BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition
Nonrelativistic Quantum Mechanics with Fundamental Environment
NASA Astrophysics Data System (ADS)
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Quantum Mechanics - Fundamentals and Applications to Technology
NASA Astrophysics Data System (ADS)
Singh, Jasprit
1996-10-01
Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Gevorkyan, A. S.
2013-08-15
Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
NASA Astrophysics Data System (ADS)
Gevorkyan, A. S.
2013-08-01
Spontaneous transitions between bound states of an atomic system, the "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations ( fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger type and is defined on the extended space ℝ3⊗Ξ n , where ℝ3 and Ξ n are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Fundamental Entangling Operators in Quantum Mechanics and Their Properties
NASA Astrophysics Data System (ADS)
Dao-Ming, Lu
2016-07-01
For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.
Investigations of fundamental phenomena in quantum mechanics with neutrons
NASA Astrophysics Data System (ADS)
Hasegawa, Yuji
2014-04-01
Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics á la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.
NASA Astrophysics Data System (ADS)
Commins, Eugene D.
2014-10-01
Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein-Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin 1/2 particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
Fundamental Structure of Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Han, Muxin; Ma, Yongge; Huang, Weiming
In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to
Fundamental concepts of quantum chaos
NASA Astrophysics Data System (ADS)
Robnik, M.
2016-09-01
We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.
Quantum repeaters: fundamental and future
NASA Astrophysics Data System (ADS)
Li, Yue; Hua, Sha; Liu, Yu; Ye, Jun; Zhou, Quan
2007-04-01
An overview of the Quantum Repeater techniques based on Entanglement Distillation and Swapping is provided. Beginning with a brief history and the basic concepts of the quantum repeaters, the article primarily focuses on the communication model based on the quantum repeater techniques, which mainly consists of two fundamental modules --- the Entanglement Distillation module and the Swapping module. The realizations of Entanglement Distillation are discussed, including the Bernstein's Procrustean method, the Entanglement Concentration and the CNOT-purification method, etc. The schemes of implementing Swapping, which include the Swapping based on Bell-state measurement and the Swapping in Cavity QED, are also introduced. Then a comparison between these realizations and evaluations on them are presented. At last, the article discusses the experimental schemes of quantum repeaters at present, documents some remaining problems and emerging trends in this field.
Fundamental Study on Quantum Nanojets
2004-08-01
operating at high injection energy exhibit classical jet like behavior which are predicted by molecular dynamics or classical Navier - Stokes type equation ...Analytical formulations of planar and cylindrical shaped nanojets injector in QDFD formalism. Conservation equations of QDFD Canonical theoretic formulation...computational schemes for Schrödinger’s equation and quantum fluid dynamics, are developed. Principles of quantum mechanical equivalence between two formalisms
NASA Astrophysics Data System (ADS)
Hasselbach, Franz
2005-05-01
Our miniaturized electron biprism interferometer [1] proved to be many orders of magnitude less sensitive to mechanical and electromagnetic disturbances than conventional interferometers (modified electron microscopes). Experiments so far inconceivable with electron waves, e.g., to rotate an electron interferometer on a turntable and to prove the Sagnac phase shift [2,3] or to realize biprism interferences with He-ions [4] with wavelengths as small as 0.3 pm became reality. A crossed-field analyzer (Wien filter) in the beam path of our electron interferometer allows to introduce electric and magnetic Aharonov-Bohm phase differences and transit time differences between the interfering wave packets [5]. For wave packet shifts introduced by the Wien filter which exceed the coherence length, which-path information is available in principle, leading to vanishing fringe contrast. Since which-path information is not read out in this experiment, fringe contrast can be restored by compensating the longitudinal shift in a second shifting device. Only recently we succeeded to demonstrate that electrons arrive at two coherently illuminated detectors `antibunched' [6], i.e., according to the demands of Fermi statistics. At present, our intertest is focused on decoherence. Coherently split electron waves propagate over a resistive plate. Which-path information of the electrons decreases with increasing height of flight. In turn the contrast of the fringes increases [7,8].[1] F. Hasselbach, Z. Phys. B -- Condensed Matter 71(1988), 443-449.[2] F. Hasselbach, M. Nicklaus, Phys. Rev. A 48(1993), 143-151.[3] R. Neutze, F. Hasselbach, Phys. Rev. A 58(1998), 557-565.[4] F. Hasselbach, U. Maier, in Quantum Coherence and Decoherence: Proc. ISQM-Tokyo`98 p. 299-302, eds. Y.Y. Ono and K. Fujikawa, Amsterdam, Elsevier, 1999.[5] M. Nicklaus, F. Hasselbach, Phys. Rev. A 48(1993), 152-160.[6] Harald Kiesel, Andreas Renz & F. Hasselbach, Nature 418(2002), 392-394.[7] H.D. Zeh, Found. Phys. 1
Quantum electrodynamics and fundamental constants
NASA Astrophysics Data System (ADS)
Wundt, Benedikt Johannes Wilhelm
The unprecedented precision achieved both in the experimental measurements as well as in the theoretical description of atomic bound states make them an ideal study object for fundamental physics and the determination of fundamental constants. This requires a careful study of the effects from quantum electrodynamics (QED) on the interaction between the electron and the nucleus. The two theoretical approaches for the evaluation of QED corrections are presented and discussed. Due to the presence of two energy scales from the binding potential and the radiation field, an overlapping parameter has to be used in both approaches in order to separate the energy scales. The different choices for the overlapping parameter in the two methods are further illustrated in a model example. With the nonrelativistic theory, relativistic corrections in order ( Zalpha)2 to the two-photon decay rate of ionic states are calculated, as well as the leading radiative corrections of alpha( Zalpha)2ln[(Zalpha)-2 ]. It is shown that the corrections is gauge-invariant under a "hybrid" gauge transformation between Coulomb and Yennie gauge. Furthermore, QED corrections for Rydberg states in one-electron ions are investigated. The smallness of the corrections and the absence of nuclear size corrections enable very accurate theoretical predictions. Measuring transition frequencies and comparing them to the theoretical predictions, QED theory can be tested more precisely. In turn, this could yield a more accurate value for the Rydberg constant. Using a transition in a nucleus with a well determined mass, acting as a reference, a comparison to transition in other nuclei can even allow to determined nuclear masses. Finally, in order to avoid an additional uncertainty in nuclei with non zero nuclear spin, QED self-energy corrections to the hyperfine structure up to order alpha(Zalpha)2Delta EHFS are determined for highly excited Rydberg states.
NASA Astrophysics Data System (ADS)
Granot, Er'el
2012-11-01
The fundamental dispersion limit for an optical communication based the On-Off-Keying format is calculated. It is shown both analytically and with numerical simulations that an OOK optical sequence, which passes through a spectrally narrow non-compensated dispersive channel cannot exceed the limit β 2 B2L < π - 1 , where β 2 , L and B are the dispersion coefficient, the fiber's length and the bit rate, respectively. To the best of our knowledge, this is the first time that such a fundamental limit was formulated. In the literature, only approximation evaluations were developed yielding much smaller limiting values. Since this fundamental limit is a manifestation of the Schrödinger equation, a correspondingly similar limit emerges in Quantum Mechanics and in the optical Paraxial Approximation.
Diesel Mechanics: Fundamentals.
ERIC Educational Resources Information Center
Foutes, William; And Others
This publication is the first in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the basic concepts related to employment in a diesel trade. Six sections contain 29 units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities for…
Fundamental limits of classical and quantum imaging.
Pérez-Delgado, Carlos A; Pearce, Mark E; Kok, Pieter
2012-09-21
Quantum imaging promises increased imaging performance over classical protocols. However, there are a number of aspects of quantum imaging that are not well understood. In particular, it has been unknown so far how to compare classical and quantum imaging procedures. Here, we consider classical and quantum imaging in a single theoretical framework and present general fundamental limits on the resolution and the deposition rate for classical and quantum imaging. The resolution can be estimated from the image itself. We present a utility function that allows us to compare imaging protocols in a wide range of applications.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I.; Israelsson, U.; Lee, M.
2001-01-01
This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I. K.
2002-01-01
This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I.; Israelsson, U.; Lee, M.
2001-01-01
This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I. K.
2002-01-01
This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.
Fundamental limits of repeaterless quantum communications
Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo
2017-01-01
Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624
Fundamental limits of repeaterless quantum communications.
Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo
2017-04-26
Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.
NASA Astrophysics Data System (ADS)
Blencowe, Miles
The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF
Grassmann matrix quantum mechanics
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-21
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less
Grassmann matrix quantum mechanics
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-21
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
Fundamental quantitative security in quantum key generation
Yuen, Horace P.
2010-12-15
We analyze the fundamental security significance of the quantitative criteria on the final generated key K in quantum key generation including the quantum criterion d, the attacker's mutual information on K, and the statistical distance between her distribution on K and the uniform distribution. For operational significance a criterion has to produce a guarantee on the attacker's probability of correctly estimating some portions of K from her measurement, in particular her maximum probability of identifying the whole K. We distinguish between the raw security of K when the attacker just gets at K before it is used in a cryptographic context and its composition security when the attacker may gain further information during its actual use to help get at K. We compare both of these securities of K to those obtainable from conventional key expansion with a symmetric key cipher. It is pointed out that a common belief in the superior security of a quantum generated K is based on an incorrect interpretation of d which cannot be true, and the security significance of d is uncertain. Generally, the quantum key distribution key K has no composition security guarantee and its raw security guarantee from concrete protocols is worse than that of conventional ciphers. Furthermore, for both raw and composition security there is an exponential catch-up problem that would make it difficult to quantitatively improve the security of K in a realistic protocol. Some possible ways to deal with the situation are suggested.
Fundamental quantitative security in quantum key generation
NASA Astrophysics Data System (ADS)
Yuen, Horace P.
2010-12-01
We analyze the fundamental security significance of the quantitative criteria on the final generated key K in quantum key generation including the quantum criterion d, the attacker’s mutual information on K, and the statistical distance between her distribution on K and the uniform distribution. For operational significance a criterion has to produce a guarantee on the attacker’s probability of correctly estimating some portions of K from her measurement, in particular her maximum probability of identifying the whole K. We distinguish between the raw security of K when the attacker just gets at K before it is used in a cryptographic context and its composition security when the attacker may gain further information during its actual use to help get at K. We compare both of these securities of K to those obtainable from conventional key expansion with a symmetric key cipher. It is pointed out that a common belief in the superior security of a quantum generated K is based on an incorrect interpretation of d which cannot be true, and the security significance of d is uncertain. Generally, the quantum key distribution key K has no composition security guarantee and its raw security guarantee from concrete protocols is worse than that of conventional ciphers. Furthermore, for both raw and composition security there is an exponential catch-up problem that would make it difficult to quantitatively improve the security of K in a realistic protocol. Some possible ways to deal with the situation are suggested.
Quantum operations: technical or fundamental challenge?
NASA Astrophysics Data System (ADS)
Mielnik, Bogdan
2013-09-01
A class of unitary operations generated by idealized, semiclassical fields is studied. The operations implemented by sharp potential kicks are revisited and the possibility of performing them by softly varying external fields is examined. The possibility of using the ion traps as ‘operation factories’ transforming quantum states is discussed. The non-perturbative algorithms indicate that the results of abstract δ-pulses of oscillator potentials can become real. Some of them, if empirically achieved, could be essential to examine certain atypical quantum ideas. In particular, simple dynamical manipulations might contribute to the Aharonov-Bohm criticism of the time-energy uncertainty principle, while some others may verify the existence of fundamental precision limits of the position measurements or the reality of ‘non-commutative geometries’.
Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo
2013-01-01
Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-Oγ. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-Oγ, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-Oγ. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489
Fundamental mechanisms of micromachine reliability
DE BOER,MAARTEN P.; SNIEGOWSKI,JEFFRY J.; KNAPP,JAMES A.; REDMOND,JAMES M.; MICHALSKE,TERRY A.; MAYER,THOMAS K.
2000-01-01
Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Quantum Opportunities and Challenges for Fundamental Sciences in Space
NASA Technical Reports Server (NTRS)
Yu, Nan
2012-01-01
Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.
Quantum Opportunities and Challenges for Fundamental Sciences in Space
NASA Technical Reports Server (NTRS)
Yu, Nan
2012-01-01
Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.
Decoherence as a Fundamental Phenomenon in Quantum Dynamics
NASA Astrophysics Data System (ADS)
Mensky, Michael B.
The phenomenon of decoherence of a quantum system caused by the entanglement of the system with its environment is discussed from different points of view, particularly in the framework of quantum theory of measurements. The selective presentation of decoherence (taking into account the state of the environment) by restricted path integrals or by effective Schrödinger equation is shown to follow from the first principles or from models. Fundamental character of this phenomenon is demonstrated, particularly the role played in it by information is underlined. It is argued that quantum mechanics becomes logically closed and contains no paradoxes if it is formulated as a theory of open systems with decoherence taken into account. If one insist on considering a completely closed system (the whole Universe), the observer's consciousness has to be included in the theory explicitly. Such a theory is not motivated by physics, but may be interesting as a metaphysical theory clarifying the concept of consciousness.
ERIC Educational Resources Information Center
Teo, Boon K.; Li, Wai-Kee
2011-01-01
This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…
ERIC Educational Resources Information Center
Teo, Boon K.; Li, Wai-Kee
2011-01-01
This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…
Non-Hermitian quantum mechanics
NASA Astrophysics Data System (ADS)
Jones-Smith, Katherine
The basic structure of quantum mechanics was delineated in the early days of the theory and has not been modified since. One of the fundamental assumptions used in formulating the theory is that operators are represented by Hermitian matrices. In recent years it has been shown that quantum mechanics can be formulated consistently without making this assumption, using instead a combination of the parity (P) and time-reversal (T) operators and a number of other requirements related to P and T. Only the case of even T has been analyzed in the literature; here we generalize the principles to include odd time-reversal. We use this generalization to construct a non-Hermitian version of the Dirac equation, and in doing so discover a new type of particle not allowed within the (Hermitian) Standard Model. Finally we present a potential application of the ideas of non-Hermitian quantum mechanics to the unsolved problems of quantum magnetism and high temperature superconductivity.
Facing quantum mechanical reality.
Rohrlich, F
1983-09-23
Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected.
Fundamental limits for cooling of linear quantum refrigerators
NASA Astrophysics Data System (ADS)
Freitas, Nahuel; Paz, Juan Pablo
2017-01-01
We study the asymptotic dynamics of arbitrary linear quantum open systems that are periodically driven while coupled with generic bosonic reservoirs. We obtain exact results for the heat flowing from each reservoir, and these results are valid beyond the weak-coupling or Markovian approximations. We prove the validity of the dynamical third law of thermodynamics (Nernst unattainability principle), showing that the ultimate limit for cooling is imposed by a fundamental heating mechanism that dominates at low temperatures, namely the nonresonant creation of excitation pairs in the reservoirs induced by the driving field. This quantum effect, which is missed in the weak-coupling approximation, restores the unattainability principle, the validity of which was recently challenged.
Fundamental limits for cooling of linear quantum refrigerators.
Freitas, Nahuel; Paz, Juan Pablo
2017-01-01
We study the asymptotic dynamics of arbitrary linear quantum open systems that are periodically driven while coupled with generic bosonic reservoirs. We obtain exact results for the heat flowing from each reservoir, and these results are valid beyond the weak-coupling or Markovian approximations. We prove the validity of the dynamical third law of thermodynamics (Nernst unattainability principle), showing that the ultimate limit for cooling is imposed by a fundamental heating mechanism that dominates at low temperatures, namely the nonresonant creation of excitation pairs in the reservoirs induced by the driving field. This quantum effect, which is missed in the weak-coupling approximation, restores the unattainability principle, the validity of which was recently challenged.
Fundamental Principles of Coherent-Feedback Quantum Control
2014-12-08
AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT- FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent- feedback quantum control. We have focused on potential applications in quantum-enhanced metrology and...picture of how coherent feedback can provide a kind of circuit/network theory for quantum engineering, enabling rigorous analysis and numerical simulation
Fundamental limitation on quantum broadcast networks
NASA Astrophysics Data System (ADS)
Bäuml, Stefan; Azuma, Koji
2017-06-01
The ability to distribute entanglement over complex quantum networks is an important step towards a quantum internet. Recently, there has been significant theoretical effort, mainly focusing on the distribution of bipartite entanglement via a simple quantum network composed only of bipartite quantum channels. There are, however, a number of quantum information processing protocols based on multipartite rather than bipartite entanglement. Whereas multipartite entanglement can be distributed by means of a network of such bipartite channels, a more natural way is to use a more general network, that is, a quantum broadcast network including quantum broadcast channels. In this work, we present a general framework for deriving upper bounds on the rates at which GHZ states or multipartite private states can be distributed among a number of different parties over an arbitrary quantum broadcast network. Our upper bounds are written in terms of the multipartite squashed entanglement, corresponding to a generalisation of recently derived bounds (Azuma et al, (2016), Nat. Commun. 7 13523). We also discuss how lower bounds can be obtained by combining a generalisation of an aggregated quantum repeater protocol with graph theoretic concepts.
Fundamentals of microcrack nucleation mechanics
NASA Technical Reports Server (NTRS)
Fu, L. S.; Sheu, Y. C.; Co, C. M.; Zhong, W. F.; Shen, H. D.
1985-01-01
A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Quantum Dots: Fundamentals, Applications, and Frontiers
NASA Astrophysics Data System (ADS)
Joyce, Bruce A.; Kelires, Pantelis C.; Naumovets, Anton G.; Vvedensky, Dimitri D.
This volume contains papers delivered at a NATO Advanced Research Workshop and provides a broad introduction to all major aspects of quantum dot structures. Such structures have been produced for studies of basic physical phenomena, for device fabrication and, on a more speculative level, have been suggested as components of a solid-state realization of a quantum computer. The book is structured so that the reader is introduced to the methods used to produce and control quantum dots, followed by discussions of their structural, electronic, and optical properties.
Relativity and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Brändas, Erkki J.
2007-12-01
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.
Kapustin, Anton
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
DOE fundamentals handbook: Mechanical science. Volume 2
Not Available
1993-01-01
The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.
Fundamental length in quantum theories with PT-symmetric Hamiltonians
Znojil, Miloslav
2009-08-15
One-dimensional motion of a quantum point particle is usually described by its wave function {psi}(x), where the argument x is an element of R represents a (measurable) coordinate and where the integrated probability density is normalized to one, {integral}{psi}*(x){psi}(x)=1. The direct observability of x may be lost in PT-symmetric quantum mechanics where a 'smeared' metric kernel {theta}{sub (x,x{sup '})}{ne}{delta}(x-x{sup '}) may enter the double-integral normalization {integral}{integral}{psi}*(x){theta}{sub (x,x{sup '})}{psi}(x{sup '})=1. We argue that such a formalism proves particularly suitable for the introduction of a nonvanishing fundamental length {theta}>0, which would characterize the 'smearing width' of the kernel {theta}{sub (x,x{sup '})}. The technical feasibility of such a project is illustrated via a toy family of Hamiltonians H{sup (N)}({lambda}) taken from Ref. 11. For each element of this family the complete set of all the eligible metric kernels {theta}{sub (x,x{sup '})}{sup (N)}({lambda}) is constructed in closed form. We show that at any preselected non-negative fundamental length these metrics can be made to vanish unless |x-x{sup '}|{<=}{theta}. The strictly local inner product of Ref. 11 recurs at {theta}=0, while the popular CPT-symmetric option requires {theta}={infinity} in this language.
Quantum Mechanics: Myths and Facts
NASA Astrophysics Data System (ADS)
Nikolić, Hrvoje
2007-11-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Fundamental Speed Limits to the Generation of Quantumness
Jing, Jun; Wu, Lian-Ao; del Campo, Adolfo
2016-01-01
Quantum physics dictates fundamental speed limits during time evolution. We present a quantum speed limit governing the generation of nonclassicality and the mutual incompatibility of two states connected by time evolution. This result is used to characterize the timescale required to generate a given amount of quantumness under an arbitrary physical process. The bound is found to be tight under pure dephasing dynamics. More generally, our analysis reveals the dependence on the initial and final states and non-Markovian effects. PMID:27901118
Graduate quantum mechanics reform
NASA Astrophysics Data System (ADS)
Carr, L. D.; McKagan, S. B.
2009-04-01
We address four main areas in which graduate quantum mechanics education can be improved: course content, textbook, teaching methods, and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all these areas. In particular, we have modified the content of the course to reflect progress in the field of quantum mechanics over the last 50years, used textbooks that include such content, incorporated a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey. We find that graduate students respond well to research-based techniques that have been tested mainly in introductory courses, and that they learn much of the new content introduced in each version of the course. We also find that students' ability to answer conceptual questions about graduate quantum mechanics is highly correlated with their ability to solve calculational problems on the same topics. In contrast, we find that students' understanding of basic undergraduate quantum mechanics concepts at the modern physics level is not improved by instruction at the graduate level.
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
The quantum mechanics of cosmology.
NASA Astrophysics Data System (ADS)
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
Quantum gravity model with fundamental spinor fields
NASA Astrophysics Data System (ADS)
Obukhov, Yu. N.; Hehl, F. W.
2014-01-01
We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.
Time Asymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr
2011-09-01
The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.
2016-07-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
Quantum Entanglement: A Fundamental Concept Finding its Applications
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
Entanglement, according to the Austrian physicist Erwin Schrödinger the Essence of Quantum Mechanics, has been known for a long time now to be the source of a number of paradoxical and counterintuitive phenomena. Of those the most remarkable one is usually called non-locality and it is at the heart of the Einstein-Podolsky-Rosen Paradox and of the fact that Quantum Mechanics violates Bell's inequalities. Recent years saw an emergence of novel ideas in entanglement of three or more particles. Most recently it turned out that entanglement is an important concept in the development of quantum communication, quantum cryptography and quantum computation. First explicit experimental realizations with two or more photons include quantum dense coding and quantum teleportation.
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
Introduction to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Griffiths, David J.
2016-09-01
Part I. Theory: 1. The wave function; 2. Time-independent Schrödinger equation; 3. Formalism; 4. Quantum mechanics in three dimensions; 5. Identical particles; Part II. Applications: 6. Time-independent perturbation theory; 7. The variational principle; 8. The WKB approximation; 9. Time-dependent perturbation theory; 10. The adiabatic approximation; 11. Scattering; 12. Afterword; Appendix. Linear algebra.
Bohmian quantum mechanics with quantum trajectories
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol
The quantum trajectory method in the hydrodynamical formulation of Madelung-Bohm-Takabayasi quantum mechanics is an example of showing the cognitive importance of scientific illustrations and metaphors, especially, in this case, in computational quantum chemistry and electrical engineering. The method involves several numerical schemes of solving a set of hydrodynamical equations of motion for probability density fluids, based on the propagation of those probability density trajectories. The quantum trajectory method gives rise to, for example, an authentic quantum electron transport theory of motion to, among others, classically-minded applied scientists who probably have less of a commitment to traditional quantum mechanics. They were not the usual audience of quantum mechanics and simply choose to use a non-Copenhagen type interpretation to their advantage. Thus, the metaphysical issues physicists had a trouble with are not the main concern of the scientists. With the advantages of a visual and illustrative trajectory, the quantum theory of motion by Bohm effectively bridges quantum and classical physics, especially, in the mesoscale domain. Without having an abrupt shift in actions and beliefs from the classical to the quantum world, scientists and engineers are able to enjoy human cognitive capacities extended into the quantum mechanical domain.
Redefining Planck Mass: Unlocking the Fundamental Quantum of the Universe
NASA Astrophysics Data System (ADS)
Laubenstein, John
2008-04-01
The large value of the Planck Mass relative to the quantum scale raises unanswered questions as to the source of mass itself. While we wait for experimental verification of the elusive Higgs boson, it may be worth recognizing that Planck Mass is not the result of rigorous mathematics -- but rather derived from an intuitive manipulation of physical constants. Recent findings reported by IWPD suggest a quantum scale Planck Mass as small as 10 (-73) kg. At this scale, the Planck Mass joins Planck Length and Time as a truly fundamental quantum entity. This presentation will provide evidence supporting the fundamental quantum nature of a dramatically smaller Planck Mass while discussing the impact of this finding on both the quantum and cosmic scale. A quantum scale Planck Mass will require an accelerating expansion of the universe at an age of 14.2 billion years. No initial conditions are imposed at the earliest Planck Time of 10 (-44) s allowing the universe to evolve as a background free field propagating at the speed of light with a local degree of freedom. This model provides the basis for a quantum theory of gravity and provides a conceptual pathway for the unification of GR and QM.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
40 year retrospective of fundamental mechanisms
NASA Astrophysics Data System (ADS)
Soileau, M. J.
2008-10-01
Fundamental mechanisms of laser induced damage (LID) have been one of the most controversial topics during the forty years of the Boulder Damage Symposium (Ref. 1.) LID is fundamentally a very nonlinear process and sensitive to a variety of parameters including wavelength, pulse width, spot size, focal conditions, material band gap, thermal-mechanical prosperities, and component design considerations. The complex interplay of many of these parameters and sample to sample materials variations combine to make detailed, first principle, models very problematic at best. The phenomenon of self-focusing, the multi spatial and temporal mode structure of most lasers, and the fact that samples are 'consumed' in testing complicate experiential results. This paper presents a retrospective of the work presented at this meeting.
