Ned B. Klopfenstein; Brian W. Geils
2011-01-01
Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...
Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats
Jonathan M. Palmer; Kevin P. Drees; Jeffrey T. Foster; Daniel L. Lindner
2018-01-01
Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species....
Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki
2016-01-01
Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950
Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki
2016-06-01
Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.
Evolution and genome architecture in fungal plant pathogens.
Möller, Mareike; Stukenbrock, Eva H
2017-12-01
The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.
Host pathogen relations: exploring animal models for fungal pathogens.
Harwood, Catherine G; Rao, Reeta P
2014-06-30
Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.
Fungal model systems and the elucidation of pathogenicity determinants
Perez-Nadales, Elena; Almeida Nogueira, Maria Filomena; Baldin, Clara; Castanheira, Sónia; El Ghalid, Mennat; Grund, Elisabeth; Lengeler, Klaus; Marchegiani, Elisabetta; Mehrotra, Pankaj Vinod; Moretti, Marino; Naik, Vikram; Oses-Ruiz, Miriam; Oskarsson, Therese; Schäfer, Katja; Wasserstrom, Lisa; Brakhage, Axel A.; Gow, Neil A.R.; Kahmann, Regine; Lebrun, Marc-Henri; Perez-Martin, José; Di Pietro, Antonio; Talbot, Nicholas J.; Toquin, Valerie; Walther, Andrea; Wendland, Jürgen
2014-01-01
Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity. PMID:25011008
Alkan, Noam; Fortes, Ana M.
2015-01-01
Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204
Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan
2013-01-01
Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949
Jonah Piovia-Scott; Karen Pope; S. Joy Worth; Erica Bree Rosenblum; Dean Simon; Gordon Warburton; Louise A. Rollins-Smith; Laura K. Reinert; Heather L. Wells; Dan Rejmanek; Sharon Lawler; Janet Foley
2015-01-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We...
Augmenting the efficacy of antifungal intervention via chemo-biological approaches
USDA-ARS?s Scientific Manuscript database
Mycotic infection is becoming a serious health problem since effective antifungal agents for control of pathogenic fungi, especially drug-resistant pathogens, is often very limited. Fungal resistance to antimycotic agents frequently involves mutations caused by environmental stressors. In fungal pat...
Global food and fibre security threatened by current inefficiencies in fungal identification.
Crous, Pedro W; Groenewald, Johannes Z; Slippers, Bernard; Wingfield, Michael J
2016-12-05
Fungal pathogens severely impact global food and fibre crop security. Fungal species that cause plant diseases have mostly been recognized based on their morphology. In general, morphological descriptions remain disconnected from crucially important knowledge such as mating types, host specificity, life cycle stages and population structures. The majority of current fungal species descriptions lack even the most basic genetic data that could address at least some of these issues. Such information is essential for accurate fungal identifications, to link critical metadata and to understand the real and potential impact of fungal pathogens on production and natural ecosystems. Because international trade in plant products and introduction of pathogens to new areas is likely to continue, the manner in which fungal pathogens are identified should urgently be reconsidered. The technologies that would provide appropriate information for biosecurity and quarantine already exist, yet the scientific community and the regulatory authorities are slow to embrace them. International agreements are urgently needed to enforce new guidelines for describing plant pathogenic fungi (including key DNA information), to ensure availability of relevant data and to modernize the phytosanitary systems that must deal with the risks relating to trade-associated plant pathogens.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).
Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf
2015-12-14
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections
Reeder, Sophia M.; Palmer, Jonathan M.; Prokkola, Jenni M.; Lilley, Thomas M.; Reeder, DeeAnn M.
2017-01-01
ABSTRACT White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases. PMID:28614673
Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections.
Reeder, Sophia M; Palmer, Jonathan M; Prokkola, Jenni M; Lilley, Thomas M; Reeder, DeeAnn M; Field, Kenneth A
2017-11-17
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.
Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques.
Czurda, Stefan; Lion, Thomas
2017-01-01
Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.
Duba, Adrian; Goriewa-Duba, Klaudia; Wachowska, Urszula
2018-01-01
Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonospora nodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat–pathogens interactions which can be used to develop new strategies for controlling fungal diseases. PMID:29642627
Phylogenetics of a fungal invasion: origins and widespread dispersal of white-nose syndrome
Kevin P. Drees; Jeffrey M. Lorch; Sebastien J. Puechmaille; Katy L. Parise; Gudrun Wibbelt; Joseph R. Hoyt; Keping Sun; Ariunbold Jargalsaikhan; Munkhnast Dalannast; Jonathan M. Palmer; Daniel L. Lindner; A. Marm Kilpatrick; Talima Pearson; Paul S. Keim; David S. Blehert; Jeffrey T. Foster; Joseph Heitman
2017-01-01
Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has...
USDA-ARS?s Scientific Manuscript database
Transcription profiles of Glycine tomentella genotypes having different responses to soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, were compared using suppression subtractive hybridization (SSH). Four cDNA libraries were constructed from infected and non-infected leaves of resis...
Massire, Christian; Buelow, Daelynn R.; Zhang, Sean X.; Lovari, Robert; Matthews, Heather E.; Toleno, Donna M.; Ranken, Raymond R.; Hall, Thomas A.; Metzgar, David; Sampath, Rangarajan; Blyn, Lawrence B.; Ecker, David J.; Gu, Zhengming; Walsh, Thomas J.
2013-01-01
Invasive fungal infections are a significant cause of morbidity and mortality among immunocompromised patients. Early and accurate identification of these pathogens is central to direct therapy and to improve overall outcome. PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was evaluated as a novel means for identification of fungal pathogens. Using a database grounded by 60 ATCC reference strains, a total of 394 clinical fungal isolates (264 molds and 130 yeasts) were analyzed by PCR/ESI-MS; results were compared to phenotypic identification, and discrepant results were sequence confirmed. PCR/ESI-MS identified 81.4% of molds to either the genus or species level, with concordance rates of 89.7% and 87.4%, respectively, to phenotypic identification. Likewise, PCR/ESI-MS was able to identify 98.4% of yeasts to either the genus or species level, agreeing with 100% of phenotypic results at both the genus and species level. PCR/ESI-MS performed best with Aspergillus and Candida isolates, generating species-level identification in 94.4% and 99.2% of isolates, respectively. PCR/ESI-MS is a promising new technology for broad-range detection and identification of medically important fungal pathogens that cause invasive mycoses. PMID:23303501
Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality
Wei, Ge; Lai, Yiling; Wang, Guandong; Chen, Huan; Li, Fang
2017-01-01
The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana. Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects. PMID:28533370
Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.
2012-01-01
Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337
USDA-ARS?s Scientific Manuscript database
Early stage infections caused by fungal/oomycete spores can remain undetected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target mul...
USDA-ARS?s Scientific Manuscript database
Botrytis cinerea, a ubiquitous fungal pathogen, causes severe damage (gray mold rot) on a large number of economically important fruits, vegetables, and ornamental crops at both pre- and post-harvest, which renders fruits unmarketable. Penicillium expansum is a widely spread fungal pathogen that cau...
Storage of resting spores of the gypsy moth fungal pathogen, Entomophaga maimaiga
Ann E. Hajek; Micheal M. Wheeler; Callie C. Eastburn; Leah S. Bauer
2001-01-01
The fungal pathogen, Entomophaga maimaiga causes epizootics in populations of the important North American forest defoliator gypsy moth (Lymantria dispar). Increasing use of thisfungus for biological control is dependent on our ability to produce and manipulate the long-lived overwintering resting spores (azygospores). E. maimaiga resting spores undergo obligate...
The Interface between Fungal Biofilms and Innate Immunity.
Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E
2017-01-01
Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.
Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist
Freeman, Stanley; Rodriguez, Rusty J.
1993-01-01
The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.
Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique
2017-01-01
ABSTRACT Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. PMID:28986378
Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R
2017-12-15
Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. Copyright © 2017 American Society for Microbiology.
Jonah Piovia-Scott; Karen L. Pope; Sharon P. Lawler; Esther M. Cole; Janet E. Foley
2011-01-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis, has been associated with declines and extinctions of montane amphibians worldwide. To gain insight into factors affecting its distribution and prevalence we focus on the amphibian community of the Klamath Mountains in northwest...
Lactoferrin-derived resistance against plant pathogens in transgenic plants.
Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava
2013-12-04
Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.
Long-distance endosome trafficking drives fungal effector production during plant infection
Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero
2014-01-01
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249
Long-distance endosome trafficking drives fungal effector production during plant infection.
Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero
2014-10-06
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.
Duplications and losses in gene families of rust pathogens highlight putative effectors.
Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.
Gauthier, Gregory M; Keller, Nancy P
2013-12-01
The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.
THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.
Shuping, D S S; Eloff, J N
2017-01-01
Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry.
Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans
Caza, Mélissa; Kronstad, James W.
2013-01-01
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900
Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi
2010-04-01
Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.
2013-01-01
Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298
Emerging IL-12 family cytokines in the fight against fungal infections.
Thompson, Aiysha; Orr, Selinda J
2018-05-21
Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus. Copyright © 2018. Published by Elsevier Ltd.
Luo, Y; Gu, S; Felts, D; Puckett, R D; Morgan, D P; Michailides, T J
2017-02-01
To develop real-time PCR assays for quantification of shoot infection levels of canker disease of stone fruits and nut crops caused by six fungal pathogen groups. This study focused on six major canker-causing fungal pathogen groups: Phomopsis sp., Botryosphaeria dothidea, Lasiodiplodia sp., Cytospora sp., Neofusicoccum sp. and Diplodia sp., occurring in stone fruits and nut crops in California. DNA primers were designed to specifically target each of the six pathogen groups after the specificity tests using canker-causing and non-canker-causing pathogens and by using DNA sequences of other species from GenBank using blast. The quantitative real-time PCR (qPCR) systems were developed and used to quantify the infection levels of inoculated dried plum shoots. For Neofusicoccum sp. and Phomopsis sp., which were used in inoculation of walnut shoots, the values of the molecular severity ranged from 5·60 to 6·94 during the 16 days of latent infection period. The qPCR assays were more efficient, accurate and precise to quantify latent infections caused by canker-causing pathogens as compared to the traditional plating methods. This study demonstrated the potential of using the developed qPCR systems for epidemiological studies on canker diseases of woody plants. © 2016 The Society for Applied Microbiology.
Jain, Akansha; Jain, Shubham; Rawat, Swati
2010-01-01
The incidence of fungal infections is increasing at an alarming rate, presenting an enormous challenge to healthcare professionals. This increase is directly related to the growing population of immunocompromised individuals especially children resulting from changes in medical practice such as the use of intensive chemotherapy and immunosuppressive drugs. Although healthy children have strong natural immunity against fungal infections, then also fungal infection among children are increasing very fast. Virtually not all fungi are pathogenic and their infection is opportunistic. Fungi can occur in the form of yeast, mould, and dimorph. In children fungi can cause superficial infection, i.e., on skin, nails, and hair like oral thrush, candida diaper rash, tinea infections, etc., are various types of superficial fungal infections, subcutaneous fungal infection in tissues under the skin and lastly it causes systemic infection in deeper tissues. Most superficial and subcutaneous fungal infections are easily diagnosed and readily amenable to treatment. Opportunistic fungal infections are those that cause diseases exclusively in immunocompromised individuals, e.g., aspergillosis, zygomycosis, etc. Systemic infections can be life-threatening and are associated with high morbidity and mortality. Because diagnosis is difficult and the causative agent is often confirmed only at autopsy, the exact incidence of systemic infections is difficult to determine. The most frequently encountered pathogens are Candida albicans and Aspergillus spp. But other fungi such as non-albicans Candida spp. are increasingly important. PMID:21180463
The early response during the interaction of fungal phytopathogen and host plant.
Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen; Zheng, Wenming
2017-05-01
Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum , rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. © 2017 The Authors.
The early response during the interaction of fungal phytopathogen and host plant
Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen
2017-01-01
Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. PMID:28469008
Seed treatments to control seedborne fungal pathogens of vegetable crops.
Mancini, Valeria; Romanazzi, Gianfranco
2014-06-01
Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.
Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity.
Mommer, Liesje; Cotton, T E Anne; Raaijmakers, Jos M; Termorshuizen, Aad J; van Ruijven, Jasper; Hendriks, Marloes; van Rijssel, Sophia Q; van de Mortel, Judith E; van der Paauw, Jan Willem; Schijlen, Elio G W M; Smit-Tiekstra, Annemiek E; Berendse, Frank; de Kroon, Hans; Dumbrell, Alex J
2018-04-01
There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
First report of lily root rot caused by Thantephorus cucumeris AG 2-1 in the United States
USDA-ARS?s Scientific Manuscript database
A disease survey was undertaken in April, 2016 to profile the soilborne fungal pathogens causing root rot and lesions on lily (Lilium longiflorum) cv. Nellie White in Brookings, Oregon, Curry County. Diseased root samples were either blackened or rotted. Several fungal isolates were cultured from in...
Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping
2014-07-01
We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.
A breath fungal secondary metabolite signature to diagnose invasive aspergillosis.
Koo, Sophia; Thomas, Horatio R; Daniels, S David; Lynch, Robert C; Fortier, Sean M; Shea, Margaret M; Rearden, Preshious; Comolli, James C; Baden, Lindsey R; Marty, Francisco M
2014-12-15
Invasive aspergillosis (IA) remains a leading cause of mortality in immunocompromised patients, in part due to the difficulty of diagnosing this infection. Using thermal desorption-gas chromatography/mass spectrometry, we characterized the in vitro volatile metabolite profile of Aspergillus fumigatus, the most common cause of IA, and other pathogenic aspergilli. We prospectively collected breath samples from patients with suspected invasive fungal pneumonia from 2011 to 2013, and assessed whether we could discriminate patients with proven or probable IA from patients without aspergillosis, as determined by European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions, by direct detection of fungal volatile metabolites in these breath samples. The monoterpenes camphene, α- and β-pinene, and limonene, and the sesquiterpene compounds α- and β-trans-bergamotene were distinctive volatile metabolites of A. fumigatus in vitro, distinguishing it from other pathogenic aspergilli. Of 64 patients with suspected invasive fungal pneumonia based on host risk factors, clinical symptoms, and radiologic findings, 34 were diagnosed with IA, whereas 30 were ultimately diagnosed with other causes of pneumonia, including other invasive mycoses. Detection of α-trans-bergamotene, β-trans-bergamotene, a β-vatirenene-like sesquiterpene, or trans-geranylacetone identified IA patients with 94% sensitivity (95% confidence interval [CI], 81%-98%) and 93% specificity (95% CI, 79%-98%). In patients with suspected fungal pneumonia, an Aspergillus secondary metabolite signature in breath can identify individuals with IA. These results provide proof-of-concept that direct detection of exogenous fungal metabolites in breath can be used as a novel, noninvasive, pathogen-specific approach to identifying the precise microbial cause of pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Common fungal diseases of Russian forests
Evgeny P. Kuz' michevl; Ella s. Sokolova; Elena G. Kulikova
2001-01-01
Describes common fungal diseases of Russian forests, including diagnostic signs and symptoms, pathogen biology, damage caused by the disease, and methods of control. The fungal diseases are divided into two groups: those that are the most common in Russian forests and those that are found only in Russia. Within each group, diseases are subdivided by plant organ...
Agrobacterium tumefaciens-mediated transformation of the soybean pathogen Phomopsis longicolla
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen Phomopsis longicolla. PSD impairs seed germination, reduces seedling vigor, and can substantially reduce stand establishment. In hot and humid conditions, PSD can cause significant yield losses. Few studies have explore...
Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain
2016-01-01
Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056
Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa
2015-10-30
Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.
A Novel Receptor-Like Kinase Involved in Fungal Pathogen Defense in Arabidopsis thaliana
USDA-ARS?s Scientific Manuscript database
Plants are under constant attack from a variety of disease causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor-like kinases (RLKs) are involved in the recognition of pathogen-associated molecular patterns (PAMPs)...
el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M
1996-01-01
Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.
[Invasive fungal disease due to Scedosporium, Fusarium and mucorales].
Pemán, Javier; Salavert, Miguel
2014-01-01
The number of emerging organisms causing invasive fungal infections has increased in the last decades. These etiological agents include Scedosporium, Fusarium and mucorales. All of them can cause disseminated, virulent, and difficult-to treat infections in immunosuppressed patients, the most affected, due to their resistance to most available antifungal agents. Current trends in transplantation including the use of new immunosuppressive treatments, the common prescription of antifungal agents for prophylaxis, and new ecological niches could explain the emergence of these fungal pathogens. These pathogens can also affect immunocompetent individuals, especially after natural disasters (earthquakes, floods, tsunamis), combat wounds or near drowning. All the invasive infections caused by Scedosporium, Fusarium, and mucorales are potentially lethal and a favourable outcome is associated with rapid diagnosis by direct microscopic examination of the involved tissue, wide debridement of infected material, early use of antifungal agents including combination therapy, and an improvement in host defenses, especially neutropenia. Copyright © 2014. Published by Elsevier Espana.
The role of effectors and host immunity in plant-necrotrophic fungal interactions.
Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang
2014-01-01
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.
Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.
Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio
2015-12-19
Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.
Huanglongbing increases Diplodia Stem End Rot in Citrus sinensis
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB), one of the most devastating diseases of citrus is caused by the a-Proteobacteria Candidatus Liberibacter. Diplodia natalensis Pole-Evans is a fungal pathogen which has been known to cause a postharvest stem-end rot of citrus, the pathogen infects citrus fruit under the calyx, an...
Morsy, Ahmed A; Elshahawy, Ibrahim E
2016-05-01
Dracaena sanderiana, of the family Liliaceae, is among the ornamental plants most frequently imported into Egypt. Typical anthracnose symptoms were observed on the stems of imported D. sanderiana samples. The pathogen was isolated, demonstrated to be pathogenic based on Koch's rule and identified as Colletotrichum dracaenophilum. The optimum temperature for its growth ranges from 25 to 30 °C, maintained for 8 days. Kemazed 50% wettable powder (WP) was the most effective fungicide against the pathogen, as no fungal growth was observed over 100 ppm. The biocontrol agents Trichoderma harzianum and Trichoderma viride followed by Bacillus subtilis and Bacillus pumilus caused the highest reduction in fungal growth. To the best of our knowledge, this report describes the first time that this pathogen was observed on D. sanderiana in Egypt.
