waste products, and avoid toxic effects that could result from a lethal concentration of ammonia in their tissues. PMID:23755226
[Decline in renal function in old age : Part of physiological aging versus age-related disease].
Braun, F; Brinkkötter, P T
2016-08-01
The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications.
Ponte, Belen; Pruijm, Menno; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Staessen, Jan A; Vogt, Bruno; Pechère-Bertschi, Antoinette; Burnier, Michel; Martin, Pierre-Yves; Eap, Chin B; Bochud, Murielle; Guessous, Idris
2018-05-01
To assess the influence of caffeine on arterial stiffness by exploring the association of urinary excretion of caffeine and its related metabolites with pulse pressure (PP) and pulse wave velocity (PWV). Families were randomly selected from the general population of 3 Swiss cities from November 25, 2009, through April 4, 2013. Pulse pressure was defined as the difference between the systolic and diastolic blood pressures obtained by 24-hour ambulatory monitoring. Carotid-femoral PWV was determined by applanation tonometry. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24-hour urine collections. Multivariate linear and logistic mixed models were used to explore the associations of quartiles of urinary caffeine and metabolite excretions with PP, high PP, and PWV. We included 863 participants with a mean ± SD age of 47.1±17.6 years, 24-hour PP of 41.9±9.2 mm Hg, and PWV of 8.0±2.3 m/s. Mean (SE) brachial PP decreased from 43.5 (0.5) to 40.5 (0.6) mm Hg from the lowest to the highest quartiles of 24-hour urinary caffeine excretion (P<.001). The odds ratio (95% CI) of high PP decreased linearly from 1.0 to 0.52 (0.31-0.89), 0.38 (0.22-0.65), and 0.31 (0.18-0.55) from the lowest to the highest quartile of 24-hour urinary caffeine excretion (P<.001). Mean (SE) PWV in the highest caffeine excretion quartile was significantly lower than in the lowest quartile (7.8 [0.1] vs 8.1 [0.1] m/s; P=.03). Similar associations were found for paraxanthine and theophylline, whereas no associations were found with theobromine. Urinary caffeine, paraxanthine, and theophylline excretions were associated with decreased parameters of arterial stiffness, suggesting a protective effect of caffeine intake beyond its blood pressure-lowering effect. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Dávila-Román, Victor G; Ostlund, Richard E
2017-12-01
Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d 5 and the nonabsorbable stool marker sitostanol-d 4 . Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol ( r =-0.426; P <0.0001), total cholesterol ( r =-0.472; P ≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool ( r =-0.343; P =0.0012) and was positively correlated with percent cholesterol absorption ( r =+0.279; P =0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant ( P =0.0008). Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate measures of reverse cholesterol transport to atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.
Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin.
Takasu, Soo; Parida, Isabella Supardi; Onose, Shinji; Ito, Junya; Ikeda, Ryoichi; Yamagishi, Kenji; Higuchi, Oki; Tanaka, Fukuyo; Kimura, Toshiyuki; Miyazawa, Teruo; Nakagawa, Kiyotaka
2018-01-01
1-Deoxynojirimycin (DNJ) is a potent α-glucosidase inhibitor and thus beneficial for prevention of diabetes. While we have succeeded in obtaining the culture supernatant extract (CSE) rich in DNJ from microorganism source, information regarding its anti-hyperglycemic effect and safety were still limited. Therefore, this study was aimed to evaluate the anti-hyperglycemic effect and safety of microorganism DNJ. Oral sucrose tolerance test was performed, and the result showed that CSE was able to significantly suppress the blood glucose elevation and suggested DNJ as the main active compound. To determine its safety, the absorption and excretion of microorganism DNJ were evaluated using 15N labeling method. Our findings investigated the recovery rate of 15N from DNJ reached 80% up to 48 hours after oral administration, suggesting its rapid excretion, suggesting the safety of DNJ. This study verified the functional properties and safety of DNJ from microorganisms, suggesting its potential use for functional purpose.
2012-01-01
Introduction To evaluate whether alkaline phosphatase (AP) treatment improves renal function in sepsis-induced acute kidney injury (AKI), a prospective, double-blind, randomized, placebo-controlled study in critically ill patients with severe sepsis or septic shock with evidence of AKI was performed. Methods Thirty-six adult patients with severe sepsis or septic shock according to Systemic Inflammatory Response Syndrome criteria and renal injury defined according to the AKI Network criteria were included. Dialysis intervention was standardized according to Acute Dialysis Quality Initiative consensus. Intravenous infusion of alkaline phosphatase (bolus injection of 67.5 U/kg body weight followed by continuous infusion of 132.5 U/kg/24 h for 48 hours, or placebo) starting within 48 hours of AKI onset and followed up to 28 days post-treatment. The primary outcome variable was progress in renal function variables (endogenous creatinine clearance, requirement and duration of renal replacement therapy, RRT) after 28 days. The secondary outcome variables included changes in circulating inflammatory mediators, urinary excretion of biomarkers of tubular injury, and safety. Results There was a significant (P = 0.02) difference in favor of AP treatment relative to controls for the primary outcome variable. Individual renal parameters showed that endogenous creatinine clearance (baseline to Day 28) was significantly higher in the treated group relative to placebo (from 50 ± 27 to 108 ± 73 mL/minute (mean ± SEM) for the AP group; and from 40 ± 37 to 65 ± 30 mL/minute for placebo; P = 0.01). Reductions in RRT requirement and duration did not reach significance. The results in renal parameters were supported by significantly more pronounced reductions in the systemic markers C-reactive protein, Interleukin-6, LPS-binding protein and in the urinary excretion of Kidney Injury Molecule-1 and Interleukin-18 in AP-treated patients relative to placebo. The Drug Safety Monitoring Board did not raise any issues throughout the trial. Conclusions The improvements in renal function suggest alkaline phosphatase is a promising new treatment for patients with severe sepsis or septic shock with AKI. Trial Registration www.clinicaltrials.gov: NCTNCT00511186 PMID:22269279
Measures of Autonomic Nervous System Regulation
2011-04-01
and most often used measures of ANS activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular...regulation, osmotic balance, metabolism, digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and...modulate heart rate, as a function of the respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to
Vazquez, E; Santos-Fandila, A; Buck, R; Rueda, R; Ramirez, M
2017-01-01
Human milk oligosaccharides (HMO) are involved in many biological functions influencing infant health. Although HMO act locally at the intestine, recent evidence has demonstrated that HMO are partially incorporated into the systemic circulation of breast-fed infants. In the last few years, a large amount of research has been conducted using preclinical models to uncover new biological functions of HMO. The aim of this study was to evaluate the absorption and urine excretion of HMO in rats. We administered a single oral dose of the following HMO: 2'-fucosyllactose (2'-FL), 6'-sialyllactose and lacto-N-neotetraose at different concentrations to adult rats. The time course of absorption of HMO into the bloodstream and their appearance in urine was studied. Our results showed that rats, similar to human infants, are able to effectively absorb a portion of HMO from the intestine into plasma and to excrete them in urine. On the basis of this, we also conducted a specific kinetic absorption study with 2'-FL, the most predominant HMO in human milk, in 9-11-d-old rat pups. Our results confirmed that a significant amount of 2'-FL was absorbed into the systemic circulation and subsequently excreted in urine during lactation in rats in a dose-depended manner. We also found basal levels of these HMO in plasma and urine of adult rats as well as rat pups as a natural result of nursing. Our data suggest that the rat may be a useful preclinical model that provides new insights into the metabolism and functions of HMO.
Clifford-Mobley, Oliver; Tims, Christopher; Rumsby, Gill
2015-01-01
Urine oxalate measurement is an important investigation in the evaluation of renal stone disease. Primary hyperoxaluria (PH) is a rare inherited metabolic disease characterised by persistently elevated urine oxalate, but the diagnosis may be missed in adults until renal failure has developed. Urine oxalate results were reviewed to compare oxalate:creatinine ratio and oxalate excretion, and to estimate the potential numbers of undiagnosed PH. Urine oxalate results from August 2011 to April 2013 were reviewed. Oxalate excretion and oxalate:creatinine ratio were evaluated for 24 h collections and ratio alone for spot urine samples. Oxalate:creatinine ratio and oxalate excretion were moderately correlated (R=0.63) in 24-h urine collections from patients aged 18 years and above. Sex-related differences were found requiring implementation of male and female reference ranges for oxalate:creatinine ratio. Of samples with both ratio and excretion above the reference range, 7% came from patients with confirmed PH. There were 24 patients with grossly elevated urine oxalate who had not been evaluated for PH. Oxalate:creatinine ratio and oxalate excretion were discordant in many patients, which is likely to be a result of intra-individual variation in creatinine output and imprecision in the collection itself. Some PH patients had urine oxalate within the reference range on occasion, and therefore it is not possible to exclude PH on the finding of a single normal result. A significant number of individuals had urine oxalate results well above the reference range who potentially have undiagnosed PH and are consequently at risk of renal failure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Temperature and body weight affect fouling of pig pens.
Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T
2006-08-01
Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P < 0.05). Increasing temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P < 0.001). At increasing temperatures, pigs lay more on their sides and less against other pigs (P < 0.001). Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.
Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D; Martin, Javier
2015-08-01
There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era.
Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D.; Martin, Javier
2015-01-01
There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era. PMID:26313548
Ross, Colleen M.; Pleydell, Eve J.; Muirhead, Richard W.
2012-01-01
Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P < 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · g−1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. PMID:22904055
O'Neill, Julie; Healy, Vincent; Johns, Edward J
2017-12-01
What is the central question of this study? Dietary sodium manipulation alters the magnitude of angiotensin-(1-7) [Ang-(1-7)]-induced natriuresis. The present study sought to determine whether this was related to relative changes in the activity of intrarenal Mas and/or AT 1 receptors. What is the main finding and its importance? Angiotensin-(1-7)-induced diuresis and natriuresis is mediated by intrarenal Mas receptors. However, intrarenal AT 1 receptor blockade also had an inhibitory effect on Ang-(1-7)-induced natriuresis and diuresis. Thus, Ang-(1-7)-induced increases in sodium and water excretion are dependent upon functional Mas and AT 1 receptors. We investigated whether angiotensin-(1-7) [Ang-(1-7)]-induced renal haemodynamic and excretory actions were solely dependent upon intrarenal Mas receptor activation or required functional angiotensin II type 1 (AT 1 ) receptors. The renin-angiotensin system was enhanced in anaesthetized rats by prior manipulation of dietary sodium intake. Angiotensin-(1-7) and AT 1 and Mas receptor antagonists were infused into the kidney at the corticomedullary border. Mas receptor expression was measured in the kidney. Mean arterial pressure, urine flow and fractional sodium excretion were 93 ± 4 mmHg, 46.1 ± 15.7 μl min -1 kg -1 and 1.4 ± 0.3%, respectively, in the normal-sodium group and 91 ± 2 mmHg, 19.1 ± 3.3 μl min -1 kg -1 and 0.7 ± 0.2%, respectively, in the low-sodium group. Angiotensin-(1-7) infusion had no effect on mean arterial pressure in rats receiving a normal-sodium diet but decreased it by 4 ± 5% in rats receiving a low-sodium diet (P < 0.05). Interstitial Ang-(1-7) infusion increased urine flow twofold and fractional sodium excretion threefold (P < 0.05) in rats receiving a normal-sodium diet and to a greater extent, approximately three- and fourfold, respectively, in rats receiving the low-sodium diet (both P < 0.05). Angiotensin-(1-7)-induced increases in urine flow and fractional sodium excretion were absent in both dietary groups during intrarenal AT 1 or Mas receptor inhibition after either losartan or A-779, respectively. Thus, AT 1 receptor activation, as well as Mas receptor activation, plays an essential role in mediating Ang-(1-7)-induced natriuresis and diuresis. Whether this is because Ang-(1-7) partly antagonizes AT 1 receptors or whether Ang-(1-7)-induced natriuresis is mediated through AT 1 -Mas receptor dimerization remains unclear. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Hasslacher, Christoph; Kulozik, Felix
2016-09-01
1,5-Anhydroglucitol (1,5-AG) is a new blood glucose control marker reflecting temporary glucose elevations. However, 1,5-AG is of limited value in patients with advanced renal insufficiency. The aim of the present study was to assess the correlation between 1,5-AG levels and renal function in patients with earlier stages of nephropathy compared with another two markers of diabetes control, namely HbA1c and glycated albumin (GA). The following parameters were measured in 377 patients with type 2 diabetes: HbA1c, serum concentrations of 1,5-AG, GA and creatinine, hemoglobin, urinary albumin/creatinine ratio, and urinary excretion of α1 -microglobulin (A1M). Estimated glomerular filtration rate (eGFR) was calculated according to the Cockgroft-Gault formula. There was a negative correlation between 1,5-AG and renal function (r = -0.18; P < 0.001). Concentrations of 1,5-AG were, on average, 27.2% lower in patients with glomerular hyperfiltration (eGFR >120 mL/min) compared with patients with moderate renal impairment (eGFR 30-59 mL/min; P = 0.016). In contrast, HbA1c, GA levels and urinary A1M excretion did not differ between the two patient groups. The mean age of patients with eGFR 30-59 mL/min was substantially higher than that of patients with glomerular hyperfiltration (P < 0.001). Thus, an age-related change in the renal glucose threshold could be the reason for the observed correlation between 1,5-AG and renal function. In clinical practice, age and renal function must be taken into consideration when interpreting 1,5-AG levels, even in the absence of advanced renal impairment. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
2011-01-01
Background Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill's criteria. Methods Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined. Results Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis. Conclusions A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health. PMID:21529374
Fenton, Tanis R; Tough, Suzanne C; Lyon, Andrew W; Eliasziw, Misha; Hanley, David A
2011-04-30
Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill's criteria. Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined. Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis. A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health.
Christensen, Jennie R; Letcher, Robert J; Ross, Peter S
2009-10-01
Major pharmacokinetic processes influencing polychlorinated biphenyl (PCB) accumulation in mammals include uptake, biotransformation, respiration, and excretion. We characterized some of the factors underlying PCB accumulation/loss by evaluating PCB concentrations and patterns in pre- and posthibernation grizzly bears (Ursus arctos horribilis) and their prey. The PCB congeners with vicinal meta- and para-chlorine unsubstituted hydrogen positions consistently showed loss both before and during hibernation, supporting the idea of a dominant role for biotransformation. Retention of all other studied congeners relative to that of PCB 194 varied widely (from <1 to 100%) and was highly correlated with log octanol-water partition coefficient (p < 0.0001). A lack of loss for most of these other congeners during hibernation supports the notion that excretion (e.g., fecal or urinary) or lack of uptake during the feeding season underlies their lack of accumulation, because hibernating bears do not eat or excrete. We estimate that grizzly bears retain less than 10% of total PCBs taken up from their diet. Our results suggest that for grizzly bears, depuration of PCBs via biotransformation is important (explaining approximately 40% of loss), but that nonbiotransformation processes, such as excretion, may be more important (explaining approximately 60% of loss). These findings, together with the approximately 91% loss of the persistent PCB 153 congener relative to PCB 194 in grizzly bears, raise important questions about how one defines persistence of PCBs in wildlife and may have bearing on the interpretation of food-web biomagnification studies.
Harris, Breanna N.; Saltzman, Wendy; de Jong, Trynke R.; Milnes, Matthew R.
2012-01-01
The California mouse, Peromyscus californicus, is an increasingly popular animal model in behavioral, neural, and endocrine studies, but little is known about its baseline hypothalamicpituitary-adrenal (HPA) axis activity or HPA responses to stressors. We characterized plasma corticosterone (CORT) concentrations in P. californicus under baseline conditions across the diurnal cycle, in response to pharmacological manipulation of the HPA axis, and in response to a variety of stressors at different times of day. In addition, we explored the use of fecal samples to monitor adrenocortical activity non-invasively. California mice have very high baseline levels of circulating CORT that change markedly over 24 hours, but that do not differ between the sexes. This species may be somewhat glucocorticoid-resistant in comparison to other rodents as a relatively high dose of dexamethasone (5 mg/kg, s.c.) was required to suppress plasma CORT for 8 h post-injection. CORT responses to stressors and ACTH injection differed with time of day, as CORT concentrations were elevated more readily during the morning (inactive period) than in the evening (active period) when compared to time-matched control. Data from 3H-CORT injection studies show that the time course for excretion of fecal CORT, or glucocorticoid metabolites, differs with time of injection. Mice injected in the evening excreted the majority of fecal radioactivity 2–4 h post-injection whereas mice injected during the morning did so at 14–16 h post-injection. Unfortunately, the antibody we used does not adequately bind the most prevalent fecal glucocorticoid metabolites and therefore we could not validate its use for fecal assays. PMID:23026495
Goldfarb, David S; MacDonald, Patricia A; Gunawardhana, Lhanoo; Chefo, Solomon; McLean, Lachy
2013-11-01
Higher urinary uric acid excretion is a suspected risk factor for calcium oxalate stone formation. Febuxostat, a xanthine oxidoreductase inhibitor, is effective in lowering serum urate concentration and urinary uric acid excretion in healthy volunteers and people with gout. This work studied whether febuxostat, compared with allopurinol and placebo, would reduce 24-hour urinary uric acid excretion and prevent stone growth or new stone formation. In this 6-month, double-blind, multicenter, randomized controlled trial, hyperuricosuric participants with a recent history of calcium stones and one or more radio-opaque calcium stone ≥ 3 mm (as seen by multidetector computed tomography) received daily febuxostat at 80 mg, allopurinol at 300 mg, or placebo. The primary end point was percent change from baseline to month 6 in 24-hour urinary uric acid. Secondary end points included percent change from baseline to month 6 in size of index stone and change from baseline in the mean number of stones and 24-hour creatinine clearance. Of 99 enrolled participants, 86 participants completed the study. Febuxostat led to significantly greater reduction in 24-hour urinary uric acid (-58.6%) than either allopurinol (-36.4%; P=0.003) or placebo (-12.7%; P<0.001). Percent change from baseline in the size of the largest calcium stone was not different with febuxostat compared with allopurinol or placebo. There was no change in stone size, stone number, or renal function. No new safety concerns were noted for either drug. Febuxostat (80 mg) lowered 24-hour urinary uric acid significantly more than allopurinol (300 mg) in stone formers with higher urinary uric acid excretion after 6 months of treatment. There was no change in stone size or number over the 6-month period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Csanaky, Iván L.; Aleksunes, Lauren M.
Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity ofmore » the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.« less
Lutale, Janet Joy Kachuchuru; Thordarson, Hrafnkell; Abbas, Zulfiqarali Gulam; Vetvik, Kåre
2007-01-01
Background The prevalences and risk factors of microalbuminuria are not full described among black African diabetic patients. This study aimed at determining the prevalence of microalbuminuria among African diabetes patients in Dar es Salaam, Tanzania, and relate to socio-demographic features as well as clinical parameters. Methods Cross sectional study on 91 Type 1 and 153 Type 2 diabetic patients. Two overnight urine samples per patient were analysed. Albumin concentration was measured by an automated immunoturbidity assay. Average albumin excretion rate (AER) was used and were categorised as normalbuminuria (AER < 20 ug/min), microalbuminuria (AER 20–200 ug/min), and macroalbuminuria (AER > 200 ug/min). Information obtained also included age, diabetes duration, sex, body mass index, blood pressure, serum total cholesterol, high-density and low-density lipoprotein cholesterol, triglycerides, serum creatinine, and glycated hemoglobin A1c. Results Overall prevalence of microalbuminuria was 10.7% and macroalbuminuria 4.9%. In Type 1 patients microalbuminuria was 12% and macroalbuminuria 1%. Among Type 2 patients, 9.8% had microalbuminuria, and 7.2% had macroalbuminuria. Type 2 patients with abnormal albumin excretion rate had significantly longer diabetes duration 7.5 (0.2–24 yrs) than those with normal albumin excretion rate 3 (0–25 yrs), p < 0.001. Systolic and diastolic blood pressure among Type 2 patients with abnormal albumin excretion rate were significantly higher than in those with normal albumin excretion rate, (p < 0.001). No significant differences in body mass index, glycaemic control, and cholesterol levels was found among patients with normal compared with those with elevated albumin excretion rate either in Type 1 or Type 2 patients. A stepwise multiple linear regression analysis among Type 2 patients, revealed AER (natural log AER) as the dependent variable to be predicted by [odds ratio (95% confidence interval)] diabetes duration 0.090 (0.049, 0.131), p < 0.0001, systolic blood pressure 0.012 (0.003–0.021), p < 0.010 and serum creatinine 0.021 (0.012, 0.030). Conclusion The prevalence of micro and macroalbuminuria is higher among African Type 1 patients with relatively short diabetes duration compared with prevalences among Caucasians. In Type 2 patients, the prevalence is in accordance with findings in Caucasians. The present study detects, however, a much lower prevalence than previously demonstrated in studies from sub-Saharan Africa. Abnormal AER was significantly related to diabetes duration and systolic blood pressure. PMID:17224056
Laurberg, Peter; Knudsen, Nils; Andersen, Stig; Carlé, Allan; Pedersen, Inge Bülow; Karmisholt, Jesper
2012-10-01
Important interaction exists between thyroid function, weight control, and obesity. Several mechanisms seem to be involved, and in studies of groups of people the pattern of thyroid function tests depends on the balance of obesity and underlying thyroid disease in the cohort studied. Obese people with a normal thyroid gland tend to have activation of the hypothalamic-pituitary-thyroid axis with higher serum TSH and thyroid hormones in serum. On the other hand, small differences in thyroid function are associated with up to 5 kg difference in body weight. The weight loss after therapy of overt hypothyroidism is caused by excretion of water bound in tissues (myxoedema). Many patients treated for hyperthyroidism experience a gain of more weight than they lost during the active phase of the disease. The mechanism for this excessive weight gain has not been fully elucidated. New studies on the relation between L-T3 therapy and weight control are discussed. The interaction between weight control and therapy of thyroid disease is important to many patients and it should be studied in more detail.
Excretion of anti-angiogenic proteins in patients with chronic allograft dysfunction.
Moskowitz-Kassai, Eliza; Mackelaite, Lina; Chen, Jun; Patel, Kaushal; Dadhania, Darshana M; Gross, Steven S; Chander, Praveen; Delaney, Vera; Deng, Luqin; Chen, Ligong; Cui, Xiangqin; Suthanthiran, Manikkam; Goligorsky, Michael S
2012-02-01
We have recently documented the appearance of an anti-angiogenic peptide, endorepellin, in the urine of patients with chronic allograft dysfunction (CAD). Here, we analyzed using enzyme-linked immunosorbent assay the excretion of anti-angiogenic peptides endostatin, pigment epithelium-derived factor (PEDF) and Kruppel-like factor-2 (KLF-2), in healthy individuals, patients with stable graft function and patients with various degrees of CAD. In healthy subjects and patients with CAD-0, endostatin, PEDF and KLF-2 excretions were at the level of detection. In contrast, there were significant differences between the patients with CAD-3 and CAD-0, CAD-1 and healthy controls for endostatin and CAD-0 versus CAD-3 for PEDF, but no differences in KLF-2 excretion. Receiver operating characteristic (ROC) curve analyses demonstrated a highly discriminative profile for all three biomarkers: the combination of these parameters offered 83% sensitivity and 90% specificity in distinguishing CAD-0 from CAD-1-3. The quality of these potential biomarkers of CAD was, however, highest in discriminating CAD status in biopsy-proven cases and dropped when CAD-0 was diagnosed based on clinical criteria. In conclusion, these findings indicate the diagnostic potential of urinary detection of endostatin, PEDF and to lesser degree KLF-2 and suggest a mechanistic role played by anti-angiogenic substances in the developing vasculopathy and vascular rarefaction in patients with CAD.
Cawello, Willi; Ahrweiler, Sascha; Sulowicz, Wladyslaw; Szymczakiewicz-Multanowska, Agnieszka; Braun, Marina
2012-01-01
To evaluate the influence of different stages of chronic renal insufficiency on the pharmacokinetics and safety/tolerability of the transdermally applied dopamine agonist rotigotine in an open label group comparison including 32 subjects (healthy, mild, moderate or severe impairment of renal function and patients with end-stage renal insufficiency requiring haemodialysis). METHODS All subjects received a single transdermal 10 cm² patch (24 h patch-on period) containing 4.5 mg rotigotine (nominal drug release 2 mg 24 h⁻¹). Main evaluations included relative bioavailability and renal elimination of rotigotine and its metabolites. Point estimates for the ratios between the groups with moderate to severe renal impairment and healthy subjects for the pharmacokinetic parameters AUC(0,t(last) ) and C(max) for the active substance unconjugated rotigotine were near 1:0.88 for AUC and 0.93 for C(max) for moderate renal impairment, 1.14 and 1.18 for severe renal impairment and 1.05 and 1.25 for end-stage renal insufficiency requiring haemodialysis. There was no correlation of these parameters with creatinine clearance. The amount of unconjugated rotigotine excreted into urine and renal clearance decreased with increasing severity of renal insufficiency but had no observable effect on total clearance as the amounts excreted were below 1% of the administered dose. Occurrence of adverse events did not increase with the degree of renal insufficiency. The pharmacokinetic profiles of unconjugated rotigotine were similar in healthy subjects and subjects with impaired renal function indicating that no dose adjustments are required for transdermal rotigotine in patients with different stages of chronic renal insufficiency including patients on haemodialysis. © 2011 UCB Biosciences GmbH. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Cawello, Willi; Ahrweiler, Sascha; Sulowicz, Wladyslaw; Szymczakiewicz-Multanowska, Agnieszka; Braun, Marina
2012-01-01
AIM To evaluate the influence of different stages of chronic renal insufficiency on the pharmacokinetics and safety/tolerability of the transdermally applied dopamine agonist rotigotine in an open label group comparison including 32 subjects (healthy, mild, moderate or severe impairment of renal function and patients with end-stage renal insufficiency requiring haemodialysis). METHODS All subjects received a single transdermal 10 cm2 patch (24 h patch-on period) containing 4.5 mg rotigotine (nominal drug release 2 mg 24 h−1). Main evaluations included relative bioavailability and renal elimination of rotigotine and its metabolites. RESULTS Point estimates for the ratios between the groups with moderate to severe renal impairment and healthy subjects for the pharmacokinetic parameters AUC(0,tlast) and Cmax for the active substance unconjugated rotigotine were near 1:0.88 for AUC and 0.93 for Cmax for moderate renal impairment, 1.14 and 1.18 for severe renal impairment and 1.05 and 1.25 for end-stage renal insufficiency requiring haemodialysis. There was no correlation of these parameters with creatinine clearance. The amount of unconjugated rotigotine excreted into urine and renal clearance decreased with increasing severity of renal insufficiency but had no observable effect on total clearance as the amounts excreted were below 1% of the administered dose. Occurrence of adverse events did not increase with the degree of renal insufficiency. CONCLUSIONS The pharmacokinetic profiles of unconjugated rotigotine were similar in healthy subjects and subjects with impaired renal function indicating that no dose adjustments are required for transdermal rotigotine in patients with different stages of chronic renal insufficiency including patients on haemodialysis. PMID:21707699
Relationship between self-reported mental stressors at the workplace and salivary cortisol.
Maina, Giovanni; Palmas, Antonio; Filon, Francesca Larese
2008-02-01
To investigate the association between work stress measures and salivary cortisol excretion in working and weekend days. In a sample of 68 healthy young call-centre operators dimensions of job stress from the demand-control model were related to repeated measures of salivary cortisol on seven samples (at awakening, +30 min, +60 min, + 3 h, +6 h, +9 h, and +12 h after awakening) at two working days and a weekend day. The cortisol excretion on work days was higher than during weekend day with gender-specific differences as women only showed higher significant values for area under the curve (AUC(G)) and Diurnal cycle (chi(2) (2) = 8.10, P < 0.05; chi(2) (2) = 15.75, P < 0.05, respectively). There were no associations between job demand, job control and cortisol excretion, while the sociodemographic characteristics of the call-centre operators showed linear relation with the diurnal pattern of cortisol secretory activity. The hypothalamic-pituitary adrenocortical axis activation was higher in working day than in weekend day. This activation measured by salivary cortisol was not related to self-reported mental stressors assessed with job strain model. The availability of more specific psychometric scales would be useful to explore the relationship between salivary cortisol levels and measures of mental stress at workplace.
Brauner, C J; Matey, V; Wilson, J M; Bernier, N J; Val, A L
2004-04-01
The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.
Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub
2011-01-01
The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.
Goempel, Katharina; Tedsen, Laura; Ruenz, Meike; Bakuradze, Tamara; Schipp, Dorothea; Galan, Jens; Eisenbrand, Gerhard; Richling, Elke
2017-11-01
The aim of the present study was to explore the relation of controlled dietary acrylamide (AA) intake with the excretion of AA-related urinary mercapturic acids (MA), N-acetyl-S-(carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA). Excretion kinetics of these short-term exposure biomarkers were monitored under strictly controlled conditions within a duplicate diet human intervention study. One study arm (group A, n = 6) ingested AA via coffee (0.15-0.17 µg/kg bw) on day 6 and in a meal containing an upper exposure level of AA (14.1-15.9 μg/kg bw) on day 10. The other arm (group B) was on AA minimized diet (washout, 0.05-0.06 µg/kg bw) throughout the whole 13-day study period. On day 6, these volunteers ingested 13 C 3 D 3 -AA (1 μg/kg bw). In both arms, urinary MA excretion was continuously monitored and blood samples were taken to determine hemoglobin adducts. Ingestion of four cups of coffee resulted in a slightly enhanced short-term biomarker response within the background range of group B. At the end of the 13-day washout period, group B excreted an AAMA baseline level of 0.14 ± 0.10 µmol/d although AA intake was only about 0.06 µmol/d. This sustained over-proportional AAMA background suggested an endogenous AA baseline exposure level of 0.3-0.4 µg/kg bw/d. The excretion of 13 C 3 D 3 -AA was practically complete within 72-96 h which rules out delayed release of AA (or any other MA precursor) from deep body compartments. The results provide compelling support for the hypothesis of a sustained endogenous AA formation in the human body.
Zhu, Ke-Xue; Nie, Shao-Ping; Tan, Le-He; Li, Chuan; Gong, De-Ming; Xie, Ming-Yong
2016-03-09
The present study was to evaluate the beneficial effect of polysaccharide isolated from Ganoderma atrum (PSG-1) on liver function in type 2 diabetic rats. Results showed that PSG-1 decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), while increasing hepatic glycogen levels. PSG-1 also exerted strong antioxidant activities, together with upregulated mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), glucose transporter-4 (GLUT4), phosphoinositide 3-kinase (PI3K), and phosphorylated-Akt (p-Akt) in the liver of diabetic rats. Moreover, the concentrations of short-chain fatty acids (SCFA) were significantly higher in the liver, serum, and faeces of diabetic rats after treating with PSG-1 for 4 weeks. These results suggest that the improvement of PSG-1 on liver function in type 2 diabetic rats may be due to its antioxidant effects, SCFA excretion in the colon from PSG-1, and regulation of hepatic glucose uptake by inducing GLUT4 translocation through PI3K/Akt signaling pathways.
Aschoff, Julian K; Riedl, Ken M; Cooperstone, Jessica L; Högel, Josef; Bosy-Westphal, Anja; Schwartz, Steven J; Carle, Reinhold; Schweiggert, Ralf M
2016-12-01
Orange juice contains flavanones including hesperidin and narirutin, albeit at lower concentrations as compared to orange fruit. Therefore, we compared bioavailability and colonic catabolism of flavanones from orange juice to a 2.4-fold higher dose from fresh oranges. Following a randomized two-way cross-over design, 12 healthy subjects consumed a test meal comprising either fresh oranges or pasteurized orange juice, delivering 1774 and 751 μmol of total Citrus flavanones, respectively. Deglucuronidated and desulfated hesperetin, naringenin, and the flavanone catabolites 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 4-hydroxyhippuric acid, and hippuric acid were quantitated in 24-h urine by UHPLC-MS/MS. Differences in urinary hesperetin excretion were found to be nonsignificant (p = 0.5209) both after consumption of orange fruit (21.6 ± 8.0 μmol) and juice (18.3 ± 7.2 μmol). By analogy, postprandial flavanone catabolite excretions were highly similar between treatments. Excretion of 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid was inversely related to that of hesperetin, illustrating the catabolite/precursor relationship. Despite 2.4-fold higher doses, excretion of flavanones from ingested fresh orange fruit did not differ from that following orange juice consumption, possibly due to a saturation of absorption or their entrapment in the fiber-rich matrix of the fruit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Urine oxalate biological variation in patients with primary hyperoxaluria.