Fundamental properties of quantum solid helium-4
NASA Astrophysics Data System (ADS)
Day, James Christian
The recent torsional oscillator results of Kim and Chan seem to suggest a super-solid phase transition in solid 4He, at 200 mK, confined in Vycor. We have used a capacitive technique to directly monitor density changes for 4He confined in Vycor at low temperature and have used a piezoelectrically driven diaphragm to study the pressure-induced flow of solid 4He into the Vycor pores. Our measurements showed no indication of a mass redistribution in the Vycor that could mimic supersolid de-coupling and put an upper limit of about 3 nm/s on any pressure-induced supersolid flow in the pores of Vycor. Torsional oscillator results later revealed that the effect also exists in the bulk solid, at 200 mK. We have (again) used a piezoelectrically driven diaphragm to study the flow of bulk solid 4He through an array of capillaries. Our measurements showed no indication of low temperature flow, placing stringent restrictions on supersolid flow in response to a pressure difference. Any supersolid fraction present in the 4He moves at a velocity less than 1.2 x 10-12 m/s, a value which is at least seven orders of magnitude smaller than the critical velocities inferred from the torsional oscillator measurements. Contemporary experiments and theory now indicate that extended defects are somehow involved in the torsional oscillator results. Such defects should also affect the solids mechanical behaviour. Lastly, we report on a measurement of the shear modulus of solid 4He at low frequencies and strains. We observe large increases below 200 mK, with the same dependence on measurement amplitude, 3He impurity concentration and annealing as the decoupling seen in the torsional oscillator experiments. This unusual elastic behaviour is explained in terms of a dislocation network that is pinned by 3He at the lowest temperatures but becomes mobile above about 100 mK. The frequency changes in the torsional oscillator experiments appear to be related to the motion of these dislocations
Quantum mechanics and quantum information theory
NASA Astrophysics Data System (ADS)
van Camp, Wesley William
The principle aim of this dissertation is to investigate the philosophical application of quantum information theory to interpretational issues regarding the theory of quantum mechanics. Recently, quantum information theory has emerged as a potential source for such an interpretation. The main question with which this dissertation will be concerned is whether or not an information-theoretic interpretation can serve as a conceptually acceptable interpretation of quantum mechanics. It will be argued that some of the more obvious approaches -- that quantum information theory shows us that ultimately the world is made of information, and quantum Bayesianism -- fail as philosophical interpretations of quantum mechanics. However, the information-theoretic approach of Clifton, Bub, and Halvorson introduces Einstein's distinction between principle theories and constructive theories, arguing that quantum mechanics is best understood as an information-theoretic principle theory. While I argue that this particular approach fails, it does offer a viable new philosophical role for information theory. Specifically, an investigation of interpretationally successful principle theories such as Newtonian mechanics, special relativity, and general relativity, shows that the particular principles employed are necessary as constitutive elements of a framework which partially defines the basic explanatory concepts of space, time, and motion. Without such constitutive principles as preconditions for empirical meaning, scientific progress is hampered. It is argued that the philosophical issues in quantum mechanics stem from an analogous conceptual crisis. On the basis of this comparison, the best strategy for resolving these problems is to apply a similar sort of conceptual analysis to quantum mechanics so as to provide an appropriate set of constitutive principles clarifying the conceptual issues at stake. It is further argued that quantum information theory is ideally placed as a novel
Fundamental rate-loss tradeoff for optical quantum key distribution
NASA Astrophysics Data System (ADS)
Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M.
2014-10-01
Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels—a long-standing open problem in optical quantum information theory—and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
NASA Astrophysics Data System (ADS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Frank
1986-06-01
Beginning students of quantum mechanics frequently experience difficulties separating essential underlying principles from the specific examples to which these principles have been historically applied. Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.
THEORETICAL STUDIES OF CHEMICAL DYNAMICS: Overview of Some Fundamental Mechanisms
NASA Astrophysics Data System (ADS)
Nakamura, Hiroki
1997-10-01
Recent remarkable progress in theoretical studies of (a) quantum dynamics of chemical reactions, (b) characteristics and dynamics of superexcited states of molecules, (c) nonadiabatic transitions at potential curve crossings, and (d) multidimensional tunneling is reviewed briefly. Underlying common basic concepts and fundamental mechanisms such as adiabaticity and nonadiabatic transition are extracted and discussed in order to facilitate a comprehensive understanding of chemical dynamics. Not only the basic theoretical methodologies but also the intriguing dynamical aspects of each subject are explained as simply as possible.
Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing
Chattopadhyay, Swapan; Falcone, Roger; Walsworth, Ronald
2016-02-25
Over the last twenty years, there has been a boom in quantum science - i.e., the development and exploitation of quantum systems to enable qualitatively and quantitatively new capabilities, with high-impact applications and fundamental insights that can range across all areas of science and technology.
Supersymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
David, J.; Fernández, C.
2010-10-01
Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Pöschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Quantum Mechanics and Quantum Field Theory
NASA Astrophysics Data System (ADS)
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
On the fundamental role of dynamics in quantum physics
NASA Astrophysics Data System (ADS)
Hofmann, Holger F.
2016-05-01
Quantum theory expresses the observable relations between physical properties in terms of probabilities that depend on the specific context described by the "state" of a system. However, the laws of physics that emerge at the macroscopic level are fully deterministic. Here, it is shown that the relation between quantum statistics and deterministic dynamics can be explained in terms of ergodic averages over complex valued probabilities, where the fundamental causality of motion is expressed by an action that appears as the phase of the complex probability multiplied with the fundamental constant ħ. Importantly, classical physics emerges as an approximation of this more fundamental theory of motion, indicating that the assumption of a classical reality described by differential geometry is merely an artefact of an extrapolation from the observation of macroscopic dynamics to a fictitious level of precision that does not exist within our actual experience of the world around us. It is therefore possible to completely replace the classical concepts of trajectories with the more fundamental concept of action phase probabilities as a universally valid description of the deterministic causality of motion that is observed in the physical world.
Progress in post-quantum mechanics
NASA Astrophysics Data System (ADS)
Sarfatti, Jack
2017-05-01
Newton's mechanics in the 17th century increased the lethality of artillery. Thermodynamics in the 19th led to the steam-powered industrial revolution. Maxwell's unification of electricity, magnetism and light gave us electrical power, the telegraph, radio and television. The discovery of quantum mechanics in the 20th century by Planck, Bohr, Einstein, Schrodinger, Heisenberg led to the creation of the atomic and hydrogen bombs as well as computer chips, the world-wide-web and Silicon Valley's multibillion dollar corporations. The lesson is that breakthroughs in fundamental physics, both theoretical and experimental, have always led to profound technological wealth-creating industries and will continue to do so. There is now a new revolution brewing in quantum mechanics that can be divided into three periods. The first quantum revolution was from 1900 to about 1975. The second quantum information/computer revolution was from about 1975 to 2015. (The early part of this story is told by Kaiser in his book, How the Hippies Saved Physics, how a small group of Berkeley/San Francisco physicists triggered that second revolution.) The third quantum revolution is how an extension of quantum mechanics may lead to the understanding of consciousness as a natural physical phenomenon that can emerge in many material substrates, not only in our carbon-based biochemistry. In particular, this new post-quantum mechanics may lead to naturally conscious artificial intelligence in nano-electronic machines, as well as perhaps extending human life spans to hundreds of years and more.
NASA Astrophysics Data System (ADS)
Jones, Robert
2011-03-01
I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.
Quantum mechanics: A new chapter?
NASA Astrophysics Data System (ADS)
Hofer, Werner A.
2012-12-01
We review the conceptual problems in quantum mechanics on a fundamental level. It is shown that the proposed model of extended electrons and a clear understanding of rotations in three dimensional space solve a large part of these problems, in particular the problems related to the ontological status and physical meaning of wavefunctions. It also solves the problem of non-locality. The experimental results obtained in Yves Couder's group and theoretical results by Gerdard Grössing indicate that the wave-like distribution of trajectories of electrons in interference experiments are most likely due to the quantized interactions leading to a discrete set of transferred momenta. A separate experimental confirmation of this interpretation for double-slit interferometry of photons has been given by the group of Steinberg.
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Bell's theorem and quantum mechanics
NASA Astrophysics Data System (ADS)
Rosen, Nathan
1994-02-01
Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor
Klein's programme and quantum mechanics
NASA Astrophysics Data System (ADS)
Clemente-Gallardo, Jesús; Marmo, Giuseppe
2015-04-01
We review the geometrical formulation of quantum mechanics to identify, according to Klein's programme, the corresponding group of transformations. For closed systems, it is the unitary group. For open quantum systems, the semigroup of Kraus maps contains, as a maximal subgroup, the general linear group. The same group emerges as the exponentiation of the C*-algebra associated with the quantum system, when thought of as a Lie algebra. Thus, open quantum systems seem to identify the general linear group as associated with quantum mechanics and moreover suggest to extend the Klein programme also to groupoids. The usual unitary group emerges as a maximal compact subgroup of the general linear group.
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Space-Based Research in Fundamental Physics and Quantum Technologies
NASA Astrophysics Data System (ADS)
Turyshev, Slava G.; Israelsson, Ulf E.; Shao, Michael; Yu, Nan; Kusenko, Alexander; Wright, Edward L.; Everitt, C. W. Francis; Kasevich, Mark; Lipa, John A.; Mester, John C.; Reasenberg, Robert D.; Walsworth, Ronald L.; Ashby, Neil; Gould, Harvey; Paik, Ho Jung
Space offers unique experimental conditions and a wide range of opportunities to explore the foundations of modern physics with an accuracy far beyond that of ground-based experiments. Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for investigations in precision cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency "Fundamental Physics Task Force" to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including "laboratory research in fundamental physics" as an element in the agency's ongoing space research efforts.
Quantum inertia stops superposition: Scan Quantum Mechanics
NASA Astrophysics Data System (ADS)
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
Quantum electrodynamics, high-resolution spectroscopy and fundamental constants
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.
2017-01-01
Recent progress in high-resolution spectroscopy has delivered us a variety of accurate optical results, which can be used for the determination of the atomic fundamental constants and for constraining their possible time variation. We present a brief overview of the results discussing in particular, the determination of the Rydberg constant, the relative atomic weight of the electron and proton, their mass ratio and the fine structure constant. Many individual results on those constants are obtained with use of quantum electrodynamics, and we discuss which sectors of QED are involved. We derive constraints on a possible time variation of the fine structure constants and me/mp.
Dynamics of nonrelativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Efthimiades, Spyros
2017-01-01
We show that the wavefunction of an electron interacting with an electric potential is accurately represented by the superposition of plane waves that fulfills the total energy relation. As a result, we explicitly derive the Schrödinger, Pauli, Klein-Gordon, and Dirac equations. While the traditional nonrelativistic quantum dynamics is based on postulates, the dynamics we introduce is theoretically justified, in agreement with experimental measurements, and consistent with the fundamental theory of quantum electrodynamics.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
G. GEIGER; ET AL
2000-11-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.
A Study of Fundamental Shock Noise Mechanisms
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1997-01-01
This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
From Classical to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Sudarshan, George
2010-06-01
Preface; Acknowledgements; Part I. From Classical to Wave Mechanics: 1. Experimental foundations of quantum theory; 2. Classical dynamics; 3. Wave equations; 4. Wave mechanics; 5. Applications of wave mechanics; 6. Introduction to spin; 7. Perturbation theory; 8. Scattering theory; Part II. Weyl Quantization and Algebraic Methods: 9. Weyl quantization; 10. Harmonic oscillators and quantum optics; 11. Angular momentum operators; 12. Algebraic methods for eigenvalue problems; 13. From density matrix to geometric phases; Part III. Selected Topics: 14. From classical to quantum statistical mechanics; 15. Lagrangian and phase-space formulations; 16. Dirac equation and no-interaction theorem; References; Index.
From Classical to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Sudarshan, George
2004-03-01
Preface; Acknowledgements; Part I. From Classical to Wave Mechanics: 1. Experimental foundations of quantum theory; 2. Classical dynamics; 3. Wave equations; 4. Wave mechanics; 5. Applications of wave mechanics; 6. Introduction to spin; 7. Perturbation theory; 8. Scattering theory; Part II. Weyl Quantization and Algebraic Methods: 9. Weyl quantization; 10. Harmonic oscillators and quantum optics; 11. Angular momentum operators; 12. Algebraic methods for eigenvalue problems; 13. From density matrix to geometric phases; Part III. Selected Topics: 14. From classical to quantum statistical mechanics; 15. Lagrangian and phase-space formulations; 16. Dirac equation and no-interaction theorem; References; Index.
Bastida, Adolfo; Zúñiga, José; Requena, Alberto; Miguel, Beatriz
2009-11-28
The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Condensed Matter Physics: Does Quantum Mechanics Matter?
NASA Astrophysics Data System (ADS)
Fisher, Michael E.
Herman Feshbach, the organizer of this Symposium in honor of Niels Bohr, asked me, in his original invitation, for a review of the present state of condensed matter physics, with emphasis on major unsolved problems and comments on any overlap with Bohr's ideas regarding the fundamentals of quantum mechanics. That is surely a difficult assignment and, indeed, goes well beyond what is attempted here; nevertheless, I will take the liberty of raising one issue of a philosophical or metaphysical flavor.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum Mechanics in Insulators
Aeppli, G.
2009-08-20
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms
Bauke, Heiko; Keitel, Christoph H.
2009-08-13
The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.
ERIC Educational Resources Information Center
DeWitt, Bryce S.
1970-01-01
Discusses the quantum theory of measurement and von Neumann's catastrophe of infinite regression." Examines three ways of escapint the von Neumann catastrophe, and suggests that the solution to the dilemma of inteterminism is a universe in which all possible outcomes of an experiment actually occur. Bibliography. (LC)
Kowalevski top in quantum mechanics
Matsuyama, A.
2013-09-15
The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.
The Compton effect: Transition to quantum mechanics
NASA Astrophysics Data System (ADS)
Stuewer, R. H.
2000-11-01
The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.
Quantum Mechanics and Narratability
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Neutrino oscillations: quantum mechanics vs. quantum field theory
NASA Astrophysics Data System (ADS)
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-04-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino’s interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
Self-Referential Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mitchell, Mark Kenneth
1993-01-01
A nonlinear quantum mechanics based upon the nonlinear logarithmic Schrodinger equation, is developed which has the property of self-reference, that is, the nonlinear term is dependent upon the square of the wavefunction. The self-referential system is examined in terms of its mathematical properties, the definition of the wavefunction, and the nonlinear system in the feedback between equation and solution. Theta operators are introduced which make possible new operations in the quantum phase. Two interpretations are presented utilizing the nonlinear quantum system: the idealistic interpretation based upon consciousness focused upon the measurement problem, and the statistical interpretation focused upon stochastic quantum fluctuations. Experimental properties are examined, beginning with a proposed analog of the Bohm-Aharonov experiment. Interference due to difference in path length for a split electron beam is effected in a region of spacetime where electromagnetic field and the vector potential are enclosed within but screened to be zero at the paths. If the wavefunction's geometrical phase contribution along the paths is different, then there should be interference induced purely by the wave-function alone. A positive result would be due to a purely wavefunction dependent effect. The spin phase of the wavefunction is postulated to be the source of the zitterbewegung of the electron. Reduction of the wavefunction in measurement is examined for self -referential quantum systems arising from consciousness and then arising from a stochastic quantum spacetime model. These results are applied to the mind-brain as a quantum processor producing a behavioral double slit experiment (ideation experiments) and nonlocal transferred potentials in an EPR-style experiment. Looking at the universe as a whole as a quantum self-referential system, leads to a modified zitterbewegung Wheeler-DeWitt equation; and, the transition from quantum-to-classical on a cosmological scale for
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
The emergent Copenhagen interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.
2014-05-01
We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.
Semiclassical Analysis of Fundamental Amplitudes in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Hedeman, Austin J.
offers advantages and disadvantages when performing semiclassical analyses. Since the amplitude of the stationary phase approximation relies on determinants they are easiest to calculate in phase spaces with the fewest dimensions. The phase, on the other hand, is easiest to compute in cases where all angular momenta are treated on an equal footing, requiring a larger phase space. Surprisingly, the different inner product models are not related by symplectic reduction (the removal of a symmetry from a Hamiltonian system). There is a connection between the models, however. On the level of linear algebra the connection is made by considering first not inner products but matrix elements of linear operators. A given matrix element can then be interpreted as an inner product in two different Hilbert spaces. We call the connection between these two inner product models the ''remodeling of an inner product.'' The semiclassical version of an inner product remodeling is a generalization of the idea that the phase space manifold that supports the semiclassical approximation of a unitary operator may be considered the graph of a symplectomorphism. We use the manifold that supports the semiclassical approximation of the linear map to ''transport'' features from one space to another. Using this transport procedure we can show that the amplitude and phase calculations in the phase spaces for the two models are identical. The asymptotics of a complicated spin network, and thus the fundamental amplitudes of loop quantum gravity and spin-foam gravity, may be computed by first setting up an inner product remodeling and then picking and choosing which features of the calculation to perform in which space. In this dissertation we first introduce the remodeling of an inner product and the semiclassical features of the remodeling. We then apply the remodeling to the well-studied cases of the 3j-symbol and the 6 j-symbol. Finally we explore how the remodel procedure applies to more complicated
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.
Historical Review of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Prashant, Prashant
2007-03-01
Quantum Mechanics is being taught for the last many decades at both undergraduate as well as post graduate levels in universities world over. Inclusion of historical background i.e. development of the subject in chronological order, description of Gedanken experiments, information regarding Solvay, Copenhagen Conferences and biographies of well known contributors in this field may definitely give a broader understanding of the subject. This may create an interest in understanding the new developments and this article is an attempt in that direction to highlight the rich past of Quantum Mechanics and how it got shaped by great minds to its present form. Keywords: Quantum mechanics, historical, Copenhagen, Solvay, Bohr, Einstein. note: http://www.arxiv.org/abs/physics/0512104
Energy conservation in quantum mechanics
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.; Fedak, William A.
2004-05-01
In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.
Fundamental mechanisms in flue-gas conditioning
Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.
1992-01-09
The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.
Fundamental mechanisms in flue gas conditioning
Bush, P.V.; Snyder, T.R.
1992-01-09
The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.
Fundamental mechanisms in flue gas conditioning
Snyder, T.R.; Vann Bush, P.
1992-10-27
This project is divided into four tasks. We developed our management plan in Task 1. Task 2, evaluation of mechanisms in FGD sorbent and ash interactions, focuses on characteristics of binary mixtures of these distinct powders. Task 3, evaluation of mechanisms in conditioning agents and ash, is designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. We began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. We completed this phase of the project with publication of two special Topical Reports. Our laboratory analyses during the past quarter covered a variety of topics. We quantified increases in surface area, changes in particle morphology, and increases in cohesivity that result when sorbents are mixed with ashes. Measurements of water content illustrated the increased tendency of the mixtures to adsorb and absorb water. Our analyses of leached and unleached dust cake ashes provided some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. We also observed the effects that pozzolanic reactions can have on ash resistivity. Initial examinations of outputs of the SRI-EPA resistivity prediction model showed that the model could not accurately predict the resistivities we measured for leached and unleached dust cake ashes.
Fundamental mechanisms in flue gas conditioning
Snyder, T.R.; Robinson, M.S.; Bush, P.V.
1992-04-27
This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.
Intrusion Detection With Quantum Mechanics: A Photonic Quantum Fence
2008-12-01
computing and quantum key distribution (QKD). Some of the most remarkable examples include quantum teleportation for the non-local transfer of...1 INTRUSION DETECTION WITH QUANTUM MECHANICS: A PHOTONIC QUANTUM FENCE T. S. Humble*, R. S. Bennink, and W. P. Grice Oak Ridge National...use of quantum -mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no
Canonical Transformations in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Anderson, A.
1994-06-01
Quantum canonical transformations are defined algebraically outside of a Hilbert space context. This generalizes the quantum canonical transformations of Weyl and Dirac to include non-unitary transformations. The importance of non-unitary transformations for constructing solutions of the Schrödinger equation is discussed. Three elementary canonical transformations are shown both to have quantum implementations as finite transformations and to generate, classically and infinitesimally, the full canonical algebra. A general canonical transformation can be realized quantum mechanically as a product of these transformations. Each transformation corresponds to a familiar tool used in solving differential equations, and the procedure of solving a differential equation is systematized by the use of the canonical transformations. Several examples are done to illustrate the use of the canonical transformations.
Minkowski Space and Quantum Mechanics
NASA Astrophysics Data System (ADS)
O'Hara, Paul
A paradigm shift distinguishes general relativity from classical mechanics. In general relativity the energy-momentum tensor is the effective cause of the ontological space-time curvature and vice-versa, while in classical physics, the structure of space-time is treated as an accidental cause, serving only as a backdrop against which the laws of physics unfold. This split in turn is inherited by quantum mechanics, which is usually developed by changing classical (including special relativity) Hamiltonians into quantum wave equations.
Effective equations for the quantum pendulum from momentous quantum mechanics
Hernandez, Hector H.; Chacon-Acosta, Guillermo
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
The metaphysics of quantum mechanics: Modal interpretations
NASA Astrophysics Data System (ADS)
Gluck, Stuart Murray
2004-11-01
This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.
Quantum Mechanics is Incomplete but it is Consistent with Locality
NASA Astrophysics Data System (ADS)
Perlman, H. S.
2017-07-01
Quantum mechanics is seen to be incomplete not because it cannot explain the correlations that characterize entanglement without invoking either non-locality or realism, both of which, despite special relativity or no-go theorems, are at least conceivable. Quantum mechanics is incomplete, in a perhaps broader than hidden variable sense, because it fails to address within its theoretical structure the question of how even a single particle, by being in a given quantum state, causes the frequency distribution of measurement values specified by the state. This incompleteness of quantum mechanics as it is currently conceived is both fundamental and indefeasible. Failure to address the question of how the states of entangled particles are given effect to yield the correlations they specify is simply a particular albeit attention arresting instance of this incompleteness. But if that is so then quantum mechanics cannot be held to be inconsistent with locality.
Machine Learning and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Chapline, George
The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.
Improving student understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2015-04-01
Learning quantum mechanics is challenging for many students. We are investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the QuILTs employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties and research-based tools we are developing to bridge the gap between quantitative and conceptual aspects of quantum mechanics and help students develop a solid grasp of quantum concepts. Support from the National Science Foundation is gratefully acknowledged.
Quantum mechanics and the psyche
NASA Astrophysics Data System (ADS)
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Quantum communication between remote mechanical resonators
NASA Astrophysics Data System (ADS)
Felicetti, S.; Fedortchenko, S.; Rossi, R.; Ducci, S.; Favero, I.; Coudreau, T.; Milman, P.
2017-02-01
Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. Here, we introduce an interferometric scheme where the interaction of a mechanical resonator with input-output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as a building block for the implementation of long-distance quantum networks of mechanical resonators.
2016 Summer Series - Mark Kasevich: Quantum Mechanics at Macroscopic Scales
2016-06-09
The underpinning of the universe is quantum mechanics. It can be used to explain the observed particle and wave nature of atoms. Atom interferometry uses the wave characteristics of atoms to investigate fundamental physics and advance our understanding of the macroscopic world. NASA is working with Dr. Mark Kasevich to apply this technology to advance astrophysics and improve navigation. In his seminar, Kasevich will delve into the world of atom interferometry, gravitational waves and quantum sensors.
Fundamental and applied aspects of luminescence of colloidal quantum dots
NASA Astrophysics Data System (ADS)
Razumov, V. F.
2017-03-01
The spectral luminescent characteristics of colloidal quantum dots as a new class of luminophores are discussed and state-of-the-art investigations, problems, and prospects for their applications are considered.
Faster than Hermitian Quantum Mechanics
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-26
Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
Facets of contextual realism in quantum mechanics
Pan, Alok Kumar; Home, Dipankar
2011-09-23
In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.
Review of student difficulties in upper-level quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Marshman, Emily
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.
Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals
NASA Astrophysics Data System (ADS)
Miao, Haixing; Adhikari, Rana X.; Ma, Yiqiu; Pang, Belinda; Chen, Yanbei
2017-08-01
The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the standard quantum limit that arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum nondemolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational-wave detectors.
Treating time travel quantum mechanically
NASA Astrophysics Data System (ADS)
Allen, John-Mark A.
2014-10-01
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Teaching Quantum Mechanics on an Introductory Level.
ERIC Educational Resources Information Center
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Teaching Quantum Mechanics on an Introductory Level.
ERIC Educational Resources Information Center
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Quantum resources for purification and cooling: fundamental limits and opportunities
Ticozzi, Francesco; Viola, Lorenza
2014-01-01
Preparing a quantum system in a pure state is ultimately limited by the nature of the system's evolution in the presence of its environment and by the initial state of the environment itself. We show that, when the system and environment are initially uncorrelated and arbitrary joint unitary dynamics is allowed, the system may be purified up to a certain (possibly arbitrarily small) threshold if and only if its environment, either natural or engineered, contains a “virtual subsystem” which has the same dimension and is in a state with the desired purity. Beside providing a unified understanding of quantum purification dynamics in terms of a “generalized swap process,” our results shed light on the significance of a no-go theorem for exact ground-state cooling, as well as on the quantum resources needed for achieving an intended purification task. PMID:24898845
Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light
NASA Astrophysics Data System (ADS)
Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B.; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I.; Bowen, Warwick P.; Gehring, Tobias; Andersen, Ulrik L.
2016-11-01
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.
Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light
Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B.; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I.; Bowen, Warwick P.; Gehring, Tobias; Andersen, Ulrik L.
2016-01-01
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics. PMID:27897181
Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.
Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L
2016-11-29
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.
Deformation of noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan
2016-09-01
In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .
Matrix quantum mechanics from qubits
NASA Astrophysics Data System (ADS)
Hartnoll, Sean A.; Huijse, Liza; Mazenc, Edward A.