Morsy, Ahmed A.; Elshahawy, Ibrahim E.
2016-01-01
Dracaena sanderiana, of the family Liliaceae, is among the ornamental plants most frequently imported into Egypt. Typical anthracnose symptoms were observed on the stems of imported D. sanderiana samples. The pathogen was isolated, demonstrated to be pathogenic based on Koch’s rule and identified as Colletotrichum dracaenophilum. The optimum temperature for its growth ranges from 25 to 30 °C, maintained for 8 days. Kemazed 50% wettable powder (WP) was the most effective fungicide against the pathogen, as no fungal growth was observed over 100 ppm. The biocontrol agents Trichoderma harzianum and Trichoderma viride followed by Bacillus subtilis and Bacillus pumilus caused the highest reduction in fungal growth. To the best of our knowledge, this report describes the first time that this pathogen was observed on D. sanderiana in Egypt. PMID:27222738
Superficial fungal infections.
Schwartz, Robert A
Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.
Pareek, Manish; Rajam, Manchikatla Venkat
2017-09-01
Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Kidane, Yared H; Lawrence, Christopher; Murali, T M
2013-10-07
Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host's tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc.
2013-01-01
Background Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host’s tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host’s tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. Results In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Conclusions Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc PMID:24099000
Fire effects on the cheatgrass seed bank pathogen Pyrenophora semeniperda
Julie Beckstead; Laura E. Street; Susan E. Meyer; Phil S. Allen
2011-01-01
The generalist fungal pathogen Pyrenophora semeniperda occurs primarily in cheatgrass (Bromus tectorum) seed banks, where it causes high mortality. We investigated the relationship between this pathogen and its cheatgrass host in the context of fire, asking whether burning would facilitate host escape from the pathogen or increase host vulnerability. We used a series...
Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz
2014-01-01
Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.
Tools of the crook – infection strategies of fungal plant pathogens
USDA-ARS?s Scientific Manuscript database
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of d...
Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action
USDA-ARS?s Scientific Manuscript database
Penicillium expansum is a widely spread fungal pathogen that causes blue mold rot in a variety of fruits. This pathogen not only induces blue mold rot but also produces patulin in affected apple fruit, a secondary metabolite that is toxic to humans and animals. Currently, diseases caused by P. expan...
USDA-ARS?s Scientific Manuscript database
We demonstrated that honey bee viruses, including Deformed Wing Virus (DWV), Black Queen Cell Virus (BQCV) and Isreali Acute Paralysis Virus (IAPV), could infect and replicate in the fungal pathogen Ascosphaera apis, which causes honey bee chalkbrood disease, uncovering a novel biological feature of...
USDA-ARS?s Scientific Manuscript database
Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understa...
El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.
2013-01-01
Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948
THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW
Shuping, D.S.S.; Eloff, J.N.
2017-01-01
Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Materials and Methods: Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms “plant fungal pathogen”, “plant extracts” and “phytopathogens”. Proposals are made on the best extractants and bioassay techniques to be used. Results: In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Conclusions: Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry. PMID:28638874
Current advances on genetic resistance to rice blast disease
USDA-ARS?s Scientific Manuscript database
Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most threatening fungal diseases resulting in significant annual crop losses worldwide. Blast disease has been effectively managed by a combination of resistant (R) gene deployment, application of fungicides, and suita...
Pre- and postharvest fungal apple diseases
USDA-ARS?s Scientific Manuscript database
The domesticated apple (Malus domestica) is the most significant pome fruit grown and consumed worldwide. China is the largest producer followed by the United States on a global scale. However, fungal plant pathogens cause significant economic losses in the field and in storage which negatively impa...
Johnston, Simon A; May, Robin C
2013-03-01
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.
Developments in Fungal Taxonomy
Guarro, Josep; Gené, Josepa; Stchigel, Alberto M.
1999-01-01
Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales). PMID:10398676
Verma, A H; Bueter, C L; Rothenberg, M E; Deepe, G S
2017-01-01
Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2 -/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2 -/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.
USDA-ARS?s Scientific Manuscript database
The forest pathogen Armillaria mellea s.s. (Basidiomycota, Physalacriaceae) is among the most significant forest pathogens causing root rot in northern temperate forest trees worldwide. Phylogenetic reconstructions for A. mellea show distinct European, Asian and North American lineages. The North Am...
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expr...
USDA-ARS?s Scientific Manuscript database
Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population ma...
Lee, Soo Chan; Billmyre, R Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C; Cuomo, Christina A; Heitman, Joseph
2014-07-08
Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (-) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. Importance: The U.S. FDA reported that yogurt products were contaminated with M. circinelloides, a mucoralean fungal pathogen, and >200 consumers complained of symptoms, including vomiting, nausea, and diarrhea. The manufacturer voluntarily withdrew the affected yogurt products from the market. Compared to other food-borne pathogens, including bacteria, viruses, and parasites, less focus has been placed on the risk of fungal pathogens. This study evaluates the potential risk from the food-borne fungal pathogen M. circinelloides that was isolated from the contaminated commercial yogurt. We successfully cultured an M. circinelloides isolate and found that the isolate belongs to the species M. circinelloides f. circinelloides, which is often associated with human infections. In murine and insect host models, the isolate was virulent. While information disseminated in the popular press would suggest this fungal contaminant poses little or no risk to consumers, our results show instead that it is capable of causing significant infections in animals. Copyright © 2014 Lee et al.
The role of effectors and host immunity in plant–necrotrophic fungal interactions
Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang
2014-01-01
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi. PMID:25513773
Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João
2017-01-01
Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D
2016-11-03
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.
2016-01-01
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111
NASA Astrophysics Data System (ADS)
Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.
2016-07-01
The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.
Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.
Akritidis, N
2011-03-01
Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
The impact of the postharvest environment on the viability and virulence of decay fungi.
Liu, Jia; Sui, Yuan; Wisniewski, Michael; Xie, Zhigang; Liu, Yiqing; You, Yuming; Zhang, Xiaojing; Sun, Zhiqiang; Li, Wenhua; Li, Yan; Wang, Qi
2018-07-03
Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resistance and pathogen virulence. Both of these processes, however, are significantly impacted by environmental factors, such as temperature, UV, oxidative stress, and water activity. In the present review, the impact of various physical postharvest treatments (e.g., heat and UV) on the viability and virulence of postharvest pathogens is reviewed and discussed. Oxidative injury, protein impairment, and cell wall degradation have all been proposed as the mechanisms by which these abiotic stresses reduce fungal viability and pathogenicity. The response of decay fungi to pH and the ability of pathogens to modulate the pH of the host environment also affect pathogenicity. The effects of the manipulation of the postharvest environment by ethylene, natural edible coatings, and controlled atmosphere storage on fungal viability are also discussed. Lastly, avenues of future research are proposed.
Seed bank survival of an invasive species, but not of two native species, declines with invasion.
Orrock, John L; Christopher, Cory C; Dutra, Humberto P
2012-04-01
Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.
The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens.
Depotter, Jasper R L; Rodriguez-Moreno, Luis; Thomma, Bart P H J; Wood, Thomas A
2017-11-01
Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.
USDA-ARS?s Scientific Manuscript database
A finished genome was obtained for Mycosphaerella graminicola, the fungal cause of septoria tritici blotch and a global threat to wheat production, containing thirteen core and eight dispensable chromosomes. The latter, called collectively the dispensome, were dynamic in field and progeny isolates. ...
Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...
USDA-ARS?s Scientific Manuscript database
Prions (PrPSc)are the pathogens that cause a set of fatal neurological diseases that include scrapie and chronic wasting disease (CWD). They are composed solely of protein and unlike viral, bacterial, or fungal pathogens, the information necessary to convert the normal cellular prion protein (PrPC) ...
A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts*
Prados-Rosales, Rafael C.; Roldán-Rodríguez, Raquel; Serena, Carolina; López-Berges, Manuel S.; Guarro, Josep; Martínez-del-Pozo, Álvaro; Di Pietro, Antonio
2012-01-01
The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity. PMID:22553200
QTL mapping of sulfur tolerance in melon
USDA-ARS?s Scientific Manuscript database
Elemental sulfur is a cheap, effective fungicide with multi-site action, which inhibits the evolution of pathogen resistance. Fungal pathogens cause significant yield losses in melon production. Many melon genotypes, however, suffer leaf necrosis in response to elemental sulfur application preventin...
Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species
Whibley, Natasha; Gaffen, Sarah L.
2015-01-01
The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374
Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.
Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F
2013-12-15
Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents
USDA-ARS?s Scientific Manuscript database
Deciphering the geographic origins of pathogens and elucidating the population biology of these microscopic organisms are necessary steps to establish effective disease-control strategies. The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To ...
Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.
Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo
2010-08-01
A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.
Pouzoulet, Jérôme; Pivovaroff, Alexandria L.; Santiago, Louis S.; Rolshausen, Philippe E.
2014-01-01
This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management. PMID:24971084
Lovett, Brian; St Leger, Raymond J
2017-03-01
Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.
Xu, Xiangming; Passey, Thomas; Wei, Feng; Saville, Robert; Harrison, Richard J.
2015-01-01
A phenomenon of yield decline due to weak plant growth in strawberry was recently observed in non-chemo-fumigated soils, which was not associated with the soil fungal pathogen Verticillium dahliae, the main target of fumigation. Amplicon-based metagenomics was used to profile soil microbiota in order to identify microbial organisms that may have caused the yield decline. A total of 36 soil samples were obtained in 2013 and 2014 from four sites for metagenomic studies; two of the four sites had a yield-decline problem, the other two did not. More than 2000 fungal or bacterial operational taxonomy units (OTUs) were found in these samples. Relative abundance of individual OTUs was statistically compared for differences between samples from sites with or without yield decline. A total of 721 individual comparisons were statistically significant – involving 366 unique bacterial and 44 unique fungal OTUs. Based on further selection criteria, we focused on 34 bacterial and 17 fungal OTUs and found that yield decline resulted probably from one or more of the following four factors: (1) low abundance of Bacillus and Pseudomonas populations, which are well known for their ability of supressing pathogen development and/or promoting plant growth; (2) lack of the nematophagous fungus (Paecilomyces species); (3) a high level of two non-specific fungal root rot pathogens; and (4) wet soil conditions. This study demonstrated the usefulness of an amplicon-based metagenomics approach to profile soil microbiota and to detect differential abundance in microbes. PMID:26504572
Ranasinghe, L; Jayawardena, B; Abeywickrama, K
2002-01-01
To develop a post-harvest treatment system against post-harvest fungal pathogens of banana using natural products. Colletotrichum musae was isolated and identified as the causative agent responsible for anthracnose peel blemishes while three fungi, namely Lasiodiplodia theobromae, C. musae and Fusarium proliferatum, were identified as causative agents responsible for crown rot. During the liquid bioassay, cinnamon [Cinnamomum zeylanicum (L.)] leaf, bark and clove [Syzygium aromaticum (L.)] oils were tested against the anthracnose and crown rot pathogens. The test oils were fungistatic and fungicidal against the test pathogens within a range of 0.03-0.11% (v/v). Cinnamon and clove essential oils could be used as antifungal agents to manage post harvest fungal diseases of banana. Cinnamon and clove essential oil could be used as alternative post-harvest treatments on banana. Banana treated with essential oil is chemically safe and acceptable to consumers. Benomyl (Benlate), which is currently used to manage fungal pathogens, can cause adverse health effects and could be replaced with volatile essential oils.
Schuck, Stefan; Baldwin, Ian T.
2014-01-01
The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context. PMID:25036191
Verma, Akash H.; Bueter, Chelsea L.; Rothenberg, Marc E.; Deepe, George S.
2016-01-01
Eosinophils contribute to type II immune responses in helminth infections and allergic diseases, however, their influence on intracellular pathogens is less clear. We previously reported that CCR2−/− mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated IL-4 response. We sought to identify the cellular source promulgating interleukin (IL)-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2−/− animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity. PMID:27049063
Epigenetic regulation of development and pathogenesis in fungal plant pathogens.
Dubey, Akanksha; Jeon, Junhyun
2017-08-01
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Epidemiologic surveillance of cutaneous fungal infection in the United States from 1999 to 2002.
Foster, K Wade; Ghannoum, Mahmoud A; Elewski, Boni E
2004-05-01
Cutaneous fungal infections are common in the United States, and causative organisms include dermatophytes, yeasts, and nondermatophyte molds. These organisms are in constant competition for their particular environmental niche, often resulting in the emergence of one or more predominant pathogens and displacement of other less competitive species. Changes in the incidence of fungal pathogens can be followed from laboratory culture results of infected cutaneous tissues over time. These data can be used to ascertain past and present trends in incidence, predict increases in antifungal resistance and the adequacy of our current pharmacologic repertoire, and provide insight into future developments. This study identifies epidemiologic trends and the predominant organisms causing superficial fungal infections in the United States. A total of 15,381 specimens were collected from clinically suspected tinea corporis, tinea cruris, tinea capitis, tinea faciei, tinea pedis, tinea manuum, and finger and toe onychomycosis from 1999 through 2002. Specimens were submitted to the Center for Medical Mycology in Cleveland, Ohio, for fungal culture and identification, and the incidence of each species was calculated. Dermatophytes remain the most commonly isolated fungal organisms except from clinically suspected finger onychomycosis, in which case Candida species comprise >70% of isolates. Trichophyton rubrum remains the most prevalent fungal pathogen, and increased incidence of this species was observed in finger and toe onychomycosis, tinea corporis and tinea cruris, tinea manuum, and tinea pedis. As the causal agent of tinea capitis, T tonsurans continues to increase in incidence, achieving near exclusionary proportions in the United States. Consideration of the current epidemiologic trends in the incidence of cutaneous fungal pathogens is of key importance to investigational efforts, diagnosis, and treatment.
Seed diseases and seedborne pathogens of North America
Michelle Cram; Stephen Fraedrich
2010-01-01
Seedborne pathogenic fungi can greatly affect seed quality and cause diseases that impact seedling production in nurseries. Management strategies for the control of various seedborne diseases are based on the epidemiology of the diseases and the biology of the host and pathogen. This paper provides a brief review of seedborne fungal problems that affect conifer seeds...
USDA-ARS?s Scientific Manuscript database
American wildrice (Zizania palustris) is an aquatic cereal that is harvested from natural stands and commercial paddies for its gourmet grain. Fungal brown spot (FBS), caused by Cochliobolus miyabeanus, is the most important disease that inflicts annual yield losses in this crop. The development of ...
Ustilago echinata: Infection in a Mixed Martial Artist Following an Open Fracture.
Stewart, Ethan; Waldman, Sarah; Sutton, Deanna A; Sanders, Carmita; Lindner, Jonathan; Fan, Hongxin; Wiederhold, Nathan P; Thompson, George R
2016-04-01
Ustilago, a common fungal parasite of grains, is infrequently isolated as a pathogen in humans. We describe a case of Ustilago echinata infection following an open distal tibia fracture, review the current literature of this genus as a cause of invasive fungal infection in humans, and discuss management issues.
USDA-ARS?s Scientific Manuscript database
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoform...
Exploration of Fungal Association From Hard Coral Against Pathogen MDR Staphylococcus haemolyticus
NASA Astrophysics Data System (ADS)
Cristianawati, O.; Radjasa, O. K.; Sabdono, A.; Trianto, A.; Sabdaningsih, A.; Sibero, M. T.; Nuryadi, H.
2017-02-01
Staphylococcus haemolyticus are opportunistic bacteria and as the second leading cause of nosocomial infections. It is a disease causing septicemia, peritonitis, otitis, and urinary tract infections and infections of the eye. It also a phenotype resistant to multiple antibiotics commercial. There is now an urgency to find an alternative antibiotics to combat this bacteria. It has been widely reported that many bioactive marine natural products from marine invertebrate have striking similarities to metabolites of their associated microorganisms including fungi. Hard coral associated microorganisms are among of the most interesting and promising marine natural product sources, which produce with various biological activities. The proposed work focused on the discovery of bioactive compounds and also estimated the phylogenetic diversity from fungal association of hard coral against pathogen MDR Staphylococcus haemolyticus. A total of 32 fungal association, FHP 7 which were isolated from Favia sp. capable of inhibiting the growth MDR. Molecular identification based on 18S rRNA gene sequences revealed that the active fungal association belonged 100% to the members from one of the genera Trichoderma longibrachiatum. Accession Number LC185084.1.
Kniemeyer, Olaf; Schmidt, André D; Vödisch, Martin; Wartenberg, Dirk; Brakhage, Axel A
2011-06-01
Both fungi Candida albicans and Aspergillus fumigatus can cause a number of life-threatening systemic infections in humans. The commensal yeast C. albicans is one of the main causes of nosocomial fungal infectious diseases, whereas the filamentous fungus A. fumigatus has become one of the most prevalent airborne fungal pathogens. Early diagnosis of these fungal infections is challenging, only a limited number of antifungals for treatment are available, and the molecular details of pathogenicity are hardly understood. The completion of both the A. fumigatus and C. albicans genome sequence provides the opportunity to improve diagnosis, to define new drug targets, to understand the functions of many uncharacterised proteins, and to study protein regulation on a global scale. With the application of proteomic tools, particularly two-dimensional gel electrophoresis and LC/MS-based methods, a comprehensive overview about the proteins of A. fumigatus and C. albicans present or induced during environmental changes and stress conditions has been obtained in the past 5 years. However, for the discovery of further putative virulence determinants, more sensitive and targeted proteomic methods have to be applied. Here, we review the recent proteome data generated for A. fumigatus and C. albicans that are related to factors required for pathogenicity. Copyright © 2011 Elsevier GmbH. All rights reserved.
Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno
2012-01-01
Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656
Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie
2012-01-01
Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis. PMID:22396644
Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie
2012-01-01
Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis.
NASA Astrophysics Data System (ADS)
Toledo-Hernández, C.; Zuluaga-Montero, A.; Bones-González, A.; Rodríguez, J. A.; Sabat, A. M.; Bayman, P.
2008-09-01
Caribbean corals, including sea fans ( Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best.
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil
Oliveira, Helena M.B.; Santos, Cledir; Paterson, R. Russell M.; Gusmão, Norma B.; Lima, Nelson
2016-01-01
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens. PMID:27005653
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.
Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson
2016-03-09
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.
Invasive Fungal Infections after Natural Disasters
Benedict, Kaitlin
2014-01-01
The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed. PMID:24565446
Invasive fungal infections after natural disasters.
Benedict, Kaitlin; Park, Benjamin J
2014-03-01
The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.
Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.
Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L
2018-01-02
Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.
Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway.
Fuller, Kevin K; Rhodes, Judith C
2012-01-01
Diverse fungal species are the cause of devastating agricultural and human diseases. As successful pathogenesis is dependent upon the ability of the fungus to adapt to the nutritional and chemical environment of the host, the understanding of signaling pathways required for such adaptation will provide insights into the virulence of these pathogens and the potential identification of novel targets for antifungal intervention. The cAMP-PKA signaling pathway is well conserved across eukaryotes. In the nonpathogenic yeast, S. cerevisiae, PKA is activated in response to extracellular nutrients and subsequently regulates metabolism and growth. Importantly, this pathway is also a regulator of pathogenesis, as defects in PKA signaling lead to an attenuation of virulence in diverse plant and human pathogenic fungi. This review will compare and contrast PKA signaling in S. cerevisiae vs. various pathogenic species and provide a framework for the role of this pathway in regulating fungal virulence.
Resistance in persisting bat populations after white-nose syndrome invasion.
Langwig, Kate E; Hoyt, Joseph R; Parise, Katy L; Frick, Winifred F; Foster, Jeffrey T; Kilpatrick, A Marm
2017-01-19
Increases in anthropogenic movement have led to a rise in pathogen introductions and the emergence of infectious diseases in naive host communities worldwide. We combined empirical data and mathematical models to examine changes in disease dynamics in little brown bat (Myotis lucifugus) populations following the introduction of the emerging fungal pathogen Pseudogymnoascus destructans, which causes the disease white-nose syndrome. We found that infection intensity was much lower in persisting populations than in declining populations where the fungus has recently invaded. Fitted models indicate that this is most consistent with a reduction in the growth rate of the pathogen when fungal loads become high. The data are inconsistent with the evolution of tolerance or an overall reduced pathogen growth rate that might be caused by environmental factors. The existence of resistance in some persisting populations of little brown bats offers a glimmer of hope that a precipitously declining species will persist in the face of this deadly pathogen.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Singh, H Ranjit; Deka, Manab; Das, Sudripta
2015-07-01
Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.
USDA-ARS?s Scientific Manuscript database
Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...
Pruning of Manchurian crabapple for management of speck rot and Sphaeropsis rot in apple
USDA-ARS?s Scientific Manuscript database
Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens are two important quarantined fungal pathogens that cause post-harvest speck rot and Sphaeropsis rot, respectively, in apple. Due to detection of these pathogens in fruit shipments and quarantine regulation, export of apple from Washingto...
Frick, Winifred F; Cheng, Tina L; Langwig, Kate E; Hoyt, Joseph R; Janicki, Amanda F; Parise, Katy L; Foster, Jeffrey T; Kilpatrick, A Marm
2017-03-01
Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations. © 2016 by the Ecological Society of America.
Betsy A. Bancroft; Barbara A. Han; Catherine L. Searle; Lindsay M. Biga; Deanna H. Olson; Lee B. Kats; Joshua J. Lawler; Andrew R. Blaustein
2011-01-01
Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, ...
Shivaprakash, M R; Singh, Gagandeep; Gupta, Prerna; Dhaliwal, Manpreet; Kanwar, A J; Chakrabarti, A
2011-12-01
Trichosporon species cause wide varieties of fungal infections. White piedra, a superficial fungal infection on the hair shaft, is caused by Trichosporon species. We report here a case of white piedra over the scalp due to T. inkin, a rarely isolated pathogen from such a lesion. The identification of the fungus was confirmed on the basis of morphology, carbohydrate assimilation tests, and sequencing of the ITS region of rDNA. The available literature on infections due to T. inkin is also reviewed.
The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
Briones-Martin-Del-Campo, Marcela; Orta-Zavalza, Emmanuel; Juarez-Cepeda, Jacqueline; Gutierrez-Escobedo, Guadalupe; Cañas-Villamar, Israel; Castaño, Irene; De Las Peñas, Alejandro
2014-01-01
Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe
2015-05-08
Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.
Wang, Lulu; Wang, Liya; Han, Lei; Yin, Weijing
2015-01-01
To identify the causative fungi of fungal keratitis, test their susceptibility to antifungal agents with the disk diffusion method and study the relationship between the organisms, the inhibition zones and the clinical outcomes. 535 patients with fungal keratitis in one eye were included in this study. Pathogenic fungi were isolated by corneal scraping, identified by fungal cultivation and subjected to drug sensitivity tests conducted with the disk diffusion method. The patients were treated initially with voriconazole, terbinafine and natamycin eye drops for one week. Further treatment continued using the most effective drug according to the drug sensitivity results. The patients were followed up every week until three months after cured. The inhibition zones of fungi cultured with voriconazole, terbinafine and natamycin were compared. The relationship between inhibition zones and organism, organism and treatment results measure, and each treatment results measure and inhibition zones were evaluated. Of 535 patients, 53.84%, 19.25% and 26.91% were infected with Aspergillus, Fusarium and other fungi, respectively. Keratitis patients infected with Aspergillus keratitis had the worst outcome. The size of the inhibition zones of Aspergillus spp., Fusarium spp. and other fungal genera differed significantly in response to voriconazole, terbinafine and natamycin. The inhibition zone associated with natamycin correlated significantly with the clinical outcome of fungal keratitis (OR = 0.925), but no other such correlations were found for the other drugs tested. Aspergillus and Fusarium were the predominant pathogenic genera causing fungal keratitis in our patients. Among the causative fungi, infections due to Aspergillus spp. were associated with the worst outcomes. The inhibition zones of fungal isolates in response to natamycin significantly correlated with the treatment outcomes of keratitis. Specifically, the smaller the natamycin inhibition zone, the lower the probability that the fungal keratitis had been eliminated.
Testing the efficacy of bicarbonates as fungicides against Cercospora beticola
USDA-ARS?s Scientific Manuscript database
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important pathogen of sugar beets in many production areas throughout the world. The application of fungicides has been one of the most effective management tools for CLS, but their effectiveness has di...
USDA-ARS?s Scientific Manuscript database
Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. ...
USDA-ARS?s Scientific Manuscript database
Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...
Moniliophthora roreri Genome and Transcriptome
USDA-ARS?s Scientific Manuscript database
Frosty pod rot disease of cacao is one of the most destructive diseases of cacao and at this time is limited to regions in South America and Central America. Frosty pod rot is caused by a fungal pathogen Moniliophthora roreri, a basidiomycete that is closely related to another cacao pathogen that ca...
Structure, Function, Interaction, Co-evolution of Rice Blast Resistance Genes
USDA-ARS?s Scientific Manuscript database
Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive rice diseases worldwide. Resistance (R) genes to blast encode proteins that detect pathogen signaling molecules encoded by M. oryzae avirulence (AVR) genes. R genes can be a single or a member of clu...
García-Fontgivell, Joan Francesc; Mayayo Artal, Emilio
2006-12-01
Infectious diseases caused by fungal pathogens have increased in the past 10 years. More than 300 pathogenic fungal species have been incriminated as the etiologic agents. We carried out a retrospective study (1994-2004) to evaluate the prevalence of mycoses at the University Hospital Joan XXIII (330 beds). This report found 0.24% of the studied cases (78,310 biopsies and 753 autopsies) were diagnosed as fungal infections (0.21% of the total studied biopsy and 4.25% of the whole autopsies). Skin and mucose were involved in 66% of cases, followed by other less affected anatomical areas. 61% of studied cases were caused by Candida spp (the most frequent in our environment), followed by Aspergillus spp (10%) and the Zygomycetes (5%). The most important underlying illness was obstructive chronic pulmonary disease followed by diabetes and AIDS. The incidence of mycoses increased with the patient's age, especially those patients in their 80s. Antifungal management improved the clinical outcome of the patient but predisposing factors are crucial for diagnosis. Systemic mycoses have poor prognosis with 91% of fatal outcome. Thus, it is important to perform a rapid diagnosis of the fungal infections a diagnostic area in which pathology could play a major role.
Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge
2014-01-01
The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation. PMID:25558092
Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge
2014-11-01
The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation.
Parallels in amphibian and bat declines from pathogenic fungi.
Eskew, Evan A; Todd, Brian D
2013-03-01
Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.
Global Warming Will Bring New Fungal Diseases for Mammals
Garcia-Solache, Monica A.; Casadevall, Arturo
2010-01-01
ABSTRACT Fungi are major pathogens of plants, other fungi, rotifers, insects, and amphibians, but relatively few cause disease in mammals. Fungi became important human pathogens only in the late 20th century, primarily in hosts with impaired immunity as a consequence of medical interventions or HIV infection. The relatively high resistance of mammals has been attributed to a combination of a complex immune system and endothermy. Mammals maintain high body temperatures relative to environmental temperatures, creating a thermally restrictive ambient for the majority of fungi. According to this view, protection given by endothermy requires a temperature gradient between those of mammals and the environment. We hypothesize that global warming will increase the prevalence of fungal diseases in mammals by two mechanisms: (i) increasing the geographic range of currently pathogenic species and (ii) selecting for adaptive thermotolerance for species with significant pathogenic potential but currently not pathogenic by virtue of being restricted by mammalian temperatures. PMID:20689745
2007-01-01
Respiratory infections, recurrent airway obstruction (RAO) and exercise induced pulmonary haemorrhage (EIPH) are major causes of poor performance in horses. Fungi and mycotoxins are now recognised as a major cause of these conditions. The most notable fungi are Aspergillus and Fusarium. Fungal spores can originate from forage, bedding and feed and, in turn, these fungal spores can produce a series of mycotoxins as secondary metabolites. This study set out to ascertain the degree of fungal and mycotoxin contamination in feed and fodder used in Irish racing yards over a one-year period. Weather conditions in forage producing areas were sampled by Met Eireann and the Canadian Meteorological Service. Fifty per cent of Irish hay, 37% of haylage and 13% of Canadian hay contained pathogenic fungi. Of the mycotoxins, T2 and zearalenone were most prominent. Twenty-one per cent of Irish hay and 16% of pelleted feed contained zearalenone. Forty per cent of oats and 54% of pelleted feed contained T2 toxins. PMID:21851693
Buckley, Thomas; Creighton, Alan; Fogarty, Ursula
2007-04-01
Respiratory infections, recurrent airway obstruction (RAO) and exercise induced pulmonary haemorrhage (EIPH) are major causes of poor performance in horses. Fungi and mycotoxins are now recognised as a major cause of these conditions. The most notable fungi are Aspergillus and Fusarium. Fungal spores can originate from forage, bedding and feed and, in turn, these fungal spores can produce a series of mycotoxins as secondary metabolites.This study set out to ascertain the degree of fungal and mycotoxin contamination in feed and fodder used in Irish racing yards over a one-year period. Weather conditions in forage producing areas were sampled by Met Eireann and the Canadian Meteorological Service.Fifty per cent of Irish hay, 37% of haylage and 13% of Canadian hay contained pathogenic fungi. Of the mycotoxins, T2 and zearalenone were most prominent. Twenty-one per cent of Irish hay and 16% of pelleted feed contained zearalenone. Forty per cent of oats and 54% of pelleted feed contained T2 toxins.
Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.
Baral, Bikash
2017-01-01
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Martín-Rodrigues, Noemí; Espinel, Santiago; Sanchez-Zabala, Joseba; Ortíz, Amaia; González-Murua, Carmen; Duñabeitia, Miren K
2013-06-01
· Fusarium circinatum causes pitch canker disease in a wide range of pine trees, including Pinus radiata, with devastating economic consequences. · To assess the spatial and temporal dynamics of growth of this pathogen in radiata pine, we examined the process of infection using both real-time PCR to quantify fungal biomass inside the plant host, and confocal microscopy using a green fluorescent protein (GFP)-tagged strain of F. circinatum. · Pathogen growth exhibited three distinct phases: an initial exponential increase in fungal biomass, concomitant with pathogen colonization of the cortex and phloem; a slowdown in fungal growth coincident with sporulating hyphae deep within the host; and stabilization of the fungal biomass when the first wilting symptoms appeared. The number of resin ducts in the xylem was found to increase in response to infection and the fungus grew inside both constitutive and traumatic resin ducts. · These results indicate that conidiation may contribute to the spatial or temporal dissemination of the pathogen. Moreover, the present findings raise the intriguing possibility that the generation of traumatic resin ducts may be of more benefit to the fungus than to the plant. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.
Creger, Richard J.; Weeman, Kisa E.; Jacobs, Michael R.; Morrissey, Anne; Parker, Pamela; Fox, Robert M.; Lazarus, Hillard M.
1998-01-01
We retrospectively compared the utility of a fungal isolation device (Isolator) versus conventional techniques for recovering fungal organisms from blood cultures obtained from neutropenic cancer patients. Positive cultures were deemed true pathogens, possible pathogens, or contaminants according to laboratory and clinical criteria. Fifty-three patients had 66 positive blood cultures for fungi, nine on multiple occasions. In 20 episodes true pathogens were recovered, 6 from broth medium alone, 4 from the Isolator system alone, and 10 from both systems. False-negative cultures were noted in 4 of 20 (20%) cases in which broth medium was used and in 6 of 20 (30%) cases in which the Isolator system was used. Possible pathogens were detected in 4 of 66 blood culture-positive cases. Forty-two positive cultures were considered contaminants, 1 collected from standard medium and 41 of 42 (98%) which grew only in Isolators. Eleven of 18 patients with true fungal infections expired as a result of infection, while 4 of 33 patients with a contaminant expired, none from a fungal cause. We do not advocate the routine use of Isolator tubes in the evaluation of the febrile, neutropenic patient due to the high rates of false positives and of contamination. PMID:9431970
Uncommon opportunistic fungal infections of oral cavity: A review
Deepa, AG; Nair, Bindu J; Sivakumar, TT; Joseph, Anna P
2014-01-01
The majority of opportunistic oral mucosal fungal infections are due to Candida albicans and Aspergillus fumigatus species. Mucor and Cryptococcus also have a major role in causing oral infections, whereas Geotrichum, Fusarium, Rhodotorula, Saccharomyces and Penicillium marneffei are uncommon pathogens in the oral cavity. The broad spectrum of clinical presentation includes pseudo-membranes, abscesses, ulcers, pustules and extensive tissue necrosis involving bone. This review discusses various uncommon opportunistic fungal infections affecting the oral cavity including their morphology, clinical features and diagnostic methods. PMID:25328305
Phomopsis seed decay of soybean
USDA-ARS?s Scientific Manuscript database
Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean-growing countries. The disease is caused primarily by the fungal pathogen Phomopsis longicolla along with other Phomopsis and Diaporthe spp. Infected seed range from symptomless to shriveled, elongated, ...
Leal, Sixto M.; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S.; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric
2013-01-01
Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections. PMID:23853581
Leal, Sixto M; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S; Di Pietro, Antonio; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric
2013-01-01
Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.
Duplications and losses in gene families of rust pathogens highlight putative effectors
Amanda L. Pendleton; Katherine E. Smith; Nicolas Feau; Francis M. Martin; Igor V. Grigoriev; Richard Hamelin; C.Dana Nelson; J.Gordon Burleigh; John M. Davis
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the worldâs most destructive diseases of trees and crops . A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen...
Effect of fire on a seed bank pathogen and on seeds of its host Bromus tectorum
J. Beckstead; S.E. Meyer; L.E. Street; P.S. Allen
2010-01-01
The generalist pathogen Pyrenophora semeniperda (Brittlebank and Adam) Shoemaker occurs primarily in cheatgrass (Bromus tectorum L.) seed banks, where it causes high seed mortality (Beckstead et al. 2007; Meyer et al. 2007). How does fire impact survival of a fungal seed pathogen, P. semeniperda, versus survival of the seeds of its cheatgrass host, the invasive Bromus...
Mousa, Walaa Kamel; Raizada, Manish N
2013-01-01
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.
Mousa, Walaa Kamel; Raizada, Manish N.
2013-01-01
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048
USDA-ARS?s Scientific Manuscript database
Common bean (Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of common bean. The Ur-3 locus provides race specific resistance to fungal rust along wit...