Clifford-Mobley, Oliver; Sjögren, Anna; Lindner, Elisabeth; Rumsby, Gill
2016-08-01
Hyperoxaluria is a well-recognised risk factor for urolithiasis and patients with primary hyperoxaluria (PH) gradually build up calcium oxalate deposits leading to chronic kidney disease. Efforts to improve treatment for PH have focused on reducing urine oxalate excretion and thus decreasing lithogenesis. To determine the efficacy of treatments designed to alter a biochemical parameter it is necessary to know the biological and analytical variation of that parameter. In this study, we estimated the intra-individual biological variation of urine oxalate excretion in patients with PH, and from this determined what would constitute a significant change in the form of a reference change value (RCV). Each patient collected four 24-h urines on consecutive weeks. The intra-individual biological variation of oxalate excretion calculated from these samples ranged from 0 to 36 % with a mean of 14 %. The corresponding RCVs were 4-84 % with a mean of 32 %. This result implies that, on average, a reduction of almost one-third in urine oxalate excretion is required to prove an effect from treatment. The wide range of biological variation between individuals may reflect other, as yet unknown, determinants of oxaluria in PH, as well as inaccuracies in urine collection. The data suggest that it is more appropriate to use individual RCVs established prior to treatment to determine its efficacy: a relatively small fall in urine oxalate excretion may be outside the biological variation of some patients but not of others.
Blázquez-Medela, Ana M; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M; Romero, Miguel; Duarte, Juan M; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos
2015-10-01
Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.
The salt-taste threshold in untreated hypertensive patients.
Kim, Chang-Yeon; Ye, Mi-Kyung; Lee, Young Soo
2017-01-01
The salt-taste threshold can influence the salt appetite, and is thought to be another marker of sodium intake. Many studies have mentioned the relationship between the sodium intake and blood pressure (BP). The aim of this study was to evaluate the relationship between the salt-taste threshold and urinary sodium excretion in normotensive and hypertensive groups. We analyzed 199 patients (mean age 52 years, male 47.3%) who underwent 24-h ambulatory BP monitoring (ABPM). Hypertension was diagnosed as an average daytime systolic BP of ≥135 mmHg or diastolic BP of ≥85 mmHg by the ABPM. We assessed the salt-taste threshold using graded saline solutions. The salt-taste threshold, 24-h urinary sodium and potassium excretion, and echocardiographic data were compared between the control and hypertensive groups. The detection and recognition threshold of the salt taste did not significantly differ between the control and hypertensive groups. The 24-h urinary sodium excretion of hypertensive patients was significantly higher than that of the control group (140.9 ± 59.8 vs. 117.9 ± 57.2 mEq/day, respectively, p = 0.011). Also, the urinary sodium-potassium ratio was significantly higher in the hypertensive patients. There was no correlation between the salt-taste threshold and 24-h urinary sodium excretion. The salt-taste threshold might not be related to the BP status as well as the 24-h urinary sodium excretion.
A review of the consequences of fluid and electrolyte shifts in weightlessness
NASA Technical Reports Server (NTRS)
Leach, C. S.
1979-01-01
This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.
A review of the consequences of fluid and electrolyte shifts in weightlessness
NASA Technical Reports Server (NTRS)
Leach, C. S.
1978-01-01
This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Walter R.; Griffiths, Natalie A.
Primary consumers play important roles in the cycling of nutrients in headwater streams, storing assimilated nutrients in growing tissue and recycling them through excretion. Though environmental conditions in most headwater streams and their surrounding terrestrial ecosystems vary considerably over the course of a year, relatively little is known about the effects of seasonality on consumer nutrient recycling these streams. Here, we measured nitrogen accumulated through growth and excreted by the grazing snail Elimia clavaeformis (Pleuroceridae) over the course of 12 months in Walker Branch, identifying close connections between in-stream nitrogen processing and seasonal changes in the surrounding forest.
Variability of urinary salt excretion estimated by spot urine in treated hypertensive patients.
Arakawa, Kimika; Sakaki, Minako; Sakata, Satoko; Oniki, Hideyuki; Tominaga, Mitsuhiro; Tsuchihashi, Takuya
2015-01-01
Among the several methods used to assess salt intake, estimating 24 h urinary salt excretion by spot urine seems appropriate for clinical practice. In this study, we investigated variability in urinary salt excretion using spot urine in hypertensive outpatients. Participants included 200 hypertensive patients who underwent spot urinary salt excretion at least three times during the observation period. Mean urinary salt excretion and the coefficient of the variation were 8.62 ± 1.96 g/day and 19.0 ± 10.2%, respectively. In the analysis of participants who underwent assessment of urinary salt excretion at least eight times (n = 54), a significant reduction in mean urinary salt excretion was found at the 5th measurement. On the contrary, the coefficient of the variation of urinary salt excretion continued to increase until the 5th measurement, and became stable thereafter. Mean urinary salt excretion was positively correlated with mean clinic diastolic blood pressure (r = 0.27, p < 0.05). Clinic diastolic blood pressure in the high urinary salt excretion group (≥ 10 g/day) was significantly higher than that of the low group (76.2 ± 7.5 vs 73.4 ± 8.3 mmHg, p < 0.05). Mean urinary salt excretion in summer was significantly lower than that of the other seasons (7.75 ± 1.94 vs 9.09 ± 2.68 (spring), 8.72 ± 2.12 (autumn), 8.92 ± 2.17 (winter) g/day, p < 0.01). In conclusion, repeated measurements of urinary salt excretion using spot urine are required to assess daily salt intake of hypertensive patients.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis; ...
2017-03-06
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
A global database of nitrogen and phosphorus excretion rates of aquatic animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanni, Michael J.; McIntyre, Peter B.; Allen, Dennis
Though their importance varies greatly among species and ecosystems, animals can be important in modulating ecosystem-level nutrient cycling. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater andmore » marine animals of N and/or P excretion rates. Furthermore, these observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. We used this data set to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).« less
Wang, Yang; Hu, Jia-Wen; Qu, Peng-Fei; Wang, Ke-Ke; Yan, Yu; Chu, Chao; Zheng, Wen-Ling; Xu, Xian-Jing; Lv, Yong-Bo; Ma, Qiong; Gao, Ke; Yuan, Yue; Li, Hao; Yuan, Zu-Yi; Mu, Jian-Jun
2018-05-17
High uric acid (UA) level and high salt intake are reportedly associated with cardiovascular disease. This study investigated the association between UA and urinary sodium excretion, as well as its interaction on the risk of prehypertension. A total of 1869 participants without hypertension were recruited from a previously established cohort in Shaanxi Province, China. The participants were classified as normotensive or prehypertensive on the basis of their blood pressure. Increasing quartiles of sodium excretion were associated with high urinary UA/creatinine levels in prehypertensive participants. Estimated sodium excretion positively correlated with urinary UA/creatinine excretions in the prehypertensive group. In addition, the multivariate-adjusted odds ratios for prehypertension compared with normotension were 1.68 (1.27-2.22) for sodium excretion and 1.71 (1.21-2.42) for serum UA. Increasing sodium excretion and serum UA were associated with higher risk of prehypertension. Compared with the lowest quartiles, the highest sodium excretion and serum UA quartiles entailed 3.48 times greater risk of prehypertension. Sodium excretion is associated with urinary UA excretion in prehypertensive participants. The present study shows that high levels of salt intake and serum UA simultaneously are associated with a higher risk of prehypertension.
Stamler, Jeremiah; Chan, Queenie; Daviglus, Martha L; Dyer, Alan R; Van Horn, Linda; Garside, Daniel B; Miura, Katsuyuki; Wu, Yangfeng; Ueshima, Hirotsugu; Zhao, Liancheng; Elliott, Paul
2018-04-01
Available data indicate that dietary sodium (as salt) relates directly to blood pressure (BP). Most of these findings are from studies lacking dietary data; hence, it is unclear whether this sodium-BP relationship is modulated by other dietary factors. With control for multiple nondietary factors, but not body mass index, there were direct relations to BP of 24-hour urinary sodium excretion and the urinary sodium/potassium ratio among 4680 men and women 40 to 59 years of age (17 population samples in China, Japan, United Kingdom, and United States) in the INTERMAP (International Study on Macro/Micronutrients and Blood Pressure), and among its 2195 American participants, for example, 2 SD higher 24-hour urinary sodium excretion (118.7 mmol) associated with systolic BP 3.7 mm Hg higher. These sodium-BP relations persisted with control for 13 macronutrients, 12 vitamins, 7 minerals, and 18 amino acids, for both sex, older and younger, blacks, Hispanics, whites, and socioeconomic strata. With control for body mass index, sodium-BP-but not sodium/potassium-BP-relations were attenuated. Normal weight and obese participants manifested significant positive relations to BP of urinary sodium; relations were weaker for overweight people. At lower but not higher levels of 24-hour sodium excretion, potassium intake blunted the sodium-BP relation. The adverse association of dietary sodium with BP is minimally attenuated by other dietary constituents; these findings underscore the importance of reducing salt intake for the prevention and control of prehypertension and hypertension. URL: https://www.clinicaltrials.gov. Unique identifier: NCT00005271. © 2018 American Heart Association, Inc.
Martin, Paul; Oliver, Stuart; Gillen, Michael; Marbury, Thomas; Millson, David
2015-12-01
Phase III trials of fostamatinib, an oral spleen tyrosine kinase inhibitor, in the treatment of rheumatoid arthritis have been completed. Herein, we report the effects of renal and hepatic impairment on the pharmacokinetic (PK) properties of the active metabolite of fostamatinib, R406, in plasma, and on the urinary excretion of R406 and its metabolite N-glucuronide. Two Phase I, single-center, open-label clinical trials determined the PK properties and tolerability of fostamatinib in subjects with normal or impaired renal or hepatic function. Twenty-four subjects in the study in renal impairment (8 per group: normal renal function, moderate renal dysfunction, or end-stage renal disease [ESRD]), and 32 subjects in the study in hepatic impairment (8 per group: normal hepatic function or mild, moderate, or severe hepatic impairment) received a single 150-mg dose of fostamatinib. Patients with ESRD in the study in renal impairment participated in 2 treatment periods separated by a ≥1-week washout. In these patients, fostamatinib was administered after dialysis or 2 hours before dialysis. Geometric mean R406 Cmax and AUC values were less in the combined renally impaired group than in the group with normal renal function; Tmax was similar across groups. However, renal impairment had no apparent effect considered clinically relevant on unbound R406. In patients with ESRD, R406 exposure was less when fostamatinib was administered after compared with before dialysis. Urinary excretion of R406 N-glucuronide was decreased with increasing severity of renal impairment. Renal elimination of R406 was negligible in all groups. Varying degrees of hepatic impairment had no consistent effects on the PK properties of R406. R406 Cmax values were 10% to 15% less in all hepatically impaired groups than in the group with normal hepatic function. AUC and Tmax values were similar between the groups with normal and severely impaired hepatic function; in the groups with mild or moderate hepatic impairment, AUC was less and Tmax was greater. The geometric mean percentage of unbound R406 ranged from 0.64% to 1.95% and was greatest in the group with severe hepatic impairment. The urinary excretion of R406 was minimal. The amount of R406 N-glucuronide excreted in urine was greater in severely hepatically impaired patients. Fostamatinib 150 mg was generally well tolerated. In these patients, renal or hepatic impairment did not affect exposure to the active metabolite of fostamatinib, R406, to a clinically relevant extent. ClinicalTrials.gov identifiers: NCT01245790 (renal) and NCT01222455 (hepatic). Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
Pingili, Ajeeth K.; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David; Katsurada, Akemi; Majid, Dewan S. A.; Navar, L. Gabriel; Gonzalez, Frank J.; Malik, Kafait U.
2016-01-01
6β-hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension and end organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1+/+ and Cyp1b1−/− mice. Castration of Cyp1b1+/+ mice or Cyp1b1−/− gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1+/+ mice, but restored these effects of angiotensin II in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin converting enzyme. 6β-hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin converting enzyme in Cyp1b1+/+ mice; however, in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in males. PMID:26928804
Lever, Michael; George, Peter M.; Atkinson, Wendy; Elmslie, Jane L.; Slow, Sandy; Molyneux, Sarah L.; Troughton, Richard W.; Richards, A. Mark; Frampton, Christopher M.; Chambers, Stephen T.
2012-01-01
Background Urinary betaine excretion positively correlated with plasma homocysteine in outpatients attending a lipid disorders clinic (lipid clinic study). We aimed to confirm this in subjects with established vascular disease. Methods The correlation between betaine excretion and homocysteine was compared in samples collected from subjects 4 months after hospitalization for an acute coronary episode (ACS study, 415 urine samples) and from 158 sequential patients visiting a lipid disorders clinic. Principal findings In contrast to the lipid clinic study, betaine excretion and plasma homocysteine did not correlate in the total ACS cohort. Differences between the patient groups included age, non-HDL cholesterol and medication. In ACS subjects with below median betaine excretion, excretion correlated (using log transformed data) negatively with plasma homocysteine (r = −0.17, p = 0.019, n = 199), with no correlation in the corresponding subset of the lipid clinic subjects. In ACS subjects with above median betaine excretion a positive trend (r = +0.10) between betaine excretion and homocysteine was not significant; the corresponding correlation in lipid clinic subjects was r = +0.42 (p = 0.0001). In ACS subjects, correlations were stronger when plasma non-HDL cholesterol and betaine excretion were above the median, r = +0.20 (p = 0.045); in subjects above median non-HDL cholesterol and below median betaine excretion, r = −0.26 (p = 0.012). ACS subjects taking diuretics or proton pump inhibitors had stronger correlations, negative with lower betaine excretion and positive with higher betaine excretion. Conclusions Betaine excretion correlates with homocysteine in subjects with elevated blood lipids. PMID:22396767
Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones.
Prochaska, Megan; Taylor, Eric; Vaidya, Anand; Curhan, Gary
2017-08-07
Previous studies have demonstrated lower bone density in patients with kidney stones, but no longitudinal studies have evaluated kidney stone risk in individuals with low bone density. Small studies with short follow-up reported reduced 24-hour urine calcium excretion with bisphosphonate use. We examined history of low bone density and bisphosphonate use and the risk of incident kidney stone as well as the association with 24-hour calcium excretion. We conducted a prospective analysis of 96,092 women in the Nurses' Health Study II. We used Cox proportional hazards models to adjust for age, body mass index, thiazide use, fluid intake, supplemental calcium use, and dietary factors. We also conducted a cross-sectional analysis of 2294 participants using multivariable linear regression to compare 24-hour urinary calcium excretion between participants with and without a history of low bone density, and among 458 participants with low bone density, with and without bisphosphonate use. We identified 2564 incident stones during 1,179,860 person-years of follow-up. The multivariable adjusted relative risk for an incident kidney stone for participants with history of low bone density compared with participants without was 1.39 (95% confidence interval [95% CI], 1.20 to 1.62). Among participants with low bone density, the multivariable adjusted relative risk for an incident kidney stone for bisphosphonate users was 0.68 (95% CI, 0.48 to 0.98). In the cross-sectional analysis of 24-hour urine calcium excretion, the multivariable adjusted mean difference in 24-hour calcium was 10 mg/d (95% CI, 1 to 19) higher for participants with history of low bone density. However, among participants with history of low bone density, there was no association between bisphosphonate use and 24-hour calcium with multivariable adjusted mean difference in 24-hour calcium of -2 mg/d (95% CI, -25 to 20). Low bone density is an independent risk factor for incident kidney stone and is associated with higher 24-hour urine calcium excretion. Among participants with low bone density, bisphosphonate use was associated with lower risk of incident kidney stone but was not independently associated with 24-hour urine calcium excretion. Copyright © 2017 by the American Society of Nephrology.
Brix, Kevin V; Wood, Chris M; Grosell, Martin
2013-01-01
In this study, Na(+) uptake and acid-base balance in the euryhaline pupfish Cyprinodon variegatus variegatus were characterized when fish were exposed to pH 4.5 freshwater (7mM Na(+)). Similar to the related cyprinodont, Fundulus heteroclitus, Na(+) uptake was significantly inhibited when exposed to low pH water. However, it initially appeared that C. v. variegatus increased apparent net acid excretion at low pH relative to circumneutral pH. This result is opposite to previous observations for F. heteroclitus under similar conditions where fish were observed to switch from apparent net H(+) excretion at circumneutral pH to apparent net H(+) uptake at low pH. Further investigation revealed disparate observations between these studies were the result of using double endpoint titrations to measure titratable alkalinity fluxes in the current study, while the earlier study utilized single endpoint titrations to measure these fluxes (i.e.,. Cyprinodon acid-base transport is qualitatively similar to Fundulus when characterized using single endpoint titrations). This led to a comparative investigation of these two methods. We hypothesized that either the single endpoint methodology was being influenced by a change in the buffer capacity of the water (e.g., mucus being released by the fish) at low pH, or the double endpoint methodology was not properly accounting for ammonia flux by the fish. A series of follow-up experiments indicated that buffer capacity of the water did not change significantly, that excretion of protein (a surrogate for mucus) was actually reduced at low pH, and that the double endpoint methodology does not properly account for NH(3) excretion by fish under low pH conditions. As a result, it overestimates net H(+) excretion during low pH exposure. After applying the maximum possible correction for this error (i.e., assuming that all ammonia is excreted as NH(3)), the double endpoint methodology indicates that net H(+) transport was reduced to effectively zero in both species at pH 4.5. However, significant differences between the double endpoint (no net H(+) transport at low pH) and single endpoint titrations (net H(+) uptake at low pH) remain to be explained. Copyright © 2012 Elsevier Inc. All rights reserved.
Caniggia, A; Gennari, C; Vattimo, A; Nardi, P; Nuti, R; Galli, M
1976-04-20
Bovine synthetic parathyroid hormone infused intravenously in man increased both the urinary excretion of cyclic AMP and the urinary excretion of phosphate whereas a Salmon synthetic calcitonin infusion increased the urinary excretion of phosphate without change in urinary excretion of cyclic AMP. These data are consistent with the hypothesis that different renal mechanisms are involved in the response to each hormone.
[Clinical characteristics and renal uric acid excretion in early-onset gout patients].
Li, Q H; Liang, J J; Chen, L X; Mo, Y Q; Wei, X N; Zheng, D H; Dai, L
2018-03-01
Objective: To investigate clinical characteristics and renal uric acid excretion in early-onset gout patients. Methods: Consecutive inpatients with primary gout were recruited between 2013 and 2017. The patients with gout onset younger than 30 were defined as early-onset group while the others were enrolled as control group. Clinical characteristics and uric acid (UA) indicators were compared between two groups. Results: Among 202 recruited patients, the early-onset group included 36 patients (17.8%). Compared with control group, the early-onset group presented more patients with obesity [13 patients (36.1%) vs. 22 patients (13.3%), P< 0.05], significantly higher serum UA level [(634±124)μmol/L vs.(527±169)μmol/L] and glomerular load of UA[(7.2±2.8)mg·min(-1)·1.73m(-2) vs. (4.4±2.2)mg·min(-1)·1.73m(-2)] and estimated glomerular filtration rate (GFR) [(83±21)ml·min(-1)·1.73m(-2) vs. (67±21)ml·min(-1)·1.73m(-2)] (all P< 0.05), lower fractional excretion of UA [4.4% (3.4%,6.1%) vs. 7.2% (5.2%,9.6%), P< 0.05], whereas 24h urinary UA excretion was comparable [(2 788±882)μmol/1.73m(2) vs. (2 645±1 140)μmol/1.73m(2), P= 0.274]. Subgroup analysis of patients without chronic kidney disease showed significantly lower fractional excretion of UA in the early-onset group [4.5%(3.3%,6.1%) vs. 6.7% (5.1%,8.7%), P< 0.05]. Logistic regression analysis showed that obesity ( OR= 3.25) and fractional excretion of UA less than 7% ( OR= 9.01, all P< 0.05) were risk factors of gout early onset. Conclusion: The gout patients with early-onset younger than 30 present high serum and glomerular load of uric acid which might be due to obesity and relative under-excretion of renal uric acid.
Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.
Succar, Lena; Pianta, Timothy J; Davidson, Trent; Pickering, John W; Endre, Zoltán H
2017-09-01
Extensive structural damage within the kidney must be present before serum creatinine increases. However, a subclinical phase of chronic kidney disease (CKD) usually goes undetected. Here we tested whether experimental subclinical CKD would modify functional and damage biomarker profiles of acute kidney injury (AKI). Subclinical CKD was induced in rats by adenine or aristolochic acid models but without increasing serum creatinine. After prolonged recovery (three to six weeks), AKI was induced with a subnephrotoxic dose of cisplatin. Urinary levels of kidney injury molecule-1 (KIM-1), cytochrome C, monocyte chemotactic protein-1 (MCP-1), clusterin, and interleukin-18 increased during CKD induction, without an increase in serum creatinine. After AKI in adenine-induced CKD, serum creatinine increased more rapidly, while increased urinary KIM-1, clusterin, and MCP-1 were delayed and reduced. Increased serum creatinine and biomarker excretion were associated with diffuse tubulointerstitial injury in the outer stripe of outer medulla coupled with over 50% cortical damage. Following AKI in aristolochic acid-induced CKD, increased serum creatinine, urinary KIM-1, clusterin, MCP-1, cytochrome C, and interleukin-18 concentrations and excretion were greater at day 21 than day 42 and inversely correlated with cortical injury. Subclinical CKD modified functional and damage biomarker profiles in diametrically opposite ways. Functional biomarker profiles were more sensitive, while damage biomarker diagnostic thresholds and increases were diminished and delayed. Damage biomarker concentrations and excretion were inversely linked to the extent of prior cortical damage. Thus, thresholds for AKI biomarkers may need to be lower or sampling delayed in the known presence of CKD. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Schragenheim, Joseph; Bellner, Lars; Cao, Jian; Singh, Shailendra P; Bamshad, David; McClung, John A; Maayan, Omri; Meissner, Aliza; Grant, Ilana; Stier, Charles T; Abraham, Nader G
2018-05-19
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on renal and adipose tissue function, in addition to its vasodilatory action; it increases insulin sensitivity and inhibits inflammation. In an examination of the signaling mechanisms by which EET reduces renal and peri-renal fat function, we hypothesized that EET ameliorates obesity-induced renal dysfunction by improving sodium excretion, reducing the sodium-chloride cotransporter NCC, lowering blood pressure, and enhancing mitochondrial and thermogenic gene levels in PGC-1α dependent mice. EET-agonist treatment normalized glucose metabolism, renal ENaC and NCC protein expression, urinary sodium excretion and blood pressure in obese (db/db) mice. A marked improvement in mitochondrial integrity, thermogenic genes, and PGC-1α-HO-1-adiponectin signaling occurred. Knockout of PGC-1α in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in sodium excretion, elevation of blood pressure and an increase in the pro-inflammatory adipokine nephroblastoma overexpressed gene (NOV). In the elucidation of the effects of EET on peri-renal adipose tissue, EET increased adiponectin, mitochondrial integrity, thermogenic genes and decreased NOV, i.e. "Browning' peri-renal adipose phenotype that occurs under high fat diets. Taken together, these data demonstrate a critical role of an EET agonist in the restoration of healthy adipose tissue with reduced release of inflammatory molecules, such as AngII and NOV, thereby preventing their detrimental impact on sodium absorption and NCC levels and the development of obesity-induced renal dysfunction. Copyright © 2018. Published by Elsevier Inc.
Christenson, W R; Becker, B D; Wahle, B S; Moore, K D; Dass, P D; Lake, S G; Van Goethem, D L; Stuart, B P; Sangha, G K; Thyssen, J H
1996-02-01
N-(4-Fluorophenyl)-N-(1-methylethyl)-2-[[5-(trifluoromethyl)-1,3, 4-thiadiazol-2-yl]oxy]acetamide (FOE 5043) is a new acetanilide-type herbicide undergoing regulatory testing. Previous work in this laboratory suggested that FOE 5043-induced reductions in serum thyroxine (T4) levels were mediated via an extrathyroidal site of action. The possibility that the alterations in circulating T4 levels were due to chemical induction of hepatic thyroid hormone metabolism was investigated. Treatment with FOE 5043 at a rate of 1000 ppm as a dietary admixture was found to significantly increase the clearance of [125I]T4 from the serum, suggesting an enhanced excretion of the hormone. In the liver, the activity of hepatic uridine glucuronosyl transferase, a major pathway of thyroid hormone biotransformation in the rat, increased in a statistically significant and dose-dependent manner; conversely, hepatic 5'-monodeiodinase activity trended downward with dose. Bile flow as well as the hepatic uptake and biliary excretion of [125I]T4 were increased following exposure to FOE 5043. Thyroidal function, as measured by the discharge of iodide ion in response to perchlorate, and pituitary function, as measured by the capacity of the pituitary to secrete thyrotropin in response to an exogenous challenge by hypothalamic thyrotropin releasing hormone, were both unchanged from the controlled response. These data suggest that the functional status of the thyroid and pituitary glands has not been altered by treatment with FOE 5043 and that reductions in circulating levels of T4 are being mediated indirectly through an increase in the biotransformation and excretion of thyroid hormone in the liver.
Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel
2016-04-01
To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatinine<0.11); Group 2: 77 patients (calcium/ creatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.
Preliminary Estimation of Deoxynivalenol Excretion through a 24 h Pilot Study
Rodríguez-Carrasco, Yelko; Mañes, Jordi; Berrada, Houda; Font, Guillermina
2015-01-01
A duplicate diet study was designed to explore the occurrence of 15 Fusarium mycotoxins in the 24 h-diet consumed by one volunteer as well as the levels of mycotoxins in his 24 h-collected urine. The employed methodology involved solvent extraction at high ionic strength followed by dispersive solid phase extraction and gas chromatography determination coupled to mass spectrometry in tandem. Satisfactory results in method performance were achieved. The method’s accuracy was in a range of 68%–108%, with intra-day relative standard deviation and inter-day relative standard deviation lower than 12% and 15%, respectively. The limits of quantitation ranged from 0.1 to 8 µg/Kg. The matrix effect was evaluated and matrix-matched calibrations were used for quantitation. Only deoxynivalenol (DON) was quantified in both food and urine samples. A total DON daily intake amounted to 49.2 ± 5.6 µg whereas DON daily excretion of 35.2 ± 4.3 µg was determined. DON daily intake represented 68.3% of the established DON provisional maximum tolerable daily intake (PMTDI). Valuable preliminary information was obtained as regards DON excretion and needs to be confirmed in large-scale monitoring studies. PMID:25723325
Urinary sodium and potassium excretion, mortality, and cardiovascular events.
O'Donnell, Martin; Mente, Andrew; Rangarajan, Sumathy; McQueen, Matthew J; Wang, Xingyu; Liu, Lisheng; Yan, Hou; Lee, Shun Fu; Mony, Prem; Devanath, Anitha; Rosengren, Annika; Lopez-Jaramillo, Patricio; Diaz, Rafael; Avezum, Alvaro; Lanas, Fernando; Yusoff, Khalid; Iqbal, Romaina; Ilow, Rafal; Mohammadifard, Noushin; Gulec, Sadi; Yusufali, Afzal Hussein; Kruger, Lanthe; Yusuf, Rita; Chifamba, Jephat; Kabali, Conrad; Dagenais, Gilles; Lear, Scott A; Teo, Koon; Yusuf, Salim
2014-08-14
The optimal range of sodium intake for cardiovascular health is controversial. We obtained morning fasting urine samples from 101,945 persons in 17 countries and estimated 24-hour sodium and potassium excretion (used as a surrogate for intake). We examined the association between estimated urinary sodium and potassium excretion and the composite outcome of death and major cardiovascular events. The mean estimated sodium and potassium excretion was 4.93 g per day and 2.12 g per day, respectively. With a mean follow-up of 3.7 years, the composite outcome occurred in 3317 participants (3.3%). As compared with an estimated sodium excretion of 4.00 to 5.99 g per day (reference range), a higher estimated sodium excretion (≥ 7.00 g per day) was associated with an increased risk of the composite outcome (odds ratio, 1.15; 95% confidence interval [CI], 1.02 to 1.30), as well as increased risks of death and major cardiovascular events considered separately. The association between a high estimated sodium excretion and the composite outcome was strongest among participants with hypertension (P=0.02 for interaction), with an increased risk at an estimated sodium excretion of 6.00 g or more per day. As compared with the reference range, an estimated sodium excretion that was below 3.00 g per day was also associated with an increased risk of the composite outcome (odds ratio, 1.27; 95% CI, 1.12 to 1.44). As compared with an estimated potassium excretion that was less than 1.50 g per day, higher potassium excretion was associated with a reduced risk of the composite outcome. In this study in which sodium intake was estimated on the basis of measured urinary excretion, an estimated sodium intake between 3 g per day and 6 g per day was associated with a lower risk of death and cardiovascular events than was either a higher or lower estimated level of intake. As compared with an estimated potassium excretion that was less than 1.50 g per day, higher potassium excretion was associated with a lower risk of death and cardiovascular events. (Funded by the Population Health Research Institute and others.).
Bucking, Carol; LeMoine, Christophe M R; Craig, Paul M; Walsh, Patrick J
2013-08-01
Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.
Longitudinal changes in pituitary-adrenal hormones in South African women with burnout.
Moch, Shirra L; Panz, Vanessa R; Joffe, Barry I; Havlik, Ivan; Moch, Jonathan D
2003-08-01
The authors' goal was to document baseline pituitary-adrenal hormonal and related metabolic variables in 16 female patients with burnout. Then, following stress management intervention, to compare the changes with an equal number of untreated control subjects. At monthly intervals for 4 mo, 24-h urine samples were obtained for determination of free cortisol excretion. In addition, fasting blood samples were analyzed for levels of cortisol, dehydroepiandrosterone sulfate (DHEAS), ACTH, aldosterone, and catecholamines. Other biochemical measurements included growth hormone, prolactin, insulin, glucose, and lipid components. The Maslach Burnout Inventory, General Health Questionnaire- 28, and Zung depression rating scale were completed on each consecutive visit. The most striking finding was the reduction of urine free-cortisol excretion in the patients compared with controls. Initial urinary free cortisol was significantly lower in the patients (mean +/- SEM = 47.2 +/- 11.0 vs 79.0 +/- 6.8 nmol/L, p = 0.02) and remained significantly reduced at 4 mo (mean +/- SEM = 44.0 +/- 6.1 vs 91.1 +/- 8.8 nmol/L, p = 0.0001). There were no significant changes in the other hormonal and biochemical data. We conclude that there is functional hypocortisolism in burnout, which is not immediately restored on stress management intervention despite clinical and psychological improvement.
Oatmeal porridge: impact on microflora-associated characteristics in healthy subjects.
Valeur, Jørgen; Puaschitz, Nathalie G; Midtvedt, Tore; Berstad, Arnold
2016-01-14
Oatmeal porridge has been consumed for centuries and has several health benefits. We aimed to investigate the effect of oatmeal porridge on gut microflora functions. A total of ten healthy subjects ingested 60 g oatmeal porridge daily for 1 week. The following microflora-associated characteristics were assessed before and after the intervention: intestinal gas production following lactulose ingestion, faecal excretion of SCFA and faecal levels of urease and β-galactosidase. In addition, rectal levels of PGE2 were measured. Microbial fermentation as evaluated by intestinal gas production and excretion of SCFA did not change significantly following the dietary intervention. However, faecal levels of β-galactosidase and urease decreased after eating oatmeal porridge (P=0·049 and 0·031, respectively). Host inflammatory state, as measured by rectal levels of PGE2, also decreased, but the change was not significant (P=0·168). The results suggest that oatmeal porridge has an effect on gut microbial functions and may possess potential prebiotic properties that deserve to be investigated further.
Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels; Quaggin, Susan E.
2018-01-01
Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion. PMID:29466427
Martínez, Inés; Perdicaro, Diahann J; Brown, Andrew W; Hammons, Susan; Carden, Trevor J; Carr, Timothy P; Eskridge, Kent M; Walter, Jens
2013-01-01
The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota.
Comparison of hormone and electrolyte circadian rhythms in male and female humans
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.; Goodwin, A. E.; Reilly, T.
1977-01-01
Circadian rhythm characteristics in healthy male and female humans were studied at 4-hour intervals for urine volume, cortisol, 5-hydroxyindoleacetic acid (5-HIAA), Na, K, Na/K ratios in the urine, as well as plasma cortisol. While plasma and urinary cortisol rhythms were very similar in both sexes, the described rhythms in urine volume, electrolyte, and 5-HIAA excretion differ for the two sexes. The results suggest that sex differences exist in the circadian patterns of important hormone and metabolic functions and that the internal synchrony of circadian rhythms differs for the two sexes. The results seem to indicate that the rhythmical secretion of cortisol does not account for the pattern of Na and K excretion.