2017-01-01
We introduce a transverse field Ising model with order N 2 spins interacting via a nonlocal quartic interaction. The model has an O( N, ℤ), hyperoctahedral, symmetry. We show that the large N partition function admits a saddle point in which the symmetry is enhanced to O( N). We further demonstrate that this `matrix saddle' correctly computes large N observables at weak and strong coupling. The matrix saddle undergoes a continuous quantum phase transition at intermediate couplings. At the transition the matrix eigenvalue distribution becomes disconnected. The critical excitations are described by large N matrix quantum mechanics. At the critical point, the low energy excitations are waves propagating in an emergent 1 + 1 dimensional spacetime.
Quantum-mechanical twin paradox
NASA Astrophysics Data System (ADS)
Franson, J. D.
2016-10-01
In the twin paradox of special relativity, an observer that travels along an accelerated trajectory at a high velocity will experience a smaller amount of elapsed time than an observer that remains at rest. This illustrates the fact that time is relative unlike the situation in classical physics where time is absolute. In a recent paper, Bushev et al (2016 New J. Phys. 18 093050) showed that the twin paradox can also be demonstrated using a single electron that functions as a quantum-mechanical clock. The wave function of the electron can travel along two different paths simultaneously, which allows a measurement of the difference in proper times along the two trajectories using a single particle. Quantum interference effects show that time cannot be thought of as a classical parameter even when associated with a single clock or observer.
Generation mechanisms of fundamental rogue wave spatial-temporal structure
NASA Astrophysics Data System (ADS)
Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling
2017-08-01
We discuss the generation mechanism of fundamental rogue wave structures in N -component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N -component coupled nonlinear Schrödinger equation. Furthermore, our results show that N -component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.
Simple explanation of the quantum violation of a fundamental inequality.
Cabello, Adán
2013-02-08
We show that the maximum quantum violation of the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) inequality is exactly the maximum value satisfying the following principle: The sum of probabilities of pairwise exclusive events cannot exceed 1. We call this principle "global exclusivity," since its power shows up when it is applied to global events resulting from enlarged scenarios in which the events in the inequality are considered jointly with other events. We identify scenarios in which this principle singles out quantum contextuality, and show that a recent proof excluding nonlocal boxes follows from the maximum violation imposed by this principle to the KCBS inequality.
Quantum Mechanics of the Einstein-Hopf Model.
ERIC Educational Resources Information Center
Milonni, P. W.
1981-01-01
The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)
Quantum Mechanics of the Einstein-Hopf Model.
ERIC Educational Resources Information Center
Milonni, P. W.
1981-01-01
The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)
Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics.
Goldfarb, Yair; Degani, Ilan; Tannor, David J
2006-12-21
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification-a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10(-7) calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.
Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics
Goldfarb, Yair; Degani, Ilan; Tannor, David J.
2006-12-21
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared--it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification - a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10{sup -7} calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.
Statistical Mechanics of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Wadati, Miki; Kato, Go; Iida, Toshiaki
Recent developments in statistical mechanics of quantum integrable systems are reviewed. Those studies are fundamental and have a renewed interest related to newly developing fields such as atomic Bose-Einstein condensations, photonic crystals and quantum computations. After a brief summary of the basic concepts and methods, the following three topics are discussed. First, by the thermal Bethe ansatz (TBA), a hard-core Bose gas is exactly solved. The model includes fully the effect of excluded volume and is identified to be a c=1 conformal field theory. Second, the cluster expansion method based on the periodic boundary condition for the Bethe wave function, which we call the Bethe ansatz cluster expansion (BACE) method, is developed for a δ-function gas and the XXX Heisenberg chain. This directly proves the TBA and reveals intrinsic properties of quantum integrable systems. Third, for a δ-function gas, the integral equations for the distribution functions of the quasi-momentum and the quasi-particle energy are solved in the form of power series. In the weak coupling case, the results reproduce those of Bogoliubov theory.
Fundamental limits to performance of quantum well infrared detectors
NASA Technical Reports Server (NTRS)
Yariv, Amnon; Kinch, Michael; Borenstain, S.; Grave, I.
1990-01-01
Radiometric, density of states (material), and thermal considerations are used to obtain the figure of merit of the quantum-well GaAs/GaAlAs infrared detectors described by Smith et. al. The results are compared with HgCdTe, the present industry standard, as well as with recent experiments at other laboratories.
The Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kastner, Ruth E.
2012-10-01
Preface; 1. Introduction: quantum peculiarities; 2. The map vs the territory; 3. The original TI: fundamentals; 4. The new possibilist TI: fundamentals; 5. Challenges, replies, and applications; 6. PTI and relativity; 7. The metaphysics of possibility; 8. PTI and 'spacetime'; 9. Epilogue: more than meets the eye; Appendixes; References; Index.
Fundamental rate-loss trade-off for the quantum internet
NASA Astrophysics Data System (ADS)
Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong
2016-11-01
The quantum internet holds promise for achieving quantum communication--such as quantum teleportation and quantum key distribution (QKD)--freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result--putting a practical but general limitation on the quantum internet--enables us to grasp the potential of the future quantum internet.
Fundamental rate-loss trade-off for the quantum internet.
Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong
2016-11-25
The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result-putting a practical but general limitation on the quantum internet-enables us to grasp the potential of the future quantum internet.
Fundamental rate-loss trade-off for the quantum internet
Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong
2016-01-01
The quantum internet holds promise for achieving quantum communication—such as quantum teleportation and quantum key distribution (QKD)—freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka–Guha–Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result—putting a practical but general limitation on the quantum internet—enables us to grasp the potential of the future quantum internet. PMID:27886172
Mathematical foundations of quantum mechanics: An advanced short course
NASA Astrophysics Data System (ADS)
Moretti, Valter
2016-08-01
This paper collects and extends the lectures I gave at the “XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called (C∗-) algebraic formulation of quantum theories.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Engine Fundamentals: Automotive Mechanics Instructional Program. Block 2.
ERIC Educational Resources Information Center
O'Brien, Ralph D.
The second of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in engine fundamentals at the secondary and postsecondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Al+ optical clocks for fundamental physics, geodesy, and quantum metrology
NASA Astrophysics Data System (ADS)
Chou, Chin-Wen
2011-05-01
Laser-cooled trapped atoms have long been recognized as potentially very accurate frequency standards for clocks. Ultimate accuracies of 10-18 to 10-19 appear possible, limited by the time-dilation of trapped ions that move at laser-cooled velocities. The Al+ ion is an attractive candidate for high accuracy, owing to its narrow electronic transition in the optical regime and low sensitivity to ambient field perturbations. Precision spectroscopy on Al+ is enabled by quantum information techniques. With Al+ ``quantum-logic'' clocks, the current accuracy of 8.6 ×10-18 has enabled a geo-potential-difference measurement that detected a height change of 37 +/- 17 cm due to the gravitational red-shift. We have also observed quantum coherence between two Al+ ions with a record Q-factor of 3.4 ×1016, and compared the Al+ resonance frequency to that of a single Hg+ ion to place limits on the temporal variation of the fine-structure constant. This work is done in collaboration with D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband. Work supported by ONR, AFOSR, DARPA, NSA, and IARPA.
Bridging classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.
2016-10-01
Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.
Quantum mechanical light harvesting mechanisms in photosynthesis
NASA Astrophysics Data System (ADS)
Scholes, Gregory
2012-02-01
More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Why space has three dimensions: A quantum mechanical explanation
NASA Astrophysics Data System (ADS)
Marcer, Peter; Schempp, Walter
2000-05-01
The theoretical physics of a quantum mechanical model of space, relativistic quantum holography, is described. It specifies three dimensions, such as is validated by the nature of our spatial experience, but where additionally, quantum non-locality, which Feynman described as the only mystery of quantum theory, is made manifest by means of observable phase relationships. For example, synchronicity between events, and other phenomena such as are described by the geometric/Berry phase, etc., which are outside the bounds of classical explanation. It can therefore be hypothesized: a) that we live in a entirely quantum mechanical world/universe and not a classical mechanical one (where quantum phenomena are confined to the microscopic scale) as is the current generally held scientific view, b) that three spatial dimensions are a fundamental consequence of quantum mechanics, c) that quantum holography is a natural candidate to explain quantum gravity, such that mass/inertia concerns not the eigenvalues of some operator, but rather the observable gauge invariant phases of a state vector, postulated to be that of the universe itself, as a whole, and d) that this model provides a natural explanation in terms of relativistic quantum signal processing of any each individual's perception and cognition will be of a three dimensional world, defined similarly in relation to each individual's quantum state vector, describing its mind/body and associated gauge invariant phases or mindset, which have observable consequences, such that mental processes and events can cause neural events and processes! These testable hypotheses, if validated, will have profound implications for our understanding, radically changing our scientific perspective on the world, as we enter the new millennium. .
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.
Tang, Jiang; Sargent, Edward H
2011-01-04
Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells' absorption profile to match the sun's broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances.
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
NASA Astrophysics Data System (ADS)
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Towards a Constructive Foundation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Smilga, Walter
2016-11-01
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
Towards a Constructive Foundation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Smilga, Walter
2017-01-01
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
The uncertainty principle determines the nonlocality of quantum mechanics.
Oppenheim, Jonathan; Wehner, Stephanie
2010-11-19
Two central concepts of quantum mechanics are Heisenberg's uncertainty principle and a subtle form of nonlocality that Einstein famously called "spooky action at a distance." These two fundamental features have thus far been distinct concepts. We show that they are inextricably and quantitatively linked: Quantum mechanics cannot be more nonlocal with measurements that respect the uncertainty principle. In fact, the link between uncertainty and nonlocality holds for all physical theories. More specifically, the degree of nonlocality of any theory is determined by two factors: the strength of the uncertainty principle and the strength of a property called "steering," which determines which states can be prepared at one location given a measurement at another.
Study on a Possible Darwinian Origin of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Baladrón, C.
2011-03-01
A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.
Driven spin systems as quantum thermodynamic machines: Fundamental limits
NASA Astrophysics Data System (ADS)
Henrich, Markus J.; Mahler, Günter; Michel, Mathias
2007-05-01
We show that coupled two-level systems like qubits studied in quantum-information processing can be used as a thermodynamic machine. At least three qubits or spins are necessary and they must be arranged in a chain. The system is interfaced between two split baths and the working spin in the middle is externally driven. The machine performs Carnot-type cycles and is able to work as a heat pump or engine depending on the temperature difference of the baths, ΔT , and the energy difference in the spin system, ΔE . It can be shown that the efficiency is a function of ΔT and ΔE .
Fundamental interaction between Au quantum dots and DNA
NASA Astrophysics Data System (ADS)
Karna, Molleshree; Mallick, Govind; Karna, Shashi
2010-03-01
Semiconductor quantum dots (QDs) and metal nanoparticles (NPs) have attracted a great deal of attention in biology community due to their application as fluorescent labels and sensors. The optical properties of QDs and NPs allow them to be effective imaging agents. However, QDs have the potential to be used as more than just sensors and labels. Their biological sensing abilities include identifying target DNA through a linker followed by color change and electrical signaling. If this property can be combined with the direct binding of QDs with DNA, many other applications in bio-nanotechnological field are possible. In this paper, we investigate the interaction between colloidal Au QDs and 30-base sequence single strand DNA. Our preliminary results indicate that the DNA strand tend to form different structures in the presence of Au QDs. Furthermore, small as well as large agglomerated Au particles appear to be linked along the DNA strand.
Quantum mechanics without potential function
Alhaidari, A. D.; Ismail, M. E. H.
2015-07-15
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
Quantum mechanics of Proca fields
NASA Astrophysics Data System (ADS)
Zamani, Farhad; Mostafazadeh, Ali
2009-05-01
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
Relationship between quantum walks and relativistic quantum mechanics
Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.
2010-06-15
Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.
Chirality, quantum mechanics, and biological determinism
NASA Astrophysics Data System (ADS)
Davies, P. C. W.
2006-08-01
life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.
Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque
Tailby, Chris; Solomon, Samuel G.; Dhruv, Neel T.; Lennie, Peter
2011-01-01
Prolonged viewing of a chromatically modulated stimulus usually leads to changes in its appearance, and that of similar stimuli. These aftereffects of habituation have been thought to reflect the activity of two populations of neurons in visual cortex that have particular importance in color vision, one sensitive to red– green modulation, the other to blue–yellow, but they have not been identified. We show here, in recordings from macaque primary visual cortex (V1), that prolonged exposure to chromatic modulation reveals two fundamental mechanisms with distinctive chromatic signatures that match those of the mechanisms identified by perceptual observations. In nearly all neurons, these mechanisms contribute to both excitation and to regulatory gain controls, and as a result their habituation can have paradoxical effects on response. The mechanisms must be located near the input layers of V1, before their distinct chromatic signatures diffuse. Our observations suggest that the fundamental mechanisms do not give rise to two distinct L–M and S chromatic pathways. Rather, the mechanisms are better understood as stages in the elaboration of chromatic tuning, expressed in varying proportions in all cells in V1 (and beyond), and made accessible to physiological and perceptual investigation only through habituation. PMID:18234891
Kindergarten Quantum Mechanics: Lecture Notes
Coecke, Bob
2006-01-04
These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns 'doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I which subsumes my Logic of Entanglement. For a survey on the 'what', the 'why' and the 'hows' I refer to a previous set of lecture notes. In a last section we provide some pointers to the body of technical literature on the subject.
Quantum mechanics, relativity and time
NASA Astrophysics Data System (ADS)
Basini, Giuseppe; Capozziello, Salvatore
2005-01-01
A discussion on quantum mechanics, general relativity and their relations is introduced. The assumption of the absolute validity of conservation laws and the extension to a 5D-space lead to reconsider several shortcomings and paradoxes of modern physics under a new light without the necessity to take into account symmetry breakings. In this picture, starting from first principles, and after a reduction procedure from 5D to 4D, dynamics leads to the natural emergence of two time arrows and ofa scalar-tensor theory of gravity. In this framework, phenomena like entanglement of systems and topology changes can be naturally accounted and, furthermore, several experimental evidences as gamma ray bursts, sizes of astrophysical structures and the observed values of cosmological parameters can be explained. The identification, thanks to conservation laws, of a covariant symplectic structure as a general feature also for gravity can be seen as a deep link common to all the interactions.
Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics
NASA Astrophysics Data System (ADS)
Li, Guodong; Aydemir, Umut; Wood, Max; Goddard, William A., III; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey
2017-07-01
Lanthanum telluride (La3Te4) is an n-type high-performance thermoelectric material in the high temperature range, but its mechanical properties remain unknown. Since we want robust mechanical properties for their integration into industrial applications, we report here quantum mechanics (QM) simulations to determine the ideal strength and deformation mechanisms of La3Te4 under pure shear deformations. Among all plausible shear deformation paths, we find that shearing along the (0 0 1)/< \\text{1} 0 0> slip system has the lowest ideal shear strength of 0.99 GPa, making it the most likely slip system to be activated under pressure. We find that the long range La-Te ionic interactions play the predominant role in resisting shear deformation. To enhance the mechanical strength, we suggest improving the long ionic La-Te bond stiffness to strengthen the ionic La-Te framework in La3Te4 by a defect-engineering strategy, such as partial substitution of La by Ce or Pr having isotypic crystal structures. This work provides the fundamental information to understand the intrinsic mechanics of La3Te4.
Dynamical phase transitions in quantum mechanics
NASA Astrophysics Data System (ADS)
Rotter, Ingrid
2012-02-01
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Thermodynamic integration from classical to quantum mechanics.
Habershon, Scott; Manolopoulos, David E
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable. © 2011 American Institute of Physics
Quantum Mechanics and physical calculations
NASA Astrophysics Data System (ADS)
Karayan, H. S.
2014-03-01
We suggest to realize the computer simulation and calculation by the algebraic structure built on the basis of the logic inherent to processes in physical systems (called physical computing). We suggest a principle for the construction of quantum algorithms of neuroinformatics of quantum neural networks. The role of academician Sahakyan is emphasized in the development of quantum physics in Armenia.
Einstein's equivalence principle in quantum mechanics revisited
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2016-11-01
The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.
The transactional interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
2001-06-01
The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."
Elucidating reaction mechanisms on quantum computers
NASA Astrophysics Data System (ADS)
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-07-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Quantum Mechanics with a Little Less Mystery
ERIC Educational Resources Information Center
Cropper, William H.
1969-01-01
Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…
Predicted phototoxicities of carbon nano-material by quantum mechanical calculations.
The basis of this research is obtaining the best quantum mechanical structure of carbon nanomaterials and is fundamental in determining their other properties. Therefore, their predictive phototoxicity is directly related to the materials’ structure. The results of this project w...
Predicted phototoxicities of carbon nano-material by quantum mechanical calculations.
The basis of this research is obtaining the best quantum mechanical structure of carbon nanomaterials and is fundamental in determining their other properties. Therefore, their predictive phototoxicity is directly related to the materials’ structure. The results of this project w...
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
Does quantum mechanics tell an atomistic spacetime?
NASA Astrophysics Data System (ADS)
Elze, Hans-Thomas
2009-06-01
The canonical answer to the question posed is "Yes." - tacitly assuming that quantum theory and the concept of spacetime are to be unified by 'quantizing' a theory of gravitation. Yet, instead, one may ponder: Could quantum mechanics arise as a coarse-grained reflection of the atomistic nature of spacetime? - We speculate that this may indeed be the case. We recall the similarity between evolution of classical and quantum mechanical ensembles, according to Liouville and von Neumann equation, respectively. The classical and quantum mechanical equations are indistinguishable for objects which are free or subject to spatially constant but possibly time dependent, or harmonic forces, if represented appropriately. This result suggests a way to incorporate anharmonic interactions, including fluctuations which are tentatively related to the underlying discreteness of spacetime. Being linear and local at the quantum mechanical level, the model offers a decoherence and natural localization mechanism. However, the relation to primordial deterministic degrees of freedom is nonlocal.
Quantum phases of Yang-Mills matrix model coupled to fundamental fermions
NASA Astrophysics Data System (ADS)
Pandey, Mahul; Vaidya, Sachindeo
2017-02-01
By investigating the SU(2) Yang-Mills matrix model coupled to fundamental fermions in the adiabatic limit, we demonstrate quantum critical behaviour at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. As a consequence of our analysis, we show that 2-color quantum chromodynamics coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
Mechanics of fracture - Fundamentals and some recent developments
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Subramonian, N.; Lee, J. D.
1979-01-01
An overview is presented of the fundamental aspects of and recent developments in fracture mechanics. Reference is made to linear elastic fracture mechanics including the state of stresses and displacements in the vicinity of cracks, effects of crack geometry and orientation on stress intensity factors, energy balance of Griffith, Irwin's stress intensity concept, and linear elastic fracture mechanics testing for fracture toughness. Other aspects of this paper include the non-linear behavior of materials and their influence on fracture mechanics parameters, consideration of viscoelasticity and plasticity, non-linear fracture toughness parameters as C.O.D., R-curve and J-integral, and a non-linear energy method, proposed by Liebowitz. Finite element methods applied to fracture mechanics problems are indicated. Also, consideration has been given to slow crack growth, dynamic effects on K(IC), Sih's criterion for fracture, Lee and Liebowitz's criterion relating crack growth with plastic energy, and applications of fracture mechanics to aircraft design. Suggestions are offered for future research efforts to be undertaken in fracture mechanics.
Quantum Mechanical Models Of The Fermi Shuttle
Sternberg, James
2011-06-01
The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.
Strange Bedfellows: Quantum Mechanics and Data Mining
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2015-10-01
These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.
Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules
2003-03-01
discovery of quantum mechanics was finding an equation which gives t ),( trvψ . This was accomplished in 1926 by Erwin Schrödinger. The fundamental...permittivity of free space 16 Before we plug this potential into the Schrodinger equation and attempt to find a wavefunction, we also need to...the same is lifted. The first effect to consider is that the Schrödinger equation does not consider relativistic effects. When the Schrodinger
Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules
Mandelkern, L.
1967-01-01
The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious
Minimum length from quantum mechanics and classical general relativity.
Calmet, Xavier; Graesser, Michael; Hsu, Stephen D H
2004-11-19
We derive fundamental limits on measurements of position, arising from quantum mechanics and classical general relativity. First, we show that any primitive probe or target used in an experiment must be larger than the Planck length lP. This suggests a Planck-size minimum ball of uncertainty in any measurement. Next, we study interferometers (such as LIGO) whose precision is much finer than the size of any individual components and hence are not obviously limited by the minimum ball. Nevertheless, we deduce a fundamental limit on their accuracy of order lP. Our results imply a device independent limit on possible position measurements.
Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian
2016-01-01
It is congruous with the quantum nature of the world to view the spacetime geometry as an emergent structure that shows classical features only at some observational level. One can thus conceive the spacetime manifold as a purely theoretical arena, where quantum states are defined, with the additional freedom of changing coordinates like any other symmetry. Observables, including positions and distances, should then be described by suitable operators acting on such quantum states. In principle, the top-down (canonical) quantization of Einstein-Hilbert gravity falls right into this picture, but is notoriously very involved. The complication stems from allowing all the classical canonical variables that appear in the (presumably) fundamental action to become quantum observables acting on the “superspace” of all metrics, regardless of whether they play any role in the description of a specific physical system. On can instead revisit the more humble “minisuperspace” approach and choose the gravitational observables not simply by imposing some symmetry, but motivated by their proven relevance in the (classical) description of a given system. In particular, this review focuses on compact, spherically symmetric, quantum mechanical sources, in order to determine the probability that they are black holes (BHs) rather than regular particles. The gravitational radius is therefore lifted to the status of a quantum mechanical operator acting on the “horizon wave function (HWF),” the latter being determined by the quantum state of the source. This formalism is then applied to several sources with a mass around the fundamental scale, which are viewed as natural candidates of quantum BHs.
Principles and Dynamics of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Efthimiades, Spyros
2009-05-01
Quantum mechanics can be founded on three principles: particle waves, concurrent states and averaged energy relations. The Schrodinger, time-evolution and Dirac equations are derived to be the conditions the wavefunction must satisfy in order to fulfill the corresponding averaged energy relations. Adopting a particle and wave balanced approach we attain a clear, consistent and justified quantum theory.
Quantum mechanics and the generalized uncertainty principle
Bang, Jang Young; Berger, Micheal S.
2006-12-15
The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.
Quantum mechanics: The subtle pull of emptiness
Seife, C.
1997-01-10
Classic physics dictates that the vacuum is devoid not only of matter but also of energy. But quantum mechanics often seems to depart from common sense. A paper in the Physical Review Letters describes the first successful measurement of the ultimate quantum free lunch: the Casimir force, a pressure exerted by empty space. This paper describes the background and the experiment.
Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2016-03-01
Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.
Electron relaxation in quantum dot and quantum well systems by the ICD mechanism
NASA Astrophysics Data System (ADS)
Moiseyev, Nimrod
2014-05-01
Electron relaxation in quantum dot (QD) and quantum well (QW) systems has a significant impact on QD and QW optoelectronic devices such as lasers, photodetectors, and solar cells. Several different fundamental relaxation mechanisms are known. We focus here on inter-coulombic decay (ICD) mechanism. In 2011 we have shown that the electron relaxation in a quantum dot dimer due to the ICD mechanism is on a picoseconds timescale (PRB 83, 113303) and therefore IR QD detectors based on ICD seems to be feasible. Here we discuss the possibility to observe electron relaxation in QWs. In QWs the effective mass of the electron is not continuous, and can affect the lifetime of the ICD process. In order for the ICD to be the dominant decay mechanism, it must prevail over all other possible competitive decay processes. We have found in our setup that the ICD lifetime is on the timescale of picoseconds. An enhancement of the ICD process occurs when the ionized electron temporarily trapped in a shape-type resonance in the continuum. An experiment based on our findings is currently in progress. In this talk another possibility to observe the ICD phenomenon in two coupled QWs is proposed, by transferring an electron through a two coupled quantum wells structure populated by only one electron. An enhancement in the electron transmission would be obtained when the energy of the incoming electrons allows them to be temporarily trapped inside one of the two quantum wells via the ICD mechanism.
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.
NASA Astrophysics Data System (ADS)
Babaei, Hassan; Mostafazadeh, Ali
2017-08-01
A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.
Kinetic potentials in quantum mechanics
NASA Astrophysics Data System (ADS)
Hall, Richard L.
1984-09-01
Suppose that the Hamiltonian H=-Δ+vf(r) represents the energy of a particle which moves in an attractive central potential and obeys nonrelativistic quantum mechanics. The discrete eigenvalues Enl=Fnl(v) of H may be expressed as a Legendre transformation Fnl(v)=mins≳0(s+vf¯nl(s)), n=1,2,3,..., l=0,1,2,..., where the ``kinetic potentials'' f¯nl(s) associated with f(r) are defined by f¯nl(s) =infDnl supψ∈Dnl, ∥ψ∥=1 ∫ ψ(r) f ([ψ,-Δψ)/s]1/2r)ψ(r)d3r, and Dnl is an n-dimensional subspace of L2(R3) labeled by Ylm(θ,φ), m=0, and contained in the domain D(H) of H. If the potential has the form f(r)=∑Ni=1 g(i)( f(i)(r)) then in many interesting cases it turns out that the corresponding kinetic potentials can be closely approximated by ∑Ni=1 g(i)( f¯nl(i)(s)). This nice behavior of the kinetic potentials leads to a constructive global approximation theory for Schrödinger eigenvalues. As an illustration, detailed recipes are provided for arbitrary linear combinations of power-law potentials and the log potential. For the linear plus Coulomb potential and the quartic anharmonic oscillator the approximate eigenvalues are compared to accurate values found by numerical integration.