Independent Subtilases Expansions in Fungi Associated with Animals
Muszewska, Anna; Taylor, John W.; Szczesny, Pawel; Grynberg, Marcin
2011-01-01
Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive. PMID:21727238
Hancock, P.A; Thomas, M.B; Godfray, H.C.J
2008-01-01
It has recently been proposed that mosquito vectors of human diseases, particularly malaria, may be controlled by spraying with fungal biopesticides that increase the rate of adult mortality. Though fungal pathogens do not cause instantaneous mortality, they can kill mosquitoes before they are old enough to transmit disease. A model is developed (i) to explore the potential for fungal entomopathogens to reduce significantly infectious mosquito populations, (ii) to assess the relative value of the many different fungal strains that might be used, and (iii) to help guide the tactical design of vector-control programmes. The model follows the dynamics of different classes of adult mosquitoes with the risk of mortality due to the fungus being assumed to be a function of time since infection (modelled using the Weibull distribution). It is shown that substantial reductions in mosquito numbers are feasible for realistic assumptions about mosquito, fungus and malaria biology and moderate to low daily fungal infection probability. The choice of optimal fungal strain and spraying regime is shown to depend on local mosquito and malaria biology. Fungal pathogens may also influence the ability of mosquitoes to transmit malaria and such effects are shown to further reduce vectorial capacity. PMID:18765347
Patel, Kunal D; Scarano, Frank J; Kondo, Miwako; Hurta, Robert A R; Neto, Catherine C
2011-12-28
Cranberry ( Vaccinium macrocarpon ) has been shown in clinical studies to reduce infections caused by Escherichia coli and other bacteria, and proanthocyanidins are believed to play a role. The ability of cranberry to inhibit the growth of opportunistic human fungal pathogens that cause oral, skin, respiratory, and systemic infections has not been well-studied. Fractions from whole cranberry fruit were screened for inhibition of five Candida species and Cryptococcus neoformans , a causative agent of fungal meningitis. Candida glabrata , Candida lusitaniae , Candida krusei , and Cryptococcus neoformans showed significant susceptibility to treatment with cranberry proanthocyanidin fractions in a broth microdilution assay, with minimum inhibitory concentrations as low as 1 μg/mL. MALDI-TOF MS analysis of subfractions detected epicatechin oligomers of up to 12 degrees of polymerization. Those containing larger oligomers caused the strongest inhibition. This study suggests that cranberry has potential as an antifungal agent.
USDA-ARS?s Scientific Manuscript database
Chickpea production is greatly hampered by blight causing fungal pathogen Ascochyta rabiei (AR) in chickpea growing regions of the world. Genetic variability and mating type frequency of thirty-two AR isolates from six geographical regions of Pakistan were compared with a US-AR population. Pakistani...
USDA-ARS?s Scientific Manuscript database
Brachypodium distachyon is an emerging model to study fungal disease resistance in cereals and grasses. We characterized the stem rust-Brachypodium pathosystem to evaluate its potential for investigating molecular and genetic aspects of resistance to P. graminis, the pathogen that causes stem rust. ...
Quantitative trait loci for resistance to two fungal pathogens in Quercus robur
Cécile Robin; Amira Mougou-Hamdane; Jean-Marc Gion; Antoine Kremer; Marie-Laure Desprez-Loustau
2012-01-01
Powdery mildew, caused by Erysiphe alphitoides (Ascomycete), is the most frequent disease of oaks, which are also known to be host plants for Phytophthora cinnamomi (Oomycete), the causal agent of ink disease. Components of genetic resistance to these two pathogens, infecting either leaves or root and collar, were...
Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize
USDA-ARS?s Scientific Manuscript database
Stenocarpella maydis is a fungal pathogen of major importance that causes a dry-rot of maize ears and is associated with a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. In an effort to investigate the potential roles of S. maydis metabolites in the fun...
Zhou, Man; Hu, Qian; Li, Zhigang; Li, Dayong; Chen, Chin-Fu; Luo, Hong
2011-01-01
Background Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response. Methodology/Principal Findings The antimicrobial peptide - Penaeidin4-1 (Pen4-1) from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4). Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants. Conclusion/Significance Our results demonstrate the effectiveness of Pen4-1 in a perennial species against fungal pathogens and suggest a potential strategy for engineering broad-spectrum fungal disease resistance in crop species. PMID:21931807
Goos, Sarah; Kämper, Jörg; Sauer, Norbert
2010-01-01
Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717
Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar
2017-08-01
This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.
Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites
Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C.
2016-01-01
Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions. PMID:27706030
Ectoparasites may serve as vectors for the white-nose syndrome fungus.
Lučan, Radek K; Bandouchova, Hana; Bartonička, Tomáš; Pikula, Jiri; Zahradníková, Alexandra; Zukal, Jan; Martínková, Natália
2016-01-13
Vertebrate ectoparasites frequently play a role in transmission of infectious agents. Pseudogymnoascus destructans is a psychrophilic fungus known to cause white-nose syndrome (WNS), an emerging infectious disease of bats. It is transmitted with direct contact between bats or with contaminated environment. The aim of this study was to examine wing mites from the family Spinturnicidae parasitizing hibernating bats for the presence of P. destructans propagules as another possible transmission route. Wing mites collected from 33 bats at four hibernation sites in the Czech Republic were inspected for the presence and load of pathogen's DNA using quantitative PCR. Simultaneously, wing damage of inspected bats caused by WNS was quantified using ultraviolet light (UV) transillumination and the relationship between fungal load on wing mites and intensity of infection was subjected to correlation analysis. All samples of wing mites were positive for the presence of DNA of P. destructans, indicating a high probability of their role in the transmission of the pathogen's propagules between bats. Mechanical transport of adhesive P. destructans spores and mycelium fragments on the body of spinturnicid mites is highly feasible. The specialised lifestyle of mites, i.e., living on bat wing membranes, the sites most typically affected by fungal growth, enables pathogen transport. Moreover, P. destructans metabolic traits suggest an ability to grow and sporulate on a range of organic substrates, including insects, which supports the possibility of growth on bat ectoparasites, at least in periods when bats roost in cold environments and enter torpor. In addition to transport of fungal propagules, mites may facilitate entry of fungal hyphae into the epidermis through injuries caused by biting.
Jane E. Stewart; Mee-Sook Kim; Louise Shuey; Norio Sahashi; Yuko Ota; Robert L. Schlub; Phil G. Cannon; Ned B. Klopfenstein
2016-01-01
Phellinus noxius (Corner) G. H. Cunn is a vastly destructive, fast-growing fungal pathogen that affects a wide range of woody hosts in pan-tropical areas, including Asia, Australia, Africa, and Oceania (Ann et al. 2002; Figure 1) . This pathogen causes brown root-rot disease on cacao, coffee, and rubber, as well as diverse fruit, nut, ornamental, and other...
Metabolism in Fungal Pathogenesis
Ene, Iuliana V.; Brunke, Sascha; Brown, Alistair J.P.; Hube, Bernhard
2014-01-01
Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host–fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies. PMID:25190251
Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions.
Hua, Chenlei; Zhao, Jian-Hua; Guo, Hui-Shan
2018-02-05
Fungal pathogens represent a major group of plant invaders that are the causative agents of many notorious plant diseases. Large quantities of RNAs, especially small RNAs involved in gene silencing, have been found to transmit bidirectionally between fungal pathogens and their hosts. Although host-induced gene silencing (HIGS) technology has been developed and applied to protect crops from fungal infections, the mechanisms of RNA transmission, especially small RNAs regulating trans-kingdom RNA silencing in plant immunity, are largely unknown. In this review, we summarize and discuss recent important findings regarding trans-kingdom sRNAs and RNA silencing in plant-fungal pathogen interactions compared with the well-known RNAi mechanisms in plants and fungi. We focus on the interactions between plant and fungal pathogens with broad hosts, represented by the vascular pathogen Verticillium dahliae and non-vascular pathogen Botrytis cinerea, and discuss the known instances of natural RNAi transmission between fungal pathogens and host plants. Given that HIGS has been developed and recently applied in controlling Verticillium wilt diseases, we propose an ideal research system exploiting plant vasculature-Verticillium interaction to further study trans-kingdom RNA silencing. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Exophiala angulospora causes systemic inflammation in atlantic cod Gadus morhua.
Gjessing, Mona Cecilie; Davey, Marie; Kvellestad, Agnar; Vrålstad, Trude
2011-10-06
Species of Exophiala are opportunistic fungal pathogens that may infect a broad range of warm- and cold-blooded animals, including salmonids and Atlantic cod. In the present study, we observed abnormal swimming behaviour and skin pigmentation and increased mortality in cod kept in an indoor tank. Necropsy revealed foci of different sizes with a greyish to brownish colour in internal organs of diseased fish. The foci consisted of ramifying darkly pigmented fungal hyphae surrounded by distinct layers of inflammatory cells, including macrophage-like cells. In the inner layer with many hyphae, the macrophage-like cells were dead. We observed no apparent restriction of fungal growth by the inflammatory response. A darkly pigmented fungus was repeatedly isolated in pure culture from foci of diseased fish and identified as Exophiala angulospora using morphological and molecular characters. This species has not been previously reported to cause disease in cod, but has been reported as an opportunistic pathogen of both marine and freshwater fish. Based on the morphology and sequence analysis presented here, we conclude that E. angulospora caused the observed chronic multifocal inflammation in internal organs of cod, leading to severe disease and mortality.
Resistance to Phomopsis Seed Decay in soybean
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen, Phomopsis longicolla T.W. Hobbs along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing countries. Infected soybean seeds can be symptomless, but...
Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers
2018-01-01
ABSTRACT Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. PMID:29871918
Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids.
Mor, Visesato; Rella, Antonella; Farnoud, Amir M; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B; Wiederhold, Nathan P; Fothergill, Annette W; Kirkpatrick, William R; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L; Luberto, Chiara; Nimrichter, Leonardo; Del Poeta, Maurizio
2015-06-23
Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals. Copyright © 2015 Mor et al.
Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.
2015-01-01
The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861
Translocation of cell-penetrating peptides into Candida fungal pathogens.
Gong, Zifan; Karlsson, Amy J
2017-09-01
Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.
First report of Phakopsora pachyrhizi causing rust on soybean in Ethiopia
USDA-ARS?s Scientific Manuscript database
Soybean rust, caused by the fungal pathogen P. pachyrhizi, has been reported in 10 African countries since the first report in Uganda in 1996. In 2016, a severe epidemic caused “clouds” of urediniospores to be observed when walking through fields in mid-October 2016 in Jimma Ethiopia. In the first ...
Proteomics of Plant Pathogenic Fungi
González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.
2010-01-01
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070
Proteomics of plant pathogenic fungi.
González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V
2010-01-01
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.
Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan
2009-01-01
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants. PMID:18987215
Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants.
Freeman, S; Horowitz, S; Sharon, A
2001-10-01
ABSTRACT Anthracnose is one of the major fungal diseases of strawberry occurring worldwide. In Israel, the disease is caused primarily by the species Colletotrichum acutatum. The pathogen causes black spot on fruit, root necrosis, and crown rot resulting in mortality of transplants in the field. The host range and specificity of C. acutatum from strawberry was examined on pepper, eggplant, tomato, bean, and strawberry under greenhouse conditions. The fungus was recovered from all plant species over a 3-month period but caused disease symptoms only on strawberry. Epiphytic and endophytic (colonization) fungal growth in the different plant species was confirmed by reisolation from leaf tissues and by polymerase chain reaction (PCR)-specific primer amplification. C. acutatum was also isolated from healthy looking, asymptomatic plants of the weed genera Vicia and Conyza. Isolates that were recovered from the weeds caused disease symptoms on strawberry and were positively identified as C. acutatum by PCR. The habitation of a large number of plant species, including weeds, by C. acutatum suggests that, although it causes disease only on strawberry and anemone in Israel, this fungus can persist on many other plant species. Therefore, plants that are not considered hosts of C. acutatum may serve as a potential inoculum source for strawberry infection and permit survival of the pathogen between seasons.
USDA-ARS?s Scientific Manuscript database
A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...
USDA-ARS?s Scientific Manuscript database
The two most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete, downy mildew (Plasmopara viticola). These pathogens, endemic to North America, were introduced into Europe in t...
USDA-ARS?s Scientific Manuscript database
Mycosphaerella fijiensis is the fungal pathogen that causes black Sigatoka or leaf streak disease of banana. Control of this disease requires weekly applications of fungicides in most cultivation areas. Major problems for disease management are fungicide resistance and the lack of effective genes fo...
USDA-ARS?s Scientific Manuscript database
Verticillium wilt (VW) of potato (Solanum tuberosum), caused by fungal pathogens, Verticillium dahliae and V. albo atrum, is a disease of major significance throughout the potato growing regions in the world. In the past, researchers have focused on the Ve gene, which is a major dominant gene that c...
Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans.
Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2011-09-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.
USDA-ARS?s Scientific Manuscript database
Stem rust, caused by the macrocyclic fungal pathogen Puccinia graminis (Pg), is one of the most devastating diseases of wheat and other small grains globally; and the emergence of new stem rust races virulent on deployed resistance genes brings urgency to the discovery of more durable sources of gen...
Emerging oomycete threats to plants and animals
Chaparro-Garcia, Angela
2016-01-01
Oomycetes, or water moulds, are fungal-like organisms phylogenetically related to algae. They cause devastating diseases in both plants and animals. Here, we describe seven oomycete species that are emerging or re-emerging threats to agriculture, horticulture, aquaculture and natural ecosystems. They include the plant pathogens Phytophthora infestans, Phytophthora palmivora, Phytophthora ramorum, Plasmopara obducens, and the animal pathogens Aphanomyces invadans, Saprolegnia parasitica and Halioticida noduliformans. For each species, we describe its pathology, importance and impact, discuss why it is an emerging threat and briefly review current research activities. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080985
The trans-kingdom identification of negative regulators of pathogen hypervirulence.
Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E
2016-01-01
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.
LAMP detection assays for boxwood blight pathogens: A comparative genomics approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel
Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less
LAMP detection assays for boxwood blight pathogens: A comparative genomics approach
Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; ...
2016-05-20
Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L
2017-01-31
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. Copyright © 2017 Santiago-Tirado et al.
Endocarditis caused by Rhodotorula infection.
Simon, Matthew S; Somersan, Selin; Singh, Harjot K; Hartman, Barry; Wickes, Brian L; Jenkins, Stephen G; Walsh, Thomas J; Schuetz, Audrey N
2014-01-01
Rhodotorula is an emerging opportunistic fungal pathogen that is rarely reported to cause endocarditis. We describe a case involving a patient who developed endocarditis due to Rhodotorula mucilaginosa and Staphylococcus epidermidis, proven by culture and histopathology. The case illustrates the unique diagnostic and therapeutic challenges relevant to Rhodotorula spp.
Samsatly, Jamil; Copley, Tanya R; Jabaji, Suha H
2018-01-01
Biotic stress, as a result of plant-pathogen interactions, induces the accumulation of reactive oxygen species in the cells, causing severe oxidative damage to plants and pathogens. To overcome this damage, both the host and pathogen have developed antioxidant systems to quench excess ROS and keep ROS production and scavenging systems under control. Data on ROS-scavenging systems in the necrotrophic plant pathogen Rhizoctonia solani are just emerging. We formerly identified vitamin B6 biosynthetic machinery of R. solani AG3 as a powerful antioxidant exhibiting a high ability to quench ROS, similar to CATALASE (CAT) and GLUTATHIONE S-TRANSFERASE (GST). Here, we provide evidence on the involvement of R. solani vitamin B6 biosynthetic pathway genes; RsolPDX1 (KF620111.1), RsolPDX2 (KF620112.1), and RsolPLR (KJ395592.1) in vitamin B6 de novo biosynthesis by yeast complementation assays. Since gene expression studies focusing on oxidative stress responses of both the plant and the pathogen following R. solani infection are very limited, this study is the first coexpression analysis of genes encoding vitamin B6, CAT and GST in plant and fungal tissues of three pathosystems during interaction of different AG groups of R. solani with their respective hosts. The findings indicate that distinct expression patterns of fungal and host antioxidant genes were correlated in necrotic tissues and their surrounding areas in each of the three R. solani pathosystems: potato sprout-R. solani AG3; soybean hypocotyl-R. solani AG4 and soybean leaves-R. solani AG1-IA interactions. Levels of ROS increased in all types of potato and soybean tissues, and in fungal hyphae following infection of R. solani AGs as determined by non-fluorescence and fluorescence methods using H2DCF-DA and DAB, respectively. Overall, we demonstrate that the co-expression and accumulation of certain plant and pathogen ROS-antioxidant related genes in each pathosystem are highlighted and might be critical during disease development from the plant's point of view, and in pathogenicity and developing of infection structures from the fungal point of view.
Samsatly, Jamil; Copley, Tanya R.
2018-01-01
Biotic stress, as a result of plant-pathogen interactions, induces the accumulation of reactive oxygen species in the cells, causing severe oxidative damage to plants and pathogens. To overcome this damage, both the host and pathogen have developed antioxidant systems to quench excess ROS and keep ROS production and scavenging systems under control. Data on ROS-scavenging systems in the necrotrophic plant pathogen Rhizoctonia solani are just emerging. We formerly identified vitamin B6 biosynthetic machinery of R. solani AG3 as a powerful antioxidant exhibiting a high ability to quench ROS, similar to CATALASE (CAT) and GLUTATHIONE S-TRANSFERASE (GST). Here, we provide evidence on the involvement of R. solani vitamin B6 biosynthetic pathway genes; RsolPDX1 (KF620111.1), RsolPDX2 (KF620112.1), and RsolPLR (KJ395592.1) in vitamin B6 de novo biosynthesis by yeast complementation assays. Since gene expression studies focusing on oxidative stress responses of both the plant and the pathogen following R. solani infection are very limited, this study is the first coexpression analysis of genes encoding vitamin B6, CAT and GST in plant and fungal tissues of three pathosystems during interaction of different AG groups of R. solani with their respective hosts. The findings indicate that distinct expression patterns of fungal and host antioxidant genes were correlated in necrotic tissues and their surrounding areas in each of the three R. solani pathosystems: potato sprout-R. solani AG3; soybean hypocotyl-R. solani AG4 and soybean leaves-R. solani AG1-IA interactions. Levels of ROS increased in all types of potato and soybean tissues, and in fungal hyphae following infection of R. solani AGs as determined by non-fluorescence and fluorescence methods using H2DCF-DA and DAB, respectively. Overall, we demonstrate that the co-expression and accumulation of certain plant and pathogen ROS-antioxidant related genes in each pathosystem are highlighted and might be critical during disease development from the plant’s point of view, and in pathogenicity and developing of infection structures from the fungal point of view. PMID:29466404
Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.