Renal Control of Calcium, Phosphate, and Magnesium Homeostasis
Chonchol, Michel; Levi, Moshe
2015-01-01
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933
Tordjman, Sylvie; Anderson, George M; Kermarrec, Solenn; Bonnot, Olivier; Geoffray, Marie-Maude; Brailly-Tabard, Sylvie; Chaouch, Amel; Colliot, Isabelle; Trabado, Severine; Bronsard, Guillaume; Coulon, Nathalie; Botbol, Michel; Charbuy, Henriette; Camus, Françoise; Touitou, Yvan
2014-12-01
Reports of higher stress responsivity, altered sleep-wake cycle and a melatonin deficit in autism have stimulated interest in the cortisol circadian rhythm in individuals with autism. The study was conducted on 55 low-functioning children and adolescents with autism (11.3 ± 4.1 years-old) and 32 typically developing controls (11.7 ± 4.9 years-old) matched for age, sex and puberty. Behavioral assessment was performed using the Autism Diagnostic Observation Schedule (ADOS). Salivary samples for measurement of cortisol were collected during a 24-h period (at least 0800 h-Day 1, 1600 h, 0800 h-Day 2 for 46 individuals with autism and 27 controls, and 0800 h-Day 1, 1100 h, 1600 h, 2400 h, 0800 h-Day 2 for 13 individuals with autism and 20 controls). Overnight (2000 h-0800 h) urinary cortisol excretion was also measured. The autism group displayed significantly higher levels of salivary cortisol at all time-points, flatter daytime and nighttime slopes, higher 0800 h cortisol levels on Day 2 compared to Day 1, and greater variances of salivary and urinary cortisol. There was a significant relationship between salivary cortisol levels and impairments in social interaction and verbal language. Overnight urinary cortisol excretion was similar in the autism and control groups. Anticipation of the stressful collection procedure appears to contribute to the higher 0800 h-Day 2 versus 0800 h-Day 1 salivary cortisol levels in autism. This sensitization to stressors might be as, or even more, important clinically than exposure to novelty in autism. The similar group means for overnight urinary cortisol excretion indicate that basal HPA axis functioning is unaltered in low-functioning autism. The elevated salivary cortisol levels observed in autism over the 24-h period in a repeated stressful condition, flattened diurnal cortisol patterns and the apparent effect of anticipation are consistent with prior findings in high trait anxiety. Copyright © 2014 Elsevier Ltd. All rights reserved.
Change in decay rates of dioxin-like compounds in Yusho patients.
Matsumoto, Shinya; Akahane, Manabu; Kanagawa, Yoshiyuki; Kajiwara, Jumboku; Mitoma, Chikage; Uchi, Hiroshi; Furue, Masutaka; Imamura, Tomoaki
2016-09-07
Once ingested, dioxins and dioxin-like compounds are excreted extremely slowly. Excretion can be evaluated by its half-life. Half-lives estimated from observed concentrations are affected by excretion and ongoing exposure. We investigated the change in apparent half-life using a theoretical model based on exposure to dioxin and dioxin-like compounds. We carried out longitudinal measurements of the blood concentration of dioxins and dioxin-like compounds in a Yusho cohort during 2002 to 2010. We estimated the change in decay rates of 2,3,4,7,8-PeCDF and octachlorodibenzodioxin (OCDD) using a second-order equation. We found that the decay rate of OCDD increased, whereas the decay rate of 2,3,4,7,8-PeCDF of patients with a relatively high concentration of 2,3,4,7,8-PeCDF decreased. OCDD results were in accordance with decreasing levels of dioxin and dioxin-like compounds in the environment. The decay rate of OCDD in the body was affected by the decay rate of OCDD in the environment by ingestion because it was near the steady-state. In contrast, the decay rate of 2,3,4,7,8-PeCDF in the body was affected less by ingestion from the environment because it was far higher than in the steady-state. We demonstrated that the level of 2,3,4,7,8-PeCDF in the environment is decreasing. The excretion half-life is longer than the environmental half-life, thus the excretion half-life in a Yusho patient is increased.
Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos
2015-01-01
Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898
Choi, Min-Koo; Song, Im-Sook; Park, So-Ra; Hong, Soon-Sun; Kim, Dae-Duk; Chung, Suk-Jae; Shim, Chang-Koo
2005-02-01
The in vivo canalicular excretion clearance of tributylmethyl ammonium (TBuMA), a P-glycoprotein (P-gp) substrate, was previously reported to be unaffected by the induction of an experimental hepatic injury (EHI) by CCl(4) despite the increased expression of P-gp in the EHI liver. The objective of this study, therefore, was to elucidate the mechanism for the unchanged canalicular excretion clearance of TBuMA in EHI rats. TBuMA uptake was increased in cLPM vesicles from EHI rats compared with that from control rats. The total bile salt concentration in EHI liver was significantly reduced compared with that in a control liver. Because, in our previous studies, the uptake of TBuMA by cLPM vesicles was found to be significantly enhanced in the presence of bile salts, the reduction in bile salt levels in the EHI liver may be related to the unaltered TBuMA clearance. Despite the fact that the uptake of TBuMA by cLPM vesicles was increased by the addition of an EHI liver extract, the extent of the increase was comparatively less compared to the addition of a control liver extract. The in vivo excretion clearance of TBuMA was increased in a taurodeoxycholate dose-dependent manner in EHI rats. These observations suggest, therefore, that despite the induction of P-gp expression by the EHI, the in vivo canalicular excretion clearance of TBuMA remains unaltered as the result of an offset by reduced levels of bile salt(s). Copyright 2004 Wiley-Liss, Inc.
Daş, Gürbüz; Ataşoğlu, Cengiz; Akbağ, Hande Işıl; Tölü, Cemil; Yurtman, Ismail Yaman; Savaş, Türker
2012-06-01
The aim of this study was to investigate effects of kefir, a traditional source of probiotic, on coccidial oocysts excretion and on the performance of dairy goat kids following weaning. Twin kids were randomly allocated to one of two groups at weaning. Kids of the first group received 20 ml of kefir daily for 6 weeks (KEF), while kids in the control group were given a placebo (CON). Individual faecal samples were regularly (n = 18 per kid) taken to quantify the number of coccidial oocysts per gram of faeces (OpG). There were no differences between the groups in terms of body weight development (P > 0.05) and feed consumption. Kids of both groups were not able to consume enough feed to meet their nutrient requirements during the first 3 weeks following weaning. KEF had a lower frequency of OpG positive samples than CON (P = 0.043). Kefir did not affect the maximum oocyst excretion and age of the kids at the highest oocyst excretion (P > 0.05). KEF shed numerically 35% lower coccidial oocysts than the controls, which corresponded to a statistical tendency (P = 0.074) in lowering Log-OpG in comparison to CON. While KEF had a lower frequency of OpG positive samples and tended to shed lower OPG by around one-third, the frequency of diarrhea, level of highest oocyst excretion, and performance of the kids remained unaffected. Therefore, it is concluded that overall effects of kefir do not have a significant impact on sub-clinical infection and performance in weaned kids under relatively high-hygienic farming conditions.
Takayanagi, Kaori; Shimizu, Taisuke; Tayama, Yosuke; Ikari, Akira; Anzai, Naohiko; Iwashita, Takatsugu; Asakura, Juko; Hayashi, Keitaro; Mitarai, Tetsuya; Hasegawa, Hajime
2015-06-15
We assessed the expression profile of Mg(2+)-transporting molecules in obese diabetic rats as a cause of hypermagnesiuric hypomagnesemia, which is involved in the development of insulin resistance, hypertension, and coronary diseases. Kidneys were obtained from male Otsuka Long-Evans Tokushima fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) obese diabetic rats at the ages of 16, 24, and 34 wk. Expression profiles were studied by real-time PCR and immunohistochemistry together with measurements of urine Mg(2+) excretion. Urine Mg(2+) excretion was increased in 24-wk-old OLETF rats and hypomagnesemia was apparent in 34-wk-old OLETF rats but not in LETO rats (urine Mg(2+) excretion: 0.16 ± 0.01 μg·min(-1)·g body wt(-1) in 24-wk-old LETO rats and 0.28 ± 0.01 μg·min(-1)·g body wt(-1) in 24-wk-old OLETF rats). Gene expression of transient receptor potential (TRP)M6 was downregulated (85.5 ± 5.6% in 34-wk-old LETO rats and 63.0 ± 3.5% in 34-wk-old OLETF rats) concomitant with Na(+)-Cl(-) cotransporter downregulation, whereas the expression of claudin-16 in tight junctions of the thick ascending limb of Henle was not different. The results of the semiquantitative analysis of immunohistochemistry were consistent with these findings (TRPM6: 0.49 ± 0.04% in 16-wk-old LETO rats, 0.10 ± 0.01% in 16-wk-old OLETF rats, 0.52 ± 0.03% in 24-wk-old LETO rats, 0.10 ± 0.01% in 24-wk-old OLETF rats, 0.48 ± 0.02% in 34-wk-old LETO rats, and 0.12 ± 0.02% in 34-wk-old OLETF rats). Gene expression of fibrosis-related proinflammatory cytokines as well as histological changes showed that the hypermagnesiuria-related molecular changes and tubulointerstitial nephropathy developed independently. TRPM6, located principally in distal convoluted tubules, appears to be a susceptible molecule that causes hypermagnesiuric hypomagnesemia as a tubulointerstitial nephropathy-independent altered tubular function in diabetic nephropathy. Copyright © 2015 the American Physiological Society.
Tordjman, Sylvie; Anderson, George M; Bellissant, Eric; Botbol, Michel; Charbuy, Henriette; Camus, Françoise; Graignic, Rozenn; Kermarrec, Solenn; Fougerou, Claire; Cohen, David; Touitou, Yvan
2012-12-01
Several reports indicate that nocturnal production of melatonin is reduced in autism. Our objective was to examine whether melatonin production is decreased during the whole 24-h cycle, whether the melatonin circadian rhythm is inverted, and whether the reduction in melatonin production is related to the severity of autistic behavioral impairments. Day and nighttime urinary excretion of 6-sulphatoxymelatonin (6-SM) was examined during a 24-h period in post-pubertal individuals with autism (N=43) and typically developing controls (N=26) matched for age, sex and pubertal stage. Low 6-SM excretion (mean ± SEM) was observed in autism, both at daytime (0.16 ± 0.03 vs. 0.36 ± 0.05 μg/h, p<0.01), nighttime (0.52 ± 0.07 vs. 1.14 ± 0.23 μg/h, p<0.05), and during 24h (8.26 ± 1.27 vs. 18.00 ± 3.43 μg/24-h collection, p<0.001). Intra-individual nighttime-daytime differences (delta values) in 6-SM excretion were smaller in individuals with autism than in controls (0.36 ± 0.07 vs. 0.79 ± 0.23 μg/h, p<0.05). Nocturnal excretion of 6-SM was negatively correlated with autism severity in the overall level of verbal language (Spearman ρ=-0.30, p<0.05), imitative social play (Spearman ρ=-0.42, p<0.05), and repetitive use of objects (Spearman ρ=-0.36, p<0.05). A deficit in melatonin production is present both at daytime and at nighttime in individuals with autism, particularly in the most severely affected individuals. These results highlight interest in potential therapeutic uses of melatonin in autistic disorder, especially in individuals with severe autistic impairment and/or low urinary 6-SM excretion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meintjes, R A; Engelbrecht, H
2004-09-01
Previous trials have demonstrated that sheep on a low protein diet and free access to water, and sheep dosed with boluses of NaCl intraruminally also with free access to water, showed decreases in urea loss via the urine compared to control animals. We monitored urea excretion in sheep on a relatively poor protein diet when they were exposed to saline drinking water, i.e. they were unable to vary their intake of NaCl:water. Sheep on isotonic saline drinking water (phase 3) excreted significantly more urea via the urine (284 mM/day) compared to phase 1 when they were on non-saline drinking water (urea excretion = 230 mM/day) and phase 2 when they were on half isotonic saline drinking water (urea excretion = 244 mM/day). This finding was explained by the high glomerular filtration rate (GFR) 91.9 l/day, compared to 82.4 l/day (phase 1) and 77.9 l/day (phase 2), together with a significantly raised fractional excretion of urea (FEurea) (51.1 %) during this phase, and was in spite of the significantly lower plasma concentrations of urea in phase 3 compared to phase 1. The FEurea probably results from the osmotic diuresis caused by the salt. There were indications of a raised plasma antidiuretic hormone (ADH) concentration and this would have opposed urea loss, as ADH promotes urea reabsorption. However, this ADH effect was probably counteracted to some extent by a low plasma angiotensin II concentration, for which again there were indications, inhibiting urea reabsorption during the phases of salt loading. As atrial natriuretic peptide both increases GFR and decrease sodium reabsorption from the tubule, it was probably instrumental in causing the increase in GFR and the increase in the fractional excretion of sodium (FE(Na)).
Sequeira, Ivana R.; Lentle, Roger G.; Kruger, Marlena C.; Hurst, Roger D.
2014-01-01
Background Lactulose mannitol ratio tests are clinically useful for assessing disorders characterised by changes in gut permeability and for assessing mixing in the intestinal lumen. Variations between currently used test protocols preclude meaningful comparisons between studies. We determined the optimal sampling period and related this to intestinal residence. Methods Half-hourly lactulose and mannitol urinary excretions were determined over 6 hours in 40 healthy female volunteers after administration of either 600 mg aspirin or placebo, in randomised order at weekly intervals. Gastric and small intestinal transit times were assessed by the SmartPill in 6 subjects from the same population. Half-hourly percentage recoveries of lactulose and mannitol were grouped on a basis of compartment transit time. The rate of increase or decrease of each sugar within each group was explored by simple linear regression to assess the optimal period of sampling. Key Results The between subject standard errors for each half-hourly lactulose and mannitol excretion were lowest, the correlation of the quantity of each sugar excreted with time was optimal and the difference between the two sugars in this temporal relationship maximal during the period from 2½-4 h after ingestion. Half-hourly lactulose excretions were generally increased after dosage with aspirin whilst those of mannitol were unchanged as was the temporal pattern and period of lowest between subject standard error for both sugars. Conclusion The results indicate that between subject variation in the percentage excretion of the two sugars would be minimised and the differences in the temporal patterns of excretion would be maximised if the period of collection of urine used in clinical tests of small intestinal permeability were restricted to 2½-4 h post dosage. This period corresponds to a period when the column of digesta column containing the probes is passing from the small to the large intestine. PMID:24901524
Pharmacokinetics and Biliary Excretion of Fisetin in Rats.
Huang, Miao-Chan; Hsueh, Thomas Y; Cheng, Yung-Yi; Lin, Lie-Chwen; Tsai, Tung-Hu
2018-06-14
The hypothesis of this study is that fisetin and phase II conjugated forms of fisetin may partly undergo biliary excretion. To investigate this hypothesis, male Sprague-Dawley rats were used for the experiment, and their bile ducts were cannulated with polyethylene tubes for bile sampling. The pharmacokinetic results demonstrated that the average area-under-the-curve (AUC) ratios ( k (%) = AUC conjugate /AUC free-form ) of fisetin, its glucuronides, and its sulfates were 1:6:21 in plasma and 1:4:75 in bile, respectively. Particularly, the sulfated metabolites were the main forms that underwent biliary excretion. The biliary excretion rate ( k BE (%) = AUC bile /AUC plasma ) indicates the amount of fisetin eliminated by biliary excretion. The biliary excretion rates of fisetin, its glucuronide conjugates, and its sulfate conjugates were approximately 144, 109, and 823%, respectively, after fisetin administration (30 mg/kg, iv). Furthermore, biliary excretion of fisetin is mediated by P-glycoprotein.
Nitrogen processing by grazers in a headwater stream: riparian connections
Hill, Walter R.; Griffiths, Natalie A.
2016-10-19
Primary consumers play important roles in the cycling of nutrients in headwater streams, storing assimilated nutrients in growing tissue and recycling them through excretion. Though environmental conditions in most headwater streams and their surrounding terrestrial ecosystems vary considerably over the course of a year, relatively little is known about the effects of seasonality on consumer nutrient recycling these streams. Here, we measured nitrogen accumulated through growth and excreted by the grazing snail Elimia clavaeformis (Pleuroceridae) over the course of 12 months in Walker Branch, identifying close connections between in-stream nitrogen processing and seasonal changes in the surrounding forest.
Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas
2016-01-01
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Dyk, Melinda Bigelow; Chen, Zhenshan; Mosadeghi, Sasan; Vega, Helen; Krieger, Robert
2011-01-01
Pesticide handlers and pet owners who use products such as shampoos and dips and insecticide-impregnated collars to treat and control fleas on companion animals are exposed to a variety of active ingredients. Chlorpyrifos exposures of adults and children were measured using urine biomonitoring following use of over-the-counter products on dogs. Age and gender-specific measurements of urinary 3, 5, 6-trichloro-2-pyridinol (TCPy) revealed modest elevations of biomarker excretion following shampoo/dips. Smaller TCPy increments were measured following application of impregnated dog collars. The extent of indoor activity and potential pet contact were important determinants of urine biomarker level. Children without direct pet contact excreted more TCPy following collar application. Pet collars may be a source of indoor surface contamination and human exposure. Children excreted up to 4 times more TCPy than adults when urine volumes were adjusted using age-specific creatinine excretion levels. Although chlorpyrifos is no longer used in the United States in pet care products, results of this research provide perspective on the extent of human exposure from similar pet care products. These pilot studies demonstrated that pet care products such as insecticidal shampoos and dips and impregnated collars may expose family members to low levels of insecticide relative to toxic levels of concern.
Green, T; Dow, J; Foster, J R; Hext, P M
1998-05-15
Rats exposed to trichloroethylene, either by gavage or by inhalation, excreted large amounts of formic acid in urine which was accompanied by a change in urinary pH, increased excretion of ammonia, and slight increases in the excretion of calcium. Following a single 6-h exposure to 500 ppm trichloroethylene, the excretion of formic acid was comparable to that seen after a 500 mg/kg dose of formic acid itself, yet the half-life was markedly different. Formate excretion in trichloroethylene treated rats reached a maximum on day 2 and had a half-life of 4-5 days, whereas urinary excretion was complete within 24 h following a single dose of formic acid itself. Formic acid was shown not to be a metabolite of trichloroethylene. When rats were exposed to 250 or 500 ppm trichloroethylene, 6 h/day, for 28 days, the only significant effects were increased formic acid and ammonia excretion, and a change in urinary pH. There was no evidence of morphological liver or kidney damage. Long-term exposure to formic acid is known to cause kidney damage suggesting that excretion of this acid may contribute to the kidney damage seen in the long-term studies with trichloroethylene.
Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An
2018-03-01
The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Vokac, Z; Gundersen, N; Magnus, P; Jebens, E; Bakka, T
1980-09-01
The round the clock urinary excretion rates of mercury were assessed for two series of unconventional patterns of activity and sleep in subjects who were not exposed to occupational, medical, or other obvious sources of mercury. In the first series the urine was collected in 3-h periods from six subjects during the first and last 2 d of a four-week, continuous 6-h shift (car ferry, watches either 0800--1400 and 2000--0200 or 1400--2000 and 0200--0800). In the second series the urine was collected in 4-h periods from five subjects working an 8-h experimental rotation shift compressed into 5 d (work two mornings--8-h interval--work two nights--8-h interval--work two afternoons). The mean daily excretion rate of the 11 subjects (48 investigation days, 334 urine samples) was 14.5 pmol of mercury/min (range 5.5--24.4 pmol of mercury/min). The mercury excretion oscillated regularly during 24 h by +/- 20--25% of the individual's daily mean excretion rates. The peak excretion rates were found at 0652 in the first and 0642 in the second series (cosinor treatment). Due to the circadian rhythm the mean 24-h excretion rates were best represented (correlation coefficient 0.92) by analyses of urine produced around noon (spot samples, collection periods 1100--1400 and 1000-1400, respectively). The circadian oscillations of mercury excretion were not influenced by the widely different and varying activity-sleep patterns of the two series. The rhythmicity of potassium excretion (peaks at around 1400) was more irregular. The stable oscillations of mercury excretion contrasted most with the excretion of adrenaline and noradrenaline, which, without losing the basic 24-h rhythmicity, closely followed the unconventional patterns of activity and sleep.
Cooper, Christopher A.; Wilson, Jonathan M.
2013-01-01
Rhesus (Rh) glycoproteins are ammonia gas (NH3) channels known to be involved in ammonia transport in animals. Because of the different osmoregulatory and ionoregulatory challenges faced by teleost fishes in marine and freshwater (FW) environments, we hypothesized that ammonia excretion strategies would differ between environments. Also, we hypothesized that cutaneous NH3 volatilization in air-acclimated fish is facilitated by base secretion. To test these hypotheses, we used the skin of the euryhaline amphibious mangrove rivulus (Kryptolebias marmoratus). The skin excretes ammonia and expresses Rh glycoproteins. Serosal-to-mucosal cutaneous ammonia flux was saturable (0–16 mmol/l ammonia, Km of 6.42 mmol/l). In FW, ammonia excretion increased in response to low mucosal pH but decreased with pharmacological inhibition of Na+/H+ exchangers (NHE) and H+ ATPase. Conversely, in brackish water (BW), lowering the mucosal pH significantly decreased ammonia excretion. Inhibitors of NHE also decreased ammonia excretion in BW fish. Immunofluorescence microscopy demonstrated that both the Rh isoform, Rhcg1, and NHE3 proteins colocalized in Na+/K+ ATPase expressing mitochondrion-rich cells in the gills, kidney, and skin. We propose that the mechanisms of cutaneous ammonia excretion in FW K. marmoratus are consistent with the model for branchial ammonia excretion in FW teleost fish. NH4+ excretion appeared to play a stronger role in BW. NH4+ excretion in BW may be facilitated by apical NHE and/or diffuse through paracellular pathways. In aerially acclimated fish, inhibition of NHE and H+ ATPase, but not the Cl−/HCO3− exchanger, significantly affected cutaneous surface pH, suggesting that direct base excretion is not critical for NH3 volatilization. Overall, K. marmoratus use different strategies for excreting ammonia in three different environments, FW, BW, and air, and Rh glycoproteins and NHE are integral to all. PMID:23389109
Urinary Angiotensinogen and Renin Excretion are Associated with Chronic Kidney Disease.
Juretzko, Annett; Steinbach, Antje; Hannemann, Anke; Endlich, Karlhans; Endlich, Nicole; Friedrich, Nele; Lendeckel, Uwe; Stracke, Sylvia; Rettig, Rainer
2017-01-01
Several studies sought to identify new biomarkers for chronic kidney disease (CKD). As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR). We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC) curves, spearman correlation coefficients and linear regression models were calculated. Urinary angiotensinogen [2,511 (196-31,909) vs. 18.6 (8.3-44.0) pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155) vs. 0.069 (0.045-0.148) pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01) and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01) were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may convey additional information beyond that provided by albuminuria. © 2017 The Author(s)Published by S. Karger AG, Basel.
Rectal Glands of Marine and Fresh-Water Sharks: Comparative Histology.
Oguri, M
1964-05-29
The rectal glands of elasmobranchs perform the function of salt-excreting organs. These glands are smaller and show regressive changes in specimens of the bull shark, Carcharhinus leucas found in fresh-water environment, compared with specimens of this and other species from a marine habitat.
Reference values of renal tubular function tests are dependent on age and kidney function.
Bech, Anneke P; Wetzels, Jack F M; Nijenhuis, Tom
2017-12-01
Electrolyte disorders due to tubular disorders are rare, and knowledge about validated clinical diagnostic tools such as tubular function tests is sparse. Reference values for tubular function tests are based on studies with small sample size in young healthy volunteers. Patients with tubular disorders, however, frequently are older and can have a compromised renal function. We therefore evaluated four tubular function tests in individuals with different ages and renal function. We performed furosemide, thiazide, furosemide-fludrocortisone, and desmopressin tests in healthy individuals aged 18-50 years, healthy individuals aged more than 50 years and individuals with compromised renal function. For each tubular function test we included 10 individuals per group. The responses in young healthy individuals were in line with previously reported values in literature. The maximal increase in fractional chloride excretion after furosemide was below the lower limit of young healthy individuals in 5/10 older subjects and in 2/10 patients with compromised renal function. The maximal increase in fractional chloride excretion after thiazide was below the lower limit of young healthy individuals in 6/10 older subjects and in 7/10 patients with compromised renal function. Median maximal urine osmolality after desmopressin was 1002 mosmol/kg H 2 O in young healthy individuals, 820 mosmol/kg H 2 O in older subjects and 624 mosmol/kg H 2 O in patients with compromised renal function. Reference values for tubular function tests obtained in young healthy adults thus cannot simply be extrapolated to older patients or patients with compromised kidney function. Larger validation studies are needed to define true reference values in these patient categories. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Effects of high-tone external muscle stimulation on renal function in healthy volunteers.
Peckova, Miroslava; Havlin, Jan; Charvat, Jiri; Horackova, Miroslava; Schück, Otto
2013-01-01
Hightone external muscle stimulation (HTEMS) ameliorates pain and discomfort of patients with polyneuropathy. Since some patients reported about an urge to urinate during these treatments, the potential effects of HTEMS application on renal function were investigated. For this purpose in healthy subjects, we analyzed in the current study the acute effects of electrotherapy on parameters of renal function. 24 healthy volunteers (14 women and 10 men), mean age 26 ± 4 years, were enrolled. The protocol was composed of a run-in period, a pre-treatment period, the active HTEMS treatment period of both lower extremities and the post-treatment period. The duration of each period was 60 min. Urine collection and blood samples were taken at the beginning and end of each period. To achieve a sufficient diuresis, the fluid intake was adapted to the amount of diuresis. Parameters of renal function included diuresis, glomerular filtration rate (endogenous creatinine clearance) and absolute and fractional sodium excretion. Moreover blood pressure and heart rate were monitored. HTEMS led to a significant increase of creatinine clearance and fractional sodium excretion which was limited to the active treatment period. These findings show for the first time that HTEMS can transiently increase glomerular filtration rate associated with a decreased tubular sodium reabsorption. The underlying mechanisms are to be elucidated.
Adams, James; Kruger, Uwe; Geis, Elizabeth; Gehn, Eva; Fimbres, Valeria; Pollard, Elena; Mitchell, Jessica; Ingram, Julie; Hellmers, Robert; Quig, David; Hahn, Juergen
2017-01-01
Introduction A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD. Methods In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results. Results and Discussion Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate Speech), but significant associations were found for UTM with all eleven autism-related assessments with cross-validation R2 values ranging from 0.12–0.48. PMID:28068407
The urinary excretion of assayable vitamin B12 and radioactivity after parenteral 58Co B12 in man
Adams, J. F.
1961-01-01
Evidence is presented that after injection of radioactive vitamin B12 in man, there is a close correlation between the amount of radioactivity excreted and the amount of assayable vitamin B12 excreted, and thus that the amount of radioactivity excreted is a true measure of the vitamin B12 excreted. The possible reasons for this occurrence are discussed and it is suggested that in the body vitamin B12 does not exist as such but as an analogue or active derivative. PMID:13681399
Se status in normal and pathological human individuals before and after Se supplementation
NASA Astrophysics Data System (ADS)
Bellisola, G.; Cinque, G.; Galassini, S.; Guidi, G. C.; Liu, N. Q.; Moschini, G.
1996-04-01
The determination of selenium in plasma and in urine samples has been suggested for the assessment of Se status in human individuals. The kidney is of fundamental importance in Se homeostasis: with low Se intake its excretion will be decreased and with high Se intake it will be increased. In 21 patients with kidney disease (8 with normal kidney function and 13 with moderate renal failure) Se was measured in 1 ml of urine by PIXE after preconcentration of the sample. The total urine volume was measured to calculate total daily Se excretion. The same procedure was applied to 14 normal individuals for comparison. All individuals were then supplemented orally with selenite for 8 weeks (Se = 600 μg/day) and the procedure was repeated. The behaviour of the major selenoproteins was also investigated by measuring glutathione peroxidase activities in plasma, in platelets and in erythrocyte samples. For renal function, serum and urine creatinine concentrations were utilised and creatinine clearances were calculated. Results obtained were compared before and after Se treatment and between groups. Some correlation studies were carried out between Se and kidney functions and/or selenoperoxidase activities.
Recent advances on uric acid transporters
Xu, Liuqing; Shi, Yingfeng; Zhuang, Shougang; Liu, Na
2017-01-01
Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases. PMID:29246027
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okauchi, Seizo, E-mail: okauchi@med.kawasaki-m.ac.jp; Shimoda, Masashi; Obata, Atsushi
It is well known that Sodium-Glucose Co-transporter 2 (SGLT2) inhibitors, new hypoglycemic agents, improve glycemic control by increasing urine glucose excretion, but it remained unclear how they exert protective effects on pancreatic β-cells. In this study, we examined the effects of SGLT2 inhibitor luseogliflozin on β-cell function and mass using obese type 2 diabetic db/db mice. Ten-week-old male diabetic db/db mice were treated with luseogliflozin 0.0025% or 0.01% in chow (Luse 0.0025% or Luse 0.01%) or vehicle (control) for 4 weeks. Urinary glucose excretion was increased in Luse groups (0.0025% and 0.01%) compared to control mice 3 days after themore » intervention. Fasting blood glucose levels were significantly lower in mice treated with Luse compared to control mice. Fasting serum insulin concentrations were significantly higher in mice treated with Luse compared to control mice. Triglyceride levels tended to be lower in Luse groups compared to control mice. In immunohistochemical study using pancreas tissues, β-cell mass was larger in Luse groups compared to control group which was due to the increase of β-cell proliferation and decrease of β-cell apoptosis. Furthermore, in gene analysis using isolated islets, insulin 1, insulin 2, MafA, PDX-1 and GLUT2 gene expression levels were significantly higher in Luse groups compared to control group. In contrast, expression levels of fibrosis-related gene such as TGFβ, fibronectin, collagen I and collagen III were significantly lower in Luse groups. In conclusion, SGLT2 inhibitor luseogliflozin ameliorates glycemic control and thus exerts protective effects on pancreatic β-cell mass and function. - Highlights: • SGLT2 inhibitor luseogliflozin ameliorates glycemic control in db/db mice. • Luseogliflozin increases β-cell proliferation and decreases β-cell apoptosis. • Luseogliflozin preserves various β-cell-specific gene expression. • Luseogliflozin decreases various fibrosis-related factors in db/db mice.« less
Effects of feeding outer bran fraction of rice on lipid accumulation and fecal excretion in rats.
Ijiri, Daichi; Nojima, Tsutomu; Kawaguchi, Mana; Yamauchi, Yoko; Fujita, Yoshikazu; Ijiri, Satoru; Ohtsuka, Akira
2015-01-01
Outer bran fraction of rice (OBFR) contains higher concentrations of crude fiber, γ-oryzanol, and phytic acid compared to whole rice bran (WRB). In this study, we examined the effects of feeding OBFR on lipid accumulation and fecal excretion in rats. Twenty-one male rats at seven-week-old were divided into a control group and two treatment groups. The control group was fed a control diet, and the treatment groups were fed OBFR- or WRB-containing diet for 21 days. There was no significant difference in growth performance. Feeding OBFR diet increased fecal number and weight accompanied by increased fecal lipid content, while it did not affect mRNA expressions encoding lipid metabolism-related protein in liver. In addition, feeding OBFR-diet decreased the abdominal fat tissue weight and improved plasma lipid profiles, while WRB-containing diet did not affect them. These results suggested that feeding OBFR-diet might prevent lipid accumulation via enhancing fecal lipid excretion in rats.
Blood volume reduction counteracts fluid shifts in water immersion
NASA Technical Reports Server (NTRS)
Simanonok, Karl E.; Bernauer, Edmund
1993-01-01
Six healthy men were bled by 15 percent of their total blood volume (TBV) before 7 h of seated water immersion, to test the hypothesis that some of the major physiological responses to an expansion of central blood volume can be counteracted by prior reduction of TBV. Subjects were their own controls under two conditions: seated dry in air and seated immersed to the suprasternal notch in water. Immersion without prior reduction of TBV Wet Control (WC) caused a statistically significant 22-percent increase in cardiac output (CO), 368-percent increase in urine production, and 200-percent increase in sodium excretion relative to dry control (DC) sessions. When TBV was reduced before immersion, CO was the same as during DC sessions; however there were significant increases above DC in urine flow (+73 percent) and sodium excretion (+120 percent), although they were significantly reduced from WC values. Potassium excretion was similar during DC and WC sessions, but was significantly increased (+75 percent) when subjects were immersed after 15-percent reduction of TBV.