Superconducting Qubits as Mechanical Quantum Engines
NASA Astrophysics Data System (ADS)
Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.
2017-09-01
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Quantum mechanical streamlines. I - Square potential barrier
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Quantum mechanical stabilization of Minkowski signature wormholes
Visser, M.
1989-05-19
When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.
Supersymmetric q-deformed quantum mechanics
Traikia, M. H.; Mebarki, N.
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
On the geometrization of quantum mechanics
Tavernelli, Ivano
2016-08-15
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.
Geometric Hamiltonian quantum mechanics and applications
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2016-08-01
Adopting a geometric point of view on Quantum Mechanics is an intriguing idea since, we know that geometric methods are very powerful in Classical Mechanics then, we can try to use them to study quantum systems. In this paper, we summarize the construction of a general prescription to set up a well-defined and self-consistent geometric Hamiltonian formulation of finite-dimensional quantum theories, where phase space is given by the Hilbert projective space (as Kähler manifold), in the spirit of celebrated works of Kibble, Ashtekar and others. Within geometric Hamiltonian formulation quantum observables are represented by phase space functions, quantum states are described by Liouville densities (phase space probability densities), and Schrödinger dynamics is induced by a Hamiltonian flow on the projective space. We construct the star-product of this phase space formulation and some applications of geometric picture are discussed.
On the geometrization of quantum mechanics
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2016-08-01
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
Possible Quantum Mechanical Effect on Beam Echo
Chao, Alex
2000-12-07
The echo effect in charged particle beams provides a link between macroscopic measurable beam parameters and microscopic phase space motion of the beam. Since quantum mechanics dictates a granularization of the phase space, it influences how the phase space behaves microscopically, and thus potentially affect how the echo effect behaves macroscopically. In this study, we propose to examine the possible measurable macroscopic effects of quantum mechanics on beams through its echo effect.
Implications of conformal symmetry in quantum mechanics
NASA Astrophysics Data System (ADS)
Okazaki, Tadashi
2017-09-01
In conformal quantum mechanics with the vacuum of a real scaling dimension and with a complete orthonormal set of energy eigenstates, which is preferable under the unitary evolution, the dilatation expectation value between energy eigenstates monotonically decreases along the flow from the UV to the IR. In such conformal quantum mechanics, there exist bounds on scaling dimensions of the physical states and the gauge operators.
ERIC Educational Resources Information Center
Marshman, Emily; Singh, Chandralekha
2017-01-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…
Horizon quantum mechanics of rotating black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Giusti, Andrea; Micu, Octavian
2017-05-01
The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries.
Antonio Gramsci's Reflection on Quantum Mechanics
NASA Astrophysics Data System (ADS)
Tassani, Isabella
2006-06-01
As the first step of a wider historical reconstruction of the reception of quantum mechanics in the nineteenth-century philosophy, we are going to consider Antonio Gramsci's philosophy. He asks himself about the nature of quantum objects, if their existence depends on the act of measuring by the experimenter and if this kind of relationship can be interpreted as an argument in favour of an immaterialistic philosophy. We will remark how an idealistic interpretation of quantum mechanics found a fertile field in the Italian culture, characterized by an antiscientific attitude and at the same time needing to find in science a term of comparison.
Quantum mechanics near closed timelike lines
NASA Astrophysics Data System (ADS)
Deutsch, David
1991-11-01
The methods of the quantum theory of computation are used to analyze the physics of closed timelike lines. This is dominated, even at the macroscopic level, by quantum mechanics. In classical physics the existence of such lines in a spacetime imposes ``paradoxical'' constraints on the state of matter in their past and also provides means for knowledge to be created in ways that conflict with the principles of the philosophy of science. In quantum mechanics the first of these pathologies does not occur. The second is mitigated, and may be avoidable without such spacetimes being ruled out. Several novel and distinctive (but nonparadoxical) quantum-mechanical effects occur on and near closed timelike lines, including violations of the correspondence principle and of unitarity. It becomes possible to ``clone'' quantum systems and to measure the state of a quantum system. A new experimental test of the Everett interpretation against all others becomes possible. Consideration of these and other effects sheds light on the nature of quantum mechanics.
A taxonomy for mechanical ventilation: 10 fundamental maxims.
Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo
2014-11-01
The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator.
The fundamental mechanisms of material removal by fluidjet machining
Kang, Sang-Wook; Reitter, T.; Carlson, G.
1994-06-01
The fundamental mechanisms of material removal by fluidjet machining have been theoretically and experimentally investigated as a potential method for dismantling nuclear weapons with efficiency and safety. Preliminary experiments and analyses have revealed that at small standoff distances between the nozzle exit and the target workpiece there is no mass removal from the workpiece, but that far from the nozzle there exists an optimum standoff distance at which the jet impact removes mass from the workpiece at a maximum rate. Such results suggest a mass-removal process due to the droplets and ligaments impinging on the material that cause sudden pressure increases in the impact regions. This proposed material-removal mechanism has been addressed theoretically by considering a series of multiple droplet impacts on a material. The calculated results display a series of pressure peaks at the target surface as each of these droplets strikes the material, supporting the plausibility of the proposed mass-removal scenario at the optimum standoff distance. Although plausible further experiments and analyses are needed to verify the proposed jet-induced mass removal mechanism.
NASA Astrophysics Data System (ADS)
Marshman, Emily; Singh, Chandralekha
2017-06-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.
Measurable signatures of quantum mechanics in a classical spacetime
NASA Astrophysics Data System (ADS)
Helou, Bassam; Luo, Jun; Yeh, Hsien-Chi; Shao, Cheng-gang; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei
2017-08-01
We propose an optomechanics experiment that can search for signatures of a fundamentally classical theory of gravity and in particular of the many-body Schrödinger-Newton (SN) equation, which governs the evolution of a crystal under a self-gravitational field. The SN equation predicts that the dynamics of a macroscopic mechanical oscillator's center-of-mass wave function differ from the predictions of standard quantum mechanics [H. Yang, H. Miao, D.-S. Lee, B. Helou, and Y. Chen, Phys. Rev. Lett. 110, 170401 (2013), 10.1103/PhysRevLett.110.170401]. This difference is largest for low-frequency oscillators, and for materials, such as tungsten or osmium, with small quantum fluctuations of the constituent atoms around their lattice equilibrium sites. Light probes the motion of these oscillators and is eventually measured in order to extract valuable information on the pendulum's dynamics. Due to the nonlinearity contained in the SN equation, we analyze the fluctuations of measurement results differently than standard quantum mechanics. We revisit how to model a thermal bath, and the wave-function collapse postulate, resulting in two prescriptions for analyzing the quantum measurement of the light. We demonstrate that both predict features, in the outgoing light's phase fluctuations' spectrum, which are separate from classical thermal fluctuations and quantum shot noise, and which can be clearly resolved with state of the art technology.
An opto-magneto-mechanical quantum interface between distant superconducting qubits
Xia, Keyu; Vanner, Michael R.; Twamley, Jason
2014-01-01
A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss. PMID:24994063
On reconciling quantum mechanics and local realism
NASA Astrophysics Data System (ADS)
Graft, Donald A.
2013-10-01
Accepting nonlocal quantum correlations requires us to reject special relativity and/or probability theory. We can retain both by revising our interpretation of quantum mechanics regarding the handling of separated systems, as quantum mechanics conflicts with local realism only in its treatment of separated systems. We cannot use the joint probability formula for cases of separated measurements. We use the marginals (partial traces) together with whatever priors we have from an understanding of the system. This program can reconcile quantum mechanics with local realism. An apparent obstacle to this program is the experimental evidence, but we argue that the experiments have been misinterpreted, and that when correctly interpreted they confirm local realism. We describe a local realistic account of one important Einstein-Poldosky-Rosen-Bohm (EPRB) experiment (Weihs et al6) that claims to demonstrate nonlocal entanglement. We present a local realistic system (experiment) that can be calibrated into both quantum and classical correlation domains via adjustment of parameters (`hidden variables') of the apparatus. Weihs incorrectly dismisses these parameters as uncritical. Nonlocal entanglement is seen to be an error. The rest of quantum mechanics remains intact, and remains highly valued as a powerful probability calculus for observables. Freed from the incoherent idea of nonlocal entanglement, we can leverage powerful classical ideas, such as semiclassical radiation theory, stochastic dynamics, classical noncommutativity/contextuality, measurement effects on state, etc., to augment or complement quantum mechanics. When properly interpreted and applied, quantum mechanics lives in peaceful harmony with the local realist conception, and both perspectives offer useful paradigms for describing systems.
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Quantum mechanics from an equivalence principle
Faraggi, A.E.; Matone, M.
1997-05-15
The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.
Randomness in quantum mechanics - nature's ultimate cryptogram?
NASA Astrophysics Data System (ADS)
Erber, T.; Putterman, S.
1985-11-01
The possibility that a single atom irradiated by coherent light will be equivalent to an infinite computer with regard to its ability to generate random numbers is addressed. A search for unexpected patterns of order by crypt analysis of the telegraph signal generated by the on/off time of the atom's fluorescence is described. The results will provide new experimental tests of the fundamental principles of quantum theory.
Ollis, D.F.
1996-09-01
In the remediation industries, a useful treatment technology must be {open_quotes}general, robust, and cheap{close_quotes}. Among oxidation processes, heterogeneous photocatalysis is now broadly demonstrated to destroy common water and air contaminants. The potential process uses of highly stable titania, long lived lamps (one year), and room temperature operation, indicating a simple and robust process. We are left to address the third criterion: Can photocatalysis be {open_quotes}cheap{close_quotes}? In both liquid phase and gas phase treatment and purification by photocatalysis, it is established that the primary barrier to commercialization is often cost. Cost in return is dominated by the efficiency with which solar or lamp photons are harvested for productive light, and subsequent dark, reactions. This paper therefore defines fundamental needs in photocatalysis for pollution control in terms of activities which could lead to quantum efficiency enhancement. We first recall three related definitions. The quantum yield (QY) is the ratio of molecules of reactant converted per photon absorbed, a fundamental quantity. A less fundamental, but more easily measured variable is the quantum efficiency (QE), the ratio of molecules converted per photon entering the reactor. A third variable is the energy required per order of magnitude pollutant reduction, or EEO, a definition which provides for easy energy cost comparisons among different technologies. Each measure cited here reflects the photon, and thus the electrical, cost of this photochemistry.
Quantum approach to classical statistical mechanics.
Somma, R D; Batista, C D; Ortiz, G
2007-07-20
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
Physics on the boundary between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-04-01
Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?
Fundamental Studies of Fluid Mechanics: Stability in Porous Media
George M. Homsy
2005-04-28
This work has been concerned with theoretical, computational and experimental studies of a variety of flow and transport problems that are of generic interest and applicability in energy-related and energy-intensive processes. These include the following. (1) Problems associated with oil recovery: the global economy continues to be dependent on the stable and predictable supply of oil and fossil fuels. This will remain the case for the near term, as current estimates are that world production of oil will peak between 2025 and 2100, depending on assumptions regarding growth. Most of these resources reside in porous rocks and other naturally occurring media. Studies of flow-induced instabilities are relevant to the areas of secondary and enhanced oil recovery. (2) Small scale and Stokes flows: flows in microgeometries and involving interfaces and surfactants are of interest in a myriad of energy-related contexts. These include: pore-level modeling of the fundamental processes by which oil held in porous materials is mobilized and produced; heating and cooling energy cycles involving significant expenditure of energy in conditioning of human environments, heat pipes, and compact heat exchangers; and energy efficiency in large scale separation processes such as distillation and absorption-processes that underlie the chemical process industries. (3) Coating flows: these are of interest in information technologies, including the manufacture of integrated circuits and data storage and retrieval devices. It is estimated that 50-70% of the starting raw materials and intermediate devices in information technology processes must be discarded as a result of imperfections and failure to meet specifications. These in turn are often the result of the inability to control fluid-mechanical processes and flow instabilities. Our work over the grant period is primarily fundamental in nature. We are interested in establishing general principles and behaviors that relate to a variety of
Photon Quantum Mechanics in the Undergraduate Curriculum
NASA Astrophysics Data System (ADS)
Pearson, Brett; Carson, Zack; Jackson, David
2011-05-01
Although it has been discussed for centuries, the true nature of light is still being debated. In fact, the quantum mechanical aspects of light have only been observed within the past 30 years. Recent advances in technology have decreased the complexity of such tests, and the Department of Physics and Astronomy at Dickinson College has worked to infuse various quantum optics experiments throughout our curriculum. We describe a set of experiments that includes the existence of photons, single-photon interference, the quantum eraser, and tests of Bell's theorem. A primary motivation is bringing undergraduate students face to face with some of the fascinating and subtle aspects of quantum mechanics in a hands-on setting. Supported by Dickinson College and NSF DUE-0737230.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Optimal guidance law in quantum mechanics
Yang, Ciann-Dong Cheng, Lieh-Lieh
2013-11-15
Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.
Computations in quantum mechanics made easy
NASA Astrophysics Data System (ADS)
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
Emergent quantum mechanics of finances
NASA Astrophysics Data System (ADS)
Nastasiuk, Vadim A.
2014-06-01
This paper is an attempt at understanding the quantum-like dynamics of financial markets in terms of non-differentiable price-time continuum having fractal properties. The main steps of this development are the statistical scaling, the non-differentiability hypothesis, and the equations of motion entailed by this hypothesis. From perspective of the proposed theory the dynamics of S&P500 index are analyzed.
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Coherent states in noncommutative quantum mechanics
Ben Geloun, J.; Scholtz, F. G.
2009-04-15
Gazeau-Klauder coherent states in noncommutative quantum mechanics are considered. We find that these states share similar properties to those of ordinary canonical coherent states in the sense that they saturate the related position uncertainty relation, obey a Poisson distribution, and possess a flat geometry. Using the natural isometry between the quantum Hilbert space of Hilbert-Schmidt operators and the tensor product of the classical configuration space and its dual, we reveal the inherent vector feature of these states.
Fundamental Principles of Classical Mechanics: a Geometrical Perspectives
NASA Astrophysics Data System (ADS)
Lam, Kai S.
2014-07-01
Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...
Fundamental consolidation mechanisms during selective beam melting of powders
NASA Astrophysics Data System (ADS)
Körner, Carolin; Bauereiß, Andreas; Attar, Elham
2013-12-01
During powder based additive manufacturing processes, a component is realized layer upon layer by the selective melting of powder layers with a laser or an electron beam. The density of the consolidated material, the minimal spatial resolution as well as the surface roughness of the resulting components are complex functions of the material and process parameters. So far, the interplay between these parameters is only partially understood. In this paper, the successive assembling in layers is investigated with a recently described 2D-lattice Boltzmann model, which considers individual powder particles. This numerical approach makes several physical phenomena accessible, which cannot be described in a standard continuum picture, e.g. the interplay between capillary effects, wetting conditions and the local stochastic powder configuration. In addition, the model takes into account the influence of the surface topology of the previous consolidated layer on the subsequent powder layer. The influence of the beam power, beam velocity and layer thickness on the formation and quality of simple walls is investigated. The simulation results are compared with experimental findings during selective electron beam melting. The comparison shows that our model, although 2D, is able to predict the main characteristics of the experimental observations. In addition, the numerical simulation elucidates the fundamental mechanisms responsible for the phenomena that are observed during selective beam melting.
Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue
NASA Astrophysics Data System (ADS)
Albagli, Douglas
The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to
Base units of the SI, fundamental constants and modern quantum physics.
Bordé, Christian J
2005-09-15
Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.
Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase
Zhan, Chang-Guo; Zheng, Fang; Landry, Donald W.
2010-01-01
Butyrylcholinesterase (BChE)-cocaine binding and the fundamental pathway for BChE-catalyzed hydrolysis of cocaine have been studied by molecular modelling, molecular dynamics (MD) simulations, and ab initio calculations. Modelling and simulations indicate that the structures of the prereactive BChE-substrate complexes for (−)-cocaine and (+)-cocaine are all similar to that of the corresponding prereactive BChE-butyrylcholine (BCh) complex. The overall binding of BChE with (−)-cocaine and (+)-cocaine is also similar to that proposed with butyrylthiocholine and succinyldithiocholine, i.e. (−)-cocaine/(+)-cocaine first slides down the substrate-binding gorge to bind to Trp-82 and stands vertically in the gorge between Asp-70 and Trp-82 (non-prereactive complex) and then rotates to a position in the catalytic site within a favorable distance for nucleophilic attack and hydrolysis by Ser-198 (prereactive complex). In the prereactive complex, cocaine lies horizontally at the bottom of the gorge. The fundamental catalytic hydrolysis pathway, consisting of acylation and deacylation stages similar to those for ester hydrolysis by other serine hydrolases, was proposed based on the simulated prereactive complex and confirmed theoretically by ab initio reaction coordinate calculations. Both the acylation and deacylation follow a double-proton-transfer mechanism. The calculated energetic results show that within the chemical reaction process the highest energy barrier and Gibbs free energy barrier are all associated with the first step of deacylation. The calculated ratio of the rate constant (kcat) for the catalytic hydrolysis to that (k0) for the spontaneous hydrolysis is ~ 9.0 × 107. The estimated kcat/k0 value of ~ 9.0 × 107 is in excellent agreement with the experimentally-derived kcat/k0 value of ~ 7.2 × 107 for (+)-cocaine, whereas it is ~ 2000 times larger than the experimentally-derived kcat/k0 value of ~ 4.4 × 104 for (−)-cocaine. All of the results
Quantum mechanics and the physical reality concept
von Borzeszkowski, H.H.; Wahsner, R.
1988-06-01
The difference between the measurement bases of classical and quantum mechanics is often interpreted as a loss of reality arising in quantum mechanics. In this paper it is shown that this apparent loss occurs only if one believes that refined everyday experience determines the Euclidean space as the real space, instead of considering this space, both in classical and quantum mechanics, as a theoretical construction needed for measurement and representing one part of a dualistic space conception. From this point of view, Einstein's program of a unified field theory can be interpreted as the attempt to find a physical theory that is less dualistic. However, if one regards this dualism as resulting from the requirements of measurements, one can hope for a weakening of the dualism but not expect to remove it completely.
Multichannel framework for singular quantum mechanics
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.
2014-01-15
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.
Quantum Mechanics of Palladium Nanostructures
NASA Astrophysics Data System (ADS)
Hira, Ajit; McKeough, James; Ortiz, Bridget; Diaz, Juan
We continue our interest in the chemisorption of different atomic and molecular species on small clusters of metallic elements, by examining the interactions of H, H2, Li and O adsorbates with Pdn clusters (n = 2 thru 20). The study of clusters can reveal the effects of substrate geometry on the behavior of adsorbates. Transition-metal clusters are especially suited for the study of quantum size effects and for formation of metallic states, and are ideal candidates for catalytic processes. Hybrid ab initio methods of quantum chemistry (particularly the DFT-B3LYP model) are used to derive optimal geometries for the clusters of interest. We compare calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps for the clusters. Of particular interest are the comparisons of binding strengths at the three important types of sites: edge (E), hollow (H), on-top (T), threefold sites and fourfold sites. Effects of crystal symmetries corresponding to the bulk structures are investigated. The capacity of Pd clusters to adsorb H atoms will be compared to Ni clusters. Admixture with Pt atoms will also be considered.
A proof of von Neumann's postulate in Quantum Mechanics
Conte, Elio
2010-05-04
A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.
Fundamental mechanism for all-optical helicity-dependent switching of magnetization
Chen, Xiang-Jun
2017-01-01
Switching magnetizations with femtosecond circularly polarized lasers may have revolutionary impacts on magnetic data storage and relevant applications. Achievements in ferrimagnetic and ferromagnetic materials of various structures strongly imply a general phenomenon of fundamental atom-laser interaction. Rotating an atom’s wave function with the rotating electric field of a circularly polarized laser, I show the quantum mechanics for the atom is equivalent to that in a static electric field of the same magnitude and a tremendous static magnetic field which interacts with the atom in somewhat different ways. When some conditions are satisfied, transitions of atoms in these two crossed effective fields lead to a highly nonequilibrium state with orbital magnetic moments inclining to the effective magnetic field. The switching finally completes after the pulse duration via relaxation. PMID:28117460
Fundamental mechanism for all-optical helicity-dependent switching of magnetization
NASA Astrophysics Data System (ADS)
Chen, Xiang-Jun
2017-01-01
Switching magnetizations with femtosecond circularly polarized lasers may have revolutionary impacts on magnetic data storage and relevant applications. Achievements in ferrimagnetic and ferromagnetic materials of various structures strongly imply a general phenomenon of fundamental atom-laser interaction. Rotating an atom’s wave function with the rotating electric field of a circularly polarized laser, I show the quantum mechanics for the atom is equivalent to that in a static electric field of the same magnitude and a tremendous static magnetic field which interacts with the atom in somewhat different ways. When some conditions are satisfied, transitions of atoms in these two crossed effective fields lead to a highly nonequilibrium state with orbital magnetic moments inclining to the effective magnetic field. The switching finally completes after the pulse duration via relaxation.
An Axiomatic Basis for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cassinelli, Gianni; Lahti, Pekka
2016-10-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
Two basic Uncertainty Relations in Quantum Mechanics
Angelow, Andrey
2011-04-07
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Two basic Uncertainty Relations in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Angelow, Andrey
2011-04-01
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schrödinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Fundamental mechanisms of microstructural evolution during spray forming
NASA Astrophysics Data System (ADS)
Xu, Qingzhou
2000-10-01
Spray forming consists of two physical stages: atomization and deposition. In principle, the spray forming process inherently avoids the extreme thermal excursions, extensive macrosegregation and concomitant degradation in mechanical properties, normally associated with ingot metallurgy. This synthesis approach also eliminates the need to handle fine reactive metallic powders as is necessary with powder metallurgy. In addition, spray forming can be readily used to synthesize particulate reinforced metal matrix composites through different approaches. Presently, spray forming is used for the production of a wide variety of alloys and materials such as Al, Mg, Fe and Ni-based alloys and metal matrix composites, as well as intermetallics. Significant technical progress over the past three decades has helped spray forming to mature into a manufacturing technique. However, review of the published literature reveals that, despite numerous commercial success stories, the fundamentals of spray forming, in many cases, remain to be established. The present dissertation is organized as follows. First, computational fluid dynamic techniques are implemented to analyze the gas flow behavior in a typical atomization configuration with nitrogen as the modeled gas. Second, a numerical approach is implemented to analyze the heat transfer, nucleation and growth of individual droplets during both flight and deposition, and the calculated results, along with the microstructural observation, are used to interpret the formation of the heterogeneous grain morphology in the initially deposited material and the generation of the equiaxed grain morphology beyond a critical deposited thickness. Third, a numerical model is established to describe the thermal environment of a collection of individual droplets thereby predicting the formation of a mushy layer under different processing parameters. Fourth, the aforementioned model is used to investigate the cooling processes of individual
A new introductory quantum mechanics curriculum
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2014-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.
Quantum Mechanical Aspects of Free Electron Lasers.
NASA Astrophysics Data System (ADS)
Saritepe, Selcuk
Scope of study. A 2-D quantum theory of the Free Electron Laser (FEL) has been developed based on the solutions of Dirac equation for the motion of electrons moving in various wiggler geometries, uniform, tapered and enhanced by an axial guide field. It is shown that these solutions can be written in terms of Mathieu functions of fractional order. Using these solutions a perturbational analysis is carried out to calculate the frequencies and the gain of the FEL in each magnet configuration. Finally, an optical model for the FEL interaction is developed to explain the saturation behaviour and the short-pulse effects such as Laser Lethargy. Findings and conclusions. It is found that the quantum mechanical effects due to transverse momentum correction were gamma (Lorentz factor) times larger than the quantum recoil and spin effects and therefore important for the short wavelength FELs. These quantum mechanical effects cause a broadening in the spontaneous emission lineshape, a decrease in gain and an increase in the rate of harmonic frequency generation. In the presence of an axial field, gain is increased, harmonic frequency rate is reduced and Dirac solutions exhibit instability. The optical model developed in this thesis correctly predicts the oscillator rise time and uses a simpler algorithm to calculate the nonlinear saturation behaviour. Optical model also incorporates inhomogeneous broadening and quantum mechanical effects and explains the Laser Lethargy effect as an optical pulse compression phenomenon.
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Fundamental operation of single-flux-quantum circuits using coplanar-type high-Tc SQUIDs
NASA Astrophysics Data System (ADS)
Fuke, Hiroyuki; Saitoh, Kazuo; Utagawa, Tadashi; Enomoto, Youichi
1996-11-01
We have fabricated coplanar type dc SQUIDs using NdBa2Cu3Oy superconducting thin films and operated fundamental single-flux-quantum (SFQ) circuits. The Josephson junctions were made by the narrow-focused ion beam irradiation technique. For a 145 μm wide and 10 μm long logic SQUID having a critical current of 105 μA and an inductive parameter (βL) of 28, a store and a restore of the flux quantum have been demonstrated at temperatures of 4.2-30 K. These operations were performed with an input pulsewidth of 5 ns (5 ns was the shortest input pulse width available from our function generating equipment). These results show experimentally the possibility of high speed operation in all high-Tc superconducting digital circuits.
Temperature dependence of the fundamental excitonic resonance in lead-salt quantum dots
Yue, Fangyu; Tomm, Jens W.; Kruschke, Detlef; Chu, Junhao
2015-07-13
The temperature dependences of the fundamental excitonic resonance in PbS and PbSe quantum dots fabricated by various technologies are experimentally determined. Above ∼150 K, sub-linearities of the temperature shifts and halfwidths are observed. This behavior is analyzed within the existing standard models. Concordant modeling, however, becomes possible only within the frame of a three-level system that takes into account both bright and dark excitonic states as well as phonon-assisted carrier redistribution between these states. Our results show that luminescence characterization of lead-salt quantum dots necessarily requires both low temperatures and excitation densities in order to provide reliable ensemble parameters.