2013-01-01
The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782
Soler-Hurtado, M Mar; Sandoval-Sierra, José Vladimir; Machordom, Annie; Diéguez-Uribeondo, Javier
2016-01-01
Emerging fungal diseases are threatening ecosystems and have increased in recent decades. In corals, the prevalence and consequences of these infections have also increased in frequency and severity. Coral reefs are affected by an emerging fungal disease named aspergillosis, caused by Aspergillus sydowii. This disease and its pathogen have been reported along the Caribbean and Pacific coasts of Colombia. Despite this, an important number of coral reefs worldwide have not been investigated for the presence of this pathogen. In this work, we carried out the surveillance of the main coral reef of the Ecuadorian Pacific with a focus on the two most abundant and cosmopolitan species of this ecosystem, Leptogorgia sp. and Leptogorgia obscura. We collected 59 isolates and obtained the corresponding sequences of the Internal Transcribed Spacers (ITS) of the ribosomal DNA. These were phylogenetically analyzed using MrBayes, which indicated the presence of two isolates of the coral reef pathogen A. sydowii, as well as 16 additional species that are potentially pathogenic to corals. Although the analyzed gorgonian specimens appeared healthy, the presence of these pathogens, especially of A. sydowii, alert us to the potential risk to the health and future survival of the Pacific Ecuadorian coral ecosystem under the current scenario of increasing threats and stressors to coral reefs, such as habitat alterations by humans and global climate change.
Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J
2016-03-01
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Sun, Yan-Lin; Hong, Soon-Kwan
2012-08-01
Sea buckthorn (Hippophae rhamnoides L.) is naturally distributed from Asia to Europe. It has been widely planted as an ornamental shrub and is rich in nutritional and medicinal compounds. Fungal pathogens that cause diseases such as dried-shrink disease are threats to the production of this plant. In this study, we isolated the dried-shrink disease pathogen from bark and total chitinase protein from leaves of infected plants. The results of the Oxford Cup experiment suggested that chitinase protein inhibited the growth of this pathogen. To improve pathogen resistance, we cloned chitinase Class I and III genes in H. rhamnoides, designated Hrchi1 and Hrchi3. The full-length cDNA of the open reading frame region of Hrchi1 contained 903 bp encoding 300 amino acids and Hrchi3 contained 894 bp encoding 297 amino acids. Active domain analysis, protein types, and secondary and 3D structures were predicted using online software.
Wagner, K; Springer, B; Pires, V P; Keller, P M
2018-05-03
The rising incidence of invasive fungal infections and the expanding spectrum of fungal pathogens makes early and accurate identification of the causative pathogen a daunting task. Diagnostics using molecular markers enable rapid identification of fungi, offer new insights into infectious disease dynamics, and open new possibilities for infectious disease control and prevention. We performed a retrospective study using clinical specimens (N = 233) from patients with suspected fungal infection previously subjected to culture and/or internal transcribed spacer (ITS) PCR. We used these specimens to evaluate a high-throughput screening method for fungal detection using automated DNA extraction (QIASymphony), fungal ribosomal small subunit (18S) rDNA RT-PCR and amplicon sequencing. Fungal sequences were compared with sequences from the curated, commercially available SmartGene IDNS database for pathogen identification. Concordance between 18S rDNA RT-PCR and culture results was 91%, and congruence between 18S rDNA RT-PCR and ITS PCR results was 94%. In addition, 18S rDNA RT-PCR and Sanger sequencing detected fungal pathogens in culture negative (N = 13) and ITS PCR negative specimens (N = 12) from patients with a clinically confirmed fungal infection. Our results support the use of the 18S rDNA RT-PCR diagnostic workflow for rapid and accurate identification of fungal pathogens in clinical specimens.
First case of fungal keratitis caused by Pestalotiopsis clavispora.
Monden, Yu; Yamamoto, Shohaku; Yamakawa, Ryoji; Sunada, Atsuko; Asari, Seishi; Makimura, Koichi; Inoue, Yoshitsugu
2013-01-01
To report the isolation of Pestalotiopsis clavispora from the cornea of a patient with recurrent keratitis. A 73-year-old male gardener presented with conjunctival injection and an oval infiltrate with feathery margins in the temporal half of the cornea in the right eye. His ocular history in the right eye included cataract surgery, five episodes of herpes simplex keratitis, three glaucoma surgeries, and bullous keratopathy. He had been treated with corticosteroids for years. Light microscopy of corneal scrapings revealed a filamentous fungus, and fungal keratitis was diagnosed. Treatment with topical voriconazole and pimaricin ointment was commenced. One month later, the infiltrate resolved. The antifungal agents were discontinued 7 months later, and keratitis relapsed 4 days after the discontinuation. The fungus was isolated and identified by molecular techniques as P. clavispora. Based on the results of antifungal susceptibility testing, treatment with topical and intravenous micafungin was initiated. The corneal infiltrate resolved 1 month after the relapse. Molecular identification of the pathogen, and antifungal susceptibility testing, are useful in treating patients with fungal keratitis caused by a rare human pathogen.
First case of fungal keratitis caused by Pestalotiopsis clavispora
Monden, Yu; Yamamoto, Shohaku; Yamakawa, Ryoji; Sunada, Atsuko; Asari, Seishi; Makimura, Koichi; Inoue, Yoshitsugu
2013-01-01
Purpose To report the isolation of Pestalotiopsis clavispora from the cornea of a patient with recurrent keratitis. Case report A 73-year-old male gardener presented with conjunctival injection and an oval infiltrate with feathery margins in the temporal half of the cornea in the right eye. His ocular history in the right eye included cataract surgery, five episodes of herpes simplex keratitis, three glaucoma surgeries, and bullous keratopathy. He had been treated with corticosteroids for years. Light microscopy of corneal scrapings revealed a filamentous fungus, and fungal keratitis was diagnosed. Treatment with topical voriconazole and pimaricin ointment was commenced. One month later, the infiltrate resolved. The antifungal agents were discontinued 7 months later, and keratitis relapsed 4 days after the discontinuation. The fungus was isolated and identified by molecular techniques as P. clavispora. Based on the results of antifungal susceptibility testing, treatment with topical and intravenous micafungin was initiated. The corneal infiltrate resolved 1 month after the relapse. Conclusion Molecular identification of the pathogen, and antifungal susceptibility testing, are useful in treating patients with fungal keratitis caused by a rare human pathogen. PMID:24348013
Carmo, Egberto Santos; de Oliveira Lima, Edeltrudes; de Souza, Evandro Leite; de Sousa, Frederico Barbosa
2008-01-01
Cinnamomum zeylanicum Blume is known for a wide range of medicinal properties. This study aimed to assess the interference of C. zeylanicum essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species. The essential oil presented strong antifungal effect causing the growth inhibition of the assayed strains and development of large growth inhibition zones. MIC50 and MIC90 values were 40 and 80 μL/mL, respectively. 80, 40 and 20 μL/mL of the oil strongly inhibited the radial mycelial growth of A. niger, A. flavus and A. fumigatus along 14 days. 80 and 40 μL/mL of the oil caused a 100% inhibition of the fungal spore germination. Main morphological changes observed under light microscopy provided by the essential oil in the fungal strains were decreased conidiation, leakage of cytoplasm, loss of pigmentation and disrupted cell structure indicating fungal wall degeneration. It is concluded that C. zeylanicum essential oil could be known as potential antifungal compound, particularly, to protect against the growth of Aspergillus species. PMID:24031186
Standard methods for fungal brood disease research
Jensen, Annette Bruun; Aronstein, Kathrine; Flores, José Manuel; Vojvodic, Svjetlana; Palacio, María Alejandra; Spivak, Marla
2013-01-01
Summary Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens. In addition, we provide research methodologies and protocols for isolating and culturing, in vivo and in vitro assays that are commonly used to study these host pathogen interactions. We give guidelines on the preferred methods used in current research and the application of molecular techniques. We have added photographs, drawings and illustrations to assist bee-extension personnel and bee scientists in the control of these two diseases. PMID:24198438
The defensive role of foliar endophytic fungi for a South American tree
González-Teuber, Marcia
2016-01-01
Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046
Interplay between Candida albicans and the Mammalian Innate Host Defense
Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan
2012-01-01
Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867
Antimicrobial and anti-inflammatory activity of switchgrass-derived extractives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labbe, Nicole; Ownley, Bonnie H.; Gwinn, Kimberly D.
Switchgrass is an increasingly important biofuel crop, but knowledge of switchgrass fungal pathogens is not extensive. The purpose of this research was to identify the fungal pathogens that decrease crop yield of switchgrass grown in Tennessee and to investigate a potential sustainable disease management strategy from a value-added by-product of the switchgrass biofuel conversion process. The specific objectives were 1) to identify and characterize prevalent fungal pathogens of switchgrass in Tennessee, 2) assess switchgrass seed produced in the United States for seedborne fungal pathogens, and 3) evaluate switchgrass extractives for antimicrobial activity against plant pathogens.
The trans-kingdom identification of negative regulators of pathogen hypervirulence
Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.
2015-01-01
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211
Deo, Shivashni S; Virassamy, Balaji; Halliday, Catriona; Clancy, Leighton; Chen, Sharon; Meyer, Wieland; Sorrell, Tania C; Gottlieb, David J
2016-01-01
Invasive fungal diseases caused by filamentous fungi and yeasts are significant causes of morbidity and mortality in immunosuppressed hematology patients. We previously published a method to expand Aspergillus fumigatus-specific T cells for clinical cell therapy. In the present study, we investigated expansion of T cells specific for other fungal pathogens and creation of a broadly reactive panfungal T-cell product. Fungal strains selected were those frequently observed in the clinical hematology setting and included Aspergillus, Candida, Fusarium, Rhizopus and Lomentospora/Scedosporium. Four T-cell cultures specific to each fungus were established. We selected lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae to expand panfungal T cells. Allelic restriction of anti-fungal activity was determined through the use of specific major histocompatibility complex class II-blocking antibodies. Individual T-cell cultures specific to each fungus could be expanded in vitro, generating predominantly CD4(+) T cells of which 8% to 20% were fungus-specific. We successfully expanded panfungal T cells from the peripheral blood (n = 8) and granulocyte-colony-stimulating factor-primed stem cell products (n = 3) of normal donors by using a combination of lysates from Aspergillus terreus, Candida krusei and Rhizopus oryzae. Anti-fungal activity was mediated through human leukocyte antigen (HLA)-DR alleles and was maintained when antigen-presenting cells from partially HLA-DRB1-matched donors were used to stimulate T cells. We demonstrate a method to manufacture panfungal T-cell products with specificity against a range of clinical fungal pathogens by use of the blood and stem cells of healthy donors as the starting material. The safety and efficacy of these products will need to be tested clinically. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Meng, Pin-Pin; Liu, Xing; Qiu, Hui-Zhen; Zhang, Wen-Ming; Zhang, Chun-Hong; Wang, Di; Zhang, Jun-Lian; Shen, Qi-Rong
2012-11-01
Continuous cropping obstacle is one of the main restriction factors in potato industry. In order to explore the mechanisms of potato's continuous cropping obstacle and to reduce the impact on potato's tuber yield, a field experiment combined with PCR-DGGE molecular fingerprinting was conducted to investigate the fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. With the increasing year of potato' s continuous cropping, the numbers of visible bands in rhizosphere fungal DGGE profiles increased obviously. As compared with that of CK (rotation cropping), the operational taxonomic unit (OTU) in treatments of one to five years continuous cropping was increased by 38.5%, 38.5%, 30.8%, 46.2%, and 76.9% respectively, indicating that potato's continuous cropping caused an obvious increase in the individual numbers of dominant fungal populations in rhizosphere soil. Also with the increasing year of potato's continuous cropping, the similarity of the fungal population structure among the treatments had a gradual decrease. The sequencing of the fungal DGGE bands showed that with the increasing year of continuous cropping, the numbers of the potato's rhizosphere soil-borne pathogens Fusarium oxysporum and F. solani increased obviously, while the number of Chaetomium globosum, as a biocontrol species, had a marked decrease in the fifth year of continuous cropping. It was suggested that potato' s continuous cropping caused the pathogen fungal populations become the dominant microbial populations in rhizosphere soil, and the rhizosphere micro-ecological environment deteriorated, which in turn affected the root system, making the root vigor and its absorption area reduced, and ultimately, the tuber yield decreased markedly.
Apple anthracnose canker life cycle and disease cycle
USDA-ARS?s Scientific Manuscript database
Apple anthracnose [caused by Neofabraea malicorticis (H.S. Jacks) anamorph Cryptosporiopsis curvispora (Peck)] is a fungal disease that impacts apple production. The pathogen produces cankers on trees as well as a rot on the fruit known as ‘Bull’s-eye rot’. The cankers cause severe damage to trees...
Evaluation of diverse soybean germplasm for resistance to Phomopsis Seed Decay
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) is a major cause of poor quality soybean seeds. The disease is caused primarily by the fungal pathogen, Phomopsis longicolla. To identify soybean lines with resistance to PSD, a total of 135 selected soybean germplasm accessions originally from 28 countries and in maturity...
Reaction of Diaporthe longicolla to a strain of Sarocladium kiliense
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) of soybean [Glycine max (L.) Merr.] is a seedborne fungal disease caused by Diaporthe (syn. Phomopsis) longicolla that causes yield losses and reduced seed quality. Biocontrol of this pathogen by a strain of Acremonium strictum isolated from a culture of D. longicolla was ...
Recovery Plan for Red Leaf Blotch of Soybean Caused by Phoma glycinicola
USDA-ARS?s Scientific Manuscript database
Red leaf blotch (RLB) of soybean is caused by the fungal pathogen Phoma glycinicola, formerly known in the plant pathology literature as Pyrenochaeta glycines, Dactuliophora glycines, and Dactuliochaeata glycines. The disease presently occurs in only a few African countries on soybean and a wild leg...
Endocarditis Caused by Rhodotorula Infection
Simon, Matthew S.; Somersan, Selin; Singh, Harjot K.; Hartman, Barry; Wickes, Brian L.; Jenkins, Stephen G.; Walsh, Thomas J.
2014-01-01
Rhodotorula is an emerging opportunistic fungal pathogen that is rarely reported to cause endocarditis. We describe a case involving a patient who developed endocarditis due to Rhodotorula mucilaginosa and Staphylococcus epidermidis, proven by culture and histopathology. The case illustrates the unique diagnostic and therapeutic challenges relevant to Rhodotorula spp. PMID:24197888
Hamad, Mawieh
2012-01-01
The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769
Integrated inference and evaluation of host–fungi interaction networks
Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.
2015-01-01
Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851
USDA-ARS?s Scientific Manuscript database
The ascomycete Pyrenophora tritici-repentis (Ptr) is an important fungal pathogen worldwide that causes tan spot of wheat. The fungus is self-fertile because each isolate contains both mating type (MAT) idiomorphs. In this work, we developed knockouts of the MAT genes in Ptr and tested fertility of ...
A. E. Mayfield; S. W. Fraedrich; A. Taylor; P. Merten; S. W. Myers
2014-01-01
Thousand cankers disease, caused by the walnut twig beetle (Pityophthorus juglandis Blackman) and an associated fungal pathogen (Geosmithia morbida M. Kolarõ´k, E. Freeland, C. Utley, and N. Tisserat), threatens the health and commercial use of eastern black walnut (Juglans nigra L.), one of the most economically...
Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.
2011-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host. PMID:21784998
Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato
2013-12-01
Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.
Robert, S; Ravigne, V; Zapater, M-F; Abadie, C; Carlier, J
2012-03-01
Reconstructing and characterizing introduction routes is a key step towards understanding the ecological and evolutionary factors underlying successful invasions and disease emergence. Here, we aimed to decipher scenarios of introduction and stochastic demographic events associated with the global spread of an emerging disease of bananas caused by the destructive fungal pathogen Mycosphaerella fijiensis. We analysed the worldwide population structure of this fungus using 21 microsatellites and 8 sequence-based markers on 735 individuals from 37 countries. Our analyses designated South-East Asia as the source of the global invasion and supported the location of the centre of origin of M. fijiensis within this area. We confirmed the occurrence of bottlenecks upon introduction into other continents followed by widespread founder events within continents. Furthermore, this study suggested contrasting introduction scenarios of the pathogen between the African and American continents. While potential signatures of admixture resulting from multiple introductions were detected in America, all the African samples examined seem to descend from a single successful founder event. In combination with historical information, our study reveals an original and unprecedented global scenario of invasion for this recently emerging disease caused by a wind-dispersed pathogen. © 2012 Blackwell Publishing Ltd.
Fertilizer N application rate impacts plant-soil feedback in a sanqi production system.
Wei, Wei; Yang, Min; Liu, Yixiang; Huang, Huichuan; Ye, Chen; Zheng, Jianfen; Guo, Cunwu; Hao, Minwen; He, Xiahong; Zhu, Shusheng
2018-08-15
Replant failure caused by negative plant-soil feedback (NPFS) in agricultural ecosystems is a critical factor restricting the development of sustainable agriculture. Soil nutrient availability has the capacity to affect plant-soil feedback. Here, we used sanqi (Panax notoginseng), which is severely threatened by NPSF, as a model plant to decipher the overall effects of nitrogen (N) rates on NPSF and the underlying mechanism. We found that a high rate of N at 450kgNha -1 (450N) aggravated the NPSF through the accumulation of pathogens in the soil compared with the optimal 250N. The increased N rates resulted in a significant increase in the soil electrical conductivity and available nitrogen but a decrease in the soil pH and C/N ratio. GeoChip 5.0 data demonstrated that these changed soil properties caused the soil to undergo stress (acidification, salinization and carbon starvation), as indicated by the enriched soil microbial gene abundances related to stress response and nutrition cycling (N, C and S). Accordingly, increased N rates reduced the richness and diversity of soil fungi and bacteria and eventually caused a shift in soil microbes from a bacterial-dominant community to a fungal-dominant community. In particular, the high 450N treatment significantly suppressed the abundance of copiotrophic bacteria, including beneficial genera Bacillus and Pseudomonas, thus weakening the antagonistic activity of these bacteria against fungal pathogens. Moreover, 450N application significantly enriched the abundance of pathogen pathogenicity-related genes. Once sanqi plants were grown in this N-stressed soil, their host-specific fungal pathogen Fusarium oxysporum significantly accumulated, which aggravated the process of NPSF. This study suggested that over-application of nitrogen is not beneficial for disease management or the reduction of fungicide application in agricultural production. Copyright © 2018 Elsevier B.V. All rights reserved.