Integrated Control of Na Transport along the Nephron
Schnermann, Jürgen
2015-01-01
The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion. PMID:25098598
Gao, Boyan; Liu, Man; Huang, Guoren; Zhang, Zhongfei; Zhao, Yue; Wang, Thomas T Y; Zhang, Yaqiong; Liu, Jie; Yu, Liangli
2017-03-29
Fatty acid esters of monochloropropane 1,2-diol (3-MCPD) are processing-induced toxicants and have been detected in several food categories. This study investigated the absorption, distribution, metabolism, and excretion of 3-MCPD esters in Sprague-Dawley (SD) rats using 3-MCPD 1-monopalmitate as the probe compound. The kinetics of 3-MCPD 1-monopalmitate in plasma was investigated using SD rats, and the results indicated that 3-MCPD 1-monopalmitate was absorbed directly in vivo and metabolized. Its primary metabolites in the liver, kidney, testis, brain, plasma, and urine were tentatively identified and measured at 6, 12, 24, and 48 h after oral administration. Structures were proposed for eight metabolites. 3-MCPD 1-monopalmitate was converted to free 3-MCPD, which formed the phase II metabolites. All of the metabolites were chlorine-related chemical components; most of them existed in urine, reflecting the excretion pattern of 3-MCPD esters. Understanding the metabolism of 3-MCPD esters in vivo is critical for assessing their toxicities.
Ammonia excretion and acid-base regulation in the American horseshoe crab, Limulus polyphemus.
Hans, Stephanie; Quijada-Rodriguez, Alex R; Allen, Garett J P; Onken, Horst; Treberg, Jason R; Weihrauch, Dirk
2018-03-21
Many studies have investigated ammonia excretion and acid-base regulation in aquatic arthropods, yet current knowledge of marine chelicerates is non-existent. In American horseshoe crabs ( Limulus polyphemus ), book gills bear physiologically distinct regions: dorsal and ventral half-lamellae, a central mitochondria-rich area (CMRA) and peripheral mitochondria-poor areas (PMPAs). In the present study, the CMRA and ventral half-lamella exhibited characteristics important for ammonia excretion and/or acid-base regulation, as supported by high expression levels of Rhesus-protein 1 (LpRh-1), cytoplasmic carbonic anhydrase (CA-2) and hyperpolarization-activated cyclic nucleotide-gated K + channel (HCN) compared with the PMPA and dorsal half-lamella. The half-lamellae displayed remarkable differences; the ventral epithelium was ion-leaky whereas the dorsal counterpart possessed an exceptionally tight epithelium. LpRh-1 was more abundant than Rhesus-protein 2 (LpRh-2) in all investigated tissues, but LpRh-2 was more prevalent in the PMPA than in the CMRA. Ammonia influx associated with high ambient ammonia (HAA) treatment was counteracted by intact animals and complemented by upregulation of branchial CA-2, V-type H + -ATPase (HAT), HCN and LpRh-1 mRNA expression. The dorsal epithelium demonstrated characteristics of active ammonia excretion. However, an influx was observed across the ventral epithelium as a result of the tissue's high ion conductance, although the influx rate was not proportionately high considering the ∼3-fold inwardly directed ammonia gradient. These novel findings suggest a role for the coxal gland in excretion and in the maintenance of hemolymph ammonia regulation under HAA. Hypercapnic exposure induced compensatory respiratory acidosis and partial metabolic depression. Functional differences between the two halves of a branchial lamella may be physiologically beneficial in reducing the backflow of waste products into adjacent lamellae, especially in fluctuating environments where ammonia levels can increase. © 2018. Published by The Company of Biologists Ltd.
Galloway, Tamara; Cipelli, Riccardo; Guralnik, Jack; Ferrucci, Luigi; Bandinelli, Stefania; Corsi, Anna Maria; Money, Cathryn; McCormack, Paul; Melzer, David
2010-01-01
Background Bisphenol A (BPA) is a high production volume chemical widely used in packaging for food and beverages. Numerous studies have demonstrated that BPA can alter endocrine function in animals, yet human studies remain limited. Objective We estimated daily excretion of BPA among adults and examined hypothesized associations with serum estrogen and testosterone concentrations. Methods We conducted cross-sectional analyses using data from the InCHIANTI Study, a prospective population-based study of Italian adults. Our study included 715 adults between 20 and 74 years old. BPA concentrations were measured by liquid chromatography–mass spectrometry in 24-hr urine samples. The main outcome measures were serum concentrations of total testosterone and 17β-estradiol. Results Geometric mean urinary BPA concentration was 3.59 ng/mL [95% confidence interval (CI), 3.42–3.77 ng/mL], and mean excretion was 5.63 μg/day (5th population percentile, 2.1 μg/day; 95th percentile, 16.4 μg/day). We found higher excretion rates among men, younger respondents, and those with increasing waist circumference (p = 0.013) and weight (p = 0.003). Higher daily BPA excretion was associated with higher total testosterone concentrations in men, in models adjusted for age and study site (p = 0.044), and in models additionally adjusted for smoking, measures of obesity, and urinary creatinine concentrations (β = 0.046; 95% CI, 0.015–0.076; p = 0.004). We found no associations with the other serum measures. We also found no associations with the primary outcomes among women, but we did find an association between BPA and SHBG concentrations in the 60 premenopausal women. Conclusion Higher BPA exposure may be associated with endocrine changes in men. The mechanisms involved in the observed cross-sectional association with total testosterone concentrations need to be clarified. PMID:20797929
Di Ciano, Luis A; Azurmendi, Pablo J; Colombero, Cecilia; Levin, Gloria; Oddo, Elisabet M; Arrizurieta, Elvira E; Nowicki, Susana; Ibarra, Fernando R
2015-06-15
We have previously shown that ovariectomy in adult Wistar rats under normal sodium (NS) intake results in an overexpression of the total Na(+)-K(+)-ATPase (NKA) α1-subunit (Di Ciano LA, Azurmendi PJ, Toledo JE, Oddo EM, Zotta E, Ochoa F, Arrizurieta EE, Ibarra FR. Clin Exp Hypertens 35: 475-483, 2013). Upon high sodium (HS) intake, ovariectomized (oVx) rats developed defective NKA phosphorylation, a decrease in sodium excretion, and an increment in mean blood pressure (MBP). Since NKA phosphorylation is modulated by dopamine (DA), the aim of this study was to compare the intracellular response of the renal DA system leading to NKA phosphorylation upon sodium challenge in intact female (IF) and oVx rats. In IF rats, HS caused an increase in urinary DA and sodium, in NKA phosphorylation state, in cytochrome P-4504A (CYP4A) expression, and in 20-HETE production, while MBP kept normal. Blockade of the D1 receptor (D1R) with the D1-like receptor antagonist SCH 23390 in IFHS rats shifted NKA into a more dephosphorylated state, decreased sodium excretion by 50%, and increased MBP. In oVxNS rats, D1R expression was reduced and D3R expression was increased, and under HS intake sodium excretion was lower and MBP higher than in IFHS rats (both P < 0.05), NKA was more dephosphorylated than in IFHS, and CYP4A expression or 20-HETE production did not change. Blockade of D1R in oVxHS rats changed neither NKA phosphorylation state nor sodium excretion or MBP. D2R and PKCα expression did not vary among groups. The alteration of the renal DA system produced by ovariectomy could account for the defective NKA phosphorylation, the inefficient excretion of sodium load, and the development of salt-sensitive hypertension. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, L.R.; Hogan, R.B.; Morawski, S.G.
1987-01-01
We studied radiolabeled fecal bile acid excretion in 11 normal subjects and 17 patients with idiopathic chronic diarrhea for three major purposes: to establish normal values for this test in the presence of increased stool volumes (induced in normal subjects by ingestion of poorly absorbable solutions); to test for bile acid malabsorption in the patients and to correlate this with an independent test of ileal function, the Schilling test; and to compare the results of the bile acid excretion test with the subsequent effect of a bile acid binding agent (cholestyramine) on stool weight. In normal subjects fecal excretion ofmore » the radiolabel was increased with increasing stool volumes. As a group, patients with idiopathic chronic diarrhea excreted radiolabeled bile acid more rapidly than normal subjects with induced diarrhea (t1/2 56 +/- 8 vs. 236 +/- 60 h, respectively, p less than 0.005). There was a statistically significant positive correlation between t1/2 of radiolabeled bile acid and Schilling test results in these patients. Although 14 of 17 patients absorbed labeled taurocholic acid less well than any of the normal subjects with comparable volumes of induced diarrhea, cholestyramine had no statistically significant effect on stool weight in the patient group, and in none of the patients was stool weight reduced to within the normal range. In summary, most patients with idiopathic chronic diarrhea have bile acid malabsorption (as measured by fecal excretion of labeled bile acid), but they do not respond to cholestyramine therapy with a significant reduction in stool weight. Although the significance of these findings was not clearly established, the most likely interpretation is that bile acid malabsorption is a manifestation of an underlying intestinal motility or absorptive defect rather than the primary cause of diarrhea.« less
Nawata, C Michele; Walsh, Patrick J; Wood, Chris M
2015-01-15
In teleosts, a branchial metabolon links ammonia excretion to Na(+) uptake via Rh glycoproteins and other transporters. Ureotelic elasmobranchs are thought to have low branchial ammonia permeability, and little is known about Rh function in this ancient group. We cloned Rh cDNAs (Rhag, Rhbg and Rhp2) and evaluated gill ammonia handling in Squalus acanthias. Control ammonia excretion was <5% of urea-N excretion. Sharks exposed to high environmental ammonia (HEA; 1 mmol(-1) NH4HCO3) for 48 h exhibited active ammonia uptake against partial pressure and electrochemical gradients for 36 h before net excretion was re-established. Plasma total ammonia rose to seawater levels by 2 h, but dropped significantly below them by 24-48 h. Control ΔP(NH3) (the partial pressure gradient of NH3) across the gills became even more negative (outwardly directed) during HEA. Transepithelial potential increased by 30 mV, negating a parallel rise in the Nernst potential, such that the outwardly directed NH4(+) electrochemical gradient remained unchanged. Urea-N excretion was enhanced by 90% from 12 to 48 h, more than compensating for ammonia-N uptake. Expression of Rhp2 (gills, kidney) and Rhbg (kidney) did not change, but branchial Rhbg and erythrocytic Rhag declined during HEA. mRNA expression of branchial Na(+)/K(+)-ATPase (NKA) increased at 24 h and that of H(+)-ATPase decreased at 48 h, while expression of the potential metabolon components Na(+)/H(+) exchanger2 (NHE2) and carbonic anhydrase IV (CA-IV) remained unchanged. We propose that the gill of this nitrogen-limited predator is poised not only to minimize nitrogen loss by low efflux permeability to urea and ammonia but also to scavenge ammonia-N from the environment during HEA to enhance urea-N synthesis. © 2015. Published by The Company of Biologists Ltd.
Wilkie, Michael Patrick
2002-08-01
In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the location, mechanism of action, and functional significance of urea transporters in fishes. Copyright 2002 Wiley-Liss, Inc.
Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria
2013-01-01
Background Secondary hyperoxaluria either based on increased intestinal absorption of oxalate (enteric), or high oxalate intake (dietary), is a major risk factor of calcium oxalate urolithiasis. Oxalate-degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Methods Twenty healthy subjects were studied initially while consuming a diet normal in oxalate. Study participants were then placed on a controlled oxalate-rich diet for a period of 6 weeks. Starting with week 2 of the oxalate-rich diet, participants received 2.6 g/day of a lactic acid bacteria preparation for 5 weeks. Finally, subjects were examined 4 weeks after treatment while consuming again a normal-oxalate diet. Participants provided weekly 24-hour urine specimens. Analyses of blood samples were performed before and at the end of treatment. Results Urinary oxalate excretion increased significantly from 0.354 ± 0.097 at baseline to 0.542 ± 0.163 mmol/24 h under the oxalate-rich diet and remained elevated until the end of treatment, as did relative supersaturation of calcium oxalate. Plasma oxalate concentration was significantly higher after 5 weeks of treatment compared to baseline. Four weeks after treatment, urinary oxalate excretion and relative supersaturation of calcium oxalate fell to reach initial values. Conclusions Persistent dietary hyperoxaluria and increased plasma oxalate concentration can already be induced in healthy subjects without disorders of oxalate metabolism. The study preparation neither reduced urinary oxalate excretion nor plasma oxalate concentration. The preparation may be altered to select for lactic acid bacteria strains with the highest oxalate-degrading activity. PMID:24330782
Gupta, Neeraj; Zhang, Steven; Pusalkar, Sandeepraj; Plesescu, Mihaela; Chowdhury, Swapan; Hanley, Michael J; Wang, Bingxia; Xia, Cindy; Zhang, Xiaoquan; Venkatakrishnan, Karthik; Shepard, Dale R
2018-06-01
This two-part, phase I study evaluated the mass balance, excretion, pharmacokinetics (PK), and safety of ixazomib in patients with advanced solid tumors. In Part A of the study, patients received a single 4.1 mg oral solution dose of [ 14 C]-ixazomib containing ~500 nCi total radioactivity (TRA), followed by non-radiolabeled ixazomib (4 mg capsule) on days 14 and 21 of the 35-day PK cycle. Patients were confined to the clinic for the first 168 h post dose and returned for 24 h overnight clinic visits on days 14, 21, 28, and 35. Blood, urine, and fecal samples were collected during Part A to assess the mass balance (by accelerator mass spectrometry), excretion, and PK of ixazomib. During Part B of the study, patients received non-radiolabeled ixazomib (4 mg capsules) on days 1, 8, and 15 of 28-day cycles. After oral administration, ixazomib was rapidly absorbed with a median plasma T max of 0.5 h and represented 70% of total drug-related material in plasma. The mean total recovery of administered TRA was 83.9%; 62.1% in urine and 21.8% in feces. Only 3.23% of the administered dose was recovered in urine as unchanged drug up to 168 h post dose, suggesting that most of the TRA in urine was attributable to metabolites. All patients experienced a treatment-emergent adverse event, which most commonly involved the gastrointestinal system. These findings suggest that ixazomib is extensively metabolized, with urine representing the predominant route of excretion of drug-related material.Trial ID: ClinicalTrials.gov # NCT01953783.
Birukov, Anna; Rakova, Natalia; Lerchl, Kathrin; Engberink, Rik HG Olde; Johannes, Bernd; Wabel, Peter; Moissl, Ulrich; Rauh, Manfred; Luft, Friedrich C; Titze, Jens
2016-01-01
Background: The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. Objective: We were able to test the value of 24-h urine collections in a unique, ultra-long–term balance study conducted during a simulated trip to Mars. Design: Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. Results: Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland–Altman analyses on the value of urine collections to estimate intake. Conclusions: A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals. PMID:27225435
Noyola, D E; Demmler, G J; Williamson, W D; Griesser, C; Sellers, S; Llorente, A; Littman, T; Williams, S; Jarrett, L; Yow, M D
2000-06-01
Cytomegalovirus (CMV) is the most frequent cause of congenital infection, and both symptomatic and asymptomatic infants may have long term sequelae. Children with congenital CMV infection are chronically infected and excrete CMV in the urine for prolonged periods. However, the effect of prolonged viral replication on the long term outcome of these children is unknown. To determine whether duration of CMV excretion is associated with outcome at 6 years of life in symptomatic and asymptomatic congenitally infected children. Longitudinal cohort study. Children congenitally infected with CMV were identified at birth and followed prospectively in a study of long term effects of congenital CMV infection. The relationship between duration of CMV urinary excretion and growth, neurodevelopment and presence and progression of sensorineural hearing loss (SNHL) at 6 years of age was determined. There was no significant difference in the duration of viral urinary excretion between children born with asymptomatic (median, 4.55 years) and symptomatic (median, 2.97 years) congenital CMV infection (P = 0.11). Furthermore there was no association between long term growth or cognitive outcome and duration of viral excretion. However, a significantly greater proportion of children who excreted CMV for <4 years had SNHL and progressive SNHL compared with children with CMV excretion >4 years (P = 0.019, P = 0.009, respectively). Children congenitally infected with CMV are chronically infected for years, but the duration of CMV urinary excretion is not associated with abnormalities of growth, or neurodevelopmental deficits. However, SNHL and progressive SNHL were associated with a shorter duration of CMV excretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.
Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high inmore » most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients.« less
USDA-ARS?s Scientific Manuscript database
Some hemipteran xylem and phloem feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber...
Matovic, Milovan D; Jankovic, Slobodan M; Jeremic, Marija; Tasic, Zoran; Vlajkovic, Marina
2009-08-01
In patients receiving (131)I for therapeutic purposes, diuretics are frequently used in an attempt to accelerate elimination of unbound radioiodine, reduce its adverse effects, and shorten the hospital stay. The aims of our study were to investigate the influence of furosemide therapy on urinary excretion of (131)I in patients with differentiated thyroid cancer (DTC), referred to radioiodine ablation after thyroidectomy, and to investigate whether diuretics are useful in daily practice in patients with DTC. Forty-three patients with DTC who had normal renal function and low (131)I uptake in cervical region (3.55 +/- 3.45%) were included in this study. The furosemide (20 mg) and potassium chloride (250 mg) were given orally to 23 patients 3 hours after the (131)I administration, and then q8h for 3 days. Twenty patients did not receive either furosemide or potassium chloride. After (131)I administration, the patients collected their urine for 3 days, and radioactivity of urine sample from each micturition was expressed as percentage of the administered dose. Radioactivity of blood samples was measured after 72 hours, and the values were corrected for decay of (131)I and expressed in relation to the administered dose. Initial whole-body measurement (immediately after (131)I administration) and the whole-body measurement after 72 hours were recorded for all patients. The 72-hour whole-body measurement was corrected for decay of (131)I, and expressed as a percentage of the initial whole-body measurement. Urinary excretion of (131)I was significantly lower in the patients who were taking furosemide and potassium chloride compared with the control group. The whole-body measurements after 72 hours (13.22 +/- 6.55% vs. 8.24 +/- 3.39% of the initial; p < 0.01, respectively) and the blood radioactivity (34.66 +/- 24.84 vs. 11.64 +/- 8.32 cpm/mL per 1 MBq of administered (131)I, p < 0.01) were found to be unexpectedly higher in the patients who were taking furosemide and potassium chloride compared with the control group. Our results demonstrated that furosemide given as an adjuvant medication in patients with DTC causes a significant decrease in urinary excretion of radioiodine and its higher blood concentration. Therefore, furosemide should not be recommended as an adjuvant therapy to radioiodine ablation in patients with DTC previously iodine depleted by low-iodine diet.
Nakamura, H; Mizuno, T; Kawamura, K; Kamino, T
1976-08-01
In our studies on patients with head injury, it was noted that there are some correlations between their clinical courses and the urinary excretion of creatine (cr), creatinine (Crn), 17-ketosteroid and 17-hydroxycorticosteroid. We observed the high urinary excretion of Cr in patients with severe head injury while almost negative in a mild case. We reported those facts in 1974. Also noted in patients with head injury is the relationship between the enzyme-activities (GOT, GPT, LDH and CPK) in the cerebrospinal fluid and their clinical courses. In this paper, we reported 34 cases of head injured patients (simple type: 2, concussion: 9, contusion: 8, acute intracranial hematoma: 7 and chronic intra-cranial hematoma: 8). The control values of CSF enzyme-activities were determined in these 14 cases (simple head injury, whip-lash injury and osteoma of the skull) as GOT less that 15, GPT less than 7, LDH less than 12 and CPK less than 8 units. In the moderate cases, a slight increase in activities of 4 enzymes in CSF were observed, while in severe or comatose cases, the enzyme-activities (especially LDH and CPK) were greater than in the controls. In the dead cases these values were five times as high as the normal case. In the patients recovering from a serious stage, these activities decreased to normal. High CSF enzyme-levels tend to indicate a poor prognosis and low levels a favorable progrosis. In the patients with a significant elevation of CSF enzymes, a high urinary excretion of Cr [normal range: 0-150 (ca. 50)mg/day] was often observed. There was no apparent correlation between the enzyme level in CSF and that in serum and the increase or decrease of these 4 enzymes are not always proprotionate with each other. As reported by Green (1958) and Lending (1961), cerebral cell necrosis and increased permeability of BLB, BBB or cerebral cell membrane can be related to the increase of enzymeactivities. With these observations, it can be considered that severe head injury gives influence on metabolic function in the hypothalamus and may cause in the levels of CSF enzymes and/or the urinary excretions of Cr, Crn and corticosteroids. And the examinations of enzyme activities in the patients with head injury may become a useful aid to make an outlook of their clinical coure and prognosis.
Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum1
Goldstein, Alan H.; Baertlein, Dawn A.; McDaniel, Robert G.
1988-01-01
Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated. Images Fig. 5 PMID:16666212
Yasutake, Kenichiro; Nagafuchi, Mikako; Izu, Ryoji; Kajiyama, Tomomi; Imai, Katsumi; Murata, Yusuke; Ohe, Kenji; Enjoji, Munechika; Tsuchihashi, Takuya
2017-06-01
In this study, the authors measured sodium and potassium concentrations in spot urine samples of preschool children on multiple days, and evaluated individual, daily, and seasonal effects. A total of 104 healthy preschool children aged 4 to 5 years were studied. Urine samples were collected from the first urine of the day after waking for three consecutive days (Monday-Wednesday) four times a year (spring, summer, autumn, winter). The authors estimated the daily urine volume as 500 mL and daily creatinine excretion as 300 mg, and used these to calculate daily sodium and potassium excretion levels. Daily sodium and potassium excretion levels and sodium to potassium ratios were highly variable. The coefficient variant in the children's excretion levels were also high within and between individuals. Sodium excretion levels and sodium to potassium ratios were higher on Monday (weekend sodium intakes) than Tuesday. Season had no effect on sodium or potassium excretion levels, but the sodium to potassium ratio was higher in summer than in winter. In conclusion, levels of urinary sodium excretion are comparatively high and those of potassium are low in preschool students, with high variability within and between individuals. ©2017 Wiley Periodicals, Inc.
Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P
1999-01-01
Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions. Copyright 1999 Academic Press.
Validation of spot urine in predicting 24-h sodium excretion at the individual level.
Zhou, Long; Tian, Yu; Fu, Jun-Jie; Jiang, Ying-Ying; Bai, Ya-Min; Zhang, Zi-Hua; Hu, Xiao-He; Lian, Hong-Wu; Guo, Min; Yang, Zheng-Xiong; Zhao, Lian-Cheng
2017-06-01
Background: Evidence for the effect of dietary sodium intake on the risk of cardiovascular disease has been controversial. One of the main explanations for the conflicting results lies in the great variability associated with measurement methods for sodium intake. Spot urine collection is a convenient method commonly used for sodium estimation, but its validity for predicting 24-h urinary sodium excretion at the individual level has not been well evaluated among the general population. Objective: The aim of this study was to evaluate the validity of the Kawasaki, the International Cooperative Study on Salt, Other Factors, and Blood Pressure (INTERSALT), and the Tanaka formulas in predicting 24-h urinary sodium excretion by using spot urine samples in Chinese adults. Design: We analyzed the relative and absolute differences and misclassification at the individual level from 3 commonly used methods for estimating sodium intake among 141 Chinese community residents. Results: The mean measured 24-h sodium excretion was 220.8 mmol/d. The median (95% CIs) differences between measured sodium and those estimated from the Kawasaki, INTERSALT, and Tanaka methods were 6.4 mmol/d (-17.5, 36.8 mmol/d), -67.3 mmol/d (-96.5, -46.9 mmol/d), and -42.9 mmol/d (-59.1, -24.8 mmol/d), respectively. The proportions of relative differences >40% with the Kawasaki, INTERSALT, and Tanaka methods were 31.2%, 41.1%, and 22.0%, respectively; and the absolute difference for the 3 methods was >51.3 mmol/d (3 g salt) in approximately half of the participants. The misclassification rate was 63.1% for the Kawasaki method, 78.7% for the INTERSALT method, and 66.0% for the Tanaka method at the individual level. Conclusion: The results from our study do not support the use of spot urine to estimate 24-h urinary sodium excretion at the individual level because of its poor performance with respect to misclassification. This trial was registered at www.chictr.org.cn as ChiCTR-IOR-16010278. © 2017 American Society for Nutrition.
Laurberg, Peter; Knudsen, Nils; Andersen, Stig; Carlé, Allan; Pedersen, Inge Bülow; Karmisholt, Jesper
2012-01-01
Important interaction exists between thyroid function, weight control, and obesity. Several mechanisms seem to be involved, and in studies of groups of people the pattern of thyroid function tests depends on the balance of obesity and underlying thyroid disease in the cohort studied. Obese people with a normal thyroid gland tend to have activation of the hypothalamic-pituitary-thyroid axis with higher serum TSH and thyroid hormones in serum. On the other hand, small differences in thyroid function are associated with up to 5 kg difference in body weight. The weight loss after therapy of overt hypothyroidism is caused by excretion of water bound in tissues (myxoedema). Many patients treated for hyperthyroidism experience a gain of more weight than they lost during the active phase of the disease. The mechanism for this excessive weight gain has not been fully elucidated. New studies on the relation between L-T3 therapy and weight control are discussed. The interaction between weight control and therapy of thyroid disease is important to many patients and it should be studied in more detail. PMID:24783015
Iodine deficiency and subclinical hypothyroidism are common in cystic fibrosis patients.
Naehrlich, Lutz; Dörr, Helmuth-Günther; Bagheri-Behrouzi, Azadeh; Rauh, Manfred
2013-04-01
Disorders of thyroid function have been inconsistently described in cystic fibrosis (CF) patients and in CF transmembrane regulator protein knockout animals. The literature lacks reports on iodine status of CF individuals. We hypothesize, that iodine deficiency is common in CF and account for abnormal thyroid function in CF patients. We investigated 129 children, adolescents, and adults with CF, who were living in the northern part of Bavaria/Germany. Malnutrition and lung function were analyzed. Urinary iodine excretion, TSH (thyroid-stimulating hormone), and ft4 (free thyroxine) were measured and set in relation to population-based, age-adjusted reference ranges. Subclinical hypothyroidism (normal fT4, elevated TSH) was found in 11.6% of subjects, and iodine deficiency in 83.7%. No correlations were found with age, BMI, status of malnutrition, or lung function. Dramatic iodine deficiency was found in our cohort of CF patients. This condition can cause subclinical hypothyroidism; therefore, an individual iodine supplementation program is necessary and should be started immediately. Crown Copyright © 2012. Published by Elsevier GmbH. All rights reserved.
Urinary proteomics in renal pathophysiology: Impact of proteinuria.
Sancho-Martínez, Sandra M; Prieto-García, Laura; Blanco-Gozalo, Víctor; Fontecha-Barriuso, Miguel; López-Novoa, José M; López-Hernández, Francisco J
2015-06-01
Urinary differential proteomics is used to study renal pathophysiological mechanisms, find novel markers of biological processes and renal diseases, and stratify patients according to proteomic profiles. The proteomic procedure determines the pathophysiological meaning and clinical relevance of results. Urine samples for differential proteomic studies are usually normalized by protein content, regardless of its pathophysiological characteristics. In the field of nephrology, this approach translates into the comparison of a different fraction of the total daily urine output between proteinuric and nonproteinuric samples. Accordingly, alterations in the level of specific proteins found by this method reflect the relative presence of individual proteins in the urine; but they do not necessarily show alterations in their daily excretion, which is a key parameter for the understanding of the pathophysiological meaning of urinary components. For renal pathophysiology studies and clinical biomarker identification or determination, an alternative proteomic concept providing complementary information is based on sample normalization by daily urine output, which directly informs on changes in the daily excretion of individual proteins. This is clinically important because daily excretion (rather than absolute or relative concentration) is the only self-normalized way to evaluate the real meaning of urinary parameters, which is also independent of urine concentration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diurnal fluctuations in nematode egg excretion in naturally and in experimentally infected chickens.
Wongrak, Kalyakorn; Gauly, Matthias; Daş, Gürbüz
2015-03-15
We investigated whether nematode egg excretion through feces of naturally or experimentally infected chickens follow certain patterns within a day, which may allow determining the most appropriate sampling time for the highest parasite egg concentration. Feces samples (n=864) from chickens (n=36) with naturally occurring mixed nematode infections (trials N1, N2) or with an experimental Ascaridia galli infection (E) were collected quantitatively every 4h for four consecutive days. Number of eggs per gram of feces (EPG) was determined, and accumulative egg output (AEO) at each sampling time as well as total number of eggs excreted within 24h (eggs per day, EPD) were then estimated. At the end of the collection period, the hens were necropsied and their worm burdens determined. Naturally infected hens harbored Heterakis gallinarum (100%), Capillaria spp. (95.7%) and A. galli (91.3%). The experimental A. galli infection produced patent infections in all the birds. In general, both fecal egg concentration (EPG) and the amount of feces increased (P<0.05) sharply from the early morning to early-noon (10:00 a.m.) and remained at a high level until evenings which thereafter decreased to their initial levels during the night both in naturally and experimentally infected birds. This resulted in a more apparent increase or a decrease in AEO at the corresponding time points, respectively, and led to much higher egg excretions during the daytime than the nights. Despite the apparent within day fluctuations in egg excretion, neither EPG (P=0.704) nor AEO (P=0.499) nor EPD (P=0.149) was significantly different among the four collection days. Similarly, there was no significant interaction (P>0.05) between effects of sampling hours and days on EPG and AEO, suggesting the existence of repeatable diurnal fluctuations within each day. Although an association between climatic parameters (e.g., ambient temperature and relative humidity) and the nematode egg excretion was quantified, a causal relationship could not be demonstrated. We conclude that nematode egg excretion through chicken feces in both natural and experimental infections shows repeatable diurnal fluctuations, which may indicate adaptive strategies by nematodes and eventually favor parasite spread. Since analytic sensitivity of fecal egg counts suffers from low egg concentrations in feces, samples taken during the daytime have a higher diagnostic value. Copyright © 2015 Elsevier B.V. All rights reserved.
Renal control of calcium, phosphate, and magnesium homeostasis.
Blaine, Judith; Chonchol, Michel; Levi, Moshe
2015-07-07
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.