Quantum Mechanics in the Light of Quantum Cosmology
NASA Astrophysics Data System (ADS)
Gell-Mann, Murray; Hartle, James B.
We sketch a quantum-mechanical framework for the universe as a whole. Within that framework we propose a program for describing the ultimate origin in quantum cosmology of the "quasiclassical domain" of familiar experience and for characterizing the process of measurement. Predictions in quantum mechanics are made from probabilities for sets of alternative histories. Probabilities (approximately obeying the rules of probability theory) can be assigned only to sets of histories that approximately decohere. Decoherence is defined and the mechanism of decoherence is reviewed. Decoherence requires a sufficiently coarse-grained description of alternative histories of the universe. A quasiclassical domain consists of a branching set of alternative decohering histories, described by a coarse graining that is, in an appropriate sense, maximally refined consistent with decoherence, with individual branches that exhibit a high level of classical correlation in time. We pose the problem of making these notions precise and quantitative. A quasiclassical domain is emergent in the universe as a consequence of the initial condition and the action function of the elementary particles. It is an important question whether all the quasiclassical domains are roughly equivalent or whether there are various essentially inequivalent ones. A measurement is a correlation with variables in a quasiclassical domain. An "observer" (or information gathering and utilizing system) is a complex adaptive system that has evolved to exploit the relative predictability of a quasiclassical domain, or rather a set of such domains among which it cannot discriminate because of its own very coarse graining. We suggest that resolution of many of the problems of interpretation presented by quantum mechanics is to be accomplished, not by further scrutiny of the subject as it applies to reproducible laboratory situations, but rather by an examination of alternative histories of the universe, stemming from its
Third emission mechanism in solid-state nanocavity quantum electrodynamics.
Yamaguchi, Makoto; Asano, Takashi; Noda, Susumu
2012-09-01
Photonic crystal (PC) nanocavities have been receiving a great deal of attention recently because of their ability to strongly confine photons in a tiny space with a high quality factor. According to cavity quantum electrodynamics (cavity QED), such confined photons can achieve efficient interactions with excitons in semiconductors, leading to the Purcell effect in the weak coupling regime and vacuum Rabi splitting (VRS) in the strong coupling regime. These features are promising for applications such as quantum information processing, highly efficient single photon sources and ultra-low threshold lasers. In this context, the coupled system of a semiconductor quantum dot (QD) and a PC nanocavity has been intensively investigated in recent years.Although experimental reports have demonstrated such fundamental features, two anomalous phenomena have also been observed. First, photon emission from the cavity occurs even when it is significantly detuned from the QD. Second, spectral triplets are formed by additional bare-cavity lines between the VRS lines. These features cannot be explained by standard cavity QED theories and have prompted controversy regarding their physical mechanisms. In this review we describe the recent experimental and theoretical progress made in the investigation of these phenomena. Similar mechanisms will also occur in many other coupled quantum systems, and thus the findings are applicable to a wide range of fields.
Extracting fundamental transverse mode operation in broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Kaspi, R.; Luong, S.; Yang, C.; Lu, C.; Newell, T. C.; Bate, T.
2016-11-01
Power scaling in broad area quantum cascade lasers results in the operation of high order transverse modes with a far-field profile consisting of two lobes propagating at large angles relative to the optical axis. We report a method of suppressing the high order transverse modes that can extract the fundamental mode and provide emission along the optical axis. By generating a lateral constriction in the waveguide in the form of short trenches defined by the focused ion beam milling technique, we report broad area devices in which most of the power is contained in a near diffraction-limited beam that provides high brightness.
Fundamentals of undervoltage breakdown through the Townsend mechanism
NASA Astrophysics Data System (ADS)
Cooley, James E.
The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain, DC discharge gap are experimentally and theoretically explored. The phenomenon is relevant to fundamental understanding of breakdown physics, to switching applications such as triggered spark gaps and discharge initiation in pulsed-plasma thrusters, and to gas-avalanche particle counters. A dimensionless theoretical description of the phenomenon is formulated and solved numerically. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low avalanche-ionization gain, when an electron undergoes fewer than approximately 10 ionizing collisions during one gap transit. It is also found that fewer injected electrons are required as the gain due to electron-impact ionization (alpha process) is increased, or as the sensitivity of the alpha process to electric field is enhanced by decreasing the reduced electric field (electric field divided by pressure, E/p). A predicted insensitivity to ion mobility implies that breakdown is determined during the first electron avalanche when space charge distortion is greatest. A dimensionless, theoretical study of the development of this avalanche reveals a critical value of the reduced electric field to be the value at the Paschen curve minimum divided by 1.6. Below this value, the net result of the electric field distortion is to increase ionization for subsequent avalanches, making undervoltage breakdown possible. Above this value, ionization for subsequent avalanches will be suppressed and undervoltage breakdown is not possible. Using an experimental apparatus in which ultraviolet laser pulses are directed onto a photo-emissive cathode of a parallel-plate discharge gap, it is found that undervoltage breakdown can occur through a Townsend-like mechanism through the buildup of successively larger avalanche generations. The minimum number of injected
Simplified quantum mechanics of light detection for quantum cryptography
NASA Astrophysics Data System (ADS)
Myers, John M.; Madjid, F. Hadi
2004-08-01
Strong light signals are detected reliably on a time scale of a nanosecond; however, known detectors of weak light signals used in quantum key distribution (QKD) are much slower; they involve pulse-shaping arbiters based on flip-flops that take many nanoseconds to produce a stable output. Based on a recently shown logical independence of quantum particles from the devices that they are employed to explain, we make use of quantum mechanics fine-tuned so that particles serve not as rigid foundations but as improvised hypotheses useful in models that describe the recorded behavior of devices. On the experimental side, we augment the arbitrating flip-flop of a detector so that it fans out to a matched pair of auxiliary flip-flops, and show how this imparts to a detector a "self-awareness" of its own teetering, as announced by disagreements between the auxiliary flip-flops. We introduce a quantum model of this arrangement, invoking a pair of probe particles, and show this model corresponds well to an experiment. The matched pair of auxiliary flip-flops not only confirms the model of hesitation in a detector, but serves as an instrument, both conceptual and practical, that gives an added dimension to the characterization of signal sources.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
NASA Astrophysics Data System (ADS)
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
Freitag, Mark A.
2001-12-31
The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate for most systems of chemical interest.
Riemann hypothesis and quantum mechanics
NASA Astrophysics Data System (ADS)
Planat, Michel; Solé, Patrick; Omar, Sami
2011-04-01
In their 1995 paper, Jean-Benoît Bost and Alain Connes (BC) constructed a quantum dynamical system whose partition function is the Riemann zeta function ζ(β), where β is an inverse temperature. We formulate Riemann hypothesis (RH) as a property of the low-temperature Kubo-Martin-Schwinger (KMS) states of this theory. More precisely, the expectation value of the BC phase operator can be written as \\phi _{\\beta }(q)=N_{q-1}^{\\beta -1} \\psi _{\\beta -1}(N_q), where Nq = ∏qk = 1pk is the primorial number of order q and ψb is a generalized Dedekind ψ function depending on one real parameter b as \\psi _b (q)=q \\prod _{p \\in {P,}p \\vert q}\\frac{1-1/p^b}{1-1/p}. Fix a large inverse temperature β > 2. The RH is then shown to be equivalent to the inequality N_q |\\phi _\\beta (N_q)|\\zeta (\\beta -1) \\gt e^\\gamma log log N_q, for q large enough. Under RH, extra formulas for high-temperature KMS states (1.5 < β < 2) are derived. 'Number theory is not pure Mathematics. It is the Physics of the world of Numbers.' Alf van der Poorten
Consistent interpretations of quantum mechanics
Omnes, R. )
1992-04-01
Within the last decade, significant progress has been made towards a consistent and complete reformulation of the Copenhagen interpretation (an interpretation consisting in a formulation of the experimental aspects of physics in terms of the basic formalism; it is consistent if free from internal contradiction and complete if it provides precise predictions for all experiments). The main steps involved decoherence (the transition from linear superpositions of macroscopic states to a mixing), Griffiths histories describing the evolution of quantum properties, a convenient logical structure for dealing with histories, and also some progress in semiclassical physics, which was made possible by new methods. The main outcome is a theory of phenomena, viz., the classically meaningful properties of a macroscopic system. It shows in particular how and when determinism is valid. This theory can be used to give a deductive form to measurement theory, which now covers some cases that were initially devised as counterexamples against the Copenhagen interpretation. These theories are described, together with their applications to some key experiments and some of their consequences concerning epistemology.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.
Comparison of Classical and Quantum Mechanical Uncertainties.
ERIC Educational Resources Information Center
Peslak, John, Jr.
1979-01-01
Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)
Comparison of Classical and Quantum Mechanical Uncertainties.
ERIC Educational Resources Information Center
Peslak, John, Jr.
1979-01-01
Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)
Quantum mechanics is compatible with realism
Burgos, M.E.
1987-08-01
A new paradox of quantum mechanics has recently been proposed by an author claiming that any attempt to inject realism in physical theory is bound to lead to inconsistencies. In this paper the author shows that the mentioned paradox is not such a one and that at present there are no reasons to reject realism.
Holism, physical theories and quantum mechanics
NASA Astrophysics Data System (ADS)
Seevinck, M. P.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.
Time and the foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Pashby, Thomas
Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.
Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...
Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...
Time in classical and in quantum mechanics
NASA Astrophysics Data System (ADS)
Elçi, A.
2010-07-01
This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.
Quantum Mechanics and the Interpretation Problem
NASA Astrophysics Data System (ADS)
Lonney, Lawrence William, Jr.
1990-01-01
Although many well articulated approaches to theory choice exist, no general approach to interpretation choice is available. This lacking is particularly troublesome for quantum mechanics because its mathematical formalism is associated with many well-developed interpretations. The lack of a method for choosing among the various interpretations of quantum mechanics has motivated the construction of this dissertation. The search for an appropriate method focuses on two areas: attempts to establish the superiority of one particular interpretation of quantum mechanics over another and general methods for choosing one theory over another. Regarding the former area, two attempts to choose the Statistical Ensemble interpretation of quantum mechanics over the Copenhagen interpretation are analyzed. One of these is authored by L. E. Ballentine and the other by J. L. Park. The conclusion of this analysis is that both attempts did not succeed and a general approach to interpretation choice could not be extracted from either. The desired approach was eventually found in one of the general methods for choosing among theories. The essential element of this approach to interpretation choice lies in the recognition that each interpretation contains the seed of a unique research program. If the program is cultivated, it can eventually be judged relative to others which have sprouted from the same theory. The criteria for such a judgment are contained in the Methodology of Scientific Research Programmes approach to theory choice. This method is applied to the Statistical Ensemble and Copenhagen interpretations of quantum mechanics. Even though it did not result in an immediate choice between the two, it did provide guidance for identifying what is needed to make such a choice.
Quantum mechanical studies of carbon structures
Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.
2015-10-01
Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.
Quantum mechanics of 4-derivative theories.
Salvio, Alberto; Strumia, Alessandro
2016-01-01
A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm.
Global and local horizon quantum mechanics
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Giusti, Andrea
2017-02-01
Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical "Hamiltonian" constraint that relates the gravitational radius to the ADM mass, thus giving rise to a "horizon wave-function". This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner-Sharp mass function of the quantum source, provided its energy spectrum is determined by spatially localised modes.
A Primer on Resonances in Quantum Mechanics
Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara
2008-11-13
After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.
Quantum mechanical coherence, resonance, and mind
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin
2004-01-01
A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.
``the Human BRAIN & Fractal quantum mechanics''
NASA Astrophysics Data System (ADS)
Rosary-Oyong, Se, Glory
In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.
Principle of Least Action and Approximations in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kobe, Donald
2008-03-01
A Lagrangian together with the Principle of Least Action (PLA) is a unifying approach used in all areas of physics to derive their fundamental equations. In quantum mechanics this approach can be used to derive the Schr"odinger equation. The PLA may also be used to obtain approximate equations in quantum mechanics by using time-dependent trial wave functions. For a system with a time-independent Hamiltonian the PLA can be reduced to the Rayleigh-Ritz variational principle of time-independent quantum mechanics. For a system of many bosons a trial wave function that is a product of time-dependent single particle wave functions may be used in the PLA to obtain the time-dependent Gross-Pitaeveski equation, which is useful in describing a Bose- Einstein condensate. For a system of many fermions a trial wave function that is a product of time-dependent single particle orbitals may be used in the PLA to obtain the time-dependent Hartree-Fock equations, which are useful in atomic and nuclear physics.
Fundamental Mechanisms of Roughening and Smoothing During Thin Film Deposition
Headrick, Randall
2016-03-18
In this research program, we have explored the fundamental limits for thin film deposition in both crystalline and amorphous (i.e. non-crystalline) materials systems. For vacuum-based physical deposition processes such as sputter deposition, the background gas pressure of the inert gas (usually argon) used as the process gas has been found to be a key variable. Both a roughness transition and stress transition as a function of pressure have been linked to a common mechanism involving collisions of energetic particles from the deposition source with the process inert gas. As energetic particles collide with gas molecules in the deposition process they lose their energy rapidly if the pressure (and background gas density) is above a critical value. Both roughness and stress limit important properties of thin films for applications. In the area of epitaxial growth we have also discovered a related effect; there is a critical pressure below which highly crystalline layers grow in a layer-by-layer mode. This effect is also though to be due to energetic particle thermalization and scattering. Several other important effects such as the observation of coalescence dominated growth has been observed. This mode can be likened to the behavior of two-dimensional water droplets on the hood of a car during a rain storm; as the droplets grow and touch each other they tend to coalesce rapidly into new larger circular puddles, and this process proceeds exponentially as larger puddles overtake smaller ones and also merge with other large puddles. This discovery will enable more accurate simulations and modeling of epitaxial growth processes. We have also observed that epitaxial films undergo a roughening transition as a function of thickness, which is attributed to strain induced by the crystalline lattice mismatch with the substrate crystal. In addition, we have studied another physical deposition process called pulsed laser deposition. It differs from sputter deposition due to the
Micronization processes with supercritical fluids: fundamentals and mechanisms.
Martín, A; Cocero, M J
2008-02-14
Supercritical fluid techniques for materials precipitation have been proposed as an alternative to conventional precipitation processes as they allow to improve the performance of these processes in terms of reduction of particle size and control of morphology and particle size distribution, without degradation or contamination of the product. These techniques have received much attention during the last years, and their feasibility and performance have been experimentally demonstrated for many substances. One of the main pending tasks is the development of a systematic procedure for the design and scale-up of these processes. This requires not only empirical knowledge, but also information about the fundamentals of the process. This work aims to review the published literature dealing with a fundamental investigation or modeling of supercritical fluid precipitation processes.
A systems approach to theoretical fluid mechanics: Fundamentals
NASA Technical Reports Server (NTRS)
Anyiwo, J. C.
1978-01-01
A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.
The Pondicherry interpretation of quantum mechanics: An overview
NASA Astrophysics Data System (ADS)
Mohrhoff, U.
2005-02-01
An overview of the Pondicherry interpretation of quantum mechanics is pre- sented. This interpretation proceeds from the recognition that the fundamental theoreti- cal framework of physics is a probability algorithm, which serves to describe an objective fuzziness (the literal meaning of Heisenberg's term `Unschärfe', usually mistranslated as `uncertainty') by assigning objective probabilities to the possible outcomes of unperformed measurements. Although it rejects attempts to construe quantum states as evolving onto- logical states, it arrives at an objective description of the quantum world that owes nothing to observers or the goings-on in physics laboratories. In fact, unless such attempts are rejected, quantum theory's true ontological implications cannot be seen. Among these are the radically relational nature of space, the numerical identity of the corresponding relata, the incomplete spatio-temporal differentiation of the physical world, and the con- sequent top-down structure of reality, which defies attempts to model it from the bottom up, whether on the basis of an intrinsically differentiated space-time manifold or out of a multitude of individual building blocks.
Dummett vs Bell on quantum mechanics
NASA Astrophysics Data System (ADS)
Ben-Menahem, Yemima
The purpose of this paper is to cast doubt on the common allegation that quantum mechanics (QM) is incompatible with realism. I argue that the results usually considered inimical to realism, notably the violation of Bells inequality, in fact play the opposite role-they support realism. The argument is not intended, however, to demonstrate realism or refute its alternatives as general metaphysical positions. It is directed specifically at the view that QM differs from classical mechanics in that, unlike classical mechanics, it is not amenable to a realist interpretation.
Hidden variables and nonlocality in quantum mechanics
NASA Astrophysics Data System (ADS)
Hemmick, Douglas Lloyd
1997-05-01
Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call
O the Verge of Collapse: Modal Interpretations of Quantum Mechanics.
NASA Astrophysics Data System (ADS)
Ruetsche, Laura
1995-01-01
The conjunction of Schrodinger dynamics and the usual way of thinking about the conditions under which quantum systems exhibit determinate values implies that measurements don't have outcomes. The orthodox fix to this quantum measurement problem is von Neumann's postulate of measurement collapse, which suspends Schrodinger dynamics in measurement contexts. Contending that the fundamental dynamical law of quantum theory breaks down every time we test the theory empirically, the collapse postulate is unsatisfactory. Recently philosophers (e.g., van Fraassen and Healey) and physicists (e.g., Kochen and Dieks) have proposed a less violent solution to the measurement problem. Their modal interpretations of quantum mechanics advocate unusual ways of thinking about the situations under which quantum systems exhibit determinate observable values, semantics which reconcile determinate measurement outcomes with universal Schrodinger dynamics. Thus modal interpretations hold out hope that quantum theory is complete and exceptionless. This dissertation tempers that hope. I consider the modal approach to the neglected problem of state preparation. A promising modal account exploits standard quantum transition probabilities. But, I claim, modal interpretations must subject these transition probabilities to a consistency constraint which they can be shown to violate. Non-standard transition probabilities might avoid this inconsistency, but they would also introduce novel dynamics, and so undo the modal triumph of taking Schrodinger dynamics to be complete and universal. Next I consider Albert and Loewer's assault on modal accounts of "error-prone" measurements. I argue that the Albert-Loewer problem is more general than Albert, Loewer, or their critics appreciate, and that the Araki-Yanase theorem implies the existence of a class of observables whose error-free measurements succumb to the Albert-Loewer problem. I review modal responses to Albert and Loewer which appeal to the
Quantum-Mechanical Prediction of Nanoscale Photovoltaics.
Zhang, Yu; Meng, LingYi; Yam, ChiYung; Chen, GuanHua
2014-04-03
Previous simulations of photovoltaic devices are based on classical models, which neglect the atomistic details and quantum-mechanical effects besides the dependence on many empirical parameters. Here, within the nonequilibrium Green's function formalism, we present a quantum-mechanical study of the performance of inorganic nanowire-based photovoltaic devices. On the basis of density-functional tight-binding theory, the method allows simulation of current-voltage characteristics and optical properties of photovoltaic devices without relying on empirical parameters. Numerical studies of silicon nanowire-based devices of realistic sizes with 10 000 atoms are performed, and the results indicate that atomistic details and nonequilibrium conditions have a clear impact on the photoresponse of the devices.
Projection quantum mechanics and neutrino mixing
NASA Astrophysics Data System (ADS)
Góźdź, A.; Góźdź, M.
2017-03-01
The theory of neutrino oscillations rests on the assumption, that the interaction basis and the physical (mass) basis of neutrino states are different. Therefore neutrino is produced in a certain welldefined superposition of three mass eigenstates, which propagate separately and may be detected as a different superposition. This is called flavor oscillations. It is, however, not clear why neutrinos behave this way, i.e., what is the underlying mechanism which leads to the production of a superposition of physical states in a single reaction. In this paper we argue, that one of the reasons may be connected with the temporal structure of the process. In order to discuss the role of time in processes on the quantum level, we use a special formulation of the quantum mechanics, which is based on the projection time evolution. We arrive at the conclusion, that for short reaction times the formation of a superposition of states of similar masses is natural.
Quantum statistical mechanics in arithmetic topology
NASA Astrophysics Data System (ADS)
Marcolli, Matilde; Xu, Yujie
2017-04-01
This paper provides a construction of a quantum statistical mechanical system associated to knots in the 3-sphere and cyclic branched coverings of the 3-sphere, which is an analog, in the sense of arithmetic topology, of the Bost-Connes system, with knots replacing primes, and cyclic branched coverings of the 3-sphere replacing abelian extensions of the field of rational numbers. The operator algebraic properties of this system differ significantly from the Bost-Connes case, due to the properties of the action of the semigroup of knots on a direct limit of knot groups. The resulting algebra of observables is a noncommutative Bernoulli product. We describe the main properties of the associated quantum statistical mechanical system and of the relevant partition functions, which are obtained from simple knot invariants like genus and crossing number.
The preparation of states in quantum mechanics
Fröhlich, Jürg; Schubnel, Baptiste
2016-04-15
The important problem of how to prepare a quantum mechanical system, S, in a specific initial state of interest—e.g., for the purposes of some experiment—is addressed. Three distinct methods of state preparation are described. One of these methods has the attractive feature that it enables one to prepare S in a preassigned initial state with certainty, i.e., the probability of success in preparing S in a given state is unity. This method relies on coupling S to an open quantum-mechanical environment, E, in such a way that the dynamics of S∨E pulls the state of S towards an “attractor,” which is the desired initial state of S. This method is analyzed in detail.
Applications of computational quantum mechanics
NASA Astrophysics Data System (ADS)
Temel, Burcin
This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts
A quantum mechanics glimpse to standard cosmology
Barbosa-Cendejas, N.; Reyes, M.
2010-07-12
In this work we present a connection between a standard cosmology model for inflation and quantum mechanics. We consider a time independent Schroedinger type equation derived from the equations of motion for a single scalar field in a flat space time with a FRW metric and a cosmological constant; the fact that the equation of motion is precisely a Schroedinger equation allows us to investigate on the algebraic relations between the two models and probe the consequences derived from this point of view.
Collocation method for fractional quantum mechanics
Amore, Paolo; Hofmann, Christoph P.; Saenz, Ricardo A.; Fernandez, Francisco M.
2010-12-15
We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schroedinger equation on a uniform grid. The different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel-Kramers-Brillouin analysis is performed.
Grounding quantum probability in psychological mechanism.
Love, Bradley C
2013-06-01
Pothos & Busemeyer (P&B) provide a compelling case that quantum probability (QP) theory is a better match to human judgment than is classical probability (CP) theory. However, any theory (QP, CP, or other) phrased solely at the computational level runs the risk of being underconstrained. One suggestion is to ground QP accounts in mechanism, to leverage a wide range of process-level data.
Hunting for Snarks in Quantum Mechanics
Hestenes, David
2009-12-08
A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.
Quantum fundamentalism: Jordan algebraic superselection, entangled copying and time-travel
NASA Astrophysics Data System (ADS)
Lopata, Paul A.
2005-11-01
This thesis consists of three parts: In the first, we introduce two generalizations of the deterministic quantum cloning process, called enscription and translation. Enscription uses entanglement in order to achieve the "copying" of (certain) sets of distinct quantum states, called texts, which are not necessarily orthogonal. Translation is a further generalization which allows us to completely determine all "translatable" texts. Furthermore, translation displays a deep connection to the mathematical theory of graphs. In the second part of the thesis, we study deterministic quantum cloning in the presence of closed timelike curves, based upon the techniques developed by David Deutsch. We show that it is possible to clone more general texts than is possible without CTCs. We then demonstrate that cloning all texts is still not possible, even in the presence of a closed timelike curve. In the third part, we introduce an axiomatization of certain simple quantum mechanical models, based on finite-dimensional formally-real Jordan algebras. We show that this approach provides an elegant framework in which to discuss the phenomenon of superselection.
Classical and quantum-mechanical state reconstruction
NASA Astrophysics Data System (ADS)
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-07-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that used in medical imaging known as computer-aided tomography. It is remarkable that this method can be taken over to quantum mechanics, where it leads to a description of the quantum state in terms of the Wigner function which, although it may take on negative values, plays the role of the probability density in phase space in classical physics. We then present another approach to quantum state reconstruction based on the notion of mutually unbiased bases—a notion of current research interest, for which we give explanatory remarks—and indicate the relation between these two approaches. Since the subject of state reconstruction is rarely considered at the level of textbooks, the presentation in this paper is aimed at graduate-level readers.
BOOK REVIEW: Mind, Matter and Quantum Mechanics (2nd edition)
NASA Astrophysics Data System (ADS)
Mahler, G.
2004-07-01
Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried to expel the non-classical nature of quantum mechanics. More recent proposals intend to complete quantum mechanics not within mechanics proper but on a `higher (synthetic) level'; by means of a combination with gravitation theory (R Penrose), with quantum information theory (C M Caves, C A Fuchs) or with psychology and brain science (H P Stapp). I think it is fair to say that in each case the combination is with a subject that, per se, suffers from a very limited understanding that is even more severe than that of quantum mechanics. This was acceptable, though, if it could convincingly be argued that scientific progress desperately needs to join forces. Quantum mechanics of a closed system was a beautiful and well understood theory with its respective state being presented as a point on a deterministic trajectory in Liouville space---not unlike the motion of a classical N-particle system in its 6N-dimensional phase-space. Unfortunately, we need an inside and an outside view, we need an external reference frame, we need an observer. This unavoidable partition is the origin of most of the troubles we have with quantum mechanics. A pragmatic solution is introduced in the form of so-called measurement postulates: one of the various incompatible properties of the system under consideration is supposed to be realized (i.e. to become a fact, to be defined without fundamental dispersion) based on `instantaneous' projections within some externally selected measurement basis. As a result, the theory becomes essentially statistical rather than deterministic
Electronics: Mott Transistor: Fundamental Studies and Device Operation Mechanisms
2016-03-21
doped SmNiO3. Upon electron doping via hydrogenation, a strongly correlated Mott insulating state is formed in the nickelate. It is therefore...important to understand the carrier transport mechanism in the doped nickelate where carriers are strongly 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...switches.The report presents our progress in studying electron transport mechanisms in doped SmNiO3. Upon electron doping via hydrogenation, a strongly
Quantum mechanics with coordinate dependent noncommutativity
NASA Astrophysics Data System (ADS)
Kupriyanov, V. G.