A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6).
Darwish, Omar; Li, Shuxian; May, Zane; Matthews, Benjamin; Alkharouf, Nadim W
2016-01-01
Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.
A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)
May, Zane; Matthews, Benjamin; Alkharouf, Nadim W.
2016-01-01
Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe– Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. Availability: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx PMID:28197060
Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung
2015-06-01
Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.
Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans
da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet
2015-01-01
Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552
Lorch, Jeffrey M.; Lankton, Julia S.; Werner, Katrien; Falendysz, Elizabeth A.; McCurley, Kevin; Blehert, David S.
2015-01-01
IMPORTANCE Skin infections in snakes, referred to as snake fungal disease (SFD), have been reported with increasing frequency in wild snakes in the eastern United States. While most of these infections are associated with the fungusOphidiomyces ophiodiicola, there has been no conclusive evidence to implicate this fungus as a primary pathogen. Furthermore, it is not understood why the infections affect different host populations differently. Our experiment demonstrates that O. ophiodiicola is the causative agent of SFD and can elicit pathological changes that likely impact fitness of wild snakes. This information, and the laboratory model we describe, will be essential in addressing unresolved questions regarding disease ecology and outcomes of O. ophiodiicola infection and helping to conserve snake populations threatened by the disease. The SFD model of infection also offers utility for exploring larger concepts related to comparative fungal virulence, host response, and host-pathogen evolution.
Gene flow contributes to diversification of the major fungal pathogen Candida albicans.
Ropars, Jeanne; Maufrais, Corinne; Diogo, Dorothée; Marcet-Houben, Marina; Perin, Aurélie; Sertour, Natacha; Mosca, Kevin; Permal, Emmanuelle; Laval, Guillaume; Bouchier, Christiane; Ma, Laurence; Schwartz, Katja; Voelz, Kerstin; May, Robin C; Poulain, Julie; Battail, Christophe; Wincker, Patrick; Borman, Andrew M; Chowdhary, Anuradha; Fan, Shangrong; Kim, Soo Hyun; Le Pape, Patrice; Romeo, Orazio; Shin, Jong Hee; Gabaldon, Toni; Sherlock, Gavin; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe
2018-06-08
Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify.
McGrann, Graham R. D.; Steed, , Andrew; Burt, Christopher; Nicholson, Paul; Brown, James K. M.
2015-01-01
Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens. PMID:25873675
Systems Biology Approaches for Host–Fungal Interactions: An Expanding Multi-Omics Frontier
Culibrk, Luka; Croft, Carys A.
2016-01-01
Abstract Opportunistic fungal infections are an increasing threat for global health, and for immunocompromised patients in particular. These infections are characterized by interaction between fungal pathogen and host cells. The exact mechanisms and the attendant variability in host and fungal pathogen interaction remain to be fully elucidated. The field of systems biology aims to characterize a biological system, and utilize this knowledge to predict the system's response to stimuli such as fungal exposures. A multi-omics approach, for example, combining data from genomics, proteomics, metabolomics, would allow a more comprehensive and pan-optic “two systems” biology of both the host and the fungal pathogen. In this review and literature analysis, we present highly specialized and nascent methods for analysis of multiple -omes of biological systems, in addition to emerging single-molecule visualization techniques that may assist in determining biological relevance of multi-omics data. We provide an overview of computational methods for modeling of gene regulatory networks, including some that have been applied towards the study of an interacting host and pathogen. In sum, comprehensive characterizations of host–fungal pathogen systems are now possible, and utilization of these cutting-edge multi-omics strategies may yield advances in better understanding of both host biology and fungal pathogens at a systems scale. PMID:26885725
Towards Defining Nutrient Conditions Encountered by the Rice Blast Fungus during Host Infection
Wilson, Richard A.; Fernandez, Jessie; Quispe, Cristian F.; Gradnigo, Julien; Seng, Anya; Moriyama, Etsuko; Wright, Janet D.
2012-01-01
Fungal diseases cause enormous crop losses, but defining the nutrient conditions encountered by the pathogen remains elusive. Here, we generated a mutant strain of the devastating rice pathogen Magnaporthe oryzae impaired for de novo methionine biosynthesis. The resulting methionine-requiring strain grew strongly on synthetic minimal media supplemented with methionine, aspartate or complex mixtures of partially digested proteins, but could not establish disease in rice leaves. Live-cell-imaging showed the mutant could produce normal appressoria and enter host cells but failed to develop, indicating the availability or accessibility of aspartate and methionine is limited in the plant. This is the first report to demonstrate the utility of combining biochemical genetics, plate growth tests and live-cell-imaging to indicate what nutrients might not be readily available to the fungal pathogen in rice host cells. PMID:23071797
Human Fungal Pathogens of Mucorales and Entomophthorales.
Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan
2014-11-06
In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Human Fungal Pathogens of Mucorales and Entomophthorales
Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S.; Voigt, Kerstin; Lee, Soo Chan
2015-01-01
In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term “zygomycosis” is often used as a synonym for “mucormycosis.” In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term “zygomycosis” needed to be further specified, resulting in the terms “mucormycosis” and “entomophthoramycosis.” This review covers these two different types of fungal infections. PMID:25377138
Liu, Tong; Hou, Jumei; Wang, Yuying; Jin, Yazhong; Borth, Wayne; Zhao, Fengzhou; Liu, Zheng; Hu, John; Zuo, Yuhu
2016-06-01
Cutinase is described as playing various roles in fungal-plant pathogen interactions, such as eliciting host-derived signals, fungal spore attachment and carbon acquisition during saprophytic growth. However, the characteristics of the cutinase genes, their expression in compatible interactions and their roles in pathogenesis have not been reported in Curvularia lunata, an important leaf spot pathogen of maize in China. Therefore, a cutinase gene family analysis could have profound significance. In this study, we identified 13 cutinase genes (ClCUT1 to ClCUT13) in the C. lunata genome. Multiple sequence alignment showed that most fungal cutinase proteins had one highly conserved GYSQG motif and a similar DxVCxG[ST]-[LIVMF](3)-x(3)H motif. Gene structure analyses of the cutinases revealed a complex intron-exon pattern with differences in the position and number of introns and exons. Based on phylogenetic relationship analysis, C. lunata cutinases and 78 known cutinase proteins from other fungi were classified into four groups with subgroups, but the C. lunata cutinases clustered in only three of the four groups. Motif analyses showed that each group of cutinases from C. lunata had a common motif. Real-time PCR indicated that transcript levels of the cutinase genes in a compatible interaction between pathogen and host had varied expression patterns. Interestingly, the transcript levels of ClCUT7 gradually increased during early pathogenesis with the most significant up-regulation at 3 h post-inoculation. When ClCUT7 was deleted, pathogenicity of the mutant decreased on unwounded maize (Zea mays) leaves. On wounded maize leaves, however, the mutant caused symptoms similar to the wild-type strain. Moreover, the ClCUT7 mutant had an approximately 10 % reduction in growth rate when cutin was the sole carbon source. In conclusion, we identified and characterized the cutinase family genes of C. lunata, analyzed their expression patterns in a compatible host-pathogen interaction, and explored the role of ClCUT7 in pathogenicity. This work will increase our understanding of cutinase genes in other fungal-plant pathogens.
Friend, M.
1999-01-01
As for other types of disease, fungal infections probably are more common causes of disease in wild birds than is currently recognized. Also, the similarity in gross lesions produced by some fungi mask the detection of less common fungi as disease agents. Numerous types of disease-causing fungi in addition to Aspergillus fumigatus and Candida albicans have been isolated from birds; most isolations have been from poultry and wild birds being maintained in captivity. Enhanced disease surveillance that is often associated with privately owned birds and greater opportunity to detect disease in confined birds are reasons for these findings rather than any known differences in the occurrence of fungal diseases in free-ranging and captive birds. Many of the reported infections appear to have been opportunistic invasions by the fungi involved. The important points are that many fungi are capable of causing disease in birds but their collective impacts do not rival A. fumigatus as a single cause of disease in wild birds. Nevertheless, it is important to be aware of the diversity of pathogenic or disease causing fungi.
Vipparti, Haritha
2014-01-01
The frequency of invasive, opportunistic mycoses has increased significantly over the past 2 decades. In the immune-compromised host, many fungi, including species of fungi typically considered non-pathogenic, have the potential to cause serious morbidity and mortality. Here we report a rare case of mixed fungal infection of the lung with Candida albicans and Aspergillus fumigatus in a patient on prolonged steroid therapy. PMID:24959447
NASA Astrophysics Data System (ADS)
Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy
2015-01-01
Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.
NASA Astrophysics Data System (ADS)
Muni, Nurulhidayah Mat; Nadarajah, Kalaivani
2014-09-01
Magnaporthe oryzae is a plant-pathogenic fungus that causes a serious disease affecting rice called rice blast. Outbreaks of rice blast have been a threat to the global production of rice. This fungal disease is estimated to cause production losses of US55 million each year in South and Southeast Asia. It has been used as a primary model for elucidating various aspects of the host-pathogen interaction with its host. We have isolated five isolates of Magnaporthe oryzae from diseased leaf samples obtained from the field at Kompleks Latihan MADA, Kedah, Malaysia. We have identified the isolates using morphological and microscopic studies on the fungal spores and the lesions on the diseased leaves. Amplification of the internal transcribed spacer (ITS) was carried out with universal primers ITS1 and ITS4. The sequence of each isolates showed at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae.
Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi
2013-03-01
Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for MoT. Loop-mediated isothermal amplificat...
Ongoing molecular studies of Eucalyptus powdery mildew in Brazil
N. R. Fonseca; L. M. S. Guimaraes; R. P. Pires; Ned Klopfenstein; M. -S. Kim; A. C. Alfenas
2016-01-01
Powdery mildew diseases are caused by biotrophic fungi in the Erysiphales. These fungal pathogens are easily observed by the whitish powdery appearance caused by their colonization of the aerial surfaces on living plants (Stadnik & Rivera, 2001) (Figure 1). In Brazil, powdery mildew of Eucalyptus spp is increasing under the current nursery production...
USDA-ARS?s Scientific Manuscript database
The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the USA, now established in seven southeastern states. Females are the primary vectors of a fungal pathogen, Raffaelea lauricola, that causes laurel wilt. This vascular disease has caused extensi...
Genome Sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon
USDA-ARS?s Scientific Manuscript database
This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...
Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon
USDA-ARS?s Scientific Manuscript database
This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...
[Animals as a potential source of human fungal infections].
Dworecka-Kaszak, Bozena
2008-01-01
Changing environment is a reason, that many saprotrophic fungi became opportunists and in the end also maybe a pathogenic. Host specific adaptation is not so strong among fungi, so there are many common fungal pathogens for people and for animals. Animals suffering from dermatomycosis are well recognize as source of human superficial mycoses. Breeding of different exotic animals such as parrots, various Reptiles and Amphibians, miniature Rodents and keeping them as a pets in the peoples houses, have become more and more popular in the recent years. This article is shortly presenting which animals maybe a potential source of fungal infections for humans. Looking for the other mycoses as systemic mycoses, especially candidiasis or aspergilosis there are no data, which allow excluding sick animals as a source of infection for human, even if those deep mycoses have endogenic reactivation mechanism. Immunocompromised people are in high-risk group when they take care of animals. Another important source of potentially pathogenic, mostly air-born fungi may be animal use in experimental laboratory work. During the experiments is possible that laboratory workers maybe hurt and these animals and their environment, food and house boxes could be the possible source of microorganisms, pathogenic for humans or other animals. Unusual way to inoculate these potentially pathogens into the skin of laboratory personnel may cause granulomatous, local lesions on their hands.
USDA-ARS?s Scientific Manuscript database
Frogeye Leaf Spot (FLS) of soybean is caused by the fungal pathogen, Cercospora sojina Hara. FLS causes significant damage resulting in a yield loss of 4 to 6 Bu/Acre, mostly in the Southern U.S. Since its first report in South Carolina in 1924 it has caused significant damage resulting in a yield ...
Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N.
2015-01-01
Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183
Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N
2015-01-01
Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.
Pemán, Javier; Zaragoza, Rafael; Salavert, Miguel
2013-12-01
Knowledge of the epidemiology of invasive fungal diseases caused by yeasts (Candida spp., especially) in health care settings allows the establishment of the levels necessary for its prevention. A first step is to identify groups of patients at high risk of nosocomial invasive fungal infections, establish accurate risk factors, observing the periods of greatest risk, and analyze the epidemiological profile in genera and species as well as the patterns of antifungal resistance. Secondly, mechanisms to avoid persistent exposure to potential fungal pathogens must be programed, protecting areas and recommending measures such as the control of the quality of the air and water, inside and outside the hospital, and other products or substances able to cause outbreaks. Finally, apart from the correct implementation of these measures, in selected patients at very high risk, the use of antifungal prophylaxis should be considered following the guidelines published.
Nicklas Samils; Malin Elfstrand; Daniel L. Lindner Czederpiltz; Jan Fahleson; Ake Olson; Christina Dixelius; Jan Stenlid
2006-01-01
Heterobasidion annosum causes root and butt-rot in trees and is the most serious forest pathogen in the northern hemisphere. We developed a rapid and simple Agrobacterium-mediated method of gene delivery into H. annosum to be used in functional studies of candidate genes and for visualization of mycelial interactions. Heterobasidion annosum TC 32-1 was cocultivated at...
Jackson Audley; William E. Klingeman; Albert Mayfield; Scott Myers; Adam Taylor
2017-01-01
Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associ-ated fungal pathogen Geosmithia morbida M. .Kolank , E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have ex- panded beyond their native range via...
Needle reactions in resistance to Cronartium ribicola: Hypersensitivity response or not?
Katarina Sweeney; Jeffrey Stone; Kathy Cook; Richard A. Sniezko; Angelia Kegley; Anna W. Schoettle
2012-01-01
White pine blister rust (WPBR) is caused by the fungal pathogen Cronartium ribicola. The pathogen is native to Eurasia and was introduced to North America early in the 20th century and is still spreading destructively throughout the range of native western white pines (Douglas ex D. Don) (McDonald and Hoff 2001). All of the North American five-needle (white) pines are...
Travassos, Luiz R.; Taborda, Carlos P.
2017-01-01
Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South America; Histoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing β-(1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition. PMID:28344577
Antifungal activity of medicinal plant extracts; preliminary screening studies.
Webster, Duncan; Taschereau, Pierre; Belland, René J; Sand, Crystal; Rennie, Robert P
2008-01-04
In the setting of HIV and organ transplantation, opportunistic fungal infections have become a common cause of morbidity and mortality. Thus antifungal therapy is playing a greater role in health care. Traditional plants are a valuable source of novel antifungals. To assess in vitro antifungal activity of aqueous plant extracts. The minimum inhibitory concentrations were determined for each extract in the setting of human pathogenic fungal isolates. Plants were harvested and identification verified. Aqueous extracts were obtained and antifungal susceptibilities determined using serial dilutional extracts with a standardized microdilution broth methodology. Twenty-three fungal isolates were cultured and exposed to the plant extracts. Five known antifungals were used as positive controls. Results were read at 48 and 72 h. Of the 14 plants analyzed, Fragaria virginiana Duchesne, Epilobium angustifolium L. and Potentilla simplex Michx. demonstrated strong antifungal potential overall. Fragaria virginiana had some degree of activity against all of the fungal pathogens. Alnus viridis DC., Betula alleghaniensis Britt. and Solidago gigantea Ait. also demonstrated a significant degree of activity against many of the yeast isolates. Fragaria virginiana, Epilobium angustifolium and Potentilla simplex demonstrate promising antifungal potential.
Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies
Konrad, Matthias; Vyleta, Meghan L.; Theis, Fabian J.; Stock, Miriam; Tragust, Simon; Klatt, Martina; Drescher, Verena; Marr, Carsten; Ugelvig, Line V.; Cremer, Sylvia
2012-01-01
Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”). PMID:22509134
Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.
Langwig, Kate E; Frick, Winifred F; Reynolds, Rick; Parise, Katy L; Drees, Kevin P; Hoyt, Joseph R; Cheng, Tina L; Kunz, Thomas H; Foster, Jeffrey T; Kilpatrick, A Marm
2015-01-22
Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome
Langwig, Kate E.; Frick, Winifred F.; Reynolds, Rick; Parise, Katy L.; Drees, Kevin P.; Hoyt, Joseph R.; Cheng, Tina L.; Kunz, Thomas H.; Foster, Jeffrey T.; Kilpatrick, A. Marm
2015-01-01
Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. PMID:25473016
Thomazella, Daniela P T; Teixeira, Paulo José P L; Oliveira, Halley C; Saviani, Elzira E; Rincones, Johana; Toni, Isabella M; Reis, Osvaldo; Garcia, Odalys; Meinhardt, Lyndel W; Salgado, Ione; Pereira, Gonçalo A G
2012-01-01
The tropical pathogen Moniliophthora perniciosa causes witches’ broom disease in cacao. As a hemibiotrophic fungus, it initially colonizes the living host tissues (biotrophic phase), and later grows over the dead plant (necrotrophic phase). Little is known about the mechanisms that promote these distinct fungal phases or mediate the transition between them. An alternative oxidase gene (Mp-aox) was identified in the M. perniciosa genome and its expression was analyzed througout the fungal life cycle. In addition, the effects of inhibitors of the cytochrome-dependent respiratory chain (CRC) and alternative oxidase (AOX) were evaluated on the in vitro development of M. perniciosa. Larger numbers of Mp-aox transcripts were observed in the biotrophic hyphae, which accordingly showed elevated sensitivity to AOX inhibitors. More importantly, the inhibition of CRC prevented the transition from the biotrophic to the necrotrophic phase, and the combined use of a CRC and AOX inhibitor completely halted fungal growth. On the basis of these results, a novel mechanism is presented in which AOX plays a role in the biotrophic development of M. perniciosa and regulates the transition to its necrotrophic stage. Strikingly, this model correlates well with the infection strategy of animal pathogens, particularly Trypanosoma brucei, which uses AOX as a strategy for pathogenicity. PMID:22443281
Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
Shah, Punit; Powell, Ann L T; Orlando, Ron; Bergmann, Carl; Gutierrez-Sanchez, Gerardo
2012-04-06
Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.