Ding Yuan, Yi; Couture, Réjean
1997-01-01
The effects of intrathecally (i.t.) injected substance P (SP), neurokinin A (NKA), [β-Ala8]NKA (4–10) and [MePhe7]neurokinin B (NKB) at T13 thoracic spinal cord level were investigated on renal excretion of water, sodium and potassium in the conscious saline-loaded rat. Antagonists selective for NK1 (RP 67580), NK2 (SR 48968) and NK3 (R 820; 3-indolylcarbonyl-Hyp-Phg-N(Me)-Bzl) receptors were used to characterize the spinal effect of SP on renal function. Saline gavage (4.5% of the body weight) enhanced renal excretion of water, sodium and potassium over the subsequent hour of measurement. Whereas these renal responses were not affected by 0.65 nmol SP, the dose of 6.5 nmol SP blocked the natriuretic response (aCSF value 3.9±0.8; SP value 0.7±0.3 μmol min−1, P<0.01) as well as the renal excretion of water (aCSF value 48.9±5.8; SP value 14.5±4.0 μl min−1, P<0.01) and potassium (aCSF value 4.8±0.6; SP value 1.5±0.6 μmol min−1, P<0.01) at 30 min post-injection. SP had no significant effect on urinary osmolality. The SP-induced renal inhibitory effects during the first 30 min were abolished in rats subjected to bilateral renal denervation 1 week earlier or in rats injected i.t. 5 min earlier with 6.5 nmol RP 67580. In contrast, the co-injection of SR 48968 and R 820 (6.5 nmol each) did not affect the inhibitory responses to SP. On their own, these antagonists had no direct effect on renal excretion function. Since SP induced only transient changes in mean arterial blood pressure (−18.8±3.8 mmHg at 1 min and +6.3±2.4 mmHg at 5 min post-injection), it is unlikely that the renal effects of SP are due to systemic haemodynamic changes. NKA (6.5 nmol but not 0.65 nmol) produced a transient drop in renal excretion of water (aCSF value 31.2±5.1; NKA value 11.3±4.2 μl min−1, P<0.05), sodium (aCSF value 1.7±0.8; NKA value 0.4±0.2 μmol min−1, P<0.05) and potassium (aCSF value 4.1±0.7; NKA value 1.5±0.4 μmol min−1, P<0.05) at 15 min post-injection. However, the same doses (6.5 nmol) of selective agonists for tachykinin NK2 ([β-Ala8]NKA(4-10)) and NK3 ([MePhe7]NKB) receptors were devoid of renal effects. This study provided functional evidence that tachykinins may be involved in the renal control of water and electrolyte excretion at the level of the rat spinal cord through the activation of NK1 receptors and the sympathetic renal nerve. PMID:9249250
Urine alkalization facilitates uric acid excretion
2010-01-01
Background Increase in the incidence of hyperuricemia associated with gout as well as hypertension, renal diseases and cardiovascular diseases has been a public health concern. We examined the possibility of facilitated excretion of uric acid by change in urine pH by managing food materials. Methods Within the framework of the Japanese government's health promotion program, we made recipes which consist of protein-rich and less vegetable-fruit food materials for H+-load (acid diet) and others composed of less protein but vegetable-fruit rich food materials (alkali diet). Healthy female students were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+) and anions (Cl-,SO42-,PO4-) necessary for the estimation of acid-base balance were measured. Results Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42-] +organic acid-gut alkai) were linearly related with those of the excretion of acid (titratable acidity+ [NH4+] - [HCO3-]), indicating that H+ in urine is generated by the metabolic degradation of food materials. Uric acid and excreted urine pH retained a linear relationship, where uric acid excretion increased from 302 mg/day at pH 5.9 to 413 mg/day at pH 6.5, despite the fact that the alkali diet contained a smaller purine load than the acid diet. Conclusion We conclude that alkalization of urine by eating nutritionally well-designed food is effective for removing uric acid from the body. PMID:20955624
Hayashi, Ami; Okada, Tomonari; Matsumoto, Hiroshi; Nagaoka, Yume; Wada, Toshikazu; Gondo, Asako; Nango, Tomoka; Miyaoka, Yoshitaka; Watanabe, Kanna; Iwata, Azusa; Nakao, Toshiyuki
2013-01-01
We investigate the validity of the assessment of urinary protein excretion by spot urine samples collected by different methods in outpatients with chronic kidney disease (CKD). SUBJECTS AND METHODS We obtained 24-hour urine and two spot urine samples, including the first morning urine and daytime urine in 159 CKD patients. Urinary protein excretion was assessed by the protein/creatinine ratio from spot urine samples (morning: m-UP (g/gCr), daytime: d-UP (g/gCr) ]. We examined the correlations and the differences among m-UP, d-UP and the actual urinary protein excretion obtained by 24-hour urine (a-UP(g/day) . Significant correlations were found between m-UP and a-UP, and between d-UP and a-UP (r = 0.88, 0.85; p < 0.001). Correlations between m-UP and a-UP were greater relative to those between d-UP and a-UP in patients with less than 3.5 g/day of a-UP and in patients with CKD stages 1 to approximately 3. The percent difference between m-UP and a-UP was--16.0 +/- 40.5%, and that between d-UP and a-UP was 27.1 +/- 72.9%. The absolute value of the percent difference between d-UP and a-UP tended to be greater than that between m-UP and a-UP (34.9 +/- 25.9% vs. 49.9 +/- 59.9%, p = 0.06). Urinary protein/creatinie ratio of the first morning urine is better approximate the urinary protein excretion obtained by 24-hour urine compared with that of spot urine in the daytime.
Studies on absorption and elimination of dietary maillard reaction products.
Förster, Anke; Kühne, Yvonne; Henle, Thomas
2005-06-01
A nine-day dietary study involving 18 healthy volunteers was performed in order to investigate the influence of nutrition on the urinary excretion of the Maillard reaction products (MRPs) fructoselysine, pyrraline, and pentosidine. From day two through day eight, most types of Maillard product-containing food had to be avoided. On day five, participants were divided into four groups, three of them receiving a test meal (pretzel sticks, brewed coffee, or custard) containing defined amounts of MRPs. The fourth group served as a control. Urine samples taken over a 24-h period were analyzed for MRPs using chromatographic means. As a result of the MRP-free diet, urinary excretion of free pyrraline and fructoselysine, which was calculated from furosine analysis, were lowered about 90%. Excretion of pentosidine decreased about 40%. Consumption of pretzel sticks and coffee on day five resulted in increased amounts of pyrraline and pentosidine in urine samples on days five to seven. Related to the supplied amounts of pyrraline, about 50% were recovered in the urine samples after ingestion of the pretzel sticks. For pentosidine, 60% of the ingested free derivative from coffee brew and 2% of the peptide-bound amino acid ingested with the bakery product were recovered in the urine samples, indicating a better bioavailability for free pentosidine compared to the protein-bound form. For peptide-bound Amadori products, no influence on the excretion was observed after ingestion of the test foods, indicating degradation in the intestine or plasma to yet-unknown metabolites. In conclusion, differences concerning the excretion rate of individual MRPs point to individual resorption and metabolic pathways. These results are of importance for the discussion of a possible (patho)physiological role of dietary advanced glycation end products (AGEs).
Szefel, Jarosław; Kruszewski, Wiesław Janusz; Ciesielski, Maciej; Szajewski, Mariusz; Kawecki, Krzysztof; Aleksandrowicz-Wrona, Ewa; Jankun, Jerzy; Lysiak-Szydłowska, Wiesława
2012-07-01
Cancer cachexia (CC), a progressive loss of body mass, is associated with decreased energy production. Abnormally low levels of L-carnitine (LC) in skeletal muscle means that mitochondrial β-oxidation of long-chain fatty acids (LCFA) does not occur efficiently in patients with CC. We assessed the influence of CC on LC distribution and the effects of parenteral lipid emulsions on plasma LC levels and urinary excretion. Fifty patients with CC were randomly assigned to total parenteral nutrition (TPN) with long-chain triglycerides (LCTs), or LCTs plus medium-chain triglycerides (MCTs) as 50/50. Patients were further separated into those with body-mass index (BMI) ≤ 19 kg/m(2) and BMI >19 kg/m(2). Plasma concentrations of total LC (TC) and free LC (FC) and their urinary excretion were measured, along with skeletal muscle LC levels. On average, plasma FC and TC were higher than reference values in all patients. Patients with BMI ≤ 19 kg/m(2) had lower plasma FC and TC than those with BMI >19 kg/m(2). Skeletal muscle FC in the BMI ≤ 19 kg/m(2) group was lower than reference value, but within the normal range in others. LC and FC urinary excretion was higher than reference values. Plasma LC and its urinary excretion were higher in patients administered pure LCTs relative to those given MCTs/LCTs. A decrease in skeletal muscle LC in cancer patients with CC (BMI ≤ 19 kg/m(2)) correlates with an increase in its plasma levels and increased renal excretion. A diet of MCTs/LCTs reduces LC release from muscle to plasma and urine more effectively than LCTs.
Bath, Sarah C.; Sleeth, Michelle L.; McKenna, Marianne; Walter, Alan; Taylor, Andrew; Rayman, Margaret P.
2015-01-01
As intra-thyroidal iodine stores should be maximised before conception to facilitate the increased thyroid-hormone production of pregnancy, women who may become pregnant should ideally consume 150 μg iodine/day [US Recommended Dietary Allowance (RDA)]. As few UK data exist in this population group, our aim was to assess iodine intake and status in women of childbearing age in a cross-sectional study at the University of Surrey. Total iodine excretion was measured from 24-h urine samples in 57 women; iodine intake was estimated by assuming that 90% of ingested iodine was excreted. Average iodine intake was also estimated from 48-h food diaries that the women completed. The median urinary-iodine concentration (63.1 μg/L) classified the group as mildly iodine deficient by WHO criteria. By contrast, the median 24-h iodine excretion (149.8 μg/24-h), suggested a relatively low risk of iodine deficiency. Median estimated iodine intake, extrapolated from urinary excretion, was 167 μg/day, whereas it was lower, at 123 μg/day, when estimated from the 48-h food-diaries. Iodine intake from food diaries and 24-h iodine excretion were strongly correlated (r=0.75, p<0.001). Intake of milk, eggs and dairy products was positively associated with iodine status. The iodine status of this UK cohort is probably a best-case scenario as the women were mostly nutrition students and were recruited in the winter when milk-iodine content is at its highest; further study in more representative cohorts of UK women is required. Our study highlights a need for revised cut-offs for iodine deficiency that are method- and age-group specific. PMID:25274294
Gerisch, Michael; Schwarz, Thomas; Lang, Dieter; Rohde, Gabriele; Reif, Stefanie; Genvresse, Isabelle; Reschke, Susanne; van der Mey, Dorina; Granvil, Camille
2017-09-01
To determine the pharmacokinetics of radiolabeled copanlisib (BAY 80-6946) in healthy male volunteers and to investigate the disposition and biotransformation of copanlisib. A single dose of 12 mg copanlisib containing 2.76 MBq [ 14 C]copanlisib was administered as a 1-h intravenous infusion to 6 volunteers with subsequent sampling up to 34 days. Blood, plasma, urine and feces were collected to monitor total radioactivity, parent compound and metabolites. Copanlisib treatment was well tolerated. Copanlisib was rapidly distributed throughout the body with a volume distribution of 1870 L and an elimination half-life of 52.1-h (range 40.4-67.5-h). Copanlisib was the predominant component in human plasma (84% of total radioactivity AUC) and the morpholinone metabolite M1 was the only circulating metabolite (about 5%). Excretion of drug-derived radioactivity based on all 6 subjects was 86% of the dose within a collection interval of 20-34 days with 64% excreted into feces as major route of elimination and 22% into urine. Unchanged copanlisib was the main component excreted into urine (15% of dose) and feces (30% of dose). Excreted metabolites (41% of dose) of copanlisib resulted from oxidative biotransformation. Copanlisib was eliminated predominantly in the feces compared to urine as well as by hepatic biotransformation, suggesting that the clearance of copanlisib would more likely be affected by hepatic impairment than by renal dysfunction. The dual mode of elimination via unchanged excretion of copanlisib and oxidative metabolism decreases the risk of clinically relevant PK-related drug-drug interactions.
2013-01-01
Background 2,5-hexanedione (2,5-HD) is the main neurotoxic metabolite of methyl-n-butyl ketone (MBK) and n-hexane, and known to cause polyneuropathy. The aim of our study was to compare the urinary levels of 2,5-HD between cases with cryptogenic polyneuropathy and the general Swedish population, and to elucidate the role of certain external factors. Methods Morning urine samples were collected from 114 cases with cryptogenic polyneuropathy (77 men and 37 women) and 227 referents (110 men and 117 women) randomly selected from the population registry. None had any current occupational exposure to n-hexane or MBK. The urine samples were analysed by a gas chromatographic method based on acidic hydrolysis. Results Cases had statistically higher urinary levels of 2,5-HD (0.48 mg/L) than the general population (0.41 mg/L) and men higher excretion than women (0.48 mg/L and 0.38 mg/L, respectively). There was no difference in 2,5-HD levels between current smokers and non-smokers. Occupational exposure to xylene, alcohol consumption and ever exposed to general anaesthesia were associated with lower excretion in men while for occupational exposure to nitrous oxide in women higher excretion was seen. Higher excretion of 2,5 HD was inversely related to increasing age. Conclusions Significantly higher levels of urinary 2,5-HD were seen in men and cryptogenic polyneuropathy cases seemingly unexposed to n-hexane. Hypothetically, this might be due to either differences in metabolic patterns or some concealed exposure. The difference in means between cases and the general population is small and can therefore not allow any firm conclusions of the causality, however. PMID:23898939
Li, Fengqin; Guo, Hui; Zou, Jianan; Chen, Weijun; Lu, Yijun; Zhang, Xiaoli; Fu, Chensheng; Xiao, Jing; Ye, Zhibin
2018-04-24
Increasing evidence has shown that albuminuria is related to serum uric acid. Little is known about whether this association may be interrelated via renal handling of uric acid. Therefore, we aim to study urinary uric acid excretion and its association with albuminuria in patients with chronic kidney disease (CKD). A cross-sectional study of 200 Chinese CKD patients recruited from department of nephrology of Huadong hospital was conducted. Levels of 24 h urinary excretion of uric acid (24-h Uur), fractional excretion of uric acid (FEur) and uric acid clearance rate (Cur) according to gender, CKD stages, hypertension and albuminuria status were compared by a multivariate analysis. Pearson and Spearman correlation and multiple regression analyses were used to study the correlation of 24-h Uur, FEur and Cur with urinary albumin to creatinine ratio (UACR). The multivariate analysis showed that 24-h Uur and Cur were lower and FEur was higher in the hypertension group, stage 3-5 CKD and macro-albuminuria group (UACR> 30 mg/mmol) than those in the normotensive group, stage 1 CKD group and the normo-albuminuria group (UACR< 3 mg/mmol) (all P < 0.05). Moreover, males had higher 24-h Uur and lower FEur than females (both P < 0.05). Multiple linear regression analysis showed that UACR was negatively associated with 24-h Uur and Cur (P = 0.021, P = 0.007, respectively), but not with FEur (P = 0.759), after adjusting for multiple confounding factors. Our findings suggested that urinary excretion of uric acid is negatively associated with albuminuria in patients with CKD. This phenomenon may help to explain the association between albuminuria and serum uric acid.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle JJ Table JJ-3 to Subpart JJ of Part 98 Protection of... Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle State Volatile solids excretion rate (kg...
Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi
2018-05-01
Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique
2013-10-01
Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparative Effects of Low-Carbohydrate High-Protein Versus Low-Fat Diets on the Kidney
Ogden, Lorraine G.; Foster, Gary D.; Klein, Samuel; Stein, Richard; Miller, Bernard; Hill, James O.; Brill, Carrie; Bailer, Brooke; Rosenbaum, Diane R.; Wyatt, Holly R.
2012-01-01
Summary Background and objectives Concerns exist about deleterious renal effects of low-carbohydrate high-protein weight loss diets. This issue was addressed in a secondary analysis of a parallel randomized, controlled long-term trial. Design, setting, participants, and measurements Between 2003 and 2007, 307 obese adults without serious medical illnesses at three United States academic centers were randomly assigned to a low-carbohydrate high-protein or a low-fat weight-loss diet for 24 months. Main outcomes included renal filtration (GFR) indices (serum creatinine, cystatin C, creatinine clearance); 24-hour urinary volume; albumin; calcium excretion; and serum solutes at 3, 12, and 24 months. Results Compared with the low-fat diet, low-carbohydrate high-protein consumption was associated with minor reductions in serum creatinine (relative difference, −4.2%) and cystatin C (−8.4%) at 3 months and relative increases in creatinine clearance at 3 (15.8 ml/min) and 12 (20.8 ml/min) months; serum urea at 3 (14.4%), 12 (9.0%), and 24 (8.2%) months; and 24-hour urinary volume at 12 (438 ml) and 24 (268 ml) months. Urinary calcium excretion increased at 3 (36.1%) and 12 (35.7%) months without changes in bone density or clinical presentations of new kidney stones. Conclusions In healthy obese individuals, a low-carbohydrate high-protein weight-loss diet over 2 years was not associated with noticeably harmful effects on GFR, albuminuria, or fluid and electrolyte balance compared with a low-fat diet. Further follow-up is needed to determine even longer-term effects on kidney function. PMID:22653255
Association of urinary calcium excretion with serum calcium and vitamin D levels.
Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred; Burnier, Michel; Bochud, Murielle
2015-03-06
Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Multivariable linear regression was used to explore factors associated with square root-transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15-95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein-corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, -0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, -0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. Copyright © 2015 by the American Society of Nephrology.
González Mateo, M Carmen; Fernández Fernández, Marta; Valdazo Revenga, Vega; García Menéndez, Luis; Díez Hernández, Alberto; Rodríguez Rodríguez, Rosario
2011-10-01
Iodine nutritional status in pregnant women is important for neuronal development of the fetus, and may vary depending on the geographic area. Thyroid function and urinary iodine excretion were therefore assessed in pregnant women from three different provinces of a large Spanish autonomous community. A descriptive study was conducted in the three healthcare areas of Burgos, Avila, and Ponferrada on 1,200 women in the first trimester of pregnancy The study consisted of a survey and thyroid hormone and urinary iodine measurements. Use of iodized salt and iodine-containing pharmacological compounds was reported by 40% and 17% of pregnant women respectively. Median urinary iodine excretion in the total group was 121 mcg/L, with lower values in Burgos (117 mcg/L) and Ponferrada (118 mcg/L) and higher levels in Avila (130 mcg/L). Urinary iodine excretion was less than 100 mcg/L in 34% of women and was undetectable in 3.3%. Excretion levels lower than 150 mcg/L were found in 69.8% of women. Low thyroxine levels were detected in 1.1%, and thyrotropin levels were increased in 4.7%. Iodine deficiency currently exists in pregnant women from different areas of our large autonomous community. Consumption of iodized salt and iodine-containing pharmacological compounds is not widely established. It would be of great interest to conduct studies in other geographic areas and to advise an increased iodine intake in women who plan to become pregnant and in pregnant women from the very start of pregnancy. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.
Renal Response to Chronic Centrifugation in Rats
NASA Technical Reports Server (NTRS)
Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.
Charbonneau, Duane; Gibb, Roger D.; Quigley, Eamonn M.M.
2013-01-01
Certain randomized, placebo-controlled trials of oral supplementation with B. infantis 35624 have demonstrated the amelioration of symptoms of irritable bowel syndrome. Potential GI colonization by B. infantis 35624 or effects of supplementation on resident GI microbiota may pertain to these clinical observations. In this study, fecal excretion of B. infantis 35624 before, during and after 8 weeks of daily treatment was compared in subjects with IBS who received either the encapsulated oral supplement (n = 39) or placebo (n = 37) and in healthy subjects who received the supplement (n = 41). Secondarily, changes in assessed fecal microbiota and IBS symptoms were determined. Supplementation significantly increased fecal B. infantis 35624 excretion vs. placebo in IBS subjects; excretion in healthy subjects receiving supplement was quantitatively similar. Fecal levels of the probiotic declined and approached baseline once dosing ceased, documenting that colonization is transient. Although supplementation increased numbers of B infantis 35624 within the GI tract, limited changes in 10 other fecal taxa were observed either in healthy subjects or those with IBS. No impact on IBS symptoms was observed. Detection of bacterial DNA in fecal samples suggests that the probiotic is able to survive transit through the GI tract, although strain selective culture techniques were not performed to confirm viability of B. infantis 35624 in the feces. Continuous probiotic administration was necessary to maintain steady-state transit. Given the complex spectrum of GI microbiota, however, monitoring perturbations in selected taxa may not be not a useful indicator of probiotic function. PMID:23549409
Ethosuximide: liver enzyme induction and D-glucaric acid excretion.
Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C
1974-06-01
1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.
Idkaidek, Nasir M.
2013-01-01
The aim of this commentary is to investigate the interplay of Biopharmaceutics Classification System (BCS), Biopharmaceutics Drug Disposition Classification System (BDDCS) and Salivary Excretion Classification System (SECS). BCS first classified drugs based on permeability and solubility for the purpose of predicting oral drug absorption. Then BDDCS linked permeability with hepatic metabolism and classified drugs based on metabolism and solubility for the purpose of predicting oral drug disposition. On the other hand, SECS classified drugs based on permeability and protein binding for the purpose of predicting the salivary excretion of drugs. The role of metabolism, rather than permeability, on salivary excretion is investigated and the results are not in agreement with BDDCS. Conclusion The proposed Salivary Excretion Classification System (SECS) can be used as a guide for drug salivary excretion based on permeability (not metabolism) and protein binding. PMID:24493977
Carr, Anitra C; Bozonet, Stephanie M; Vissers, Margreet C M
2013-11-11
Kiwifruit are a rich source of vitamin C and also contain numerous phytochemicals, such as flavonoids, which may influence the bioavailability of kiwifruit-derived vitamin C. The aim of this study was to compare the relative bioavailability of synthetic versus kiwifruit-derived vitamin C using a randomised cross-over pharmacokinetic study design. Nine non-smoking males (aged 18-35 years) received either a chewable tablet (200 mg vitamin C) or the equivalent dose from gold kiwifruit (Actinidia chinensis var. Sungold). Fasting blood and urine were collected half hourly to hourly over the eight hours following intervention. The ascorbate content of the plasma and urine was determined using HPLC with electrochemical detection. Plasma ascorbate levels increased from 0.5 h after the intervention (P = 0.008). No significant differences in the plasma time-concentration curves were observed between the two interventions (P = 0.645). An estimate of the total increase in plasma ascorbate indicated complete uptake of the ingested vitamin C tablet and kiwifruit-derived vitamin C. There was an increase in urinary ascorbate excretion, relative to urinary creatinine, from two hours post intervention (P < 0.001). There was also a significant difference between the two interventions, with enhanced ascorbate excretion observed in the kiwifruit group (P = 0.016). Urinary excretion was calculated as ~40% and ~50% of the ingested dose from the vitamin C tablet and kiwifruit arms, respectively. Overall, our pharmacokinetic study has shown comparable relative bioavailability of kiwifruit-derived vitamin C and synthetic vitamin C.
Barnes, Ryan C; Krenek, Kimberly A; Meibohm, Bernd; Mertens-Talcott, Susanne U; Talcott, Stephen T
2016-03-01
The absorption, metabolism, and excretion of mango galloyl derivatives (GD) has not yet been investigated in humans, and studies investigating repeated dosages of polyphenols are limited. In this human pilot trial, healthy volunteers (age = 21-38 y, n = 11) consumed 400 g/day of mango-pulp (cv. Keitt) for 10 days, and seven metabolites of gallic acid (GA) were characterized and quantified in urine excreted over a 12 h period. Pyrogallol-O-sulfate and deoxypyrogallol-O-sulfate were found to be significantly more excreted between days 1 and 10 (p < 0.05) from 28.5 to 55.4 mg and 23.6 to 47.7 mg, respectively. Additionally, the in vitro hydrolysis of gallotannins (GTs) was monitored at physiological pH and temperature conditions, and after 4 h a significant (p < 0.05) shift in composition from relativity high to low molecular weight GTs was observed. Seven metabolites of GA were identified in the urine of healthy volunteers, and two microbial metabolites were found to be significantly more excreted following 10 days of mango consumption. Mango GTs were also found to release free GA in conditions similar to the intestines. GTs may serve as a pool of pro-GA compounds that can be absorbed or undergo microbial metabolism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas
2016-01-01
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions. PMID:27119084
Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong
2013-12-01
The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20 mg/kg and 2 mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20 mg/kg dose exposure, but it was not obviously observed in the 2 mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor). © 2013 Wiley Periodicals, Inc.
Brorson, T; Skarping, G; Sandström, J F; Stenberg, M
1990-01-01
1,6-Hexamethylene diamine (HDA), used as raw material in industrial manufacturing operations, was orally administered to six healthy volunteers. After acid hydrolysis of the urine by hydrochloric acid, HDA and the metabolite 6-aminohexanoic acid were quantified. HDA was determined as an ethyl-chloroformate derivative by capillary gas chromatography using thermionic specific detection (TSD), and 6-aminohexanoic acid was quantified by ion chromatography using the ninhydrin reaction. In nonhydrolysed urine, monoacetylated HDA (N-acetyl-1,6-hexamethylene diamine) and HDA, were verified as heptafluorobutyric anhydride derivatives by gas chromatography-mass spectrometry (GC-MS), in a chemical ionization mode using isobutane and ammonia as reagent gases. In hydrolysed urine, a mean of 0.28 mg (range 1-6%) of the administered dose (8.2 mg) was recovered as HDA, and a mean of 0.8 mg (range less than 1-27%) as 6-aminohexanoic acid. The urinary excretion of both the determined compounds was rapid, and the principal part (greater than 90%) of the elimination was completed within 10 h. There was a considerable inter-individual variation in the excreted amounts, but the intra-individual variation in the excretion of HDA was limited. The subjects N-acetylator phenotype was determined by a dapsone test. Three slow acetylators excreted lower amounts (mean 2% of given dose) of HDA than three rapid ones (mean 5%).
Wang, Yuhuan; Liu, Xiaoxi; Pijut, Sonja S.; Li, Jianing; Horn, Jamie; Bradford, Emily M.; Leggas, Markos; Barrett, Terrence A.; Graf, Gregory A.
2015-01-01
Previous studies suggest an interdependent relationship between liver and intestine for cholesterol elimination from the body. We hypothesized that a combination of ursodiol (Urso) and ezetimibe (EZ) could increase biliary secretion and reduce cholesterol reabsorption, respectively, to promote cholesterol excretion. Treatment with Urso increased hepatic ABCG5 ABCG8 (G5G8) protein and both biliary and fecal sterols in a dose-dependent manner. To determine whether the drug combination (Urso-EZ) further increased cholesterol excretion, mice were treated with Urso alone or in combination with two doses of EZ. EZ produced an additive and dose-dependent increase in fecal neutral sterol (FNS) elimination in the presence of Urso. Finally, we sequentially treated wide-type and G5G8-deficient mice with Urso and Urso-EZ to determine the extent to which these effects were G5G8 dependent. Although biliary and FNS were invariably lower in G5G8 KO mice, the relative increase in FNS following treatment with Urso alone or the Urso-EZ combination was not affected by genotype. In conclusion, Urso increases G5G8, biliary cholesterol secretion, and FNS and acts additively with EZ to promote fecal sterol excretion. However, the stimulatory effect of these agents was not G5G8 dependent. PMID:25635125
Migration of a foreign body into the colon and its autonomous excretion.
Modrzejewski, Andrzej; Kiciak, Adam; Sledż, Marcin; Sygit, Katarzyna; Borycka-Kiciak, Katarzyna; Grzesiak, Wilhelm; Tarnowski, Wiesław
2011-02-25
The frequency of foreign body retention in the abdominal cavity ranges from 1 in 100 to 1 in 3000 surgeries performed. Worldwide literature describes only a few cases of the migration of misplaced surgical gauze into the colon. The first case is a 60-year-old patient following laparoscopic cholecystectomy, who excreted (on his own) a cotton sheet 30 × 65 cm after 26 weeks, which did not possess a radiological locator. The latter fact caused diagnostic difficulties in interpreting ultrasonography, CT-scans and abdominal X-rays. Colonoscopy after 4 months following the excretion of the sheet showed flat, stretched ulceration of the colonic wall near the hepatic turn. The second case is a 76-year-old who had undergone several abdominal surgeries, including a classical cholecystectomy and extirpation of the uterus along with related tissues, as a result of cancer and with subsequent radiotherapy. The reason for the last intervention was an occlusion, which required a resection due to abscesses inside the peritoneal cavity. Abdominal pain continued after the surgery. Uroscopy and abdominal X-rays were performed 3 months later, which confirmed the presence of foreign matter in the abdominal cavity. Most foreign objects that have migrated into the colon will be excreted autonomously, which warrants a conservative assessment. Radiologically-tagged materials should be used, which will greatly ease identification in cases of suspected retention of surgical materials in the abdominal cavity.
Effects of chronic lithium administration on renal acid excretion in humans and rats
Weiner, I. David; Leader, John P.; Bedford, Jennifer J.; Verlander, Jill W.; Ellis, Gaye; Kalita, Priyakshi; Vos, Frederiek; de Jong, Sylvia; Walker, Robert J.
2014-01-01
Abstract Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium‐treated and control humans. There were no significant differences between lithium‐treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium‐treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium‐treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg. PMID:25501430
Greater bile acid excretion with soy bean than with cow milk in infants.
Potter, J M; Nestel, P J
1976-05-01
The excretion of fecal sterols and bile acids was measured in five infants from the 1st week of life to 2 or 3 months of age as the composition of their diet was changed from cow milk to soy bean milk. Bile acid excretion, adjusted for body weight, was initially lower during the 1st than during the 3rd week, when it reached adult values. The average excretion of bile acids was 6.8 mg/kg per day with soy bean milk and 3.6 mg/kg per day with cow milk. Net sterol excretion (total sterol output minus cholesterol intake) was also twice as high with soy bean milk and probably reflected enhancement of cholesterol re-excretion as well as of synthesis since the cholesterol content of soy beans is nil. However, net sterol excretion remained higher with soy bean than with cow milk even when egg yolk cholesterol was added to the soy bean milk. It is concluded that the substitution of soy bean milk for cow milk, which lowered the plasma cholesterol in all infants (even in the presence of dietary cholesterol) leads to an increase in bile acids and probably also in cholesterol excretion in young infants.
Moyer-Mileur, Laurie J; Slater, Hillarie; Jordan, Kristine C; Murray, Mary A
2008-12-01
Children and adolescents with poorly controlled type 1 diabetes mellitus (T1DM) are at risk for decreased bone mass. Growth hormone (GH) and its mediator, IGF-1, promote skeletal growth. Recent observations have suggested that children and adolescents with T1DM are at risk for decreased bone mineral acquisition. We examined the relationships between metabolic control, IGF-1 and its binding proteins (IGFBP-1, -3, -5), and bone mass in T1DM in adolescent girls 12-15 yr of age with T1DM (n = 11) and matched controls (n = 10). Subjects were admitted overnight and given a standardized diet. Periodic blood samples were obtained, and bone measurements were performed. Serum GH, IGFBP-1 and -5, glycosylated hemoglobin (HbA(1c)), glucose, and urine magnesium levels were higher and IGF-1 values were lower in T1DM compared with controls (p < 0.05). Whole body BMC/bone area (BA), femoral neck areal BMD (aBMD) and bone mineral apparent density (BMAD), and tibia cortical BMC were lower in T1DM (p < 0.05). Poor diabetes control predicted lower IGF-1 (r(2) = 0.21) and greater IGFBP-1 (r(2) = 0.39), IGFBP-5 (r(2) = 0.38), and bone-specific alkaline phosphatase (BALP; r(2) = 0.41, p < 0.05). Higher urine magnesium excretion predicted an overall shorter, lighter skeleton, and lower tibia cortical bone size, mineral, and density (r(2) = 0.44-0.75, p < 0.05). In the T1DM cohort, earlier age at diagnosis was predictive of lower IGF-1, higher urine magnesium excretion, and lighter, thinner cortical bone (r(2) >or=0.45, p < 0.01). We conclude that poor metabolic control alters the GH/IGF-1 axis, whereas greater urine magnesium excretion may reflect subtle changes in renal function and/or glucosuria leading to altered bone size and density in adolescent girls with T1DM.
Oxidative DNA damage during sleep periods among nightshift workers.
Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott
2016-08-01
Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Effects of age and sex on hormonal responses to weightlessness simulation
NASA Technical Reports Server (NTRS)
Larochelle, F.; Leach, C.; Vernikos-Danellis, J.
1982-01-01
The effects of horizontal bedrest on the excretion of catecholamines, aldosterone, and cortisol by human subjects grouped by age and sex are examined. The responses are assessed by assays of 24-hr urine samples collected throughout the studies. In 36-45-yr-olds, the excretion of epinephrine increases, whereas it decreases in the 46-55- and 56-65-yr-old groups. Norepinephrine excretion decreases (5-27%) in all groups during bedrest. Aldosterone excretion increases in the younger two groups of both males (19 and 6%) and females (47 and 9%). A slight decrease is observed in 56-65-yr-old males (6%), whereas excretion in females is unchanged. Cortisol excretion increases in the youngest groups of both men (12%) and women (13%) but decreases in the 56-65-yr-old groups (6 and 5%). For the two groups of intermediate age (46-55 yr), excretion in females decreases (15%), whereas in males it increases (19%). It is believed that hormone measurements may be of value in explaining variation in stress tolerance due to age and/or sex during space flight.
Effects of diet on titratable acid-base excretion in grasshoppers.
Frazier, M R; Harrison, J F; Behmer, S T
2000-01-01
Despite the potential for diet to affect organismal acid-base status, especially in herbivores, little is known about the effects of diet on acid-base loading and excretion. We tested the effects of diet on acid-base loading and excretion in grasshoppers by (a) comparing the fecal acid-base content of 15 grasshopper species collected from the field and (b) comparing fecal acid-base excretion rates of Schistocerca americana grasshoppers fed vegetable diets that differed in their ashed and raw acid-base contents. The field experiments indicated that grass-feeding species excrete fairly neutral fecal pellets, while forb/mixed-feeding species vary widely in their fecal acid-base contents. In the laboratory experiment, acid-base excretion rates were positively correlated with dietary ashed base intake rates but were not correlated with the acid-base content of raw, unashed diet or feeding rate. These experiments suggest that some diets could strongly challenge the acid-base homeostasis of herbivores; in some grasshoppers, dietary acid-base loads could produce certainly lethal 1-unit changes in average body pH within 6 h if they were not excreted.