2013-11-01
Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.
Quantum mechanics with coordinate dependent noncommutativity
Kupriyanov, V. G.
2013-11-15
Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.
An approach to nonstandard quantum mechanics
NASA Astrophysics Data System (ADS)
Raab, A.
2004-12-01
We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to nonrelativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the Mo/ller wave operators and the S-matrix.
Quantum physics explains Newton's laws of motion
NASA Astrophysics Data System (ADS)
Ogborn, Jon; Taylor, Edwin F.
2005-01-01
Newton was obliged to give his laws of motion as fundamental axioms. But today we know that the quantum world is fundamental, and Newton’s laws can be seen as consequences of fundamental quantum laws. This article traces this transition from fundamental quantum mechanics to derived classical mechanics.
Fundamental electronic mechanisms limiting the performance of solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Sah, C.-T.
1977-01-01
Attention is focused on distortion in the energy band, and carrier recombination and generation rates (lifetimes), as the two dominant mechanisms. Spatial dependences associated with these two mechanisms, in the direction normal to the surface illuminated by the sun and in the direction tangential to that surface, are also emphasized as crucial factors in governing the efficiency of solar cells. Electronic parameters for the set of differential equations characterizing transport, recombination, and generation of carriers, and interband and band-bound transition rates, are studied.
Indirect Acquisition of Information in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ballesteros, M.; Fraas, M.; Fröhlich, J.; Schubnel, B.
2016-02-01
Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.
Quantum mechanical hamiltonian models of turing machines
NASA Astrophysics Data System (ADS)
Benioff, Paul
1982-11-01
Quantum mechanical Hamiltonian models, which represent an aribtrary but finite number of steps of any Turing machine computation, are constructed here on a finite lattice of spin-1/2 systems. Different regions of the lattice correspond to different components of the Turing machine (plus recording system). Successive states of any machine computation are represented in the model by spin configuration states. Both time-independent and time-dependent Hamiltonian models are constructed here. The time-independent models do not dissipate energy or degrade the system state as they evolve. They operate close to the quantum limit in that the total system energy uncertainty/computation speed is close to the limit given by the time-energy uncertainty relation. However, the model evolution is time global and the Hamiltonian is more complex. The time-dependent models do not degrade the system state. Also they are time local and the Hamiltonian is less complex.
Bohmian Mechanics In A Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Haven, Emmanuel
2006-01-01
In the so called `causal' interpretation of quantum mechanics, an electron is considered as a particle and such particle is influenced not only by a classical but also by a so called quantum potential. This idea was developed by Professor Bohm in an important paper. In this paper we use some of the basics of this interpretation in a financial option pricing environment. The causal interpretation allows for trajectories. Path breaking work by Professors Bohm and Hiley and Khrennikov and Choustova have made that the causal interpretation is a step closer to potential applications in social science. In this paper we consider the wave function as a wave of information. We consider the gradient of the phase of this wave function and show how the option price could be influenced by this gradient.
Unstable trajectories and the quantum mechanical uncertainty
Moser, Hans R.
2008-08-15
There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.
Unstable trajectories and the quantum mechanical uncertainty
NASA Astrophysics Data System (ADS)
Moser, Hans R.
2008-08-01
There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.
Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C
2014-06-13
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
QUANTUM MECHANICS: Enhanced: Schrodinger's Cat Is Out of the Hat.
Tesche, C
2000-10-27
In 1935, Erwin Schrödinger suggested his famous gedanken experiment of the cat that is simultaneously "dead" and "alive" inside its box until the box is opened. But as Tesche explains in her Perspective, such a macroscopic manifestation of quantum mechanics has remained elusive until recently. The experiments by van der Wal et al. are an important step toward demonstrating that quantum mechanics can describe macroscopic phenomena. The approach may be exploited in quantum computing and quantum cryptography.
Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation
Reed, B W; Browning, N D; Santala, M K; LaGrange, T; Gilmer, G H; Masiel, D J; Campbell, G H; Raoux, S; Topuria, T; Meister, S; Cui, Y
2011-01-04
Phase transformations are ubiquitous, fundamental phenomena that lie at the heart of many structural, optical and electronic properties in condensed matter physics and materials science. Many transformations, especially those occurring under extreme conditions such as rapid changes in the thermodynamic state, are controlled by poorly understood processes involving the nucleation and quenching of metastable phases. Typically these processes occur on time and length scales invisible to most experimental techniques ({micro}s and faster, nm and smaller), so our understanding of the dynamics tends to be very limited and indirect, often relying on simulations combined with experimental study of the ''time infinity'' end state. Experimental techniques that can directly probe phase transformations on their proper time and length scales are therefore key to providing fundamental insights into the whole area of transformation physics and materials science. LLNL possesses a unique dynamic transmission electron microscope (DTEM) capable of taking images and diffraction patterns of laser-driven material processes with resolution measured in nanometers and nanoseconds. The DTEM has previously used time-resolved diffraction patterns to quantitatively study phase transformations that are orders of magnitude too fast for conventional in situ TEM. More recently the microscope has demonstrated the ability to directly image a reaction front moving at {approx}13 nm/ns and the nucleation of a new phase behind that front. Certain compound semiconductor phase change materials, such as Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), Sb{sub 2}Te and GeSb, exhibit a technologically important series of transformations on scales that fall neatly into the performance specifications of the DTEM. If a small portion of such material is heated above its melting point and then rapidly cooled, it quenches into an amorphous state. Heating again with a less intense pulse leads to recrystallization into a vacancy
NASA Astrophysics Data System (ADS)
Penso Mula, Jorge Antonio
Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling services have been well known problems in the petrochemical, power and nuclear industries. Published literature and industry surveys show that similar problems have been occurring during the last 50 years. Understanding the causes of cracking and bulging would lead to improvements in the reliability of these pressure vessels. This study attempts to add information required for improving the knowledge and fundamental understanding of these problems. Cracking and bulging, most often in the weld areas, commonly experienced in delayed coking units (e.g. coke drums) in oil refineries are typical examples. The coke drum was selected for this study because of the existing field experience and past industrial investigation results that were available to serve as the baseline references for the analytical studies performed for this dissertation. Another reason for selecting the delayed coking units for this study was due to their high economical yields. Shutting down these units would cause a high negative economic impact on the refinery operations. Several failure mechanisms were hypothesized. The finite element method was used to analyze these significant variables and to verify the hypotheses. In conclusion, a fundamental explanation of the occurrence of bulging and cracking in pressure vessels in multiphase environments has been developed. Several important factors have been identified, including the high convection coefficient of the boiling layer during filling and quenching, the mismatch in physical, thermal and mechanical properties in the dissimilar weld of the clad plates and process conditions such as heating and quenching rate and warming time. Material selection for coke drums should consider not only fatigue strength but also corrosion resistance at high temperatures and low temperatures. Cracking occurs due to low cycle fatigue and corrosion. The FEA
The Simpson's paradox in quantum mechanics
NASA Astrophysics Data System (ADS)
Selvitella, Alessandro
2017-03-01
In probability and statistics, the Simpson's paradox is a paradox in which a trend that appears in different groups of data disappears when these groups are combined, while the reverse trend appears for the aggregate data. In this paper, we give some results about the occurrence of the Simpson's paradox in quantum mechanics. In particular, we prove that the Simpson's paradox occurs for solutions of the quantum harmonic oscillator both in the stationary case and in the non-stationary case. In the non-stationary case, the Simpson's paradox is persistent: if it occurs at any time t =t ˜ , then it occurs at any time t ≠t ˜ . Moreover, we prove that the Simpson's paradox is not an isolated phenomenon, namely, that, close to initial data for which it occurs, there are lots of initial data (a open neighborhood), for which it still occurs. Differently from the case of the quantum harmonic oscillator, we also prove that the paradox appears (asymptotically) in the context of the nonlinear Schrödinger equation but at intermittent times.
Quantum Mechanical Studies of Molecular Hyperpolarizabilities.
1980-04-30
exponent , reflects the screening of an electron in a given orbital by the interior electrons in the atom or molecule. In practice, when studying...Basis sets have evolved over the years in molecular quantum mechanics until sets of orbital exponents for the different atoms composing the molecule have...and R. P. Hurst , J. Chem. Phys. 46, 2356 (1967); S. P. LickmannI and J. W. Moskowitz, J. Chem. Phys. 54, 3622 7T971). 26. T. H. Dunning, J. Chem. Phys
Supersymmetric quantum mechanics and its applications
Sukumar, C.V.
2004-12-23
The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.
Scattering in PT-symmetric quantum mechanics
Cannata, Francesco . E-mail: Francesco.Cannata@bo.infn.it; Dedonder, Jean-Pierre . E-mail: dedonder@paris7.jussieu.fr; Ventura, Alberto . E-mail: Alberto.Ventura@bologna.enea.it
2007-02-15
A general formalism is worked out for the description of one-dimensional scattering in non-hermitian quantum mechanics and constraints on transmission and reflection coefficients are derived in the cases of P, T or PT invariance of the Hamiltonian. Applications to some solvable PT-symmetric potentials are shown in detail. Our main original results concern the association of reflectionless potentials with asymptotic exact PT symmetry and the peculiarities of separable kernels of non-local potentials in connection with Hermiticity, T invariance and PT invariance.
BiHermitian supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2007-04-01
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kähler manifolds recently developed by Gualtieri in [33]. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li in [9].
Indivisibility, Complementarity and Ontology: A Bohrian Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Roldán-Charria, Jairo
2014-12-01
The interpretation of quantum mechanics presented in this paper is inspired by two ideas that are fundamental in Bohr's writings: indivisibility and complementarity. Further basic assumptions of the proposed interpretation are completeness, universality and conceptual economy. In the interpretation, decoherence plays a fundamental role for the understanding of measurement. A general and precise conception of complementarity is proposed. It is fundamental in this interpretation to make a distinction between ontological reality, constituted by everything that does not depend at all on the collectivity of human beings, nor on their decisions or limitations, nor on their existence, and empirical reality constituted by everything that not being ontological is, however, intersubjective. According to the proposed interpretation, neither the dynamical properties, nor the constitutive properties of microsystems like mass, charge and spin, are ontological. The properties of macroscopic systems and space-time are also considered to belong to empirical reality. The acceptance of the above mentioned conclusion does not imply a total rejection of the notion of ontological reality. In the paper, utilizing the Aristotelian ideas of general cause and potentiality, a relation between ontological reality and empirical reality is proposed. Some glimpses of ontological reality, in the form of what can be said about it, are finally presented.
The Achilles tendon: fundamental properties and mechanisms governing healing
Freedman, Benjamin R.; Gordon, Joshua A.; Soslowsky, Louis J.
2014-01-01
Summary This review highlights recent research on Achilles tendon healing, and comments on the current clinical controversy surrounding the diagnosis and treatment of injury. The processes of Achilles tendon healing, as demonstrated through changes in its structure, composition, and biomechanics, are reviewed. Finally, a review of tendon developmental biology and mechano transductive pathways is completed to recognize recent efforts to augment injured Achilles tendons, and to suggest potential future strategies for therapeutic intervention and functional tissue engineering. Despite an abundance of clinical evidence suggesting that current treatments and rehabilitation strategies for Achilles tendon ruptures are equivocal, significant questions remain to fully elucidate the basic science mechanisms governing Achilles tendon injury, healing, treatment, and rehabilitation. PMID:25332943
Fundamental mechanisms in flue gas conditioning. Final report
Snyder, T.R.; Bush, P.V.; Dahlin, R.S.
1996-03-20
The US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC) initiated this project as part of a program to study the control of fine particles from coal combustion. Our project focus was flue gas conditioning. Various conditioning processes have lowered operating costs and increased collection efficiency at utility particulate control devices. By improving fine particle collection, flue gas conditioning also helps to control the emission of toxic metals, which are concentrated in the fine particle fraction. By combining a review of pertinent literature, laboratory characterization of a variety of fine powders and ashes, pilot-scale studies of conditioning mechanisms, and field experiences, Southern Research Institute has been able to describe many of the key processes that account for the effects that conditioning can have on fine-particle collection. The overall goal of this research project was to explain the mechanisms by which various flue gas conditioning processes alter the performance of particulate control devices. Conditioning involves the modification of one or more of the parameters that determine the magnitude of the forces acting on the fly ash particles. Resistivity, chemistry, cohesivity, size distribution, and particle morphology are among the basic properties of fly ash that significantly influence fine particle collection. Modifications of particulate properties can result in improved or degraded control device performance. These modifications can be caused by (1) changes to the process design or operation that affect properties of the flue gas, (2) addition of particulate matter such as flue-gas desulfurization sorbents to the process effluent stream, (3) injection of reactive gases or liquids into the flue gas. We recommend that humidification be seriously considered as a flue gas conditioning option. 80 refs., 69 figs., 23 tabs.
Liu, Junjun; Hamza, Adel; Zhan, Chang-Guo
2009-08-26
The fundamental reaction mechanism of cocaine esterase (CocE)-catalyzed hydrolysis of (-)-cocaine and the corresponding free energy profile have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations. On the basis of the QM/MM-FE results, the entire hydrolysis reaction consists of four reaction steps, including the nucleophilic attack on the carbonyl carbon of (-)-cocaine benzoyl ester by the hydroxyl group of Ser117, dissociation of (-)-cocaine benzoyl ester, nucleophilic attack on the carbonyl carbon of (-)-cocaine benzoyl ester by water, and finally dissociation between the (-)-cocaine benzoyl group and Ser117 of CocE. The third reaction step involving the nucleophilic attack of a water molecule was found to be rate-determining, which is remarkably different from (-)-cocaine hydrolysis catalyzed by wild-type butyrylcholinesterase (BChE; where the formation of the prereactive BChE-(-)-cocaine complex is rate-determining) or its mutants containing Tyr332Gly or Tyr332Ala mutation (where the first chemical reaction step is rate-determining). Besides, the role of Asp259 in the catalytic triad of CocE does not follow the general concept of the "charge-relay system" for all serine esterases. The free energy barrier calculated for the rate-determining step of CocE-catalyzed hydrolysis of (-)-cocaine is 17.9 kcal/mol, which is in good agreement with the experimentally derived activation free energy of 16.2 kcal/mol. In the present study, where many sodium ions are present, the effects of counterions are found to be significant in determining the free energy barrier. The finding of the significant effects of counterions on the free energy barrier may also be valuable in guiding future mechanistic studies on other charged enzymes.
Fundamental studies of the mechanisms of slag deposit formation
Austin, L.G.; Tangsathitkulchai, M.; Gomez, C.; Malchenson, D.; Benson, S.
1985-06-01
A laboratory test furnace was used to investigate the slagging tendencies of pulverized coal under conditions which simulate the combustion conditions in a full-scale boiler. The accomplishments during this reporting period include: (1) Preliminary results of tests using polymer-mineral mixtures have shown that the deposits produced are similar in morphology to deposits produced from coals. (2) Temperature profiles in the region bewteen the constrictor and the substrate were determined by the use of pyrometric cones. (3) The performance of the fluidized spouting-bed feeder was tested to determine whether it was feeding a representative sample of coal. (4) Quantitative SEM-microprobe analysis was performed on a cross-section of an Indian Head lignite ash deposit. The results showed trends in composition with respect to height and distance from the centerline to outer edges of the deposit. Development work has continued on the computer-controlled SEM system. The sintering characteristics of Beulah and Upper Freeport fly ashes were examined. The compressive strength and shrinkage of the Beulah fly ash remained essentially unchanged with time at heat treatment temperatures below 1150/sup 0/C, whereas significant changes in compressive strength and shrinkage occurred in the sintering of the Upper Freeport fly ash. Strength tests of the HF-washed Upper Freeport fly ash were performed to verify the hypothesis that glassy phases in fly ash promote deposit strength. In addition, sintering studies on a model system consisting of a soda glass and alumina mixture were performed to illustrate the viscous flow mechanism of sintering. 11 refs., 29 figs., 7 tabs.
Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons
NASA Astrophysics Data System (ADS)
Scammell, H. D.; Sushkov, O. P.
2017-01-01
Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.
Implications of Einstein-Weyl Causality on Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bendaniel, David
A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.
A Survey of Physical Principles Attempting to Define Quantum Mechanics
NASA Astrophysics Data System (ADS)
Oas, Gary; Acacio de Barros, J.
Quantum mechanics, one of the most successful theories in the history of science, was created to account for physical systems not describable by classical physics. Though it is consistent with all experiments conducted thus far, many of its core concepts (amplitudes, global phases, etc.) can not be directly accessed and its interpretation is still the subject of intense debate, more than 100 years since it was introduced. So, a fundamental question is why this particular mathematical model is the one that nature chooses, if indeed it is the correct model. In the past two decades there has been a renewed effort to determine what physical or informational principles define quantum mechanics. In this chapter, recent attempts at establishing reasonable physical principles are reviewed and their degree of success is tabulated. An alternative approach using joint quasi-probability distributions is shown to provide a common basis of representing most of the proposed principles. It is argued that having a common representation of the principles can provide intuition and guidance to relate current principles or advance new principles. The current state of affairs, along with some alternative views are discussed.
On the consistent histories approach to quantum mechanics
Dowker, F. |; Kent, A.
1996-03-01
We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnes, Gell-Man, and Hartle, and we describe the classifications of consistent sets. We illustrate some general features of consistent sets by a few lemmas and examples. We also consider various interpretations of the formalism, and we examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnes characterization of true statements---statements that can be deduced unconditionally in his interpretation---is incorrect. We examine critically Gell-Mann and Hartle`s interpretation of the formalism, and in particular, their discussions of communication, prediction, and retrodiction, and we conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yet-unknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.
Fundamental studies on silicon dioxide chemical mechanical polishing
NASA Astrophysics Data System (ADS)
Mahajan, Uday
Chemical Mechanical Polishing (CMP) has lately been adopted on a large scale by the semiconductor industry for planarizing and patterning metal and dielectric films. Additionally, CMP has been used for hundreds of years for optical polishing. Still, several aspects of this process remain poorly understood. In this study, some results on CMP of SiO2 are presented with a view to characterizing the effects of abrasive properties and slurry chemistry on the polishing process. Additionally, some results from a novel in-situ friction force measuring instrument are also presented. The friction force results showed the effect of several parameters such as surface roughness, solution pH and ionic strength on wafer-pad interactions. Additionally, monitoring the friction as a function of velocity showed that the transition from boundary lubrication to full fluid-film lubrication depends on the roughness (conditioning) of the polishing pad. The parameters investigated in the polishing experiments include abrasive size and concentration. From the experimental results, it was found that an optimum concentration exists for each abrasive size, which shifts to lower values and becomes narrower as particle size increases. From calculations, this was attributed to a decreased ability of the large particles to chemically modify the surface of the SiO2 films. The smaller particles, having a much larger surface area, are able to better adsorb dissolution and abrasion products at high concentrations, thus leading to high removal rates under those conditions. Studies on the effect of slurry ionic strength showed that the ability of a metal ion to shield the surface charge on the surfaces interacting during polishing is what determined removal rate. This was due to the reduced electrostatic repulsion between the surfaces, which resulted in better contact and thus higher polishing rates. These results were corroborated by the earlier friction force measurements. Finally, the influence of
Quantum Mechanical Study of Nanoscale MOSFET
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.
The formal path integral and quantum mechanics
Johnson-Freyd, Theo
2010-11-15
Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.
Differentiability of correlations in realistic quantum mechanics
Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique; Tresser, Charles
2015-09-15
We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.
Quantum mechanical wavefunction: visualization at undergraduate level
NASA Astrophysics Data System (ADS)
Chhabra, Mahima; Das, Ritwick
2017-01-01
Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.
Mathematical model I. Electron and quantum mechanics
NASA Astrophysics Data System (ADS)
Gadre, Nitin Ramchandra
2011-03-01
The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.
Molecular model with quantum mechanical bonding information.
Bohórquez, Hugo J; Boyd, Russell J; Matta, Chérif F
2011-11-17
The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules.
Einstein's Boxes: Incompleteness of Quantum Mechanics Without a Separation Principle
NASA Astrophysics Data System (ADS)
Held, Carsten
2015-09-01
Einstein made several attempts to argue for the incompleteness of quantum mechanics (QM), not all of them using a separation principle. One unpublished example, the box parable, has received increased attention in the recent literature. Though the example is tailor-made for applying a separation principle and Einstein indeed applies one, he begins his discussion without it. An analysis of this first part of the parable naturally leads to an argument for incompleteness not involving a separation principle. I discuss the argument and its systematic import. Though it should be kept in mind that the argument is not the one Einstein intends, I show how it suggests itself and leads to a conflict between QM's completeness and a physical principle more fundamental than the separation principle, i.e. a principle saying that QM should deliver probabilities for physical systems possessing properties at definite times.
A quantum protective mechanism in photosynthesis
NASA Astrophysics Data System (ADS)
Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk
2015-03-01
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.
Quantum Mechanics for Everybody: An autonomous MOOC on EdX for nonscientists
NASA Astrophysics Data System (ADS)
Freericks, James; Cutler, Dylan; Vieira-Barbosa, Lucas
2017-01-01
We have launched a MOOC for nonscientists that teaches quantum mechanics using the Feynman methodology as outlined in his QED book and in a similar book by Daniel Styer. Using a combination of videos, voice-over powerpoint animations, computer simulations and interactive tutorials, we teach the fundamentals of quantum mechanics employing a minimum of math (high school algebra, square roots, and a little trigonometry) but going into detail on a number of complex quantum ideas. We begin with the Stern-Gerlach experiment, including delayed choice and Bell's inequality variants. Then we focus on light developing the quantum theory for partial reflection and diffraction. At this point we demonstrate the complexity of quantum physics by showing how watched and unwatched two-slit experiments behave differently and how quantum particles interfere. The four week course ends with advanced topics in light where we cover the idea of an interaction free measurement, the quantum Zeno effect and indistinguishable particles via the Hong-Ou-Mandel experiment. We hope this MOOC will reach thousands of students interesting in learning quantum mechanics without any dumbing down or the need to learn complex math. It can also be used with undergraduates to help with conceptual understanding. Funded by the National Science Foundation under grants numbered PHY-1620555 and PHY-1314295 and by Georgetown University.
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review
NASA Astrophysics Data System (ADS)
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.
van der Kamp, Marc W; Mulholland, Adrian J
2013-04-23
Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Anyons in quantum mechanics with a minimal length
NASA Astrophysics Data System (ADS)
Buisseret, Fabien
2017-02-01
The existence of anyons, i.e. quantum states with an arbitrary spin, is a generic feature of standard quantum mechanics in (2 + 1) -dimensional Minkowski spacetime. Here it is shown that relativistic anyons may exist also in quantum theories where a minimal length is present. The interplay between minimal length and arbitrary spin effects are discussed.
Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy
Grant, A.K.; Rosner, J.L. )
1994-05-01
The connection between supersymmetric quantum mechanics and the Korteweg--de Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction of the [tau] function by means of supersymmetric quantum mechanics is discussed.
Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; ...
2015-09-23
Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less
Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han
2015-09-23
Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.
Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han
2015-01-01
Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. This provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap. PMID:26394763
Wang, Feng; Karan, Niladri S; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A; Htoon, Han
2015-09-23
Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. This provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.
2014-11-30
AFRL-OSR-VA-TR-2015-0007 FUNDAMENTAL ADVANCES IN INVERSE MECHANICS TOWARDS SELF-AWARE JOHN BRIGHAM UNIVERSITY OF PITTSBURGH Final Report 12/04/2014...TITLE AND SUBTITLE Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems 5a. CONTRACT NUMBER...methods for solving inverse problems related to smart morphable structures that can evaluate their current environment and then adapt accordingly to
Surveying Instructors' Attitudes and Approaches to Teaching Quantum Mechanics
NASA Astrophysics Data System (ADS)
Siddiqui, Shabnam; Singh, Chandralekha
2010-10-01
Understanding instructors' attitudes and approaches to teaching quantum mechanics can be helpful in developing research-based learning tools. Here we discuss the findings from a survey in which 13 instructors reflected on issues related to quantum mechanics teaching. Topics included opinions about the goals of a quantum mechanics course, general challenges in teaching the subject, students' preparation for the course, comparison between their own learning of quantum mechanics vs. how they teach it and the extent to which contemporary topics are incorporated into the syllabus.
Exponential complexity and ontological theories of quantum mechanics
Montina, A.
2008-02-15
Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods.
Paul A.M. Dirac's The Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Brown, Laurie M.
2006-12-01
Paul A.M. Dirac’s book, The Principles of Quantum Mechanics, summarized the foundations of a new science, much of which was his own creation. It expressed the spirit of the new quantum mechanics, creating a descriptive language that we still use. I discuss the successive editions of Dirac’s book and their critical reception, noting changes, especially in the formulation of the general theory and in its treatment of relativistic quantum theory and quantum electrodynamics. In the case of the later editions, I discuss Dirac’s negative attitude toward renormalized quantum electrodynamics.