Trichosporon beigelii infection presenting as white piedra and onychomycosis in the same patient.
Elmer, Kathleen B; Elston, Dirk M; Libow, Lester F
2002-10-01
Trichosporon beigelii is a fungal organism that causes white piedra and has occasionally been implicated as a nail pathogen. We describe a patient with both hair and nail changes associated with T. beigelii.
Tackling emerging fungal threats to animal health, food security and ecosystem resilience.
Fisher, Matthew C; Gow, Neil A R; Gurr, Sarah J
2016-12-05
Emerging infections caused by fungi have become a widely recognized global phenomenon. Their notoriety stems from their causing plagues and famines, driving species extinctions, and the difficulty in treating human mycoses alongside the increase of their resistance to antifungal drugs. This special issue comprises a collection of articles resulting from a Royal Society discussion meeting examining why pathogenic fungi are causing more disease now than they did in the past, and how we can tackle this rapidly emerging threat to the health of plants and animals worldwide.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).
A novel method for rapidly isolating microbes that suppress soil-borne phytopathogens
NASA Astrophysics Data System (ADS)
Cooper, Sarah; Agnew, Linda; Pereg, Lily
2016-04-01
Seedling establishment faces a large number of challenges related to soil physical properties as well as to fungal root diseases. It is extremely difficult to eliminate fungal pathogens from soils where their populations are established due to the persistent nature of their spores and since fumigation of resident fungi is very ineffective in clay-containing soils. Therefore it is necessary to find ways to overcome disease in areas where the soils are infected with fungal phytopathogens. The phenomenon of disease suppressive soils, where the pathogen is present but no disease observed, suggests that microbial antagonism in the soil may lead to the suppression of the growth of fungal pathogens. There are also cases in the literature where soil microorganisms were isolated that suppress the growth of phytopathogens. Antibiosis is one of the most important mechanisms responsible for fungal antagonism, with some significant antifungal compounds involved including antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Isolation of pathogen-suppressive microorganisms from the soil is time consuming and tedious. We established a simple method for direct isolation of soil microbes (bacteria and fungi) that suppress fungal phytopathogens as well as procedures for confirmation of disease suppression. We will discuss such methods, which were so far tested with the cotton fungal pathogens Thielaviopsis basicola, Verticillium dahliae and Fusarium oxysporum and Verticillium fungicola. We have isolated a diversity of T. basicola-suppressive fungi and bacteria from two vastly different soil types. Identification of the antagonistic isolates revealed that they are a diverse lot, some belong to groups known to be suppressive of a wide range of fungal pathogens, endorsing the power of this technique to rapidly and directly isolate soil-borne microbes antagonistic to a wide variety of fungal pathogens.
Enguita, Francisco J.; Costa, Marina C.; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José; Leitão, Ana Lúcia
2016-01-01
Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection. PMID:29376924
Protein deficiency lowers resistance of Mormon crickets to the pathogenic fungus Beauveria bassiana.
Srygley, R B; Jaronski, S T
Little is known about the effects of dietary macronutrients on the capacity of insects to ward off a fungal pathogen. Here we tested the hypothesis that Mormon crickets fed restricted protein diets have lower enzymatic assays of generalized immunity, slower rates of encapsulation of foreign bodies, and greater mortality from infection by Beauveria bassiana, a fungal pathogen. Beginning in the last nymphal instar, Mormon crickets were fed a high, intermediate, or low protein diet with correspondingly low, intermediate, or high carbohydrate proportions. After they eclosed to adult, we drew hemolymph, topically applied B. bassiana, maintained them on diet treatments, and measured mortality for 21 days. Mormon crickets fed high protein diets had higher prophenoloxidase titers, greater encapsulation response, and higher survivorship to Beauveria fungal infection than those on low protein diets. We replicated the study adding very high and very low protein diets to the treatments. A high protein diet increased phenoloxidase titers, and those fed the very high protein diet had more circulating prophenoloxidase. Mormon crickets fed the very low protein diet were the most susceptible to B. bassiana infection, but the more concentrated phenoloxidase and prophenoloxidase associated with the highest protein diets did not confer the greatest protection from the fungal pathogen as in the first replicate. We conclude that protein-restricted diets caused Mormon crickets to have lower phenoloxidase titers, slower encapsulation of foreign bodies, and greater mortality from B. bassiana infection than those fed high protein diets. These results support the nutrition-based dichotomy of migrating Mormon crickets, protein-deficient ones are more susceptible to pathogenic fungi whereas carbohydrate-deficient ones are more vulnerable to bacterial challenge. Published by Elsevier Ltd.
Shekhova, Elena
2017-01-01
ABSTRACT Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds. PMID:28848005
Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela
2013-01-01
An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included.
Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R
2017-01-24
The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the "conditionally essential" amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases. Copyright © 2017 Wagener et al.
Target discovery and antifungal intervention via chemical biology approaches
USDA-ARS?s Scientific Manuscript database
Controlling infective fungi, especially pathogens that produce toxic secondary metabolites, is problematic as effective antimycotic agents are very limited. Moreover, the expansion of fungal resistance to commercial drugs is a global human health issue. Conventional antimycotic agents also cause ser...
Mapping amphibian disease patterns
Noreen Parks
2013-01-01
Over the past two decades the worldwide emergence of the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, has drastically impacted populations of frogs, toads, and salamanders. Currently, as much as 40% of the roughly 6300 known amphibian species are deemed imperiled, and chytridiomycosis is...
The Pathogen-Host Interactions database (PHI-base): additions and future developments
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340
Applied genetic conservation of Hawaiian Acacia koa: an eco-regional approach
Nick Dudley; Tyler Jones; Robert James; Richard Sniezko; Jessica Wright; Christina Liang; Paul F. Gugger; Phil Cannon
2017-01-01
Koa (Acacia koa) is a valuable tree species economically, ecologically, and culturally in Hawaii. A vascular wilt disease of koa, caused by the fungal pathogen Fusarium oxysporum f. sp. koae (FOXY), causes high rates of mortality in field plantings and threatens native koa forests in Hawaii. Producing seeds with genetic resistance to FOXY is vital...
USDA-ARS?s Scientific Manuscript database
Neofusicoccum ribis (Slippers, Crous & M.J. Wingf.), previously known as Botryosphaeria ribis (Grossenb. & Duggar), is an aggressive fungal plant pathogen that is part of the N. ribis/N. parvum species complex that causes stem cankers on a variety of woody plant species. An isolate of N. ribis was ...
QUANTIFICATION OF PATHOGENIC FUNGI IN WATER
The rate of systemic fungal infections in humans has shown a dramatic increase since 1980. Fungal infections are difficult to treat and fungal infection account for a significant proportion of all fatal hospital acquired (nosocomial) infections in the United States. Pathogenic ...
Marco Masi; Susan Meyer; Gennaro Pescitelli; Alessio Cimmino; Suzette Clement; Beth Peacock; Antonio Evidente
2017-01-01
The winter annual grass Bromus tectorum (cheatgrass) has become highly invasive in semiarid ecosystems of western North America. In these areas, a natural phenomenon, complete cheatgrass stand failure (âdie-offâ), is apparently caused by a complex interaction among soilborne fungal pathogens. Several Fusarium strains belonging to the Fusarium tricinctum species complex...
Characterisation of a flavonoid ligand of the fungal protein Alt a 1
Garrido-Arandia, María; Silva-Navas, Javier; Ramírez-Castillejo, Carmen; Cubells-Baeza, Nuria; Gómez-Casado, Cristina; Barber, Domingo; Pozo, Juan C.; Melendi, Pablo G.; Pacios, Luis F.; Díaz-Perales, Araceli
2016-01-01
Spores of pathogenic fungi are virtually ubiquitous and cause human disease and severe losses in crops. The endophytic fungi Alternaria species produce host-selective phytotoxins. Alt a 1 is a strongly allergenic protein found in A. alternata that causes severe asthma. Despite the well-established pathogenicity of Alt a 1, the molecular mechanisms underlying its action and physiological function remain largely unknown. To gain insight into the role played by this protein in the pathogenicity of the fungus, we studied production of Alt a 1 and its activity in spores. We found that Alt a 1 accumulates inside spores and that its release with a ligand is pH-dependent, with optimum production in the 5.0–6.5 interval. The Alt a 1 ligand was identified as a methylated flavonoid that inhibits plant root growth and detoxifies reactive oxygen species. We also found that Alt a 1 changes its oligomerization state depending on the pH of the surrounding medium and that these changes facilitate the release of the ligand. Based on these results, we propose that release of Alt a 1 should be a pathogenic target in approaches used to block plant defenses and consequently to favor fungal entry into the plant. PMID:27633190
Characterisation of a flavonoid ligand of the fungal protein Alt a 1.
Garrido-Arandia, María; Silva-Navas, Javier; Ramírez-Castillejo, Carmen; Cubells-Baeza, Nuria; Gómez-Casado, Cristina; Barber, Domingo; Pozo, Juan C; Melendi, Pablo G; Pacios, Luis F; Díaz-Perales, Araceli
2016-09-16
Spores of pathogenic fungi are virtually ubiquitous and cause human disease and severe losses in crops. The endophytic fungi Alternaria species produce host-selective phytotoxins. Alt a 1 is a strongly allergenic protein found in A. alternata that causes severe asthma. Despite the well-established pathogenicity of Alt a 1, the molecular mechanisms underlying its action and physiological function remain largely unknown. To gain insight into the role played by this protein in the pathogenicity of the fungus, we studied production of Alt a 1 and its activity in spores. We found that Alt a 1 accumulates inside spores and that its release with a ligand is pH-dependent, with optimum production in the 5.0-6.5 interval. The Alt a 1 ligand was identified as a methylated flavonoid that inhibits plant root growth and detoxifies reactive oxygen species. We also found that Alt a 1 changes its oligomerization state depending on the pH of the surrounding medium and that these changes facilitate the release of the ligand. Based on these results, we propose that release of Alt a 1 should be a pathogenic target in approaches used to block plant defenses and consequently to favor fungal entry into the plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less
Dühring, Sybille; Ewald, Jan; Germerodt, Sebastian; Kaleta, Christoph; Dandekar, Thomas; Schuster, Stefan
2017-07-01
The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage- Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage- C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells. © 2017 The Author(s).
Roscher, Christiane; Schumacher, Jens; Foitzik, Oliver; Schulze, Ernst-Detlef
2007-08-01
The hypothesis that plant species diversity and genetic variation of the host species decrease the severity of plant diseases is supported by studies of agricultural systems, but experimental evidence from more complex systems is scarce. In an experiment with grassland communities of varying species richness (1, 2, 4, 8, 16, and 60 species) and functional group richness (1, 2, 3, and 4 functional groups), we used different cultivars of Lolium perenne (perennial ryegrass) to study effects of biodiversity and cultivar identity on the occurrence and severity of foliar fungal diseases caused by Puccinia coronata (crown rust) and P. graminis (stem rust). Cultivar monocultures of perennial ryegrass revealed strong differences in pathogen susceptibility among these cultivars. Disease intensity caused by both rust fungi decreased significantly with growing species richness of species mixtures. The response to the diversity gradient was related to the decreased density and size of the host individuals with increasing species richness. The occurrence of other grass species known to be possible hosts of the pathogens in the experimental mixtures did not promote disease intensity in L. perenne, indicating that there was a high host specificity of pathogen strains. Differences in pathogen susceptibility among perennial ryegrass cultivars persisted independent of diversity treatment, host density and host individual size, but resulted in a cultivar-specific pattern of changes in pathogen infestation across the species-richness gradient. Our study provided evidence that within-species variation in pathogen susceptibility and competitive interactions of the host species with the environment, as caused by species diversity treatments, are key determinants of the occurrence and severity of fungal diseases.
Soto-Suárez, Mauricio; Baldrich, Patricia; Weigel, Detlef; Rubio-Somoza, Ignacio; San Segundo, Blanca
2017-01-01
MicroRNAs (miRNAs) play a pivotal role in regulating gene expression during plant development. Although a substantial fraction of plant miRNAs has proven responsive to pathogen infection, their role in disease resistance remains largely unknown, especially during fungal infections. In this study, we screened Arabidopsis thaliana lines in which miRNA activity has been reduced using artificial miRNA target mimics (MIM lines) for their response to fungal pathogens. Reduced activity of miR396 (MIM396 plants) was found to confer broad resistance to necrotrophic and hemibiotrophic fungal pathogens. MiR396 levels gradually decreased during fungal infection, thus, enabling its GRF (GROWTH-REGULATING FACTOR) transcription factor target genes to trigger host reprogramming. Pathogen resistance in MIM396 plants is based on a superactivation of defense responses consistent with a priming event during pathogen infection. Notably, low levels of miR396 are not translated in developmental defects in absence of pathogen challenge. Our findings support a role of miR396 in regulating plant immunity, and broaden our knowledge about the molecular players and processes that sustain defense priming. That miR396 modulates innate immunity without growth costs also suggests fine-tuning of miR396 levels as an effective biotechnological means for protection against pathogen infection. PMID:28332603
Nelson, Jessica M; Hauser, Duncan A; Hinson, Rosemary; Shaw, A Jonathan
2018-05-01
Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti
Cho, Hyun ji; Hong, Seong Won; Kim, Hyun-ju; Kwak, Youn-Sig
2016-01-01
Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti. PMID:26889115
Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M; Trapero-Casas, José L; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A; Pliego-Alfaro, Fernando
2018-01-01
The antifungal protein (AFP) produced by Aspergillus giganteus , encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix , was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. 'Picual' were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae .
Aspergillus thyroiditis in a renal transplant recipient mimicking subacute thyroiditis.
Solak, Y; Atalay, H; Nar, A; Ozbek, O; Turkmen, K; Erekul, S; Turk, S
2011-04-01
Fungal pathogens are increasingly encountered after renal transplantation. Aspergillus causes significant morbidity and mortality in transplant patients. Fungal thyroiditis is a rare occurrence owing to unique features of the thyroid gland. Most cases are caused by Aspergillus species and have been described in immunocompromised patients. Presentation may be identical with that of subacute thyroiditis, in which hyperthyroidism features and painful thyroid are the prominent findings. Diagnosis can be ascertained by fine-needle aspiration of thyroid showing branching hyphae of Aspergillus. We describe a renal transplant patient who developed Aspergillus thyroiditis as part of a disseminated infection successfully treated with voriconazole. © 2010 John Wiley & Sons A/S.
Inhibitory effects of crude extracts from several plants on postharvest pathogens of citrus
NASA Astrophysics Data System (ADS)
Gong, Mingfu; Guan, Qinlan; Xu, Shanshan
2018-04-01
China is one of the most important origin of citrus. Enormous economic losses was caused by fungal diseases in citrus harvest storage every year. The effective antimicrobial substances of garlic, ginger, celery and pepper were extracted by ethanol extraction and water extraction respectively. The inhibitory effects of the crude extract on Penicillium sp. caused fungal diseases in citrus harvest storage were also determined. The results showed that the extracts of garlic, ginger and celery had inhibitory effect on P. sp., but the extracts of pepper had no inhibitory effect on P. sp.. The garlic ethanol extracts had the best inhibitory effect on P. citrinum.
Balla, Agnes; Pierson, Joseph; Hugh, Jeremy; Wojewoda, Christina; Gibson, Pamela; Greene, Laura
2016-04-01
An increasing spectrum and number of opportunistic fungal pathogens have been reported to cause disease in humans over the past decade. Disseminated phaeohyphomycoses caused by rare dematiaceous molds in immunocompromised patients have a high mortality rate and are increasingly reported in the literature. Early diagnosis of disseminated phaehyphomycosis is critical especially in neutropenic patients but can be hindered by the low sensitivity of fungal blood cultures and low clinical suspicion. Cutaneous manifestations are often the earliest sign of disease and conducting a thorough skin exam in febrile neutropenic patients can lead to more rapid diagnosis and initiation of treatment. PCR amplification and sequencing of mold RNA extracted from paraffin-embedded tissue can be useful for diagnosing rare fungal infections when negative fungal cultures preclude morphologic diagnosis. Effective treatment for disseminated phaehyphomycosis is lacking and there is a need to report experiences with the use of newer antifungals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents
USDA-ARS?s Scientific Manuscript database
The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...
USDA-ARS?s Scientific Manuscript database
The fungal genera Bipolaris Shoemaker and Cochliobolus Drechsler have been applied to economically important plant pathogens causing diseases of cereal crops worldwide, especially southern corn leaf blight. There are major accounts of these genera including those incorporating molecular phylogenetic...
Fatal disseminated Rasamsonia infection in cystic fibrosis post-lung transplantation.