Heacox, Hayley N; Gillman, Patricia L; Zwart, Sara R; Smith, Scott M
2017-01-01
Background: Zinc and copper have many physiologic functions and little or no functional storage capability, so persistent losses of either element present health concerns, especially during extended-duration space missions. Objectives: We evaluated the effects of short-term bed rest (BR), a spaceflight analog, on copper and zinc metabolism to better understand the role of these nutrients in human adaptation to (simulated) spaceflight. We also investigated the effect of artificial gravity on copper and zinc homeostasis. Methods: Zinc and copper balances were studied in 15 men [mean ± SD age: 29 ± 3 y; body mass index (in kg/m2): 26.4 ± 2.2] before, during, and after 21 d of head-down tilt BR, during which 8 of the participants were subjected to artificial gravity (AG) by centrifugation for 1 h/d. Control subjects were transferred onto the centrifuge but were not exposed to centrifugation. The study was conducted in a metabolic ward; all urine and feces were collected. Data were analyzed by 2-factor repeated-measures ANOVA. Results: Urinary zinc excretion values for control and AG groups were 33% and 14%, respectively, higher during BR than before BR, and fecal zinc excretion values for control and AG groups were 36% and 19%, respectively, higher during BR, resulting in 67% and 82% lower net zinc balances for controls and AG, respectively (both P < 0.01), despite lower nutrient intake during BR. Fecal copper values for control and AG groups were 40% and 33%, respectively, higher during BR than before BR (P < 0.01 for both). Urinary copper did not change during BR, but a 19% increase was observed after BR compared with before BR in the AG group (P < 0.05). Conclusions: The increased fecal excretion of copper and zinc by men during BR suggests that their absorption of these minerals from the diet was reduced, secondary to the release of minerals from bone and muscle. These findings highlight the importance of determining dietary requirements for astronauts on space missions and ensuring provision and intake of all nutrients. PMID:28490676
Passey, Caroline
2017-05-01
It has been proposed that a low-protein diet will slow progression of chronic kidney disease although studies have not always supported this belief. The accepted practice is that 60% to 70% of protein comes from high biological value (HBV) protein, but this limits patient choice and patients struggle to follow the diet. When a diet with only 30% HBV protein was trialed, there was a significant increase in serum bicarbonate, and patients preferred the diet. The dietary advice given in predialysis clinics was changed. HBV protein was restricted to approximately 50% of total protein, bread and cereal foods were allowed freely, and fruits and vegetables (F&V) were encouraged. Patients who followed the diet have seen a slowing of progression and occasionally regression of their renal function. Both observations and scientific literature indicate that this is because of a reduction in the acid content of the diet. When foods are metabolized, most proteins produce acid, and most F&V produce alkali. A typical 21 st -century diet produces 50 to 100 mEq H + per day which the kidney is challenged to excrete. Acid is excreted with phosphate and is limited to about 45 mEq H + per day. With chronic kidney disease, this falls progressively to below 20 mEq H + per day. Historically, ammonium excretion was believed to be excretion of acid (NH 3 + + H + → NH 4 + ), but it is now understood to be a by-product in the neutralization of acid by glutamine. The remaining acid is neutralized or stored within the body. Bone and muscle are lost in order to neutralize the acid. Acid also accumulates within cells, and serum bicarbonate falls. The author postulates that reducing the acid load through a low-protein diet with greater use of vegetable proteins and increased F&V intake will slow progression or occasionally improve renal function while maintaining the nutritional status of the individual. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Heacox, Hayley N; Gillman, Patricia L; Zwart, Sara R; Smith, Scott M
2017-06-01
Background: Zinc and copper have many physiologic functions and little or no functional storage capability, so persistent losses of either element present health concerns, especially during extended-duration space missions. Objectives: We evaluated the effects of short-term bed rest (BR), a spaceflight analog, on copper and zinc metabolism to better understand the role of these nutrients in human adaptation to (simulated) spaceflight. We also investigated the effect of artificial gravity on copper and zinc homeostasis. Methods: Zinc and copper balances were studied in 15 men [mean ± SD age: 29 ± 3 y; body mass index (in kg/m 2 ): 26.4 ± 2.2] before, during, and after 21 d of head-down tilt BR, during which 8 of the participants were subjected to artificial gravity (AG) by centrifugation for 1 h/d. Control subjects were transferred onto the centrifuge but were not exposed to centrifugation. The study was conducted in a metabolic ward; all urine and feces were collected. Data were analyzed by 2-factor repeated-measures ANOVA. Results: Urinary zinc excretion values for control and AG groups were 33% and 14%, respectively, higher during BR than before BR, and fecal zinc excretion values for control and AG groups were 36% and 19%, respectively, higher during BR, resulting in 67% and 82% lower net zinc balances for controls and AG, respectively (both P < 0.01), despite lower nutrient intake during BR. Fecal copper values for control and AG groups were 40% and 33%, respectively, higher during BR than before BR ( P < 0.01 for both). Urinary copper did not change during BR, but a 19% increase was observed after BR compared with before BR in the AG group ( P < 0.05). Conclusions: The increased fecal excretion of copper and zinc by men during BR suggests that their absorption of these minerals from the diet was reduced, secondary to the release of minerals from bone and muscle. These findings highlight the importance of determining dietary requirements for astronauts on space missions and ensuring provision and intake of all nutrients. © 2017 American Society for Nutrition.
EXCRETION OF ARSENIC IN URINE AS A FUNCTION OF EXPOSURE TO ARSENIC IN DRINKING WATER
Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first mornin...
USDA-ARS?s Scientific Manuscript database
The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Ki...
USDA-ARS?s Scientific Manuscript database
Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system particularly in older individuals with declining renal function. We sought to determine whether adding an alkaline salt, potassium bicar...
Webb, J; Whaley, K; MacSween, R N; Nuki, G; Dick, W C; Buchanan, W W
1975-01-01
Inter-relationships of biochemical and immunological tests of liver function have been studied in a prospective study of 216 patients with rheumatoid arthritis (RA), 32 patients with Sjogren's syndrome, and 27 patients with the sicca syndrome, and these results have been compared with those obtained 289 patients with osteoarthrosis or with a form of seronegative polyarthropathy. In general the prevalence of abnormalities in serum alkaline phosphatase, bromsulphthalein excretion, smooth muscle antibody, and mitochondrial antibody in the former three groups was higher than in patients with osteoarthrosis. Patients with Sjogren's syndrome with RA had a higher prevalence of abnormalities of bromsulphthalein excretion, salivary duct antibody than patients with the sicca syndrome. Patients with RA had a higher pervalence of rheumatoid factor than those with the sicca syndrome. Patients with a positive smooth muscle or mitochondrial antibody were found to have a higher prevalence of hepatomegaly and splenomegaly, of abnormal liver function tests, of other autoantibodies, and of histological abnromalitis of liver than those in whom these tests were negative. PMID:1092275
Van Der Werf, Paul; Stephani, Ralph A.; Meister, Alton
1974-01-01
5-Oxoprolinase catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate, L-2-pyrrolidone-5-carboxylate) to L-glutamate with concomitant stoichiometric cleavage of ATP to ADP and inorganic orthophosphate. In this reaction, a step in the γ-glutamyl cycle, 5-oxoproline (formed by the action of γ-glutamylcyclotransferase on γ-glutamyl amino acids, which are in turn formed by transpeptidation of amino acids with glutathione), is made available for glutathione synthesis. When mice are injected with L-2-imidazolidone-4-carboxylate, a competitive inhibitor of 5-oxoprolinase, they accumulate 5-oxoproline in their tissues (kidney, liver, brain, and eye) and excrete it in the urine. Mice given the inhibitor together with one of several L-amino acids accumulate and excrete much more 5-oxoproline than when they are given the inhibitor alone. Such augmentation of 5-oxoproline accumulation offers evidence for the function of the γ-glutamyl cycle in vivo and supports the view that 5-oxoproline is a quantitatively significant metabolite. Images PMID:4151516
Secondary contributors to bone loss in osteoporosis related hip fractures.
Edwards, B J; Langman, C B; Bunta, A D; Vicuna, M; Favus, M
2008-07-01
Osteoporosis treatment of patients with hip fractures is necessary to prevent subsequent fractures. Secondary causes for bone loss are present in more than 80% of patients with hip fractures, and therefore, assessment of Vitamin D status, disorders in calcium absorption and excretion, monoclonal gammopathies, and renal function should be performed. Identifying and managing these disorders will improve detection and enhance treatment aimed at reducing the risk of recurrent fractures in older adults. The purpose of this study was to determine the prevalence of disorders affecting bone and mineral metabolism in individuals with osteoporotic hip fractures. Community dwelling individuals with hip fractures (HFx) 50 years of age and older. Assessment for vitamin D, renal and parathyroid status, calcium absorption, and plasma cell disorders. Of 157 HFx, mean age 70 +/- 10 years, HFx had higher creatinine (p = 0.002, 95% C.I. -0.09, 0.05); lower 25 OH vitamin D (p = 0.019, 95% C.I. 6.5, 2.7), albumin (p = 0.007, 95% C.I. 0.36, 0.009), and 24-h urine calcium (p = 0.024, 95% CI 51, 21) as compared to controls. More than 80% of HFx had at least one previously undiagnosed condition, with vitamin D insufficiency (61%), chronic kidney disease (16%) (CKD), monoclonal gammopathy (6%), and low calcium absorption (5%) being the most common. One case each of multiple myeloma and solitary plasmocytoma were identified. Osteoporosis treatment of HFx is necessary to prevent subsequent fractures. Secondary causes for bone loss are remarkably common in HFx; therefore, assessment of vitamin D status, disorders in calcium absorption and excretion, protein electrophoresis, and renal function should be performed. Identifying and correcting these disorders will improve detection and enhance treatment aimed at reducing the risk of recurrent fractures in older adults.
Effect of monofluoroacetate on renal H+ excretion in the rat.
Simonnet, H; Gauthier, C; Pellet, M V
1979-05-01
In order to investigate the effect of monofluoroacetate (MFA) on renal H+ excretion, anesthetized rats under mannitol diuresis were given intraperitoneally MFA and some of the acido-basic status parameters were determined. Urinary pH and pCO2 did not change after MFA administration, while urinary flow rate increased. MFA induced a decrease in H+ net excretion and in ammonia excretion. Titratable acidity did not change significantly within the experiment.
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.
Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z
2000-12-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.
Bennett, S L; Abraham, L A; Anderson, G A; Holloway, S A; Parry, B W
2006-11-01
To determine reference limits for urinary fractional excretion of electrolytes in Greyhound dogs. Urinary fractional excretion was calculated using a spot clearance method preceded by a 16 to 20 hour fast in 48 Greyhound dogs. Raw data analysed using the bootstrap estimate was used to calculate the reference limits. The observed range for urinary fractional excretion in Greyhound dogs was 0.0 to 0.77% for sodium, 0.9 to 14.7% for potassium, 0 to 0.66% for chloride, 0.03 to 0.22% for calcium and 0.4 to 20.1% for phosphate. Expressed as percentages, the suggested reference limits for fractional excretion in Greyhound dogs are as follows: sodium < or = 0.72, potassium < or = 12.2, chloride < or = 0.55, calcium < or = 0.13 and phosphate < or = 16.5. Veterinary practitioners may use these reference limits for urinary electrolyte fractional excretion when investigating renal tubular disease in Greyhound dogs.
Koester, Diana C; Wildt, David E; Brown, Janine L; Meeks, Karen; Crosier, Adrienne E
2017-03-01
Cheetahs in managed zoological collections do not reproduce efficiently, a problem that may be related to environmental/management stressors. In this study, we examined 17 adult female cheetahs to determine the influence of two environmental factors, (1) being housed on- or off-exhibit and (2) number of adult conspecifics (males and/or females) in nearby enclosures, on profiles and concentrations of ovarian and adrenal hormones. Secondarily, we assessed a subset of group-housed siblings (n=5 females in groups of 2 or 3) for effects of long-term cohabitation. All of the females demonstrated waves of estrogen excretion (indicative of ovarian activity) as well as occasional periods of no estrogen production (anestrus). Glucocorticoid and estrogen concentrations were correlated within an individual (r s =0.53; P<0.05), and overall there was a higher frequency of days with elevated glucocorticoid concentrations in association with elevated estrogen excretion. However, none of the management factors had an impact (P>0.05) on estrogen or glucocorticoid metabolite excretory patterns. Although we recently reported that public exposure can negatively affect sperm production, ovarian steroidogenesis in females was unaffected. There also was no evidence of hyper-adrenal activity. Thus, different methods of ex situ management appear to have minimal influence on ovarian function or stress susceptibility of female cheetahs. Copyright © 2016 Elsevier Inc. All rights reserved.
Iodine Excretion in 24-hour Urine Collection and Its Dietary Determinants in Healthy Japanese Adults
Katagiri, Ryoko; Asakura, Keiko; Uechi, Ken; Masayasu, Shizuko; Sasaki, Satoshi
2016-01-01
Background Since seaweed is a common component of the Japanese diet, iodine intake in Japanese is expected to be high. However, urinary iodine excretion, measured using 24-hour urine samples, and its dietary determinants are not known. Methods Apparently healthy adults aged 20 to 69 years living in 20 areas throughout Japan were recruited in February and March, 2013. Urinary iodine excretion was evaluated using 24-hour urine collected from 713 subjects (362 men and 351 women), and the difference among age groups was assessed. The association between dietary intake of food groups and urinary iodine excretion was assessed among 358 subjects who completed a semi-weighed 4-day diet record (DR) and urine collection. The correlations between iodine intake and iodine excretion were also evaluated, and correlation coefficients were calculated for iodine intake in the DR of the overlapping day or the DR 1 day before and after urine collection. Results Median iodine excretion in 24-hour urine was 365 µg, and excretion was significantly higher in older subjects. Iodine intake estimated by the DRs was significantly correlated with urinary iodine excretion when DRs and urine collection were obtained on the same day (r = 0.37). After adjustment for confounding factors, iodine excretion was significantly associated with intakes of kelp and soup stock from kelp and fish. Conclusions Although multiple measurements for urinary iodine are required to confirm our results, this study showed the current iodine status of healthy Japanese adults. The results suggest that kelp and fish are the main contributors to Japanese iodine status measured by 24-hour urine. PMID:27374137
Association between 24-h urinary sodium excretion and obesity in Korean adults: A multicenter study.
Nam, Ga Eun; Kim, Seon Mee; Choi, Mi-Kyeong; Heo, Young-Ran; Hyun, Tai-Sun; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Ro, Hee-Kyong; Han, Kyungdo; Lee, Yeon Kyung
2017-09-01
The aim of this study was to explore the association between sodium intake, as assessed by 24-h urinary sodium excretion, and various obesity parameters among South Korean adults. The associations of 24-h urinary sodium excretion and sodium intake calculated from the dietary questionnaire with obesity parameters also were compared. This multicenter, cross-sectional study analyzed data of 640 healthy adults from eight provinces in South Korea. Obesity was assessed by body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR). Mean 24-h urinary sodium excretion was calculated from repeatedly collected 24-h urine samples. Participants' dietary intake was assessed by 24-h dietary recall interview on the days before 24-h urine collection. In both sexes, the means of all anthropometric measurements tended to increase proportionally with 24-h urinary sodium excretion quartiles, regardless of adjustment. Men in the highest quartile (Q4) of 24-h urinary sodium excretion had increased odds of obesity (as assessed by BMI, WC, WHR, and WHtR) compared with men in the three lower quartiles (Q1-Q3) of 24-h urinary sodium excretion. Women in Q4 of 24-h urinary sodium excretion exhibited a higher chance of general obesity and abdominal obesity. Sodium intake calculated from the dietary questionnaire was not significantly associated with obesity in either sex. In Korean adults, there was a positive association between higher sodium intake as assessed by 24-h urinary sodium excretion and obesity independent of energy intake. Copyright © 2017 Elsevier Inc. All rights reserved.
Pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe (Part I).
Asami, Akitoshi; Shimada, Tsutomu; Mizuhara, Yasuharu; Asano, Takayuki; Takeda, Shuichi; Aburada, Takashi; Miyamoto, Ken-Ichi; Aburada, Masaki
2010-07-01
To investigate the pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe, the pharmacokinetic parameters were determined by using (14)C-[6]-shogaol (labeled compound) and [6]-shogaol (non-labeled compound). When the labeled compound was orally administered to rats, the maximum plasma concentration (C (max)) and the area under the curve (AUC) of plasma radioactivity concentration increased in a dose-dependent manner. When the labeled compound was orally administered at a dose of 10 mg/kg, 20.0 + or - 1.8% of the radioactivity administered was excreted into urine, 64.0 + or - 12.9% into feces, and 0.2 + or - 0.1% into breath. Thus, more of the radioactivity was excreted into feces than into urine, and almost no radioactivity was excreted into breath. Furthermore, when the labeled compound was orally administered at a dose of 10 mg/kg, cumulative biliary radioactivity excretion over 48 h was 78.5 + or - 4.5% of the radioactivity administered, and cumulative urinary radioactivity excretion over 48 h was 11.8 + or - 2.7%, showing that about 90% of the dose administered orally was absorbed from the digestive tract and most of the fecal excretion was via biliary excretion. On the other hand, when the non-labeled compound [6]-shogaol was orally administered, the plasma concentration and biliary excretion of the unchanged form were extremely low. When these results are combined with those obtained with the labeled compound, it would suggest that [6]-shogaol is mostly metabolized in the body and excreted as metabolites.
Buchet, J P; Gennart, J P; Mercado-Calderon, F; Delavignette, J P; Cupers, L; Lauwerys, R
1992-01-01
OBJECTIVES--Characterisation of the airborne concentration of 13 polycyclic aromatic hydrocarbons (PAHs) at various workplaces in a graphite electrode and a coke production plant. Validation of the urinary excretion of 1-hydroxypyrene (hydroxypyrene) as a biological marker of exposure to PAH. DESIGN--Cross sectional study of workers exposed to PAHs (106 in the graphite electrode producing plant and 16 in the coke works). METHODS--Personal air sampling during at least six hours per workshift using a glass fibre filter and a Chromosorb 102 solid sorbent tube and analysis of PAHs by high performance liquid chromatography (HPLC) and spectrofluorometric detection (SFD). Collection of spot urine samples before and after the shift and analysis of 1-hydroxypyrene by HPLC and SFD. RESULTS--The workers most exposed to PAHs were those occupied at the topside area of the coke oven plant and those working in the blending and impregnation areas of the graphite electrode producing plant (mean airborne concentration of total PAHs: 199 and 223 micrograms/m3 respectively). Except for naphthalene and perylene, the relative proportion of the different PAHs did not differ between the plants. Pyrene concentration in air was highly correlated with the total airborne PAH concentration (r = 0.83, p < 0.0001) and the correlation coefficients between hydroxypyrene concentration in postshift urine samples and pyrene or total PAHs in air were 0.67 (p < 0.0001) and 0.72 (p < 0.0001) respectively. Excretion of hydroxypyrene doubled when the exposure to pyrene in air increased 10-fold. The half life for the urinary excretion of hydroxypyrene was around 18 hours (95% confidence interval 16.1-19.8). Smoking habits only explained 2.3% of the variance in hydroxypyrene excretion compared with 45% for the pyrene concentration in air. CONCLUSION--The determination of the urinary excretion of hydroxypyrene in postshift urine samples can be used as a suitable biomarker to assess individual exposure to PAHs in coke ovens and in graphite electrode manufacturing plants. PMID:1463676
NASA Astrophysics Data System (ADS)
Garlipp, C. R.; Bottini, P. V.; de Capitan, E. M.; Pinho, M. C.; Panzan, A. D. N.; Sakuma, A. M. A.; Paoliello, M. B.
2003-05-01
In Southeast Brazil. Ribeira Valley region has been a major public health concern due to he environmental heavy metals contamination indexes of vegetation, rocks and aquifers, caused by locai mining in the past. Human contamination low levels of heavy rnetals doesn't cause acute intoxication but ni chronic exposure, renal damage may occur with progressive tubuJointerstitial changes evolvil1g to glomemlar 1esiol1, ln this stndy we invesligated the relationship between thc profile of utillan, excreted proteins (glomerular or lubular origin) of arsenic and mercury and blood lead concentration in chiJdren and adults from highly e) qJosed regions of the Ribeira Valley. The subjects were classieed as GROUP 1 (GI; higher environmental risk n=333) and GROUP 2 (G2; lower risk of contamination. n=104). In order to determine the urinary excretion of total protein, albumin (MA, glomerular marker) and alpha i microglobulin (AIM, tubular marker) and the blood lead concentrations. random wine and blood samples were obtaiiied. Plasmatic lead levels were assessed by atomic absorption spectrometty with graphite fumace. Totai protein concentration (PROT) was assessed on a biochemical analyzer ,progallol red method). MA and AIM were determined by nephelometric method. Croup 1 showcd a higher frequency of altered urinary excretion of PROT (GI=3.4%; G2=1.0%), MA (Gl=9.0%; G2=5.1%) and AIM (Gt=7.5%, G2=3.8%), without significant differences between both groups. Elevated arscnic levels were more prevaient among subjects from Group 1 (2.8.8%) and demonstrated a significant corrolation with abiiormal iirinarv excretion of ilbumin and alpha-l-micrglobulin (p=0.019).Leadaand mercury levels showed no difference among the groups and no correlation will MAa and/or M. Oti-c dala suggests that abnormal itrinary protein excretion is relatively frequent in this population independently of the plasmatic or urinaryl heavy metal levels. The early detection of possible renal damage become necessary for effective measures can be taken to prevent clinical nephropathies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, F.F. Jr.; Guhlke, S.; Beets, A.L.
1997-05-01
Estimated costs for coronary restenosis therapy after PTCA are > $ 1 billion (U.S.). Radiation is a simple and effective tool for inhibition of neointimal proliferation an important component of restenosis. We propose use of Re-188 (t{sub {1/2}} 16.9 h, 2.1 MeV {beta}), obtained from decay of W-188 (T{sub {1/2}} 69 d). Our alumina-based W-188/Re-188 generator has a shelf-life of several months and we have developed an on-line tandem cation/anion exchange column system to concentrate to > 18.5 BGq/mL. Estimates for targeted regional dose of 8.4 rad/37 MBq/min/mL, which is > 1,400 cGy for about 370 MBq Re-188 for 5more » min. Balloon inflation with Re-188 solutions is a new approach for more uniform vascular dose distribution as an alternative to use of radioactive wires or other linear sources. Rapid urinary excretion kinetics are important in the unlikely event of balloon rupture (<0.1%). We have therefore evaluated relative excretion kinetics of Re-188-perrhenate and -MAG3 in rats; Re-188-perrhenate was obtained from generator elution with 0.9% NaCl and re-188-MAG3 was prepared be reaction of the ligand with Sn(II)-reduced perrhenate. Fischer rats (n=4-5/group) were injected i.v. and urine and feces collected every 2 h for 12 h and then daily for 5 d. Both agents excreted > 90% in urine; biodistribution studies showed low organ uptake with intestines as the major site. Rhenium-188-MAG3 excreted more rapidly (2 h = 59.6{+-}18.5%) then Re-188-MAG3 excreted more rapidly (2 h = 68.3{+-}13.5%) in same model. Both Re-188 species are thus good candidates for balloon inflation. Studies are in progress in a swine model to evaluate the effectiveness of Re-188 for inhibition of restenosis.« less
Martin, L. A.; Wilson, D. T.; Reuhl, K. R.; Gallo, M. A.
2012-01-01
Polychlorinated biphenyl (PCB) congeners differentially reduce serum thyroxine (T4) in rats, but little is known about their ability to affect biliary excretion of T4. Thus, male Sprague-Dawley rats were orally administered Aroclor-1254, Aroclor-1242 (32 mg/kg per day), PCB-95, PCB-99, PCB-118 (16 mg/kg per day), PCB-126 (40 μg/kg per day), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (3.9 μg/kg per day), or corn oil for 7 days. Twenty-four hours after the last dose, [125I]T4 was administered intravenously, and blood, bile, and urine samples were collected for quantifying [125I]T4 and in bile [125I]T4 metabolites. Serum T4 concentrations were reduced by all treatments, but dramatic reductions occurred in response to Aroclor-1254, PCB-99 [phenobarbital (PB)-type congener], and PCB-118 (mixed-type congener). None of the treatments increased urinary excretion of [125I]T4. Aroclor-1254, PCB-118, TCDD, and PCB-126 (TCDD-type congener) increased biliary excretion of T4-glucuronide by 850, 756, 710, and 573%, respectively, corresponding to marked induction of hepatic UDP-glucuronosyltransferase (UGT) activity toward T4. PCB-95 and PCB-99 did not induce UGT activity; therefore, the increased biliary excretion of T4-glucuronide was related to the affinity of congeners for the aryl hydrocarbon receptor. The disappearance of [125I]T4 from serum was rapid (within 15-min) and was increased by Aroclor-1254, PCB-99 and PCB-118. Thus, reductions in serum T4 in response to PCBs did not always correspond with UGT activity toward T4 or with increased biliary excretion of T4-glucuronide. The rapid disappearance of [125I]T4 from the serum of rats treated with PB-like PCBs suggests that increased tissue uptake of T4 is an additional mechanism by which PCBs may reduce serum T4. PMID:22187485
EXCRETION OF P$sup 32$ AFTER THERAPY FOR POLYCYTHEMIA RUBRA VERA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weijer, D.L.; Duggan, H.E.; Scott, D.B.
1962-09-01
Fifteen subjects undergoing treatment for polycythemia rubra vera were given P/sup 32/. Carrier-free P/sup 32/ was administered intravenously in 11 and orally in 6. Total excretion studies were carried out in each case for periods of 5 to 22 days. Average urinary excretion of P/sup 32/, as a percentage of the initial dose to the end of 3 days for the entire series, was 14.3%, with limits of 6.4 and 18.7%. The corresponding 5-day average amounted to 17.8%, with limits of 7.5 and 22.5%. In the six patients treated orally, the average 3-day urinary excretion was 11.2% and for 5more » days was 14.2%. For the 11 patients treated intravenously, the average 3-day excretion was 16.1%, the average 5-day excretion 19.8%. The average fecal excretion as a percentage of the initial dose to the end of 3 days was 1.7%, with limits of 0.1 and 5.5%, and the average 5-day excretion was 2.5%, with limits 0.5 and 5.9%. In the orally treated fasting group the total stool excretion to the end of 3 days was 2.0 and 2.5% at the end of 5 days. Of the 10 polycythemia patients treated intravenously, the stool excretion to the end of 3 days was 1.5% and at 5 days 2.5%. Under fasting conditions (both before and after the administration of P/sup 32/) with little or no carrier added, the fecal excretion of P/sup 32/is small. Thus, the total excretion of P/sup 32/ does not differ significantly for oral and intravenous administration. Hence, despite contrary reports, it appears that under fasting conditions of administration it is not necessary to increase the oral dose of P/ sup 32/ to 4/3 of the intravenous dose in order to obtain equivalent absorption of the administered dose. It is concluded that the P/sup 32/ content of urine in the first 24 hr after therapy, by either route of administration, indicates whether or not a particular patient will retain the dose within normal limits. (BBB)« less
2009-09-01
merely qualitative, so in order to quantify the functional effect of S14 overexpression, NMR based metabolomics was used. The literature reports that...overexpression in DIP medium, even though fatty acids were significantly increased. Due to limitations of NMR based metabolomics, the chain length of the...S14 affects glucose carbon conversion directly into fatty acids. Interestingly, glucose consumption and lactate excretion was identical in either
Biliary excretion of intravenous (/sup 14/C) omeprazole in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lind, T.; Andersson, T.; Skanberg, I.O.
1987-11-01
We have studied the biliary excretion of (/sup 14/C) omeprazole in humans. The study was performed in eight healthy subjects and the technique used was based on multiple marker dilution principles with double-lumen tubes placed in both the stomach and intestine. The results obtained show a 16% biliary excretion of (/sup 14/C) omeprazole. These data suggest a minimal spillover of omeprazole from the gastric mucosa into the gastric lumen in humans. The results also agree with previous data of the fecal recovery of radiolabeled omeprazole that suggest that the fecal excretion of intravenous omeprazole in humans is entirely accounted formore » by biliary excretion.« less
Malta, Daniela; Arcand, JoAnne; Ravindran, Anju; Floras, Vanessa; Allard, Johane P; Newton, Gary E
2016-10-01
Reduced potassium excretion caused by angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) may increase the risk of hyperkalemia (serum potassium concentration >5 mmol/L) in the setting of increased potassium intake. The purpose of this study was to assess the effect of increasing dietary potassium on serum potassium concentration in hypertensive individuals with normal renal function treated with an ACEi or ARB. We hypothesized that an increase in dietary potassium would not provoke hyperkalemia in this population despite treatment with either an ACEi or ARB. We conducted a controlled, parallel-design clinical trial in 20 hypertensive subjects with normal renal function treated with an ACEi or ARB, with random assignment to a usual diet or a high-potassium diet (HKD). Fruit and vegetable intake was used to increase potassium intake. Serum potassium concentration, 3-d food records, and 24-h urine collections were completed at baseline and 4 wk. In the usual-diet group there were no statistically significant differences for potassium excretion, intake, or serum levels at end of study compared with baseline. The HKD group had significant differences in urinary potassium excretion (83 ± 26 mmol/d at baseline compared with 109 ± 35 mmol/d at 4 wk, P = 0.01) and dietary potassium intake (3775 ± 1189 mg/d at baseline compared with 5212 ± 1295 mg/d at 4 wk, P = 0.02). Despite increased potassium intake in the HKD group, serum potassium concentrations did not significantly increase from baseline at midpoint or end of study (4.1 ± 0.6, 4.3 ± 0.3, and 4.2 ± 0.4 mmol/L, respectively). This study demonstrates that an increase in dietary potassium over a 4-wk period is safe in hypertensive subjects who have normal renal function and are receiving ACEi and/or ARB therapy. This trial was registered at www.clinicaltrials.gov as NCT02759367. © 2016 American Society for Nutrition.
Vitamin C modulates lead excretion in rats.
Lihm, Hoseob; Kim, Hyun; Chang, Heekyung; Yoon, Myunghee; Lee, Kayoung; Choi, Jongsoon
2013-12-01
Lead, one of the most toxic heavy metals, takes longer time to be excreted from the body than other heavy metals. The purpose of this study is, by measuring lead excretion via urine and feces, to find out the effect of vitamin C in lead chelation. Thirty-six rats were randomly assorted into four groups. All 33 rats except for the control group were administered with lead, before orally administered with different doses of vitamin C per kilogram of body weight. The lead excretion levels in urine and feces as well as the survival rate were then measured for each group. The rats with lead administrations (10/13, 76.9%) with lead administrations only, 10/11 rats (90.9%) with lead administrations and low dose of vitamin C, 9/9 rats (100%) with lead administrations and high dose of vitamin C survived. Among the 29 surviving rats, low vitamin C intake group exhibited higher urinary excretion than the lead only group. The urinary excretion level in high dose vitamin C intakegroup was significantly higher than the lead only group. In addition, fecal lead excretion seemed to be increased in the high dose vitamin C intake group, compared to the group with lead administrations only with statistical significance. Through animal experiment, it was found out that administrating high dose of vitamin C accelerated the excretion of lead in body compared to low dose of vitamin C.
Cheema-Dhadli, Surinder; Halperin, Mitchell L
2002-01-01
Rats normally excrete 20-25 mmol of sodium (Na+) + potassium (K+) per kilogram per day. To minimize the need for a large water intake, they must excrete urine with a very high electrolyte concentration (tonicity). Our objective was to evaluate two potential factors that could influence the maximum urine tonicity, hypernatraemia and the rate of urea excretion. Balance studies were carried out in vasopressin-treated rats fed a low-electrolyte diet. In the first series, the drinking solution contained an equivalent sodium chloride (NaCl) load at 150 or 600 mmol l−1. In the second series, the maximum urine tonicity was evaluated in rats consuming 600 mmol l−1 NaCl with an 8-fold range of urea excretion. Hypernatraemia (148 ± 1 mmol l−1) developed in all rats that drank 600 mmol l−1 saline. Although the rate of Na+ + K+ excretion was similar in both saline groups, the maximum urine total cation concentration was significantly higher in the hypernatraemic group (731 ± 31 vs. 412 ± 37 mmol l−1). Only when the rate of excretion of urea was very low, was there a further increase in the maximum urine total cation concentration (1099 ± 118 mmol l−1). Thus hypernatraemia was the most important factor associated with a higher urine tonicity. PMID:12068051
Dietary intake and urinary excretion of lignans in Finnish men.