Tampering detection system using quantum-mechanical systems
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.
Sun, Qiming; Chan, Garnet Kin-Lic
2014-09-09
Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.
Testing quantum mechanics using third-order correlations
NASA Astrophysics Data System (ADS)
Kinsler, Paul
1996-04-01
Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of ``semiclassical theories,'' and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the ``all or nothing'' Greenberger-Horne-Zeilinger test of local hidden variable theories.
Statistical origin of classical mechanics and quantum mechanics
NASA Astrophysics Data System (ADS)
Chu, Shu-Yuan
1993-11-01
The classical action for interacting strings, obtained by generalizing the time-symmetric electrodynamics of Wheeler and Feynman, is exactly additive. The additivity of the string action suggests a connection between the area of the string world sheets and entropy. We find that the action principle of classical mechanics is the condition that the total entropy of the strings be at an extremum, and the path-integral representation of the quantum density matrix element is an approximation to the partition function of the string theory.
A Non-Intuitionist's Approach To The Interpretation Problem Of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Grelland, Hans Herlof
2005-02-01
A philosophy of physics called "linguistic empiricism" is presented and applied to the interpretation problem of quantum mechanics. This philosophical position is based on the works of Jacques Derrida. The main propositions are (i) that meaning, included the meaning attached to observations, are language-dependent and (ii) that mathematics in physics should be considered as a proper language, not necessary translatable to a more basic language of intuition and immediate experience. This has fundamental implications for quantum mechanics, which is a mathematically coherent and consistent theory; its interpretation problem is associated with its lack of physical images expressible in ordinary language.
Harmonizing General Relativity with Quantum Mechanics
NASA Astrophysics Data System (ADS)
Alfonso-Faus, Antonio
2007-04-01
Gravitation is the common underlying texture between General Relativity and Quantum Mechanics. We take gravitation as the link that can make possible the marriage between these two sciences. We use here the duality of Nature for gravitation: A continuous warped space, wave-like, and a discrete quantum gas, particle-like, both coexistent and producing an equilibrium state in the Universe. The result is a static, non expanding, spherical, unlimited and finite Universe, with no cosmological constant and no dark energy. Macht's Principle is reproduced here by the convergence of the two cosmological equations of Einstein. From this a Mass Boom concept is born given by M = t, M the mass of the Universe and t its age. Also a decreasing speed of light is the consequence of the Mass Boom, c = 1/t, which explains the Supernovae Type Ia observations without the need of expansion (nor, of course, accelerated expansion). Our Mass Boom model completely wipes out the problems and paradoxes built in the Big Bang model, like the horizon, monopole, entropy, flatness, fine tuning, etc. It also eliminates the need for inflation.
Causal localizations in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Castrigiano, Domenico P. L.; Leiseifer, Andreas D.
2015-07-01
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Internal clock formulation of quantum mechanics
NASA Astrophysics Data System (ADS)
Małkiewicz, Przemysław; Miroszewski, Artur
2017-08-01
The basic tenet of the present work is the assumption of the lack of external and fixed time in the Universe. This assumption is best embodied by general relativity, which replaces the fixed space-time structure with the gravitational field, which is subject to dynamics. The lack of time does not imply the lack of evolution but rather brings to the forefront the role of internal clocks which are some largely arbitrary internal degrees of freedom with respect to which the evolution of timeless systems can be described. We take this idea seriously and try to understand what it implies for quantum mechanics when the fixed external time is replaced by an arbitrary internal clock. We put the issue in a solid, mathematically rigorous framework. We find that the dynamical interpretation of a quantum state of a timeless system depends on the employed internal clock. In particular, we find that the continuous spectra of well-known dynamical observables like the position of a free particle on the real line may turn discrete if measured in unusual clocks. We discuss the meaning of our result for attempts at quantization of global gravitational degrees of freedom.
Causal localizations in relativistic quantum mechanics
Castrigiano, Domenico P. L. Leiseifer, Andreas D.
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Extending quantum mechanics entails extending special relativity
NASA Astrophysics Data System (ADS)
Aravinda, S.; Srikanth, R.
2016-05-01
The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
Namiki, Ryo
2011-04-15
We present experimentally testable quantum limitations on the phase-insensitive linear amplification and phase conjugation with respect to the transformation of a Gaussian-distributed set of coherent states following the footing to assess the success of continuous-variable quantum teleportation and quantum memory devices. The results enable us to compare the real device with the quantum-limited device via the feasible input of coherent states.
Gauge invariance and reciprocity in quantum mechanics
Leung, P. T.; Young, K.
2010-03-15
Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.
Quantum mechanical calculations to chemical accuracy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.
Quantum mechanics of a generalised rigid body
NASA Astrophysics Data System (ADS)
Gripaios, Ben; Sutherland, Dave
2016-05-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.
Waveform information from quantum mechanical entropy.
Funkhouser, Scott; Suski, William; Winn, Andrew
2016-06-01
Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated 'total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.
Quantum-mechanical suppression of bremsstrahlung
Becker-Szendy, R.; Keller, L.; Niemi, G.; Perl, M.; Rochester, L.; Anthony, P. |; Bosted, P.; Cavalli-Sforza, M.; Kelley, L.; Klein, S.
1994-12-01
The authors have studied quantum-mechanical suppression of bremsstrahlung of low-energy 1-500 MeV photons from high-energy 25 GeV electrons. They have measured the LPM effect, where multiple scattering of the radiating electron destroys coherence required for the emission of low-energy photons, and the dielectric effect, where the emitted photon traveling in the radiator medium interferes with itself. For the experiment, the collaboration developed a novel method of extracting a parasitic low-intensity high-energy electron beam into the fixed target area during normal SLC operation of the accelerator. The results agree quantitatively with Migdal`s calculation of the LPM effect. Surface effects, for which there is no satisfactory theoretical prediction, are visible at low photon energies. For very thin targets, the suppression disappears, as expected. Preliminary results on dielectric suppression of bremsstrahlung are in qualitative agreement with the expectation.
Time Operator in Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Khorasani, Sina
2017-07-01
It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.
Twist deformation of rotationally invariant quantum mechanics
Chakraborty, B.; Kuznetsova, Z.; Toppan, F.
2010-11-15
Noncommutative quantum mechanics in 3D is investigated in the framework of an abelian Drinfeld twist which deforms a given Hopf algebra structure. Composite operators (of coordinates and momenta) entering the Hamiltonian have to be reinterpreted as primitive elements of a dynamical Lie algebra which could be either finite (for the harmonic oscillator) or infinite (in the general case). The deformed brackets of the deformed angular momenta close the so(3) algebra. On the other hand, undeformed rotationally invariant operators can become, under deformation, anomalous (the anomaly vanishes when the deformation parameter goes to zero). The deformed operators, Taylor-expanded in the deformation parameter, can be selected to minimize the anomaly. We present the deformations (and their anomalies) of undeformed rotationally invariant operators corresponding to the harmonic oscillator (quadratic potential), the anharmonic oscillator (quartic potential), and the Coulomb potential.
On some hydrodynamical aspects of quantum mechanics
NASA Astrophysics Data System (ADS)
Spera, Mauro
2010-02-01
In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial ( i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.
On some hydrodynamical aspects of quantum mechanics
NASA Astrophysics Data System (ADS)
Spera, Mauro
2010-02-01
In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this "Schrödinger fluid", together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.
Categorical quantum mechanics II: Classical-quantum interaction
NASA Astrophysics Data System (ADS)
Coecke, Bob; Kissinger, Aleks
2016-08-01
This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.
New methods for quantum mechanical reaction dynamics
Thompson, Ward Hugh
1996-12-01
Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L^{2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC^{-} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC^{-} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H_{3}O^{-} system, providing information about the potential energy surface for the OH + H_{2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the
Reverse Causation and the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
2006-10-01
In the first part of the paper we present the transactional interpretation of quantum mechanics, a method of viewing the formalism of quantum mechanics that provides a way of visualizing quantum events and experiments. In the second part, we present an EPR gedankenexperiment that appears to lead to observer-level reverse causation. A transactional analysis of the experiment is presented. It easily accounts for the reported observations but does not reveal any barriers to its modification for reverse causation.
Henrich, Nathalie; D'Alessandro, Christophe; Doval, Boris; Castellengo, Michèle
2005-03-01
This article presents the results of glottal open-quotient measurements in the case of singing voice production. It explores the relationship between open quotient and laryngeal mechanisms, vocal intensity, and fundamental frequency. The audio and electroglottographic signals of 18 classically trained male and female singers were recorded and analyzed with regard to vocal intensity, fundamental frequency, and open quotient. Fundamental frequency and open quotient are derived from the differentiated electroglottographic signal, using the DECOM (DEgg Correlation-based Open quotient Measurement) method. As male and female phonation may differ in respect to vocal-fold vibratory properties, a distinction is made between two different glottal configurations, which are called laryngeal mechanisms: mechanism 1 (related to chest, modal, and male head register) and mechanism 2 (related to falsetto for male and head register for female). The results show that open quotient depends on the laryngeal mechanisms. It ranges from 0.3 to 0.8 in mechanism 1 and from 0.5 to 0.95 in mechanism 2. The open quotient is strongly related to vocal intensity in mechanism 1 and to fundamental frequency in mechanism 2.
NASA Astrophysics Data System (ADS)
Henrich, Nathalie; D'Alessandro, Christophe; Doval, Boris; Castellengo, Michèle
2005-03-01
This article presents the results of glottal open-quotient measurements in the case of singing voice production. It explores the relationship between open quotient and laryngeal mechanisms, vocal intensity, and fundamental frequency. The audio and electroglottographic signals of 18 classically trained male and female singers were recorded and analyzed with regard to vocal intensity, fundamental frequency, and open quotient. Fundamental frequency and open quotient are derived from the differentiated electroglottographic signal, using the DECOM (DEgg Correlation-based Open quotient Measurement) method. As male and female phonation may differ in respect to vocal-fold vibratory properties, a distinction is made between two different glottal configurations, which are called laryngeal mechanisms: mechanism 1 (related to chest, modal, and male head register) and mechanism 2 (related to falsetto for male and head register for female). The results show that open quotient depends on the laryngeal mechanisms. It ranges from 0.3 to 0.8 in mechanism 1 and from 0.5 to 0.95 in mechanism 2. The open quotient is strongly related to vocal intensity in mechanism 1 and to fundamental frequency in mechanism 2. .
Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts
ERIC Educational Resources Information Center
Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.
2010-01-01
In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…
In Defense of a Heuristic Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Healy, Eamonn F.
2010-01-01
Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Categorization of Quantum Mechanics Problems by Professors and Students
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2010-01-01
We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…
Do Free Quantum-Mechanical Wave Packets Always Spread?
ERIC Educational Resources Information Center
Klein, James R.
1980-01-01
The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…
A comparative review of four formulations of noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gouba, Laure
2016-07-01
Four formulations of quantum mechanics on noncommutative Moyal phase spaces are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. Although all these formulations represent quantum mechanics on a phase space with the same deformed Heisenberg algebra, there are mathematical and conceptual differences which we discuss.
Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts
ERIC Educational Resources Information Center
Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.
2010-01-01
In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…
Quantum Mechanics from Periodic Dynamics: the bosonic case
Dolce, Donatello
2010-05-04
Enforcing the periodicity hypothesis of the 'old' formulation of Quantum Mechanics we show the possibility for a new scenario where Special Relativity and Quantum Mechanics are unified in a deterministic field theory. A novel interpretation of the AdS/CFT conjecture is discussed.
Do Free Quantum-Mechanical Wave Packets Always Spread?
ERIC Educational Resources Information Center
Klein, James R.
1980-01-01
The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…
An overview of the transactional interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cramer, J. G.
We summarize the transactional interpretation (TI) of quantum mechanics (QM) and consider various points concerning the TI and its relation to the Copenhagen interpretation (CI). Questions concerning mapping the TI onto the CI, of advanced waves as solutions to proper wave equations, of collapse and the QM formalism, and of the relation of quantum mechanical interpretations to experimental tests and results are discussed.
An Overview of the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
1988-02-01
The transactional interpretation of quantum mechanics (TI) is summarized and various points concerning the TI and its relation to the Copenhagen interpretation (CI) are considered. Questions concerning mapping the TI onto the CI, of advanced waves as solutions to proper wave equations, of collapse and the QM formalism, and of the relation of quantum mechanical interpretations to experimental tests and results are discussed.
Effect of violation of quantum mechanics on neutrino oscillation
Liu, Y.; Hu, L.; Ge, M.
1997-11-01
The effect of quantum mechanics violation due to quantum gravity on neutrino oscillation is investigated. It is found that the mechanism introduced by Ellis, Hagelin, Nanopoulos, and Srednicki through the modification of the Liouville equation can affect neutrino oscillation behavior and may be taken as a new solution of the solar neutrino problem. {copyright} {ital 1997} {ital The American Physical Society}
Categorization of Quantum Mechanics Problems by Professors and Students
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2010-01-01
We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Quantum mechanics on (anti)-de Sitter background
NASA Astrophysics Data System (ADS)
Chung, Won Sang; Hassanabadi, Hassan
2017-08-01
In this paper, the quantum mechanics on the (anti) de Sitter background is investigated. the extended uncertainty principle and the deformed calculus are discussed for the quantum mechanics on the (anti)-de Sitter background. As examples one-dimensional box problem and one-dimensional harmonic oscillator problem are discussed.
In Defense of a Heuristic Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Healy, Eamonn F.
2010-01-01
Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…
Quantum mechanical features of optically pumped CW FIR lasers
NASA Technical Reports Server (NTRS)
Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.
1977-01-01
Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.
From scalar field theories to supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Bazeia, D.; Bemfica, F. S.
2017-04-01
In this work, we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here, we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.
Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.
Bromberg, Joan Lisa
2006-06-01
Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.
A snapshot of foundational attitudes toward quantum mechanics
NASA Astrophysics Data System (ADS)
Schlosshauer, Maximilian; Kofler, Johannes; Zeilinger, Anton
2013-08-01
Foundational investigations in quantum mechanics, both experimental and theoretical, gave birth to the field of quantum information science. Nevertheless, the foundations of quantum mechanics themselves remain hotly debated in the scientific community, and no consensus on essential questions has been reached. Here, we present the results of a poll carried out among 33 participants of a conference on the foundations of quantum mechanics. The participants completed a questionnaire containing 16 multiple-choice questions probing opinions on quantum-foundational issues. Participants included physicists, philosophers, and mathematicians. We describe our findings, identify commonly held views, and determine strong, medium, and weak correlations between the answers. Our study provides a unique snapshot of current views in the field of quantum foundations, as well as an analysis of the relationships between these views.
Quantum mechanics in an evolving Hilbert space
NASA Astrophysics Data System (ADS)
Artacho, Emilio; O'Regan, David D.
2017-03-01
Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalization, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fiber bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge implied by a smoothly varying basis set readily connects with Berry's formalism for geometric phases. Generalized expressions for the Berry connection and curvature are obtained for a parameter-dependent occupied Hilbert space spanned by nonorthogonal Wannier functions. The formalism is applicable to basis sets made of atomic-like orbitals and also more adaptative moving basis functions (such as in methods using Wannier functions as intermediate or support bases), but should also apply to other situations in which nonorthogonal functions or related projectors should arise. The formalism is applied to the time-dependent quantum evolution of electrons for moving atoms. The geometric insights provided here allow us to propose new finite-difference time integrators, and also better understand those already proposed.
NASA Astrophysics Data System (ADS)
Lev, Felix M.
2017-01-01
Classical mathematics (involving such notions as infinitely small/large and continuity) is usually treated as fundamental while finite mathematics is treated as inferior which is used only in special applications. We first argue that the situation is the opposite: classical mathematics is only a degenerate special case of finite one and finite mathematics is more pertinent for describing nature than standard one. Then we describe results of a quantum theory based on finite mathematics. Implications for foundation of mathematics are discussed.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called
NASA Astrophysics Data System (ADS)
Pang, Belinda; Ma, Yiqiu; Miao, Haixing; Chen, Yanbei
2017-01-01
We relate the radiation of gravitational waves (GW) by a light interferometer with cavity arms (such as LIGO) to its quantum limited sensitivity as a detector of GW's, thereby demonstrating a reciprocity relation between the interferometer's function as a detector and emitter. We derive the pairwise interactions among the cavity optical field, the cavity end mirror, and the gravitational perturbation from the action principle. We quantize these degrees of freedom to calculate the GW's generated by a quantum object. We find that the rate of gravitational wave generation is related to the so-called quantum Cramer Rao bound of the detector, which is a general result from linear measurement theory that gives the fundamental limit to a detector's sensitivity. We show that increasing the maximal sensitivity for the interferometer also increases its GW radiation. This finding may point towards a new paradigm for improving detector sensitivity by maximizing GW radiator.
Statistical mechanics of quantum-classical systems with holonomic constraints.
Sergi, Alessandro
2006-01-14
The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.
High-efficiency quantum state transfer and quantum memory using a mechanical oscillator
NASA Astrophysics Data System (ADS)
Sete, Eyob A.; Eleuch, H.
2015-03-01
We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q factor it is possible to achieve a transfer efficiency of 99.4 % by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of 96 % employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.
On the Notion of Truth in Quantum Mechanics: a Category-Theoretic Standpoint
NASA Astrophysics Data System (ADS)
Karakostas, Vassilios; Zafiris, Elias
The category-theoretic representation of quantum event structures provides a canonical setting for confronting the fundamental problem of truth valuation in quantum mechanics as exemplified, in particular, by Kochen-Specker's theorem. In the present study, this is realized on the basis of the existence of a categorical adjunction between the category of sheaves of variable local Boolean frames, constituting a topos, and the category of quantum event algebras. We show explicitly that the latter category is equipped with an object of truth values, or classifying object, which constitutes the appropriate tool for assigning truth values to propositions describing the behavior of quantum systems. Effectively, this category-theoretic representation scheme circumvents consistently the semantic ambiguity with respect to truth valuation that is inherent in conventional quantum mechanics by inducing an objective contextual account of truth in the quantum domain of discourse. The philosophical implications of the resulting account are analyzed. We argue that it subscribes neither to a pragmatic instrumental nor to a relative notion of truth. Such an account essentially denies that there can be a universal context of reference or an Archimedean standpoint from which to evaluate logically the totality of facts of nature. In this light, the transcendence condition of the usual conception of correspondence truth is superseded by a reflective-like transcendental reasoning of the proposed account of truth that is suitable to the quantum domain of discourse.
Calendar effects in quantum mechanics in view of interactive holography
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2013-04-01
Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .
Emergent Quantum Mechanics and the Origin of Quantum Non-local Correlations
NASA Astrophysics Data System (ADS)
Torromé, Ricardo Gallego
2017-10-01
A geometric interpretation for quantum correlations and entanglement according to a particular framework of emergent quantum mechanics is developed. The mechanism described is based on two ingredients: 1. At an hypothetical sub-quantum level description of physical systems, the dynamics has a regime where it is partially ergodic and 2. A formal projection from a two-dimensional time mathematical formalism of the emergent quantum theory to the usual one-dimensional time formalism of quantum dynamics. Observable consequences of the theory are obtained. Among them we show that quantum correlations must be instantaneous from the point of view of the spacetime description, but the spatial distance up to which they can be observed must be bounded. It is argued how our mechanism avoids Bell theorem and Kochen-Specken theorem. Evidence for non-signaling faster than the speed of light in our proposal is discussed.
Compact scheme for systems of equations applied to fundamental problems of mechanics of continua
NASA Technical Reports Server (NTRS)
Klimkowski, Jerzy Z.
1990-01-01
Compact scheme formulation was used in the treatment of boundary conditions for a system of coupled diffusion and Poisson equations. Models and practical solutions of specific engineering problems arising in solid mechanics, chemical engineering, heat transfer and fuid mechanics are described and analyzed for efficiency and accuracy. Only 2-D cases are discussed and a new method of numerical treatment of boundary conditions common in the fundamental problems of mechanics of continua is presented.
A novel quantum-mechanical interpretation of the Dirac equation
NASA Astrophysics Data System (ADS)
K-H Kiessling, M.; Tahvildar-Zadeh, A. S.
2016-04-01
A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.
Simulation with quantum mechanics/molecular mechanics for drug discovery.
Barbault, Florent; Maurel, François
2015-10-01
Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.
Simulation with quantum mechanics/molecular mechanics for drug discovery.
Barbault, Florent; Maurel, François
2015-08-08
Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. Areas covered: In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. Expert opinion: QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.
Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems
NASA Astrophysics Data System (ADS)
M. Chudnovsky, Eugene
2004-05-01
Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs.
Observation and superselection in quantum mechanics
NASA Astrophysics Data System (ADS)
Landsman, N. P.
We attempt to clarify the main conceptual issues in approaches to 'objectification' or 'measurement' in quantum mechanics which are based on superselection rules. Such approaches venture to derive the emergence of classical 'reality' relative to a class of observers; those believing that the classical world exists intrinsically and absolutely are advised against reading this paper. The prototype approach (K. Hepp, Helv. Phys. Acta 45 (1972), 237-248) where superselection sectors are assumed in the state space of the apparatus is shown to be untenable. Instead, one should couple system and apparatus to an environment, and postulate superselection rules for the latter. These are motivated by the locality of any observer or other (actual or virtual) monitoring system. In this way 'environmental' solutions to the measurement problem (H.D. Zeh, Found. Phys. 1 (1970), 69-76; W. H. Zurek, Phys. Rev. D26 (1982), 1862-1880 and Progr. Theor. Phys. 89 (1993), 281-312) become consistent and acceptable, too. Points of contact with the modal interpretation are briefly discussed. We propose a minimal value attribution to observables in theories with superselection rules, in which only central observables have properties. In particular, the eigenvector-eigenvalue link is dropped. This is mainly motivated by Ockham's razor.
The representation of numbers in quantum mechanics.
Benioff, P.; Physics
2002-12-01
Earlier work on modular arithmetic of k-ary representations of length L of the natural numbers in quantum mechanics is extended here to k-ary representations of all natural numbers, and to integers and rational numbers. Since the length L is indeterminate, representations of states and operators using creation and annihilation operators for bosons and fermions are defined. Emphasis is on definitions and properties of operators corresponding to the basic operations whose properties are given by the axioms for each type of number. The importance of the requirement of efficient implementability for physical models of the axioms is emphasized. Based on this, successor operations for each value of j corresponding to addition of k {l_brace}j-1{r_brace} if j>0 and k {l_brace}j{r_brace} if j<0 are defined. It follows from the efficient implementability of these successors, which is the case for all computers, that implementation of the addition and multiplication operators, which are defined in terms of polynomially many iterations of the successors, should be efficient. This is not the case for definitions based on the successor for j=1 only. This is the only successor defined in the usual axioms of arithmetic.
Quantum mechanical studies of DNA and LNA.
Koch, Troels; Shim, Irene; Lindow, Morten; Ørum, Henrik; Bohr, Henrik G
2014-04-01
Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs.
"Mysticism" in Quantum Mechanics: The Forgotten Controversy
ERIC Educational Resources Information Center
Marin, Juan Miguel
2009-01-01
This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…
"Mysticism" in Quantum Mechanics: The Forgotten Controversy
ERIC Educational Resources Information Center
Marin, Juan Miguel
2009-01-01
This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…
NASA Astrophysics Data System (ADS)
Vaillant, Lídice; Vigil, Elena; Forcade, Fresnel; Thami, Thierry; Adnani, Hania; Yacou, Christelle; Ayral, André; Saint-Grégoire, Pierre
2015-11-01
Understanding mechanisms in DSSCs is fundamental for their improvement; this includes the nanocrystalline semiconducting layer behaviour. Different mesoporous TiO2 layers are fabricated and analyzed for possible use in DSSC solar cells. The preparations included the addition of P123 triblock copolymer as structuring agent to the synthesized anatase sol. This preparation was also mixed with Degussa P25 TiO2 nanoparticles in one case and polystyrene latex in another. Mesoporous mixed TiO2-SiO2 thin layers were also analyzed. The diverse morphologies and features are studied by microscopic techniques and by means of spectral quantum efficiency of a photoelectrochemical cell (PEC) that uses as photoelectrode the unsensitized porous TiO2 layer. Contact angle measurements are also performed. We have found that a very high specific area due to very small nanocrystals and small pores can hinder electrolyte penetration in the pores formed by TiO2 nanograins, affecting photoelectrodes efficiency.
Mechanical strain can switch the sign of quantum capacitance from positive to negative.
Hanlumyuang, Yuranan; Li, Xiaobao; Sharma, Pradeep
2014-11-14
Quantum capacitance is a fundamental quantity that can directly reveal many-body interactions among electrons and is expected to play a critical role in nanoelectronics. One of the many tantalizing recent physical revelations about quantum capacitance is that it can possess a negative value, hence allowing for the possibility of enhancing the overall capacitance in some particular material systems beyond the scaling predicted by classical electrostatics. Using detailed quantum mechanical simulations, we found an intriguing result that mechanical strains can tune both signs and values of quantum capacitance. We used a small coaxially gated carbon nanotube as a paradigmatical capacitor system and showed that, for the range of mechanical strain considered, quantum capacitance can be adjusted from very large positive to very large negative values (in the order of plus/minus hundreds of attofarads), compared to the corresponding classical geometric value (0.31035 aF). This finding opens novel avenues in designing quantum capacitance for applications in nanosensors, energy storage, and nanoelectronics.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
Yang, C.-D. . E-mail: cdyang@mail.ncku.edu.tw
2006-12-15
This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p {sup {yields}} p = -ih{nabla}, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion.
Investigating learners' epistemological framings of quantum mechanics
NASA Astrophysics Data System (ADS)
Dini, Vesal
Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that intuitive knowledge and mathematics play in the pursuit of coherent understanding (these are adjustments to aspects of their epistemologies). In this dissertation, I explore how some students manage the epistemological transition. I began this work by recruiting both graduate and undergraduate students, interviewing each subject several times as they moved through coursework in QM. The interviews featured, among other things, how students tried to fit ideas together in mutually consistent ways, including with respect to intuitive knowledge, mathematics and experiment, if at all. I modeled these dynamic cognitive processes as different epistemological framings (i.e., tacit, in-the-moment responses to the question "How should I approach knowledge?''). Through detailed qualitative analyses of students' reasoning and a systematic coding of their interviews, I explored how these coherence seeking related framings impacted their learning. The dissertation supports three main findings: (1) students' patterns of epistemological framing are mostly stable within a given course; (2) students who profess epistemologies aligned with the coordination of coherence seeking framings tend to be more stable in demonstrating them; and (3) students aware that their understanding of QM ultimately anchors in its mathematics tend to produce more coherent explanations and perform better in their courses. These findings are consistent with existing research on student epistemologies in QM and imply that epistemologies, in particular whether and how students seek coherence, require greater attention and emphasis in instruction.
The physical principles of quantum mechanics. A critical review
NASA Astrophysics Data System (ADS)
Strocchi, F.
2012-01-01
The standard presentation of the principles of quantum mechanics is critically reviewed both from the experimental/operational point and with respect to the request of mathematical consistency and logical economy. A simpler and more physically motivated formulation is discussed. The existence of non commuting observables, which characterizes quantum mechanics with respect to classical mechanics, is related to operationally testable complementarity relations, rather than to uncertainty relations. The drawbacks of Dirac argument for canonical quantization are avoided by a more geometrical approach.
Unification of Classical and Quantum Mechanics & Theory of Relative Motion
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2003-03-01
A systematic survey of relevant pivotal experiments leads us to arrive at (I) vacuum comprises substantial entities called aethers and (II) the velocities of light as measured in vacuum c and by a moving observer c', and the observer's velocity v obey the law of vector addition. (I)-(II) facilitate a General Scheme, which leads to (A) from Newton Mechanics solution for vacuum the fundamental formation of basic material particles having a mass, size, charge, etc. and being a de Broglie wave obeying Quantum Mechanics (B) augmentation in the mass, de Broglie wavevector, etc of a moving particle by a factor γ = 1/[1-(v/c)^2]^1/2 (C) length and time contractions of a moving body as measured in the frame in which the body resides (D) coordinate transformation between an inertial frame at rest and one relatively moving, called Galileo-Lorentz transformation (GLT) (E) using the GLT the prediction of null-fringe shift of the Michelson-Morley experiment and the Doppler effect of electromagnetic waves etc (F) inference of various contemporary empirical rules, incl Uncertainty Relation; etc.
Unification of Classical and Quantum Mechanics & Theory of Relative Motion
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2003-03-01
A systematic survey of relevant pivotal experiments leads us to arrive at (I) vacuum comprises substantial entities called aethers and (II) the velocities of light as measured in vacuum c and by a moving observer c', and the observer's velocity v obey the law of vector addition. (I)-(II) facilitate a General Scheme, which lead to (A) the fundamental formation of a basic material particle having a mass, size, charge, etc. and is a de Broglie wave obeying Quantum Mechanics as a result of Newton Mechanics solution (B) augmentation in the mass, de Broglie wavevector, etc of a moving particle by a factor γ =3D 1/[1-(v/c)^2]^1/2 (C) length and time contractions of a moving body as measured in the frame in which the body resides (D) a set of coordinate transformation equations between a inertial frame at rest and one relatively moving, called Galileo-Lorentz transformation (GLT) (E) using the GLT the prediction of null-fringe shift of the Michelson-Morley experiment and the Doppler effect of electromagnetic waves etc (F) inference of various contemporary empirical rules, relations; etc.
NASA Astrophysics Data System (ADS)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate
Ruling out multi-order interference in quantum mechanics.
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-07-23
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.
The actual content of quantum theoretical kinematics and mechanics
NASA Technical Reports Server (NTRS)
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Predicting crystal structure by merging data mining with quantum mechanics.
Fischer, Christopher C; Tibbetts, Kevin J; Morgan, Dane; Ceder, Gerbrand
2006-08-01
Modern methods of quantum mechanics have proved to be effective tools to understand and even predict materials properties. An essential element of the materials design process, relevant to both new materials and the optimization of existing ones, is knowing which crystal structures will form in an alloy system. Crystal structure can only be predicted effectively with quantum mechanics if an algorithm to direct the search through the large space of possible structures is found. We present a new approach to the prediction of structure that rigorously mines correlations embodied within experimental data and uses them to direct quantum mechanical techniques efficiently towards the stable crystal structure of materials.
Bell operator and Gaussian squeezed states in noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno
2016-05-01
We examine putative corrections to the Bell operator due to the noncommutativity in the phase space. Starting from a Gaussian squeezed envelope whose time evolution is driven by commutative (standard quantum mechanics) and noncommutative dynamics, respectively, we conclude that although the time-evolving covariance matrix in the noncommutative case is different from the standard case, the squeezing parameter dominates and there are no noticeable noncommutative corrections to the Bell operator. This indicates that, at least for squeezed states, the privileged states to test Bell correlations, noncommutativity versions of quantum mechanics remain as nonlocal as quantum mechanics itself.
Quantum tic-tac-toe: A teaching metaphor for superposition in quantum mechanics
NASA Astrophysics Data System (ADS)
Goff, Allan
2006-11-01
Quantum tic-tac-toe was developed as a metaphor for the counterintuitive nature of superposition exhibited by quantum systems. It offers a way of introducing quantum physics without advanced mathematics, provides a conceptual foundation for understanding the meaning of quantum mechanics, and is fun to play. A single superposition rule is added to the child's game of classical tic-tac-toe. Each move consists of a pair of marks subscripted by the number of the move ("spooky" marks) that must be placed in different squares. When a measurement occurs, one spooky mark becomes real and the other disappears. Quantum tic-tac-toe illustrates a number of quantum principles including states, superposition, collapse, nonlocality, entanglement, the correspondence principle, interference, and decoherence. The game can be played on paper or on a white board. A Web-based version provides a refereed playing board to facilitate the mechanics of play, making it ideal for classrooms with a computer projector.
1986-05-01
quantum 1/f noise will be derived again in three steps: first we consider just a single mode of the electromagnetic field in a coherent state and...Univ. of NRnn ad FL. Some suggestions are given at the end of Sec. IV. For devices larger than 10.100 microns coherent state quantum (1/f) noise bec...suggestions are given at the end of Sec. IV. For devices larger than 10 - 100 microns coherent state quantum 1/f noise becomes important according to
Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.
Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter
2013-08-14
The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.
Quantum mechanics/molecular mechanics restrained electrostatic potential fitting.
Burger, Steven K; Schofield, Jeremy; Ayers, Paul W
2013-12-05
We present a quantum mechanics/molecular mechanics (QM/MM) method to evaluate the partial charges of amino acid residues for use in MM potentials based on their protein environment. For each residue of interest, the nearby residues are included in the QM system while the rest of the protein is treated at the MM level of theory. After a short structural optimization, the partial charges of the central residue are fit to the electrostatic potential using the restrained electrostatic potential (RESP) method. The resulting charges and electrostatic potential account for the individual environment of the residue, although they lack the transferable nature of library partial charges. To evaluate the quality of the QM/MM RESP charges, thermodynamic integration is used to measure the pKa shift of the aspartic acid residues in three different proteins, turkey egg lysozyme, beta-cryptogein, and Thioredoxin. Compared to the AMBER ff99SB library values, the QM/MM RESP charges show better agreement between the calculated and experimental pK(a) values for almost all of the residues considered.
Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation
NASA Astrophysics Data System (ADS)
Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter
2013-08-01
The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.
Quantum mechanical generalization of the balistic electron wind theory
NASA Astrophysics Data System (ADS)
Lacina, A.
1980-06-01
The Fiks' quasiclassical theory of the electron wind force is quantum mechanically generalized. Within the framework of this generalization the space dependence of the electron wind force is calculated in the vicinity of an interface between two media. It is found that quantum corrections may be comparable with or even greater than corresponding quasiclassical values.
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER
DeMille, David; LeHur, Karyn
2013-11-27
Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.
On Heat in a Quantum Mechanical Process
NASA Astrophysics Data System (ADS)
Deesuwan, Tanapat; Anders, Janet
2013-05-01
Heat is the portion of energy exchange between systems in thermodynamic process which, unlike work, is always associated with the change of the entropies of the systems. In the context of quantum thermodynamics, heat process is described by an incoherent generalised quantum evolution, which is a map between two quantum states that does not preserve the entropy. Based on an information-theoretic reasoning, we propose that heat involving in a general quantum thermodynamic process can be separated into two types: one that is due to the unital subclass of the evolutions and another one that is due to the others. According to these categories, we show how the former type of heat can be incorporated into Jarzynski equality, resulting in a generalised version of the equality. We also derive a Jarzynski inequality which incorporates all heat into the picture and show that this situation is just equivalent to the presence of Maxwell's demon.
Quantum Mechanics in Biology: Photoexcitations in DNA
NASA Astrophysics Data System (ADS)
Bittner, Eric R.; Czader, Arkadiusz
We consider here the theoretical and quantum chemical description of the photoexcitated states in DNA duplexes. We discuss the motivation and limitations of an exciton model and use this as the starting point for more detailed excited state quantum chemical evaluations. In particular, we focus upon the role of interbase proton transfer between Watson/Crick pairs in localizing an excitation and then quenching it through intersystem crossing and charge transfer.
Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
Shen, Lin; Wu, Jingheng; Yang, Weitao
2016-10-11
Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.
Probabilistic Approach to Teaching the Principles of Quantum Mechanics
ERIC Educational Resources Information Center
Santos, Emilio
1976-01-01
Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)
Particles, Waves, and the Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Christoudouleas, N. D.
1975-01-01
Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)
Macroscopic test of quantum mechanics versus stochastic electrodynamics
NASA Astrophysics Data System (ADS)
Chaturvedi, S.; Drummond, Peter D.
1997-02-01
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.
Generalized Weyl-Wigner map and Vey quantum mechanics
NASA Astrophysics Data System (ADS)
Dias, Nuno Costa; Prata, João Nuno
2001-12-01
The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.
Why are probabilistic laws governing quantum mechanics and neurobiology?
NASA Astrophysics Data System (ADS)
Kröger, Helmut
2005-08-01
We address the question: Why are dynamical laws governing in quantum mechanics and in neuroscience of probabilistic nature instead of being deterministic? We discuss some ideas showing that the probabilistic option offers advantages over the deterministic one.
Sachdev–Ye–Kitaev model as Liouville quantum mechanics
Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex
2016-08-08
Here, we show that the proper inclusion of soft reparameterization modes in the Sachdev–Ye–Kitaev model of N randomly interacting Majorana fermions reduces its long-time behavior to that of Liouville quantum mechanics.
A Simplified Quantum Mechanical Model of Diatomic Molecules
ERIC Educational Resources Information Center
Nielsen, Lars Drud
1978-01-01
Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)
Quantum mechanics of the inverted oscillator potential
NASA Astrophysics Data System (ADS)
Barton, G.
1986-02-01
The Hamiltonian ( 1/2m)p 2 - 1/2mω 2x 2 yields equations solvable in closed form; one is led to them by questions about the longest mean sojourn time T allowed by quantum mechanics to a system near unstable equilibrium. These equations are then studied further in their own right. After criticism of earlier arguments, one finds, by aid of the Green's function, that T ˜ ω -1log{ l/( {h̷}/{mω) 1/2}} for sojourn in the region | x| < l, where l is the resolving power of the detector. Without appeal to some parameter like l one would get nonsense estimates T ˜ ω-1 (e.g., from the nondecay probability familiar in the decay of metastable states). in this potential wavepackets Gaussian in position do not split on impact: their peaks are either transmitted or reflected, depending on the sign of the energy E ≷ 0; however, they spread so fast that not all the probability ends up on the same side of the origin as the peak. The energy eigenfunctions (parabolic cylinder functions) identify the transmission and reflection amplitudes as T = (1 + e -2πE) -1/2eiφ, R = -i(1 + e -2πE) -1/2 e -πE e iφ, where φ = arg Γ( 1/2 - iE) (in units where 2m = 1 = ω = h̷). The density of states for the interval | x| ≤ L is 2π -1 log L + π -1ϕ'( E). Wavepackets that are peaked sharply enough in energy travel without dispersion in the asymptotic region | x| > | E|, and do split on impact in the usual way. The travel times and time delays of these packets are determined. For both reflection and transmission, and for both E ≷ 0, the time delays are given by φ'( E), which is a symmetric function of E, with a positive maximum at E = 0. In particular, packets tunneling under the barrier reemerge sooner if their energy is more negative. This paradox (which occurs also in other tunneling problems) is elucidated as far as possible. Coherent states are constructed by analogy to those of the ordinary oscillator. Though not integrable, their probability distributions do have a
Relativistic Quantum Mechanics and Introduction to Field Theory
NASA Astrophysics Data System (ADS)
Yndurain, Francisco J.
This is an advanced textbook meant as a primer in quantum theory for graduate students. A full relativistic treatment of particle dynamics needs to be based on quantum field theory. However, there exists a variety of processes that can be discussed with concepts like potentials, classical current distributions, prescribed external fields dealt with in the framework of relativistic quantum mechanics. Then, in an introduction to field theory the author emphasizes the deduction of the said potentials or currents. The unique feature of this book is the modern presentation of the subject together with many exercises and furthermore the underlying concept to combine a reference book on relativistic quantum mechanics with an introduction into quantum field theory.
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Auffèves, Alexia; Grangier, Philippe
2016-02-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Probability in the Many-Worlds Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vaidman, Lev
It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.
Prequantum Classical Statistical Field Theory: Fundamentals
Khrennikov, Andrei
2011-03-28
We present fundamentals of a prequantum model with hidden variables of the classical field type. In some sense this is the comeback of classical wave mechanics. Our approach also can be considered as incorporation of quantum mechanics into classical signal theory. All quantum averages (including correlations of entangled systems) can be represented as classical signal averages and correlations.
Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.
Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori
2016-10-11
The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an SN1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.
Geometrical description of algebraic structures: Applications to Quantum Mechanics
Carinena, J. F.; Ibort, A.; Marmo, G.; Morandi, G.
2009-05-06
Geometrization of physical theories have always played an important role in their analysis and development. In this contribution we discuss various aspects concerning the geometrization of physical theories: from classical mechanics to quantum mechanics. We will concentrate our attention into quantum theories and we will show how to use in a systematic way the transition from algebraic to geometrical structures to explore their geometry, mainly its Jordan-Lie structure.
$\\cN$-FOLD SUPERSYMMETRY IN QUANTUM MECHANICAL MATRIX MODELS
NASA Astrophysics Data System (ADS)
Tanaka, Toshiaki
2012-03-01
We formulate Ņ-fold supersymmetry in quantum mechanical matrix models. As an example, we construct general two-by-two Hermitian matrix two-fold supersymmetric quantum mechanical systems. We find that there are two inequivalent such systems, both of which are characterized by two arbitrary scalar functions, and one of which does not reduce to the scalar system. The obtained systems are all weakly quasi-solvable.
Fundamental bounds and performance tests for the storage or transmission of quantum light
NASA Astrophysics Data System (ADS)
Lutkenhaus, Norbert; Haseler, Hauke; Killoran, Nathan
2010-03-01
In advanced quantum communication protocols, we require the ability to store light in a way which preserves the imprinted quantum information, a task which cannot be done with classical protocols. We propose benchmarks based on the idea that a quantum communication experiment is successful only if it operates in a quantum regime, that is, it outperforms any classical transmission strategy. Current criteria suffer from a gap between theory, which typically prescribes testing using a continuous distribution of test states, and experiment, which can test only a finite set of states. Our benchmark approach avoids this. One of our new benchmarks is based on weak coherent states with just three phase settings and homodyne detection. This benchmark has optimal strength reaching that of the continuous set of test states and avoids the need of costly tomographic reconstruction of the output states. As further simplification, for phase- randomized lasers, one coherent test state is sufficient to implement our test. As an extension, we consider the problem of quantitative performance, providing estimates for quantum throughput of the tested devices.
Sensible Quantum Mechanics:. are Probabilities Only in the Mind?
NASA Astrophysics Data System (ADS)
Page, Don N.
Quantum mechanics may be formulated as Sensible Quantum Mechanics (SQM) so that it contains nothing probabilistic except conscious perceptions. Sets of these perceptions can be deterministically realized with measures given by expectation values of positive-operator-valued awareness operators. Ratios of the measures for these sets of perceptions can be interpreted as frequency-type probabilities for many actually existing sets. These probabilities generally cannot be given by the ordinary quantum “probabilities” for a single set of alternatives. Probabilism, or ascribing probabilities to unconscious aspects of the world, may be seen to be an aesthemamorphic myth.
Quantum mechanical effects in plasmonic structures with subnanometre gaps
Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.
2016-01-01
Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions. PMID:27255556
Acoustic Analog to Quantum Mechanical Level-Splitting
NASA Astrophysics Data System (ADS)
Hilbert, Shawn
2010-03-01
One difficulty in teaching quantum mechanics is the lack of classroom demonstrations. To sidestep this issue, analogies can provide an enlightening alternative. Acoustics governance by the same time-independent wave equation as quantum mechanics supports it use in such analogies. This presentation examines one such analogy for an infinite potential well with a delta potential perturbation. The physical acoustic system consists of continuous sounds waves traveling in a pair of tubes which are separated by a variable diaphragm. The level-splitting nature of the quantum system can be mimicked in the acoustic system.
Exploring the Dynamics of a Quantum-Mechanical Compton Generator
NASA Astrophysics Data System (ADS)
Kandes, Martin; Carretero, Ricardo
2017-01-01
In 1913, when American physicist Arthur Compton was an undergraduate, he invented a simple way to measure the rotation rate of the Earth with a tabletop-sized experiment. The experiment consisted of a large diameter circular ring of thin glass tubing filled with water and oil droplets. After placing the ring in a plane perpendicular to the surface of the Earth and allowing the fluid mixture of oil and water to come to rest, he then abruptly rotated the ring, flipping it 180 degrees about an axis passing through its own plane. The result of the experiment was that the water acquired a measurable drift velocity due to the Coriolis effect arising from the daily rotation of the Earth about its own axis. Compton measured this induced drift velocity by observing the motion of the oil droplets in the water with a microscope. This device, which is now named after him, is known as a Compton generator. The fundamental research objective of this project is to explore the dynamics of a quantum-mechanical analogue to the classical Compton generator experiment through the use of numerical simulations. We present our preliminary results on this system and the future direction of the project. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.
Parallelism in computational chemistry: Applications in quantum and statistical mechanics
NASA Astrophysics Data System (ADS)
Clementi, E.; Corongiu, G.; Detrich, J. H.; Kahnmohammadbaigi, H.; Chin, S.; Domingo, L.; Laaksonen, A.; Nguyen, N. L.
1985-08-01
Often very fundamental biochemical and biophysical problems defy simulations because of limitation in today's computers. We present and discuss a distributed system composed of two IBM-4341 and one IBM-4381, as front-end processors, and ten FPS-164 attached array processors. This parallel system-called LCAP-has presently a peak performance of about 120 MFlops; extensions to higher performance are discussed. Presently, the system applications use a modified version of VM/SP as the operating system: description of the modifications is given. Three applications programs have migrated from sequential to parallel; a molecular quantum mechanical, a Metropolis-Monte Carlo and a Molecular Dynamics program. Descriptions of the parallel codes are briefly outlined. As examples and tests of these applications we report on a study for proton tunneling in DNA base-pairs, very relevant to spontaneous mutations in genetics. As a second example, we present a Monte Carlo study of liquid water at room temperature where not only two- and three-body interactions are considered but-for the first time-also four-body interactions are included. Finally we briefly summarize a molecular dynamics study where two- and three-body interactions have been considered. These examples, and very positive performance comparison with today's supercomputers allow us to conclude that parallel computers and programming of the type we have considered, represent a pragmatic answer to many computer intensive problems.
NASA Astrophysics Data System (ADS)
Li, Zi-Xiang; Jiang, Yi-Fan; Yao, Hong
2016-12-01
A fundamental open issue in physics is whether and how the fermion sign problem in quantum Monte Carlo (QMC) simulations can be solved generically. Here, we show that Majorana-time-reversal (MTR) symmetries can provide a unifying principle to solve the fermion sign problem in interacting fermionic models. By systematically classifying Majorana-bilinear operators according to the anticommuting MTR symmetries they respect, we rigorously prove that there are two and only two fundamental symmetry classes which are sign-problem-free and which we call the "Majorana class" and "Kramers class," respectively. Novel sign-problem-free models in the Majorana class include interacting topological superconductors and interacting models of charge-4 e superconductors. We believe that our MTR unifying principle could shed new light on sign-problem-free QMC simulation on strongly correlated systems and interacting topological matters.
Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots
Robert, C. E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.; Jancu, J.-M.; Even, J.; Durand, O.; Nestoklon, M. O.; Pereira da Silva, K.; Alonso, M. I.; Goñi, A. R.; Turban, P.
2014-01-06
The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2017-02-01
The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.
Quantum Mechanical Oscillators: NIST-7 and Beyond
NASA Astrophysics Data System (ADS)
Drullinger, Robert E.
1996-03-01
Time and its inverse, frequency, are the most precisely measurable of all quantities. We routinely make measurements to a precision of a part in 10^12 in just one second and a part in 10^17 in one day. As a result of this measurement precision, some other units are cast in terms of frequency; e. g., voltage through the Josephson volt and length through the defined speed of light. Additionally, practical measurements are often made with frequency transducers; e. g., quartz resonator film thickness monitors, temperature probes, and pressure sensors. Time and frequency are also very important in modern telecommunications, navigation, and security systems. For all of these reasons, we need very highly accurate and widely available standards of frequency and time. We use ``quantum mechanical oscillators,'' transitions in atoms and molecules, for these standards because their systematic biases can be determined to a high degree and their frequency is reproducible any place in the universe within the known laws of physics. Fortunately, this area of technology and atomic physics is very dynamic, often leading advances in spectroscopic resolution and technology. Standards for time and frequency have improved five orders of magnitude over the last 35 years and there is no end in sight. We will briefly discuss the historical development of atomic beam standards to show how accuracy has evolved. We will then discuss the design and accuracy evaluation of NIST-7, a state-of-the-art thermal-cesium-beam magnetic-resonance spectrometer with optical state preparation and detection, which is the current US primary frequency standard. Development of this standard has been accompanied by major advances in error analysis methodology. When describing NIST-7 in the terms of an atomic frequency standard, we say each systematic bias can ultimately be evaluated to a fractional frequency uncertainty of a few parts in 10^16 which will result in an overall uncertainty in the accuracy of the
'Mysticism' in quantum mechanics: the forgotten controversy
NASA Astrophysics Data System (ADS)
Marin, Juan Miguel
2009-07-01
This paper argues that a European controversy over a 'mystical' hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s—birth of quantum theory—and concluding with Erwin Schrödinger's lectures published as 'Mind and Matter'. Becoming aware of the issues at stake can help us understand the historical, philosophical and cultural background from which today's physics emerged.
Quantum-mechanical properties of Bessel beams
Jauregui, R.; Hacyan, S.
2005-03-01
Bessel beams are studied within the general framework of quantum optics. The two modes of the electromagnetic field are quantized and the basic dynamical operators are identified. As we show explicitly, the operators that are usually associated with linear momentum, orbital angular momentum, and spin do not satisfy the algebra of the translation and rotation group. Nevertheless, we identify some components of these operators that represent observable quantities in an appropriate basis, thus characterizing the quantum numbers of Bessel photons. Some physical consequences of these results are discussed.
Quantum mechanics simulation of protein dynamics on long timescale.
Liu, H; Elstner, M; Kaxiras, E; Frauenheim, T; Hermans, J; Yang, W
2001-09-01
Protein structure and dynamics are the keys to a wide range of problems in biology. In principle, both can be fully understood by using quantum mechanics as the ultimate tool to unveil the molecular interactions involved. Indeed, quantum mechanics of atoms and molecules have come to play a central role in chemistry and physics. In practice, however, direct application of quantum mechanics to protein systems has been prohibited by the large molecular size of proteins. As a consequence, there is no general quantum mechanical treatment that not only exceeds the accuracy of state-of-the-art empirical models for proteins but also maintains the efficiency needed for extensive sampling in the conformational space, a requirement mandated by the complexity of protein systems. Here we show that, given recent developments in methods, a general quantum mechanical-based treatment can be constructed. We report a molecular dynamics simulation of a protein, crambin, in solution for 350 ps in which we combine a semiempirical quantum-mechanical description of the entire protein with a description of the surrounding solvent, and solvent-protein interactions based on a molecular mechanics force field. Comparison with a recent very high-resolution crystal structure of crambin (Jelsch et al., Proc Natl Acad Sci USA 2000;102:2246-2251) shows that geometrical detail is better reproduced in this simulation than when several alternate molecular mechanics force fields are used to describe the entire system of protein and solvent, even though the structure is no less flexible. Individual atomic charges deviate in both directions from "canonical" values, and some charge transfer is found between the N and C-termini. The capability of simulating protein dynamics on and beyond the few hundred ps timescale with a demonstrably accurate quantum mechanical model will bring new opportunities to extend our understanding of a range of basic processes in biology such as molecular recognition and enzyme
Optimal state discrimination and unstructured search in nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Childs, Andrew M.; Young, Joshua
2016-02-01
Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.