Nurmi, Tarja; Mursu, Jaakko; Peñalvo, José L; Poulsen, Henrik E; Voutilainen, Sari
2010-03-01
Intake of lignans has been assessed in different study populations, but so far none of the studies has compared the daily intake of lignans and the urinary excretion of plant and enterolignans. We assessed the intake of lariciresinol, pinoresinol, secoisolariciresinol and matairesinol in 100 Finnish men consuming their habitual omnivorous diet, and measured the 24 h urinary excretion of plant and enterolignans to compare the intake and metabolism. Dietary determinants of lignan intake and their urinary excretion were also determined. The mean intake of lignans was 1224 (sd 539) mug/d, of which lariciresinol and pinoresinol covered 78 %. Almost half (47 %) of the intake of lignans was explained by the intake of rye products, berries, coffee, tea and roots. The urinary excretion of plant lignans corresponded to 17 % and enterolignans to 92 % of the intake of lignans. The urinary excretion of plant lignans was explained 14 % by the intake of rye products and intake of coffee, and consequently 3-7 % by the intake of water-insoluble fibre. The urinary excretion of enterolactone was explained 11 % by the intake of vegetables and rye products, 14 % by the intake of water-soluble fibre and only 4 % by the intake of lariciresinol. Although the assessed intake of lignans corresponded well with the urinary excretion of lignans, the enterolactone production in the human body depended more on the dietary sources of lignans than the absolute intake of lignans.
Association of Urinary Calcium Excretion with Serum Calcium and Vitamin D Levels
Rathod, Anita; Bonny, Olivier; Guessous, Idris; Suter, Paolo M.; Conen, David; Erne, Paul; Binet, Isabelle; Gabutti, Luca; Gallino, Augusto; Muggli, Franco; Hayoz, Daniel; Péchère-Bertschi, Antoinette; Paccaud, Fred
2015-01-01
Background and objectives Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. Design, settings, participants, & measurements Multivariable linear regression was used to explore factors associated with square root–transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dependent variable with a focus on month-specific vitamin D tertiles and serum calcium in the Swiss Survey on Salt Study. Results In total, 624 men and 669 women were studied with mean ages of 49.2 and 47.0 years, respectively (age range=15–95 years). Mean urinary calcium excretion was higher in men than in women (183.05 versus 144.60 mg/24 h; P<0.001). In adjusted models, the association (95% confidence interval) of square root urinary calcium excretion with protein–corrected serum calcium was 1.78 (95% confidence interval, 1.21 to 2.34) mg/24 h per milligram per deciliter in women and 0.59 (95% confidence interval, −0.11 to 1.29) mg/24 h per milligram per deciliter in men. Men in the third 25(OH)D3 tertile had higher square root urinary calcium excretion than men in the first tertile (0.99; 95% confidence interval, 0.36 to 1.63 mg/24 h per nanogram per milliliter), and the corresponding association was 0.32 (95% confidence interval, −0.22 to 0.85) mg/24 h per nanogram per milliliter in women. These sex differences were more marked under conditions of high urinary sodium or urea excretions. Conclusions There was a positive association of serum calcium with urinary calcium excretion in women but not men. Vitamin 25(OH)D3 was associated with urinary calcium excretion in men but not women. These results suggest important sex differences in the hormonal and dietary control of urinary calcium excretion. PMID:25518946
Symonides, Bartosz; Wojciechowska, Ewa; Gryglas, Adam; Gaciong, Zbigniew
2017-01-01
Background Primary hyperaldosteronism may be associated with elevated 24-hour urinary potassium excretion. We evaluated the diagnostic value of spot urine (SU) potassium as an index of 24-hour urinary potassium excretion. Methods We measured SU and 24-hour urinary collection potassium and creatinine in 382 patients. Correlations between SU and 24-hour collections were assessed for potassium levels and potassium/creatinine ratios. We used the PAHO formula to estimate 24-hour urinary potassium excretion based on SU potassium level. The agreement between estimated and measured 24-hour urinary potassium excretion was evaluated using the Bland-Altman method. To evaluate diagnostic performance of SU potassium, we calculated areas under the curve (AUC) for SU potassium/creatinine ratio and 24-hour urinary potassium excretion estimated using the PAHO formula. Results Strongest correlation between SU and 24-hour collection was found for potassium/creatinine ratio (r = 0.69, P<0.001). The PAHO formula underestimated 24-hour urinary potassium excretion by mean 8.3±18 mmol/d (95% limits of agreement -28 to +44 mmol/d). Diagnostic performance of SU potassium/creatinine ratio was borderline good only if 24-hour urinary potassium excretion was largely elevated (AUC 0.802 for 120 mmol K+/24 h) but poor with lower values (AUC 0.696 for 100 mmol K+/24 h, 0.636 for 80 mmol K+/24 h, 0.675 for 40 mmol K+/24 h). Diagnostic performance of 24-hour urinary potassium excretion estimated by the PAHO formula was excellent with values above 120 mmol/d and good with lower values (AUC 0.941 for 120 mmol K+/24 h, 0.819 for 100 mmol K+/24 h, 0.823 for 80 mmol K+/24 h, 0.836 for 40 mmol K+/24 h). Conclusions Spot urine potassium/creatinine ratio might be a marker of increased 24-hour urinary potassium excretion and a potentially useful screening test when reliable 24-hour urine collection is not available. The PAHO formula allowed estimation of the 24-hour urinary potassium excretion based on SU measurements with reasonable clinical accuracy. PMID:28662194
Effects of an anti-G suit on the hemodynamic and renal responses to positive /+Gz/ acceleration
NASA Technical Reports Server (NTRS)
Shubrooks, S. J., Jr.; Epstein, M.; Duncan, D. C.
1974-01-01
The effects of the currently used U.S. Air Force (CSU-12/P) anti-G suit on renal function during positive radial acceleration (+Gz) were assessed in seven normal male subjects in balance on a 200 meq sodium diet. Following suit inflation in the seated position, +2.0 Gz for 30 min resulted in a decrease in the rate of sodium excretion from 125 plus or minus 19 to 60 plus or minus 14 microeq/min, which persisted during a 25-min recovery period. Fractional excretion of sodium also decreased significantly during +Gz. The magnitude of the antinatriuresis was indistinguishable from that observed during +Gz without suit inflation. In contrast to the antinatriuresis observed during centrifugation without suit, however, the antinatriuresis with suit was mediated primarily by an enhanced tubular reabsorption of sodium.
eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells
Yeh, Johannes T.-H.; Nam, Kwangho; Yeh, Joshua T.-H.; Perrimon, Norbert
2017-01-01
The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter. PMID:28176814
Urine sodium excretion increased slightly among U.S. adults between 1988 and 2010.
Pfeiffer, Christine M; Hughes, Jeffery P; Cogswell, Mary E; Burt, Vicki L; Lacher, David A; Lavoie, Donna J; Rabinowitz, Daniel J; Johnson, Clifford L; Pirkle, James L
2014-05-01
Little information is available on temporal trends in sodium intake in the U.S. population using urine sodium excretion as a biomarker. Our aim was to assess 1988-2010 trends in estimated 24-h urine sodium (24hUNa) excretion among U.S. adults (age 20-59 y) participating in the cross-sectional NHANES. We used subsamples from a 1988-1994 convenience sample, a 2003-2006 one-third random sample, and a 2010 one-third random sample to comply with resource constraints. We estimated 24hUNa excretion from measured sodium concentrations in spot urine samples by use of calibration equations (for men and women) derived from the International Cooperative Study on Salt, Other Factors, and Blood Pressure study. Estimated 24hUNa excretion increased over the 20-y period [1988-1994, 2003-2006, and 2010; means ± SEMs (n): 3160 ± 38.4 mg/d (1249), 3290 ± 29.4 mg/d (1235), and 3290 ± 44.4 mg/d (525), respectively; P-trend = 0.022]. We observed significantly higher mean estimated 24hUNa excretion in each survey period (P < 0.001) for men compared with women (31-33%) and for persons with a higher body mass index (BMI; 32-35% for obese vs. normal weight) or blood pressure (17-26% for hypertensive vs. normal blood pressure). After adjusting for age, sex, and race-ethnicity, temporal trends in mean estimated 24hUNa excretion remained significant (P-trend = 0.004). We observed no temporal trends in mean estimated 24hUNa excretion among BMI subgroups, nor after adjusting for BMI. Although several limitations apply to this analysis (the use of a convenience sample in 1988-1994 and using estimated 24hUNa excretion as a biomarker of sodium intake), these first NHANES data suggest that mean estimated 24hUNa excretion increased slightly in U.S. adults over the past 2 decades, and this increase may be explained by a shift in the distribution of BMI.
Ammonia Transporters and Their Role in Acid-Base Balance
2017-01-01
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport. PMID:28151423
Ganji, V; Kies, C V
1994-08-01
The effects of psyllium fibre supplementation to polyunsaturated fatty acid rich soybean oil and saturated fatty acid rich coconut oil diets on fat digestibility and faecal fatty acid excretion were investigated in healthy humans. The study consisted of four 7-day experimental periods. Participants consumed soybean oil (SO), soybean oil plus psyllium fibre (20 g/day) (SO+PF), coconut oil (CO) and coconut oil plus psyllium fibre (20 g/day) (CO+PF) diets. Laboratory diet provided 30% calories from fat (20% from test oils and 10% from basal diet), 15% calories from protein and 55% calories from carbohydrate. Fat digestibility was significantly lower and faecal fat excretion was significantly higher with SO+PF diet than SO diet and with CO+PF diet than CO diet. Faecal excretion of myristic and lauric acids was not affected by test diets. Percent faecal palmitic acid excretion was significantly higher during psyllium supplementation periods. Higher faecal linoleic acid excretion was observed with soybean oil diets compared with coconut oil diets. Increased faecal fat loss, decreased fat digestibility and increased faecal palmitic acid excretion with psyllium supplementation may partly explain the hypocholesterolaemic action of psyllium fibre.
Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H
2015-06-01
Residues of antineoplastic drugs in canine excretion products may represent exposure risks to veterinary personnel, owners of pet dogs and other animal care-takers. The aim of this study was to measure the extent and duration of platinum (Pt) excretion in pet dogs treated with carboplatin. Samples were collected before and up to 21 days after administration of carboplatin. We used validated, ultra-sensitive, inductively coupled plasma-mass spectrometry assays to measure Pt in canine urine, faeces, saliva, sebum and cerumen. Results showed that urine is the major route of elimination of Pt in dogs. In addition, excretion occurs via faeces and saliva, with the highest amounts eliminated during the first 5 days. The amount of excreted Pt decreased over time but was still quantifiable at 21 days after administration of carboplatin. In conclusion, increased Pt levels were found in all measured excretion products up to 21 days after administration of carboplatin to pet dogs, with urine as the main route of excretion. These findings may be used to further adapt current veterinary guidelines on safe handling of antineoplastic drugs and treated animals. © 2013 Blackwell Publishing Ltd.
[Enantioselectivity in the excretion of glucuronides of carprofen in man, dogs and horses].
Delatour, P; Garnier, F; Maire, R
1996-10-01
After administration of the racemic drug, the stereoselective quantification of the enantiomers of free and conjugated carprofen was performed in human plasma and in plasma, urine and bile of dogs and horses. In humans, the plasma profile of free carprofen and its glucuronides is not stereoselective and the glucuronides excreted in urine are close to a racemate. In dogs and horses on the contrary, the R(-) enantiomer of the free drug is predominant in plasma, while urine and/or bile concentrations of the glucuronides are high in comparison to plasma with a strong selectivity for the S(+) enantiomer. Because glucuronidation of carprofen, as a carboxylic compound, is known to be the major metabolic pathway in most species, interspecies discrepancies in the stereoselective disposition of carprofen seem to be mainly related to the stereoselectivity in the excretion of the glucuronides. Finally, the high plasma concentrations of carprofen glucuronides in human in comparison to other animal species suggest that the former could be specifically subjected to immunological side effects in the time course of treatments by this type of compounds.
Renal sodium reabsorption following induction of and recovery from volume expansion
NASA Technical Reports Server (NTRS)
Knight, T. F.; Weinman, E. J.
1977-01-01
In the rat, infusion of a volume of isotonic saline equal to 2% of body weight resulted in an 82% increase in the delivery of filtrate out of the proximal tubule but little or, in some animals, no change in the urinary excretion of sodium. By contrast, further degrees of volume expansion resulted in lesser increases in the distal delivery of filtrate, but were associated with a marked increase in the urinary excretion of sodium. Sixty minutes following completion of volume expansion, while the animals were still in positive sodium balance, the urinary excretion of sodium decreased 52% compared to a decrease of only 24% in the distal delivery of filtrate. During the course of progressive volume expansion and during the recovery phase, there was a dissociation between alterations in sodium reabsorption in the proximal convoluted tubule and in the whole kidney. These studies indicate that although the proximal tubule is more sensitive to changes in the extracellular fluid volume, distal nephron sites are ultimately responsible both for the natriuresis of volume expansion and the relative antinatriuresis of the recovery periods.
n-Hexane metabolism in occupationally exposed workers.
Mutti, A; Falzoi, M; Lucertini, S; Arfini, G; Zignani, M; Lombardi, S; Franchini, I
1984-01-01
Lung uptake and excretion of n-hexane were studied in ten workers in a shoe factory. Simultaneous samples of inhaled and alveolar air were collected with the aid of a Rhan-Otis valve, personal samplers, and charcoal tubes. Alveolar excretion was monitored during a six hour postexposure period. Uptake was calculated from lung ventilation, the retention coefficient, and environmental concentrations. The amount of exhaled n-hexane was calculated from the decay curve. According to the experimental data, alveolar retention was about 25% of the inhaled n-hexane, corresponding to a lung uptake of about 17%. The postexposure alveolar excretion was about 10% of the total uptake. The main metabolites of n-hexane were identified and measured by capillary GC/MS in spot urine samples collected before, at the end, and 15 hours after the same working shift. Urinary concentrations were low, though related to n-hexane in the air. 2,5-Hexanedione in the end of shift samples gave the best estimate of overall exposure. About 3 mg/g creatinine of 2,5-hexanedione would correspond to about 50 ppm of n-hexane in the air (mean daily exposure). PMID:6498115
How quickly do albatrosses and petrels digest plastic particles?
Ryan, Peter G
2015-12-01
Understanding how rapidly seabirds excrete or regurgitate ingested plastic items is important for their use as monitors of marine debris. van Franeker and Law (2015) inferred that fulmarine petrels excrete ∼75% of plastic particles within a month of ingestion based on decreases in the amounts of plastic in the stomachs of adult petrels moving to relatively clean environments to breed. However, similar decreases occur among resident species due to adults passing plastic loads to their chicks. The few direct measures of wear rates and retention times of persistent stomach contents suggest longer plastic residence times in most albatrosses and petrels. Residence time presumably varies with item size, type of plastic, the amount and composition of other persistent stomach contents, and the size at which items are excreted, which may vary among taxa. Accurate measures of ingested plastic retention times are needed to better understand temporal and spatial patterns in ingested plastic loads within marine organisms, especially if they are to be used as indicators of plastic pollution trends. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zohar, E.; Adar, R.; Tennenbaum, J.; Kesten, M.
1982-01-01
Intake and urinary excretion of sodium were investigated in a group of young, healthy and acclimated men. The sodium excretions of workers and of machinists in the engine rooms of a ship were also investigated.
Contribution of activity to the circadian rhythm in excretion of magnesium and calcium.
DOT National Transportation Integrated Search
1968-03-01
Eight subjects were maintained on a standard dietary regimen ingested every four hours for 120 hours. Measurements of the magnesium and calcium excretion in these subjects revealed a circadian periodicity with maximal levels of excretion for both ion...
Intestinal Adaptations in Chronic Kidney Disease and the Influence of Gastric Bypass Surgery
Hatch, Marguerite
2015-01-01
Studies have shown that compensatory adaptations in gastrointestinal oxalate transport can impact the amount of oxalate excreted by the kidney. Hyperoxaluria is a major risk factor in the formation of kidney stones and oxalate is derived from both the diet as well as from liver metabolism of glyoxylate. Although the intestine generally absorbs oxalate from dietary sources, and can contribute as much as 50% of urinary oxalate, enteric oxalate elimination plays a significant role when renal function is compromised. While the mechanistic basis for these changes in the direction of intestinal oxalate movements in chronic renal failure involves an up-regulation of angiotensin II (ANG) receptors in the large intestine, enteric secretion/excretion of oxalate can also occur by mechanisms that are independent of ANG II. Most notably, the commensal bacterium Oxalobacter sp. interacts with the host enterocyte and promotes the movement of oxalate from blood into the lumen resulting in the beneficial effect of significantly lowering urinary oxalate excretion. Changes in the passive permeability of the intestine such as in steatorrhea and following gastric bypass also promote oxalate absorption and hyperoxaluria. In summary, this report highlights the two-way physiological signaling between the gut and the kidney which may help to alleviate the consequences of certain kidney diseases. PMID:24951497
Jankowski, M; Angielski, S; Szczepańska-Konkel, M
2008-03-01
Previous studies from our laboratory have reported a marked reduction in glomerular filtration rate (GFR) and sodium reabsorption in renal proximal tubule during intravenous infusion of P(1),P(4)-diadenosine tetraphosphate (Ap(4)A) at dose of 1.0 micromol/kg + 10 nmol/kg/min (i.v., injection followed by infusion) in anaesthetized Wistar rats. In the present study, the changes of GFR and urine sodium excretion were investigated in response to systemic infusion of Ap(4)A at different doses. Ap(4)A at dose of 0.1 micromol/kg + 1.0 nmol/kg/min did not change GFR and sodium urinary excretion whereas 2-fold higher dose produced significant (3.4-fold) increase in sodium excretion without changes in GFR. Significant but transient reduction in GFR by approximately 21% was observed during infusion of Ap(4)A at dose of 0.5 micromol/kg + 5.0 nmol/kg/min. Higher doses of Ap(4)A (1.0 micromol/kg + 10 nmol/kg/min and 2.0 micromol/kg + 20 nmol/kg/min) reduction in GFR and marked natriuresis. Our results suggest that tubular sodium transport systems are more sensitive to Ap(4)A than systems involved in GFR regulation.
Delaquis, A M; Block, E
1995-09-01
Ten Holstein and 2 Ayrshire cows were used in a switchback design to compare diets based on alfalfa haylage and corn silage. Both diets had a similar cation-anion difference and contained 1% NaHCO3. Dietary treatment did not affect DMI, DM digestibility, milk production, or milk composition. Intake, absorption, and urinary excretion of N were significantly increased by the ration based on haylage, but the overall balance remained unaffected. Cows consuming haylage absorbed and excreted significantly more water than did cows consuming corn silage and consequently had significantly larger urine volumes. Blood volume was increased by the ration based on haylage. Intakes of Mg, K, Cl, and S differed between diets, but only K balance was increased by the diet based on haylage. The fractional excretion of K, Cl, and S in urine was increased by the diet based on haylage, demonstrating that the kidneys responded to the increased intakes by diminishing the reabsorption or by increasing the secretion of these minerals. Acid-base parameters for blood, urine, and milk were unaffected by dietary treatment. A diet based on alfalfa haylage, compared with a diet based on corn silage with similar cation-anion difference, resulted in different water and mineral metabolism but did not affect the acid-base status of cows in early lactation.
The effect of carrier strontium on the absorption of oral doses of radioactive strontium in rats
Harrison, G. E.; Jones, H. G.; Sutton, A.
1957-01-01
Carrier strontium had relatively little effect on the retention of an oral dose of radioactive strontium by the rat when it was administered immediately after the radioactive dose. The proportion of the radioactive dose which was excreted in the urine, on the other hand, increased progressively with the carrier dose. There was a decreased uptake of radioactive strontium in rats fed on a special low strontium diet. The effects of dietary strontium are discussed. Evidence was found of a discrimination by the rat against strontium in favour of calcium which was accounted for, at least in part, by a preferential urinary excretion of strontium. PMID:13460240
Effect of the quality of dietary amino acids composition on the urea synthesis in rats.
Tujioka, Kazuyo; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko
2011-01-01
We have shown that urinary urea excretion increased in rats given a lower quality protein. The purpose of present study was to determine whether the composition of dietary amino acids affects urea synthesis. Experiments were done on three groups of rats given diets containing a 10% gluten amino acid mix diet or 10% casein amino acid mix diet or 10% whole egg protein amino acids mix diet for 10 d. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the liver concentration of free serine, glutamic acids and alanine were greater in the group given the amino acid mix diet of lower quality. The fractional and absolute rates of protein synthesis in tissues declined with a decrease in quality of dietary amino acids. The hepatic concentration of ornithine and the activities of hepatic urea-cycle enzymes were not related to the urea excretion. These results suggest that the increased concentrations of amino acids and N-acetylglutamate seen in the liver of rats given the amino acid mix diets of lower quality are likely among the factors stimulating urea synthesis. The protein synthesis in tissues is at least partly related to hepatic concentrations of amino acids. The composition of dietary amino acids is likely to be one of the factors regulating urea synthesis when the quality of dietary protein is manipulated.
The fate of benzoic acid in various species
Bridges, J. W.; French, M. R.; Smith, R. L.; Williams, R. T.
1970-01-01
1. The urinary excretion of orally administered [14C]benzoic acid in man and 20 other species of animal was examined. 2. At a dose of 50mg/kg, benzoic acid was excreted by the rodents (rat, mouse, guinea pig, golden hamster, steppe lemming and gerbil), the rabbit, the cat and the capuchin monkey almost entirely as hippuric acid (95–100% of 24h excretion). 3. In man at a dose of 1mg/kg and the rhesus monkey at 20mg/kg benzoic acid was excreted entirely as hippuric acid. 4. At 50mg/kg benzoic acid was excreted as hippuric acid to the extent of about 80% of the 24h excretion in the squirrel monkey, pig, dog, ferret, hedgehog and pigeon, the other 20% being found as benzoyl glucuronide and benzoic acid, the latter possibly arising by decomposition of the former. 5. On increasing the dose of benzoic acid to 200mg/kg in the ferret, the proportion of benzoyl glucuronide excreted increased and that of hippuric acid decreased. This did not occur in the rabbit, which excreted 200mg/kg almost entirely as hippuric acid. It appears that the hedgehog and ferret are like the dog in respect to their metabolism of benzoic acid. 6. The Indian fruit bat produced only traces of hippuric acid and possibly has a defect in the glycine conjugation of benzoic acid. The main metabolite in this animal (dose 50mg/kg) was benzoyl glucuronide. 7. The chicken, side-necked turtle and gecko converted benzoic acid mainly into ornithuric acid, but all three species also excreted smaller amounts of hippuric acid. PMID:4990586
Role of renal metabolism and excretion in 5-nitrofuran-induced uroepithelial cancer in the rat.
Spry, L A; Zenser, T V; Cohen, S M; Davis, B B
1985-01-01
5-Nitrofurans have been used in the study of chemical carcinogenesis. There is substantial evidence that N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide (FANFT) is deformylated to 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT) in the process of FANFT-induced bladder cancer. Paradoxically, ANFT is less potent as a uroepithelial carcinogen than FANFT when fed to rats. Feeding aspirin with FANFT to rats decreases the incidence of bladder cancer. Isolated kidneys were perfused with 5-nitrofurans to determine renal clearances and whether aspirin acts to decrease urinary excretion of the carcinogen. In FANFT-perfused kidneys, FANFT was deformylated to ANFT and excreted (1.06 +/- 0.22 nmol/min) at a rate eightfold higher than excretion of FANFT. In kidneys perfused with equimolar ANFT, excretion of ANFT was 0.25 +/- 0.05 nmol/min, which suggests a coupling of renal deformylation of FANFT to excretion of ANFT in FANFT-perfused kidneys. Neither aspirin nor probenecid altered the urinary excretion or half-life of FANFT or ANFT. In rats fed 0.2% FANFT as part of their diet, coadministration of aspirin (0.5%) increased urinary excretion of ANFT during a 12-wk feeding study, which suggests decreased tissue binding or metabolism of ANFT. Kidney perfusion with acetylated ANFT (NFTA), a much less potent uroepithelial carcinogen, resulted in no ANFT excretion or accumulation, which indicates the specificity of renal deformylase. Renal deformylase activity was found in broken cell preparations of rat and human kidney. These data describe a unique renal metabolic/excretory coupling for these compounds that appears to explain the differential carcinogenic potential of the 5-nitrofurans tested. These results are consistent with the hypothesis that aspirin decreases activation of ANFT by inhibiting prostaglandin H synthase. PMID:4044826
Low Impact of Urinary Cortisol in the Assessment of Hydrocortisone Replacement Therapy.
Haas, C S; Rahvar, A-H; Danneberg, S; Lehnert, H; Moenig, H; Harbeck, B
2016-09-01
Hydrocortisone replacement therapy is a cornerstone in the treatment of adrenal insufficiency (AI). While urinary cortisol has been used as a diagnostic tool for AI, it remains unclear whether it is a useful parameter to monitor hydrocortisone replacement therapy. Aim of this study was to evaluate possible differences in cortisol metabolism between adrenal insufficient patients and healthy subjects and to assess the value of urinary cortisol in AI management. In a case-control study, urinary cortisol excretion was determined in 14 patients with primary and secondary AI receiving hydrocortisone infusions from midnight to 8:00 AM. Results were correlated with serum cortisol levels and compared to urinary values obtained from 53 healthy volunteers. Urinary cortisol excretion in healthy subjects was 14.0±7.8 μg/8 h (range: 0.24-35.4), levels did not differ between 3 groups aged 20-34 years, 35-49 years, and ≥50 years. Patients with AI receiving hydrocortisone infusions demonstrated significantly higher rates of urinary cortisol excretion (51.6±37.8 μg/8 h; range 17.1-120.0, p<0.001); the values correlated with serum cortisol levels (r(2)=0.98). Of interest, patients with secondary AI showed significantly higher serum cortisol levels after hydrocortisone infusion than those with primary AI, conceivably due to residual adrenal function. In conclusion, we showed that: (i) there is a wide inter-individual variability in urinary cortisol excretion rates; (ii) cortisol metabolism in adrenal insufficient patients differs when compared to controls; (iii) there is a strong correlation between urinary and serum cortisol levels; and (iv) urinary cortisol levels despite their variability may help to discriminate between secondary and primary adrenal insufficiency. © Georg Thieme Verlag KG Stuttgart · New York.
Coustou, Virginie; Besteiro, Sébastien; Rivière, Loïc; Biran, Marc; Biteau, Nicolas; Franconi, Jean-Michel; Boshart, Michael; Baltz, Théo; Bringaud, Frédéric
2005-04-29
Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic stage of T. brucei expresses a soluble NADH-dependent fumarate reductase (FRDg) in the peroxisome-like organelles called glycosomes. This enzyme is responsible for the production of about 70% of the excreted succinate, the major end product of glucose metabolism in this form of the parasite. Here we functionally characterize a new gene encoding FRD (FRDm1) expressed in the procyclic stage. FRDm1 is a mitochondrial protein, as evidenced by immunolocalization, fractionation of digitonin-permeabilized cells, and expression of EGFP-tagged FRDm1 in the parasite. RNA interference was used to deplete FRDm1, FRDg, or both together. The analysis of the resulting mutant cell lines showed that FRDm1 is responsible for 30% of the cellular NADH-FRD activity, which solves a long standing debate regarding the existence of a mitochondrial FRD in trypanosomatids. FRDg and FRDm1 together account for the total NADH-FRD activity in procyclics, because no activity was measured in the double mutant lacking expression of both proteins. Analysis of the end products of 13C-enriched glucose excreted by these mutant cell lines showed that FRDm1 contributes to the production of between 14 and 44% of the succinate excreted by the wild type cells. In addition, depletion of one or both FRD enzymes results in up to 2-fold reduction of the rate of glucose consumption. We propose that FRDm1 is involved in the maintenance of the redox balance in the mitochondrion, as proposed for the ancestral soluble FRD presumably present in primitive anaerobic cells.
Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar
2016-01-01
Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773
Lever, S Z; Parsons, T L
1999-11-01
meso-2,3-Dimercaptosuccinic acid is a suitable chelating agent for routine pharmacotherapy of lead poisoning in children. Administration of meso-2,3-dimercaptosuccinic acid presumably permits complexation of lead in vivo, allowing excretion through urine or feces. Quantification of the lead is achieved independently from the analysis of meso-2,3-dimercaptosuccinic acid and metabolites from the monobromobimane assay. To date, no direct chemical characterization of the Pb species excreted in urine has been successful. Pharmacokinetic correlation of lead excretion with excretion of meso-2,3-dimercaptosuccinic acid and metabolites has been utilized as an indirect method to draw conclusions regarding the identity of the active chelating agent. In this study, we hypothesized that the Pb-coordinated thiols are not reactive with respect to monobromobimane, and thus, the active chelator contained in the lead complex escapes detection. We performed variations of the assay and found that (1) the fluorescence detector response for the meso-2,3-dimercaptosuccinic acid-monobromobimane adduct was clearly attenuated as a function of added Pb, (2) when meso-2, 3-dimercaptosuccinic acid and monobromobimane were mixed prior to the addition of lead, the lead had no effect on detector response, (3) the addition of dithiothreitol does not affect the ability of Pb to react with meso-2,3-dimercaptosuccinic acid and verifies that oxidation of meso-DMSA had not occurred, and (4) the addition of ethylenediaminetetraacetic acid to the assay reverses the result found in point 1, presumably through trans chelation of the Pb-DMSA complex. Indirect quantification of the Pb-DMSA complexes found in urine might be accomplished through modification of the standard monobromobimane assay for analysis of meso-2,3-dimercaptosuccinic acid.
Schneider, Mark J; Fiering, Steven N; Thai, B; Wu, Sing-yung; St Germain, Emily; Parlow, Albert F; St Germain, Donald L; Galton, Valerie Anne
2006-01-01
The type 1 deiodinase (D1) is thought to be an important source of T3 in the euthyroid state. To explore the role of the D1 in thyroid hormone economy, a D1-deficient mouse (D1KO) was made by targeted disruption of the Dio1 gene. The general health and reproductive capacity of the D1KO mouse were seemingly unimpaired. In serum, levels of T4 and rT3 were elevated, whereas those of TSH and T3 were unchanged, as were several indices of peripheral thyroid status. It thus appears that the D1 is not essential for the maintenance of a normal serum T3 level in euthyroid mice. However, D1 deficiency resulted in marked changes in the metabolism and excretion of iodothyronines. Fecal excretion of endogenous iodothyronines was greatly increased. Furthermore, when compared with both wild-type and D2-deficient mice, fecal excretion of [125I]iodothyronines was greatly increased in D1KO mice during the 48 h after injection of [125I]T4 or [125I]T3, whereas urinary excretion of [125I]iodide was markedly diminished. From these data it was estimated that a majority of the iodide generated by the D1 was derived from substrates other than T4. Treatment with T3 resulted in a significantly higher serum T3 level and a greater degree of hyperthyroidism in D1KO mice than in wild-type mice. We conclude that, although the D1 is of questionable importance to the wellbeing of the euthyroid mouse, it may play a major role in limiting the detrimental effects of conditions that alter normal thyroid function, including hyperthyroidism and iodine deficiency.
Messier, A A; Heyder, E; Braithwaite, W R; McCluggage, C; Peck, A; Schaefer, K E
1979-01-01
Studies of calcium and phosphorus metabolism and acid-base balance were carried out on three Fleet Ballistic Missile (FBM) submarines during prolonged exposure to elevated concentrations of CO2. The average CO2 concentration in the submarine atmosphere during patrols ranged from 0.85% to 1% CO2. In the three studies, in which 9--15 subjects participated, the urinary excretion of calcium and phosphate fell during the first three weeks to a level commensurate with a decrease in plasma calcium and increase in phosphorus. In the fourth week of one patrol, a marked increase was found in urinary calcium excretion, associated with a rise in blood PCO2 and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma calcium. During the third patrol, the time course of acid-base changes corresponded well with that found during the second patrol. There was a trend toward an increase in plasma calcium between the fourth and fifth week commensurate with the transient rise in pH and bicarbonate. Plasma parathyroid and calcitonin hormone activities were measured in two patrols and no significant changes were found. Hydroxyproline excretion decreased in the three-week study and remained unchanged in the second patrol, which lasted 57 days. It is suggested that during prolonged exposure to low levels of CO2 (up to 1% CO2), calcium metabolism is controlled by the uptake and release of CO2 in the bones. The resulting phases in bone buffering, rather than renal regulation, determine acid-base balance.
Fulton, Jeremy; LeMoine, Christophe M R; Bucking, Carol; Brix, Kevin V; Walsh, Patrick J; McDonald, M Danielle
2017-03-15
The Gulf toadfish (Opsanus beta) has a fully functional ornithine urea cycle (O-UC) that allows it to excrete nitrogenous waste in the form of urea. Interestingly, urea is excreted in a pulse across the gill that lasts 1-3h and occurs once or twice a day. Both the stress hormone, cortisol, and the neurotransmitter, serotonin (5-HT) are involved in the control of pulsatile urea excretion. This and other evidence suggests that urea pulsing may be linked to toadfish social behavior. The hypothesis of the present study was that toadfish urea pulses can be triggered by waterborne chemical cues from conspecifics. Our findings indicate that exposure to seawater that held a donor conspecific for up to 48h (pre-conditioned seawater; PC-SW) induced a urea pulse within 7h in naïve conspecifics compared to a pulse latency of 20h when exposed to seawater alone. Factors such as PC-SW intensity and donor body mass influenced the pulse latency response of naïve conspecifics. Fractionation and heat treatment of PC-SW to narrow possible signal candidates revealed that the active chemical was both water-soluble and heat-stable. Fish exposed to urea, cortisol or 5-HT in seawater did not have a pulse latency that was significantly different than seawater alone; however, ammonia, perhaps in the form of NH 4 Cl, was found to be a factor in the pulse latency response of toadfish to PC-SW and could be one component of a multi-component cue used for chemical communication in toadfish. Further studies are needed to fully identify the chemical cue as well as determine its adaptive significance in this marine teleost fish. Copyright © 2016. Published by Elsevier Inc.
Yang, Zhen; Zhu, Wei; Gao, Song; Yin, Taijun; Jiang, Wen
2012-01-01
It was recently proposed that the improved oral bioavailability of genistein aglycone and conjugates in Bcrp1(−/−) mice is mainly due to increased intestinal absorption of aglycone and subsequent elevated exposure to conjugation enzymes. Here we tested this proposed mechanism and found that intestinal absorption of genistein aglycone did not increase in Bcrp1(−/−) mice compared with wild-type mice using an in situ mouse intestinal perfusion model and that inhibition of breast cancer resistance protein (BCRP) in Caco-2 cells also did not significantly increase permeability or intracellular concentration of aglycone. Separately, we showed that 5- to 10-fold increases in exposures of conjugates and somewhat lower fold increases (<2-fold) in exposures of aglycone were apparent after both oral and intraperitoneal administration in Bcrp1(−/−) mice. In contrast, the intestinal and biliary excretion of genistein conjugates significantly decreased in Bcrp1(−/−) mice without corresponding changes in aglycone excretion. Likewise, inhibition of BCRP functions in Caco-2 cells altered polarized excretion of genistein conjugates by increasing their basolateral excretion. We further found that genistein glucuronides could be hydrolyzed back to genistein, whereas sulfates were stable in blood. Because genistein glucuronidation rates were 110% (liver) and 50% (colon) higher and genistein sulfation rates were 40% (liver) and 42% (colon) lower in Bcrp1(−/−) mice, the changes in genistein exposures are not mainly due to changes in enzyme activities. In conclusion, improved bioavailability of genistein and increased plasma area under the curve of its conjugates in Bcrp1(−/−) mice is due to altered distribution of genistein conjugates to the systemic circulation. PMID:22736306
Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M
2014-01-01
Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be related to aniline nor to N-acetyl-4-aminophenol in man. Copyright © 2013 Elsevier GmbH. All rights reserved.
Hinojosa-Nogueira, Daniel; Muros, Joaquín; Rufián-Henares, José A; Pastoriza, Silvia
2017-05-24
Polyphenols are bioactive substances of vegetal origin with a significant impact on human health. The assessment of polyphenol intake and excretion is therefore important. The Folin-Ciocalteu (F-C) method is the reference assay to measure polyphenols in foods as well as their excretion in urine. However, many substances can influence the method, making it necessary to conduct a prior cleanup using solid-phase extraction (SPE) cartridges. In this paper, we demonstrate the use of the Fast Blue BB reagent (FBBB) as a new tool to measure the excretion of polyphenols in urine. Contrary to F-C, FBBB showed no interference in urine, negating the time-consuming and costly SPE cleanup. In addition, it showed excellent linearity (r 2 = 0.9997), with a recovery of 96.4% and a precision of 1.86-2.11%. The FBBB method was validated to measure the excretion of polyphenols in spot urine samples from Spanish children, showing a good correlation between polyphenol intake and excretion.
Poliovirus Excretion in Children with Primary Immunodeficiency Disorders, India.
Mohanty, Madhu Chhanda; Madkaikar, Manisha Rajan; Desai, Mukesh; Taur, Prasad; Nalavade, Uma Prajwal; Sharma, Deepa Kailash; Gupta, Maya; Dalvi, Aparna; Shabrish, Snehal; Kulkarni, Manasi; Aluri, Jahnavi; Deshpande, Jagadish Mohanrao
2017-10-01
Prolonged excretion of poliovirus can occur in immunodeficient patients who receive oral polio vaccine, which may lead to propagation of highly divergent vaccine-derived polioviruses (VDPVs), posing a concern for global polio eradication. This study aimed to estimate the proportion of primary immunodeficient children with enterovirus infection and to identify the long-term polio/nonpolio enterovirus excreters in a tertiary care unit in Mumbai, India. During September 2014-April 2017, 151 patients received diagnoses of primary immunodeficiency (PID). We isolated 8 enteroviruses (3 polioviruses and 5 nonpolio enteroviruses) in cell culture of 105 fecal samples collected from 42 patients. Only 1 patient with severe combined immunodeficiency was identified as a long-term VDPV3 excreter (for 2 years after identification of infection). Our results show that the risk of enterovirus excretion among children in India with PID is low; however, systematic screening is necessary to identify long-term poliovirus excreters until the use of oral polio vaccine is stopped.
Poliovirus Excretion in Children with Primary Immunodeficiency Disorders, India
Madkaikar, Manisha Rajan; Desai, Mukesh; Taur, Prasad; Nalavade, Uma Prajwal; Sharma, Deepa Kailash; Gupta, Maya; Dalvi, Aparna; Shabrish, Snehal; Kulkarni, Manasi; Aluri, Jahnavi; Deshpande, Jagadish Mohanrao
2017-01-01
Prolonged excretion of poliovirus can occur in immunodeficient patients who receive oral polio vaccine, which may lead to propagation of highly divergent vaccine-derived polioviruses (VDPVs), posing a concern for global polio eradication. This study aimed to estimate the proportion of primary immunodeficient children with enterovirus infection and to identify the long-term polio/nonpolio enterovirus excreters in a tertiary care unit in Mumbai, India. During September 2014–April 2017, 151 patients received diagnoses of primary immunodeficiency (PID). We isolated 8 enteroviruses (3 polioviruses and 5 nonpolio enteroviruses) in cell culture of 105 fecal samples collected from 42 patients. Only 1 patient with severe combined immunodeficiency was identified as a long-term VDPV3 excreter (for 2 years after identification of infection). Our results show that the risk of enterovirus excretion among children in India with PID is low; however, systematic screening is necessary to identify long-term poliovirus excreters until the use of oral polio vaccine is stopped. PMID:28930011
Verhagen, Josanne H.; van Amerongen, Geert; van de Bildt, Marco; Majoor, Frank; Fouchier, Ron A. M.
2015-01-01
ABSTRACT Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds. IMPORTANCE Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of subsequent infection with the same or the other virus within the same breeding season and between breeding seasons. These are the only two LPAIV hemagglutinin subtypes predominating in this species. The findings suggest that H13 and H16 LPAIV cycles in black-headed gull populations are independent of each other, indicate the importance of first-year birds in LPAIV epidemiology, and emphasize the need for alternatives to avian influenza virus (AIV)-specific serum antibodies as evidence of past LPAIV infection and correlates of protection against LPAIV infection in wild birds. PMID:26339062
Diet effects on urine composition of cattle and N2O emissions.
Dijkstra, J; Oenema, O; van Groenigen, J W; Spek, J W; van Vuuren, A M; Bannink, A
2013-06-01
Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N2O release. Major dietary strategies to mitigating N2O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N2O emission, an integrated animal nutrition and excreta management approach is required.
Fluid shifts and muscle function in humans during acute simulated weightlessness
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Tipton, C. M.; Gollnick, P. D.; Mubarak, S. J.; Tucker, B. J.; Akeson, W. H.
1983-01-01
The acute effects of simulated weightlessness on transcapillary fluid balance, tissue fluid shifts, muscle function, and triceps surface reflex time were studied in eight supine human subjects who were placed in a 5 degrees head-down tilt position for 8 hr. Results show a cephalic fluid shift from the legs as indicated by facial edema, nasal congestion, increased urine flow, decreased creatinine excretion, reduced calf girth, and decreased lower leg volume. The interstitial fluid pressure in the tibialis anterior muscle and subcutaneous tissue of the lower leg was found to fall significantly, while other transcapillary pressures (capillary and interstitial fluid colloid osmotic pressures) were relatively unchanged. The total water content of the soleus muscle was unchanged during the head-down tilt. After head-down tilt, isometric strength and isokinetic strength of the plantar flexors were unchanged, while the triceps surae reflex time associated with plantar flexion movement slowed slightly. These results demonstrate a dehydration effect of head-down tilt on muscle and subcutaneous tissue of the lower leg that may affect muscle function.
The effects of cholesterol on learning and memory.
Schreurs, Bernard G
2010-07-01
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Measures of Autonomic Nervous System
2011-04-01
activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular activity. Choice of tools is dependent upon...digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and parasympathetic divisions and acts through a... respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to achieve homeostasis. Since both systems are
Ticinesi, Andrea; Guerra, Angela; Allegri, Franca; Nouvenne, Antonio; Cervellin, Gianfranco; Maggio, Marcello; Lauretani, Fulvio; Borghi, Loris; Meschi, Tiziana
2018-06-01
The association of metabolic syndrome (MetS) traits with urinary calcium (UCE) or oxalate excretion (UOE) is uncertain in calcium stone formers (CSFs). Our aim was to investigate this association in a large group of Caucasian CSFs. We retrospectively reviewed data of CSFs evaluated at our Kidney Stone Clinic from 1984 to 2015. Data on body mass index (BMI), MetS traits defined according to international consensus, family history of urolithiasis, anti-hypertensive treatments, calcemia, renal function, and 24-h urinary profile of lithogenic risk were collected. The association between MetS traits and UCE or UOE was tested with multivariate linear regression models accounting for a long list of potential confounders. We included 3003 CSFs, aged 44 ± 14 years. The prevalence of hypertension, diabetes, overweight (BMI ≥ 25 kg/m 2 ) and dyslipidemia was 17, 2, 42 and 38%, respectively. Median values of UCE and UOE were 211 mg/24 h (IQR 143-296) and 28 mg/24 h (IQR 22-34), respectively. At a multivariate model, including age, sex, date of examination, drug treatments, family history, renal function, blood calcium and urinary factors as covariates, hypertension was a significant positive determinant of UCE (β ± SE 0.23 ± 0.07, p = 0.003), but overweight, dyslipidemia and diabetes were not. No MetS trait was significantly associated with UOE in multivariate models. In a large group of Caucasian CSFs, hypertension was the only MetS trait significantly associated with UCE, while no MetS trait was associated with oxalate excretion.
Persson, P B; Ehmke, H; Nafz, B; Lang, R; Hackenthal, E; Nobiling, R; Dietrich, M S; Kirchheim, H R
1991-01-01
1. The effects of neuropeptide-Y (NPY) on renal function were investigated in conscious foxhounds. 2. Dose-response curves (n = 7) were obtained for NPY by measuring renal blood flow (RBF), glomerular filtration rate (GFR), urine excretion (VU), sodium excretion (VNa), potassium excretion (VK) and plasma renin activity (PRA) at different infusion rates. All variables decreased with increasing infusion rates except for PRA, which surprisingly did not change during the different infusion rates. 3. The influence of the non-constrictor dose of NPY at control pressure, and after servo-controlling renal arterial pressure at 80 mmHg, was determined for these parameters (n = 6). 4. This was repeated during a reflex sympathetic activation via carotid sinus hypotension, in order to quantify a possible interaction between the sympathetic transmitter and co-transmitter (n = 6). 5. The subthreshold NPY dose raised plasma NPY-like immunoreactivity (NPY-LI IR) significantly (renal venous plasma: 54 +/- 13 vs. 405 +/- 117 pg ml-1; P less than 0.05) and enhanced the pressure-dependent (80 mmHg) antidiuresis (0.48 +/- 0.06 vs. 0.24 +/- 0.02 ml min-1; P less than 0.05), antinatriuresis (46 +/- 11 vs. 25 +/- 3 mumol min-1; P less than 0.05), antikaliuresis (19 +/- 4 vs. 9 +/- 0.7 mumol min-1; P less than 0.05) and pressure-dependent renin release (0.95 +/- 0.27 vs. 3.0 +/- 1.1 ng angiotensin I ml-1 h-1; P less than 0.05). These effects are consistent with a non-uniform vasoconstrictor action of NPY in the renal vascular bed (see accompanying papers). 6. The effects of NPY plus sympathetic activation were less than the sum of the two individual effects, which may rely on a presynaptic mechanism. PMID:1688030
Wijerathna, Thilini Madushanka; Gawarammana, Indika Bandara; Dissanayaka, Dhammika Menike; Palanagasinghe, Chathura; Shihana, Fathima; Dassanayaka, Gihani; Shahmy, Seyed; Endre, Zoltan Huba; Mohamed, Fahim; Buckley, Nicholas Alan
2017-11-01
Acute kidney injury (AKI) is common following deliberate self-poisoning with a combination washing powder containing oxalic acid (H 2 C 2 O 4 ) and potassium permanganate (KMnO 4 ). Early and rapid increases in serum creatinine (sCr) follow severe poisoning. We investigated the relationship of these increases with direct nephrotoxicity in an ongoing multicenter prospective cohort study in Sri Lanka exploring AKI following poisoning. Multiple measures of change in kidney function were evaluated in 48 consenting patients who had serial sCr and serum cystatin C (sCysC) data available. Thirty-eight (38/48, 79%) patients developed AKI (AKIN criteria). Twenty-eight (58%) had AKIN stage 2 or 3. Initial increases in urine creatinine (uCr) excretion were followed by a substantial loss of renal function. The AKIN stage 2 and 3 (AKIN2/3) group had very rapid rises in sCr (a median of 118% at 24 h and by 400% at 72 h post ingestion). We excluded the possibility that the rapid rise resulted from the assay used or muscle damage. In contrast, the average sCysC increase was 65% by 72 h. In most AKI, sCysC increases to the same extent but more rapidly than sCr, as sCysC has a shorter half-life. This suggests either a reduction in Cystatin C production or, conversely, that the rapid early rise of sCr results from increased production of creatine and creatinine to meet energy demands following severe oxidative stress mediated by H 2 C 2 O 4 and KMnO 4 . Increased early creatinine excretion supports the latter explanation, since creatinine excretion usually decreases transiently in AKIN2/3 from other causes.
Ellery, Stacey J; LaRosa, Domenic A; Kett, Michelle M; Della Gatta, Paul A; Snow, Rod J; Walker, David W; Dickinson, Hayley
2016-08-01
Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.
Endreffy, Ildikó; Bjørklund, Geir; Dicső, Ferenc; Urbina, Mauricio A; Endreffy, Emőke
2016-04-01
Autism research continues to receive considerable attention as the options for successful management are limited. The understanding of the autism spectrum disorder (ASD) etiology has now progressed to encompass genetic, epigenetic, neurological, hormonal, and environmental factors that affect outcomes for patients with ASD. Glycosaminoglycans (GAGs) are a family of linear, sulfated polysaccharides that are associated with central nervous system (CNS) development, maintenance, and disorders. Proteoglycans (PG) regulate diverse functions in the central nervous system. Heparan sulfate (HS) and chondroitin sulfate (CS) are two major GAGs present in the PGs of the CNS. As neuroscience advances, biochemical treatments to correct brain chemistry become better defined. Nutrient therapy can be very potent and has minimal to no side effects, since no molecules foreign to the body are needed. Given GAGs are involved in several neurological functions, and that its level can be somewhat modulated by the diet, the present study aimed to evaluate the role of GAGs levels in ASD symptoms. Both tGAG and its different fractions were evaluated in the urine of ASD and healthy control childrens. As levels differed between groups, a second trial was conduted evaluating if diet could reduce tGAG levels and if this in turn decrease ASD symptoms. The present study found that tGAG concentration was significantly higher in the urine of children with ASD compared to healthy control children and this was also evident in all GAG fractions. Within groups (controls and ASD), no gender differences in GAG excretion were found. The use of a 90 days elimination diet (casein-free, special carbohydrates, multivitamin/mineral supplement), had major effects in reducing urinary tGAG excretion in children with ASD.
Level of hydration and renal function in healthy humans.
Anastasio, P; Cirillo, M; Spitali, L; Frangiosa, A; Pollastro, R M; De Santo, N G
2001-08-01
High hydration is commonly used in renal studies to improve the completeness of urine collection. The renal effects of hydration are not well defined. Renal function was studied under fasting conditions (baseline) and after a meat meal (2 g of protein/kg body weight) in 12 healthy adults on a low and high hydration regimen of 0.5 and 4 mL of oral water per kg body weight/30 min, respectively. Urine flow, urinary and plasma Na, K, urea, and osmolality were stably different on low and high hydration regimens. At baseline, there were significant or borderline significant correlations of plasma and urine osmolality with glomerular filtration rate (GFR; inulin clearance) only in the low hydration regimen. GFR was higher in the low than the high hydration regimen at all time points. The difference was significant at baseline (19.2%) and at 90 to 180 minutes after the meal (14.4%). After the meal, GFR increased significantly over baseline values only in the high hydration regimen (30.0% at peak time). Urinary excretion of Na, urea, and osmoles was lower in the low than the high hydration regimen at all time points: The difference was significant for Na (at baseline) and osmoles (all time points). Urinary K excretion was not different in the two regimens. After the meal, there were significant increases in urinary excretion of Na (in the low hydration regimen) and urea (90 to 180 min after the meal). In fasting adults, high hydration lowered GFR and increased natriuresis. After a meat meal, GFR increased only in the high hydration regimen and natriuresis only in the low hydration regimen. Hydration affects GFR and natriuresis under fasting conditions and after a meat meal.
Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.
2016-01-01
The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042
Effect of dietary protein restriction on renal ammonia metabolism
Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.
2015-01-01
Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252
Urinary spot albumin:creatinine ratio for documenting proteinuria in women with preeclampsia.
Huang, Qitao; Gao, Yunfei; Yu, Yanhong; Wang, Wei; Wang, Shuoshi; Zhong, Mei
2012-01-01
To assess whether a single urinary spot urinary albumin:creatinine ratio (ACR) can be used to estimate 24-hour urinary protein excretion in women with preeclampsia. ACR and 24-hour urinary protein excretion were measured in 50 consecutive patients with preeclampsia. ACR was determined in a spot midstream urine sample and the amount of protein excretion was quantified in a 24-hour urine collection performed the following day. The correlation between the spot ACR and 24-hour urine protein excretion was assessed, and the diagnostic value of ACR was expressed in terms of specificity and sensitivity. Receiver operating characteristic curve analysis was used to determine the best cutoff values of the spot ACR for mild preeclampsia (proteinuria ≥ 0.3 g/24 h) and severe preeclampsia (defined in China as proteinuria ≥ 2 g/24 h). A strong correlation was evident between the spot ACR and 24-hour urinary protein excretion (r = .938; P < .001). The optimal spot ACR cutoff point was 22.8 mg/mmol for 0.3 g/24 h of protein excretion (mild preeclampsia) with a sensitivity and specificity of 82.4% and 99.4%, respectively, and 155.6 mg/mmol for 2 g/24 h of protein excretion (severe preeclampsia) with a sensitivity and specificity of 90.6% and 99.6%, respectively. Compared with 24-hour urinary protein excretion, the spot urinary ACR may be a simple, convenient, and accurate indicator of significant proteinuria in women with preeclampsia.
Temporal variation in the importance of a dominant consumer to stream nutrient cycling
Griffiths, Natalie A.; Hill, Walter
2014-06-19
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less
van Holland, Berry J; Frings-Dresen, Monique H W; Sluiter, Judith K
2012-11-01
The aims of this study were to investigate (1) the concurrent relationship between short-term and long-term stress reactivity measured by cortisol excretion and (2) the relationship of these physiological stress effects with self-reported stress and need for recovery after work (NFR). Participants were production workers in the meat-processing industry. Short-term cortisol excretion was calculated by summing 18 saliva samples, sampled over a 3-day period. Samples were delivered by 37 participants. Twenty-nine of them also supplied one hair sample of at least 3 cm in length for an analysis of long-term (3 months) cortisol excretion. All of them filled in a short questionnaire on self-reported stress and NFR. Self-reported stress was assessed by a three-item stress screener; NFR was assessed by an 11-item scale. Short-term and long-term cortisol excretion are significantly, but moderately, associated (r = 0.41, P = 0.03). Short-term and long-term cortisol excretion correlated weakly to self-reported stress and NFR (correlations varied from -0.04 to 0.21). Short-term and long-term physiological stress excretion levels are moderately associated. Physiological stress effects assessed from saliva and hair cannot be used interchangeably with self-reported stress because they only correlate weakly. To better predict long-term cortisol excretion in workers, the predictive value of short-term cortisol excretion must be evaluated in a prognostic longitudinal study in a working population.
Reduction in fecal excretion of Giardia cysts: effect of cholestasis and diet.
Erlandsen, Stanley
2005-12-01
Bile is a major growth factor for the proliferation of Giardia spp. trophozoites in the small intestine and, at high concentrations, stimulates encystment of trophozoites. This report demonstrates that surgical cholestasis to interrupt the flow of bile from liver to intestine or the use of bile-binding resins in the diet can both dramatically decrease the fecal excretion of Giardia muris cysts. Cholestasis produced a 3 log reduction in excretion of G. muris cysts within 24 hr of surgery and a 4 log reduction after 3 days. Sham controls showed no difference in cyst excretion from presurgical control values. Two isocaloric diets were studied: a control diet (N) of Purina mouse chow containing 5% celufil and an experimental diet (CR) containing 5% cholestyramine, a resin that binds bile. Compared with the N diet, the CR diet was associated with reductions in cyst excretion of 3 logs within 1 day. Despite lowered excretion of G. muris cysts in mice fed the cholestyramine diet, the trophozoite recovery from the duodenum was similar with both diets. Cyclic feeding of the CR diet and the N diet at 3-day intervals produced significant oscillations (changes of 3-4 logs) in fecal cyst shedding. The significant reductions in fecal excretion of cysts observed with agents that bind bile suggests that diets capable of binding bile might be a therapeutic means to minimize the fecal excretion of cysts and thereby may help to reduce the risk of spreading giardiasis through fecal-oral contamination.
Temporal variation in the importance of a dominant consumer to stream nutrient cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Hill, Walter
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less
The effect of dietary factors on nitrosoproline levels in human urine.
Stich, H F; Hornby, A P; Dunn, B P
1984-05-15
The effect of dietary components on the levels of nitrosoproline ( NPRO ) excreted over a 24 h period in the urine was examined in volunteers ingesting known amounts of various food products. The ingestion of nitrite-preserved meats (85-170 g per meal), including canned, rolled or Yunnan ham, cured pork, luncheon meat, and various Chinese and European-style sausages, led to urinary NPRO excretion levels ranging from 2.5 to 78.5 micrograms/24 h, whereas the consumption of non-preserved meat and fish products, including chicken, herring, salmon, shrimp, ground beef (hamburger), pork chops and beef liver, led to relatively low NPRO excretion levels, ranging from 0.0 to 0.8 micrograms/24 h. The urinary NPRO levels of 22 vegetarians and 14 lacto-vegetarians averaged 0.8 and 1.4 micrograms/24 h, respectively. A change from a nitrite-preserved meat diet to a vegetarian diet was accompanied by an approximately six-fold reduction in urinary NPRO levels; however, these remained above control levels for at least 3 days following the dietary change. The relatively high NPRO levels following the ingestion of nitrite-preserved meats could not be reduced by nitrite-trapping chemicals, including ascorbic acid, ferulic acid, caffeic acid, or phenolic-containing mixtures such as coffee and tea, which were effective in suppressing endogenous NPRO formation following the intake of nitrate and proline. The high urinary NPRO levels after ingestion of preserved meat products appear to be due to the consumption of preformed NPRO . An understanding of the relative contribution of preformed and endogenously formed nitrosamines appears to be essential when designing dietary intervention programmes.
Alkali absorption and citrate excretion in calcium nephrolithiasis
NASA Technical Reports Server (NTRS)
Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.
1993-01-01
The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).
Carr, Anitra C.; Bozonet, Stephanie M.; Vissers, Margreet C. M.
2013-01-01
Kiwifruit are a rich source of vitamin C and also contain numerous phytochemicals, such as flavonoids, which may influence the bioavailability of kiwifruit-derived vitamin C. The aim of this study was to compare the relative bioavailability of synthetic versus kiwifruit-derived vitamin C using a randomised cross-over pharmacokinetic study design. Nine non-smoking males (aged 18–35 years) received either a chewable tablet (200 mg vitamin C) or the equivalent dose from gold kiwifruit (Actinidia chinensis var. Sungold). Fasting blood and urine were collected half hourly to hourly over the eight hours following intervention. The ascorbate content of the plasma and urine was determined using HPLC with electrochemical detection. Plasma ascorbate levels increased from 0.5 h after the intervention (P = 0.008). No significant differences in the plasma time-concentration curves were observed between the two interventions (P = 0.645). An estimate of the total increase in plasma ascorbate indicated complete uptake of the ingested vitamin C tablet and kiwifruit-derived vitamin C. There was an increase in urinary ascorbate excretion, relative to urinary creatinine, from two hours post intervention (P < 0.001). There was also a significant difference between the two interventions, with enhanced ascorbate excretion observed in the kiwifruit group (P = 0.016). Urinary excretion was calculated as ~40% and ~50% of the ingested dose from the vitamin C tablet and kiwifruit arms, respectively. Overall, our pharmacokinetic study has shown comparable relative bioavailability of kiwifruit-derived vitamin C and synthetic vitamin C. PMID:24284610
Bauch, K; Weiss, O; Möckel, G; Gerlach, J; Seitz, W; Ulrich, F E; Dempe, A
1981-10-01
The values of the per cent 24 h radioiodine uptake in the GDR are above 60--70% and speak for a low alimentary intake of iodine or renal excretion of iodine below 40 micrograms J/d. Like the struma prevalences they show a tendency increasing from north to south and characterize the whole European situation of iodine deficiency including its decrease from west to east. The mean values of radioiodine uptake of 71.7 +/- 13.2% (n = 110) in euthyroids of the district of Karl-Marx-Stadt correspond to the iodine deficiency as it occurs approximately in the districts of Erfurt, Dresden, Munich or Freiburg/B. The alimentary iodine intake of 38.4 +/- 17.2 micrograms J/d and the renal iodine excretion of 29.9 +/- 16.1 micrograms J/d, calculated from the 24 h radioiodine accumulation values of 40 euthyroid persons by means of a mathematical model developed by Oddie and co-workers were low. The latter only slightly differed (P less than 0.05) from its chemically estimated excretion of iodine in the urine: 23.1 +/- 16.9 micrograms J/g creatinine (n = 73). Between the calculated and chemically estimated excretion of iodine there was a relatively strict correlation of r = 0.68 (n = 26; P less than 0.001). The introduction of an iodine prophylaxis is regarded as an urgent necessity. Later on a new estimation of the regional "normal values" is necessary for the per cent radioiodine uptake.
Harada, Kouji H.; Tanaka, Keiko; Sakamoto, Hiroko; Imanaka, Mie; Niisoe, Tamon; Hitomi, Toshiaki; Kobayashi, Hatasu; Okuda, Hiroko; Inoue, Sumiko; Kusakawa, Koichi; Oshima, Masayo; Watanabe, Kiyohiko; Yasojima, Makoto; Takasuga, Takumi; Koizumi, Akio
2016-01-01
Background Neonicotinoids, which are novel pesticides, have entered into usage around the world because they are selectively toxic to arthropods and relatively non-toxic to vertebrates. It has been suggested that several neonicotinoids cause neurodevelopmental toxicity in mammals. The aim was to establish the relationship between oral intake and urinary excretion of neonicotinoids by humans to facilitate biological monitoring, and to estimate dietary neonicotinoid intakes by Japanese adults. Methodology/Principal Findings Deuterium-labeled neonicotinoid (acetamiprid, clothianidin, dinotefuran, and imidacloprid) microdoses were orally ingested by nine healthy adults, and 24 h pooled urine samples were collected for 4 consecutive days after dosing. The excretion kinetics were modeled using one- and two-compartment models, then validated in a non-deuterium-labeled neonicotinoid microdose study involving 12 healthy adults. Increased urinary concentrations of labeled neonicotinoids were observed after dosing. Clothianidin was recovered unchanged within 3 days, and most dinotefuran was recovered unchanged within 1 day. Around 10% of the imidacloprid dose was excreted unchanged. Most of the acetamiprid was metabolized to desmethyl-acetamiprid. Spot urine samples from 373 Japanese adults were analyzed for neonicotinoids, and daily intakes were estimated. The estimated average daily intake of these neonicotinoids was 0.53–3.66 μg/day. The highest intake of any of the neonicotinoids in the study population was 64.5 μg/day for dinotefuran, and this was <1% of the acceptable daily intake. PMID:26731104
Wasser, Samuel K; Azkarate, Jurgi Cristòbal; Booth, Rebecca K; Hayward, Lisa; Hunt, Kathleen; Ayres, Katherine; Vynne, Carly; Gobush, Kathleen; Canales-Espinosa, Domingo; Rodríguez-Luna, Ernesto
2010-08-01
We developed and validated a non-invasive thyroid hormone measure in feces of a diverse array of birds and mammals. An I(131) radiolabel ingestion study in domestic dogs coupled with High Pressure Liquid Chromatography (HPLC) analysis, showed that peak excretion in feces occurred at 24-48h post-ingestion, with I(131)-labelled thyroid hormone metabolites excreted primarily as triiodothyronine (T3) and relatively little thyroxine (T4), at all excretion times examined. The immunoreactive T3 profile across these same HPLC fractions closely corresponded with the I(131) radioactive profile. By contrast, the T4 immunoreactive profile was disproportionately high, suggesting that T4 excretion included a high percentage of T4 stores. We optimized and validated T3 and T4 extraction and assay methods in feces of wild northern spotted owls, African elephants, howler monkeys, caribou, moose, wolf, maned wolf, killer whales and Steller sea lions. We explained 99% of the variance in high and low T3 concentrations derived from species-specific sample pools, after controlling for species and the various extraction methods tested. Fecal T3 reflected nutritional deficits in two male and three female howler monkeys held in captivity for translocation from a highly degraded habitat. Results suggest that thyroid hormone can be accurately and reliably measured in feces, providing important indices for environmental physiology across a diverse array of birds and mammals. Copyright 2010 Elsevier Inc. All rights reserved.
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Vangelova, Katia Koicheva; Israel, Mishel Salvador
2005-01-01
We studied the time-of-day variations in urinary levels of 6-sulphatoxy-melatonin and three stress hormones in operators working fast-rotating extended shifts under radiofrequency electromagnetic radiation (EMR). The excretion rate of the hormones was monitored by radioimmunoassay and spectrofluorimetry at 4-hour intervals in a group of 36 male operators comprising 12 broadcasting station operators, 12 TV station operators, and a control group of 12 satellite station operators. Measuring the time-weighted average (TWA) of EMR exposure revealed a high-level of exposure in broadcasting station operators (TWAmean= 3.10 microW/ cm2, TWAmax = 137.00 microW/cm2), a low-level in TV station operators (TWAmean = 1.89 microW/cm2, TWAmax = 5.24 microW/cm2), and a very low level in satellite station operators. The differences among the groups remained the same after confounding factors were taken into account. Radiofrequency EMR had no effect on the typical diurnal pattern of 6-sulphatoxymelatonin. High-level radiofrequency EMR exposure significantly increased the excretion rates of cortisol (p < 0.001), adrenaline (p = 0.028), and noradrenaline (p < 0.000), whereas changes under low-level exposure did not reach significance. The 24-hour excretion of cortisol and noradrenaline correlated with TWAmean and TWAmax. In conclusion, the excretion of 6-sulphatoxymelatonin retained a typical diurnal pattern under fast-rotating extended shifts and radiofrequency EMR, but showed an exposure-effect relation with stress hormones.