Hong, Gina; White, Marissa; Lechtzin, Noah; West, Natalie E; Avery, Robin; Miller, Heather; Lee, Richard; Lovari, Robert J; Massire, Christian; Blyn, Lawrence B; Liang, Xinglun; Sutton, Deanna A; Fu, Jianmin; Wickes, Brian L; Wiederhold, Nathan P; Zhang, Sean X
2017-03-01
Disseminated fungal infections are a known serious complication in individuals with cystic fibrosis (CF) following orthotopic lung transplantation. Aspergillus fumigatus and Scedosporium species are among the more common causes of invasive fungal infection in this population. However, it is also important for clinicians to be aware of other emerging fungal species which may require markedly different antifungal therapies. We describe the first laboratory-documented case of a fatal disseminated fungal infection caused by Rasamsonia aegroticola in a 21-year-old female CF patient status post-bilateral lung transplantation, which was only identified post-mortem. Molecular analysis revealed the presence of the identical Rasamsonia strains in the patient's respiratory cultures preceding transplantation. We propose that the patient's disseminated fungal disease and death occurred as a result of recrudescence of Rasamsonia infection from her native respiratory system in the setting of profound immunosuppression post-operatively. Since Rasamsonia species have been increasingly recovered from the respiratory tract of CF patients, we further review the literature on these fungi and discuss their association with invasive fungal infections in the CF lung transplant host. Our report suggests Rasamsonia species may be important fungal pathogens that may have fatal consequences in immunosuppressed CF patients after solid organ transplantation. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
LysM receptor-like kinases to improve plant defense response against fungal pathogens
Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO
2012-01-17
Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.
LysM receptor-like kinases to improve plant defense response against fungal pathogens
Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng
2013-10-15
Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.
2015-01-01
Phytopathogenic fungi form intimate associations with host plant species and cause disease. To be successful, fungal pathogens communicate with a susceptible host through the secretion of proteinaceous effectors, hydrolytic enzymes and metabolites. Sclerotinia sclerotiorum and Botrytis cinerea are economically important necrotrophic fungal pathogens that cause disease on numerous crop species. Here, a powerful bioinformatics pipeline was used to predict the refined S. sclerotiorum and B. cinerea secretomes, identifying 432 and 499 proteins respectively. Analyses focusing on S. sclerotiorum revealed that 16% of the secretome encoding genes resided in small, sequence heterogeneous, gene clusters that were distributed over 13 of the 16 predicted chromosomes. Functional analyses highlighted the importance of plant cell hydrolysis, oxidation-reduction processes and the redox state to the S. sclerotiorum and B. cinerea secretomes and potentially host infection. Only 8% of the predicted proteins were distinct between the two secretomes. In contrast to S. sclerotiorum, the B. cinerea secretome lacked CFEM- or LysM-containing proteins. The 115 fungal and oomycete genome comparison identified 30 proteins specific to S. sclerotiorum and B. cinerea, plus 11 proteins specific to S. sclerotiorum and 32 proteins specific to B. cinerea. Expressed sequence tag (EST) and proteomic analyses showed that 246 S. sclerotiorum secretome encoding genes had EST support, including 101 which were only expressed in vitro and 49 which were only expressed in planta, whilst 42 predicted proteins were experimentally proven to be secreted. These detailed in silico analyses of two important necrotrophic pathogens will permit informed choices to be made when candidate effector proteins are selected for function analyses in planta. PMID:26107498
Sporulation: how to survive on planet Earth (and beyond).
Huang, Mingwei; Hull, Christina M
2017-10-01
Sporulation is a strategy widely utilized by a wide variety of organisms to adapt to changes in their individual environmental niches and survive in time and/or space until they encounter conditions acceptable for vegetative growth. The spores produced by bacteria have been the subjects of extensive studies, and several systems such as Bacillus subtilis have provided ample opportunities to understand the molecular basis of spore biogenesis and germination. In contrast, the spores of other microbes, such as fungi, are relatively poorly understood. Studies of sporulation in model systems such as Saccharomyces cerevisiae and Aspergillus nidulans have established a basis for investigating eukaryotic spores, but very little is known at the molecular level about how spores function. This is especially true among the spores of human fungal pathogens such as the most common cause of fatal fungal disease, Cryptococcus neoformans. Recent proteomic studies are helping to determine the molecular mechanisms by which pathogenic fungal spores are formed, persist and germinate into actively growing agents of human disease.
Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.
Egan, Martin J; Talbot, Nicholas J
2008-08-01
This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.
Taye, T; Gossmann, M; Einhorn, G; Büttner, C; Metz, R; Abate, D
2002-01-01
P. hsyterophorus is an exotic invasive annual weed now causing severe infestation in Ethiopia. Studies on diagnosis, incidence and distribution of pathogens associated with parthenium weed in Ethiopia were carried out from 1998-2002. Several fungal isolates were obtained from seed and other parts of parthenium plants. Among them were putative pathogenic fungal species of the genus Helminthosporium, Phoma, Curvularia, Chaetomium, Alternaria, and Fusarium. However, pathogenecity test of the isolates obtained showed no or non-specific symptoms. It was concluded that these pathogens could be opportunistic with insignificant potential for biological control of parthenium. Two most important diseases associated with parthenium were a rust disease, caused by Puccinia abrupta var. partheniicola, and a phyllody disease, caused by a phytoplasma of fababean phyllody (PBP) phytoplasma group. The rust was commonly found in cool mid altitude (1500-2500 m) areas while phyllody was observed in low to mid altitude regions (900-2500 m) of Ethiopia, with a disease incidence up to 100% and 75%, respectively, in some locations. Study of the individual effects of the rust and phyllody diseases under field conditions showed a reduction on weed morphological parameters (plant height, leaf area, and dry matter yield). Parthenium seed production was reduced by 42% and 85% due to rust and phyllody, respectively. Phyllody and rust diseases of parthenium showed significant potential for classical biological control of parthenium after further confirmation of insect vectors that transmit phyllody and host range of phyllody disease to the related economic plants in Ethiopia.
Clinical findings for fungal infections caused by methylprednisolone injections.
Chiller, Tom M; Roy, Monika; Nguyen, Duc; Guh, Alice; Malani, Anurag N; Latham, Robert; Peglow, Sheree; Kerkering, Tom; Kaufman, David; McFadden, Jevon; Collins, Jim; Kainer, Marion; Duwve, Joan; Trump, David; Blackmore, Carina; Tan, Christina; Cleveland, Angela A; MacCannell, Tara; Muehlenbachs, Atis; Zaki, Sherif R; Brandt, Mary E; Jernigan, John A
2013-10-24
Since September 18, 2012, public health officials have been investigating a large outbreak of fungal meningitis and other infections in patients who received epidural, paraspinal, or joint injections with contaminated lots of methylprednisolone acetate. Little is known about infections caused by Exserohilum rostratum, the predominant outbreak-associated pathogen. We describe the early clinical course of outbreak-associated infections. We reviewed medical records for outbreak cases reported to the Centers for Disease Control and Prevention before November 19, 2012, from the six states with the most reported cases (Florida, Indiana, Michigan, New Jersey, Tennessee, and Virginia). Polymerase-chain-reaction assays and immunohistochemical testing were performed on clinical isolates and tissue specimens for pathogen identification. Of 328 patients without peripheral-joint infection who were included in this investigation, 265 (81%) had central nervous system (CNS) infection and 63 (19%) had non-CNS infections only. Laboratory evidence of E. rostratum was found in 96 of 268 patients (36%) for whom samples were available. Among patients with CNS infections, strokes were associated with an increased severity of abnormalities in cerebrospinal fluid (P<0.001). Non-CNS infections were more frequent later in the course of the outbreak (median interval from last injection to diagnosis, 39 days for epidural abscess and 21 days for stroke; P<0.001), and such infections developed in patients with and in those without meningitis. The initial clinical findings from this outbreak suggest that fungal infections caused by epidural and paraspinal injection of a contaminated glucocorticoid product can result in a broad spectrum of clinical disease, reflecting possible variations in the pathogenic mechanism and in host and exposure risk factors. (Funded by the Centers for Disease Control and Prevention.).
NASA Astrophysics Data System (ADS)
Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D.
2017-01-01
We assessed whether the presence and abundance of plant pathogens and antagonists change in soil fungal communities along a land abandonment gradient. The study was carried out in the Cilento area (Southern Italy) at a site with three different habitats found along a land abandonment gradient: agricultural land, Mediterranean shrubland and woodland. For all microbiological substrates the colony forming units were about 3.1 × 106 g-1 soil for agricultural land and about 1.1 × 106 g-1 soil for Mediterranean shrubland and woodland. We found the following genera in all habitats: Cladosporium, Mortierella, Penicillium and Trichoderma. In agricultural land, the significantly most abundant fungus genera were Aspergillus, Fusarium, Cylindrocarpon and Nectria; in Mediterranean shrubland, Rhizopus and Trichoderma; and in woodland, Bionectria, Mortierella, Cladosporium, Diplodia, Paecilomyces, Penicillium and Trichoderma. We found a total of 8, 8 and 9 species of fungal antagonist, and 16, 6 and 6 species of fungal plant pathogens in agricultural land, Mediterranean shrubland and woodland respectively. Fungal plant pathogens decreased significantly over a land abandonment gradient, while we no found significant differences among fungal antagonists in the three habitats. We conclude that a decrease in the number of fungal pathogen species occurs when formerly cultivated areas are abandoned. On the other hand, fungal antagonists seem not to be affected by this process.
Fungistatic activity of some perfumes against otomycotic pathogens.
Jain, S K; Agrawal, S C
2002-04-01
The sporostatic effect of five otomycotic pathogens, i.e. Aspergillus niger, A. flavus, Absidia corymbifera, Penicillium nigricans and Candida albicans to nine different perfumes was determined on the basis of their spore germination. These organisms were isolated from patients suffering from fungal infection of the external auditory canal. Volatile vapours emanating from musk, phulwari, jasmine, nagchampa and bela caused approximately 100% inhibition in spore germination of all the test fungi. Volatiles emanating from chandan, khas and hina showed no inhibition for the test pathogens, displaying their resistant character to these perfumes.
Mathioni, Sandra M; Patel, Nrupali; Riddick, Bianca; Sweigard, James A; Czymmek, Kirk J; Caplan, Jeffrey L; Kunjeti, Sridhara G; Kunjeti, Saritha; Raman, Vidhyavathi; Hillman, Bradley I; Kobayashi, Donald Y; Donofrio, Nicole M
2013-01-01
Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain.
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl
2014-01-01
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925
A Permutation-Randomization Approach to Test the Spatial Distribution of Plant Diseases.
Lione, G; Gonthier, P
2016-01-01
The analysis of the spatial distribution of plant diseases requires the availability of trustworthy geostatistical methods. The mean distance tests (MDT) are here proposed as a series of permutation and randomization tests to assess the spatial distribution of plant diseases when the variable of phytopathological interest is categorical. A user-friendly software to perform the tests is provided. Estimates of power and type I error, obtained with Monte Carlo simulations, showed the reliability of the MDT (power > 0.80; type I error < 0.05). A biological validation on the spatial distribution of spores of two fungal pathogens causing root rot on conifers was successfully performed by verifying the consistency between the MDT responses and previously published data. An application of the MDT was carried out to analyze the relation between the plantation density and the distribution of the infection of Gnomoniopsis castanea, an emerging fungal pathogen causing nut rot on sweet chestnut. Trees carrying nuts infected by the pathogen were randomly distributed in areas with different plantation densities, suggesting that the distribution of G. castanea was not related to the plantation density. The MDT could be used to analyze the spatial distribution of plant diseases both in agricultural and natural ecosystems.
The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery.
Szalewski, David A; Hinrichs, Victoria S; Zinniel, Denise K; Barletta, Raúl G
2018-03-27
The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a “journey” for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its “virulence suitcase” to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must “open” the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease. PMID:29668825
USDA-ARS?s Scientific Manuscript database
Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. The genome of P. longicolla type strain TWH P74 represents one of the important fungal pathogens in the Diaporthe-Phomopsis complex. In this study, th...
USDA-ARS?s Scientific Manuscript database
Fusarium wilt, caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. vasinfectum (FOV), is a vascular disease of cotton (Gossypium spp.). FOV race 1 (FOV1) causes major plant injury and yield loss in G. hirsutum cultivars with co-infection with root-knot nematode (Meloidogyne incognita)...
USDA-ARS?s Scientific Manuscript database
Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world. Phomopsis seed decay (PSD) is a soybean seed disease that causes poor seed quality. This disease is caused primarily by a fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla). Planting PSD-resistant soybea...
Association of Neonectria macrodidyma with dry root rot of citrus in California
USDA-ARS?s Scientific Manuscript database
The fungal genus Cylindrocarpon (teleomorph: Neonectria Wolenw.) include ubiquitous soilborne pathogens that cause black foot disease on a wide range of hosts, including grapevine, strawberry, apple, and conifers. Hosts typically become infected through natural wounds on roots and other below ground...
Entomophaga maimaiga panzootic in northeastern gypsy moth populations
Ann E. Hajek; Joseph S. Elkinton
1991-01-01
The fungal pathogen causing extensive mortality in gypsy moth larval populations during the 1989 field season has been identified as Entomophaga maimaiga. Identification was based on morphology and in vitro culture requirements, as well as results from allozyme and restriction fragment linked polymorphism analyses. E....
Innovations in Wound Infection Prevention and Management and Antimicrobial Countermeasures
2011-01-24
2010 Fungal pathogens causing invasive infections WRAMC - 2002-2008 0.4 cases/1,000 admissions (n=6) Moulds - Aspergillus (4), Bipolaris (2...clinical wound management decisions. Expected Outcomes: – Discovery & characterization of host immune response biomarkers associated with
Hijacked: Co-option of host behavior by entomophthoralean fungi
USDA-ARS?s Scientific Manuscript database
Over 700 species of fungi are known to infect and cause disease in insects and other arthropods. The majority of insect pathogenic fungi are classified in the phyla Entomophthoromycotina and Ascomycotina, and many are ecologically important in regulating insect populations. To summarize fungal-inse...
Quijano, Carolina Diaz; Wichmann, Fabienne; Schlaich, Thomas; Fammartino, Alessandro; Huckauf, Jana; Schmidt, Kerstin; Unger, Christoph; Broer, Inge; Sautter, Christof
2016-09-01
Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.
First step in the differential diagnosis of folliculitis: cytology.
Durdu, Murat; Ilkit, Macit
2013-02-01
Folliculitis is a superficial inflammation of the hair follicles, and can be observed in individuals of any age or race. The incidence of folliculitis is unknown because most patients only consult a doctor in cases of increasing lesions. There are various infectious and non-infectious causes of folliculitis, and the most common causative agent is Staphylococcus aureus. In addition, several Gram-negative bacterial, fungal, parasitic, and viral pathogens can cause follicular papules and pustules. In routine practice, however, these lesions are usually thought to be bacterial. Therefore, topical and/or systemic antibacterial treatment is recommended, but this involves the risk of being misused for months or even years. Cytology, a simple, rapid, inexpensive, and repeatable diagnostic method, can reveal various bacterial, fungal, viral, and parasitic pathogens. This review discusses the use of clinical sampling and staining of cytologic samples for the differential diagnosis of folliculitis, cytologic findings, and the frequency with which dermatologists use cytology to diagnose folliculitis, particularly in the age of molecular biology and more expensive, sophisticated investigations.
Shekhova, Elena; Kniemeyer, Olaf; Brakhage, Axel A
2017-11-01
Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds. Copyright © 2017 American Society for Microbiology.
Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?
Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R
2018-03-16
Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.
Khaledi, N; Taheri, P; Tarighi, S
2015-03-01
The main objective of this study was to investigate the effect of various essential oils (EOs) to decrease the activity of cell wall degrading enzymes (CWDEs) produced by fungal phytopathogens, which are associated with disease progress. Also, effect of seed treatment and foliar application of peppermint EO and its main constituent, menthol, on diseases caused by two necrotrophic pathogens on bean was investigated. Antifungal activity of EOs on Rhizoctonia solani and Macrophomina phaseolina, as bean pathogens, was evaluated. The EOs of Mentha piperita, Bunium persicum and Thymus vulgaris revealed the highest antifungal activity against fungi. The EO of M. piperita had the lowest minimum inhibitory concentration (MIC) for R. solani among the three EOs tested. This pathogen did not grow in the presence of M. piperita, B. persicum and T. vulgaris EOs at 850, 1200 and 1100 ppm concentrations, respectively. The B. persicum EO had the lowest MIC for M. phaseolina as this fungus did not grow in the presence of M. piperita, B. persicum and T. vulgaris EOs at concentrations of 975, 950 and 1150 ppm, respectively. Hyphae exposed to EOs showed structural changes. Activities of cellulase and pectinase, as main CWDEs of pathogens, decreased by EOs at low concentration without effect on fungal growth. Seed treatment and foliar application of peppermint EO and/or menthol significantly reduced the development of bean diseases caused by both fungi. Higher capability of menthol than peppermint EO in decreasing diseases on bean was observed. Reducing CDWEs activity is a mechanism of EOs' effect on fungi. Higher antifungal activity of menthol compared to peppermint EO was observed not only in vitro but also in vivo. Effect of EOs on CWDEs involved in pathogenesis is described in this study for the first time. Menthol can be used as a botanical fungicide to control destructive fungal diseases on bean. © 2014 The Society for Applied Microbiology.
Mascuch, Samantha J.; Moree, Wilna J.; Hsu, Cheng-Chih; Turner, Gregory G.; Cheng, Tina L.; Blehert, David S.; Kilpatrick, A. Marm; Frick, Winifred F.; Meehan, Michael J.; Dorrestein, Pieter C.; Gerwick, Lena
2015-01-01
White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection. PMID:25781976
Mascuch, Samantha J.; Moree, Wilna J.; Cheng-Chih Hsu, Cheng-Chih; Turner, Gregory G.; Cheng, Tina L.; Blehert, David S.; Kilpatrick, A. Marm; Frick, Winifred F.; Meehan, Michael J.; Dorrestein, Pieter C.; Gerwick, Lena
2015-01-01
White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.
Nicolaisen, Mogens; West, Jonathan S; Sapkota, Rumakanta; Canning, Gail G M; Schoen, Cor; Justesen, Annemarie F
2017-01-01
Information on the diversity of fungal spores in air is limited, and also the content of airborne spores of fungal plant pathogens is understudied. In the present study, a total of 152 air samples were taken from rooftops at urban settings in Slagelse, DK, Wageningen NL, and Rothamsted, UK together with 41 samples from above oilseed rape fields in Rothamsted. Samples were taken during 10-day periods in spring and autumn, each sample representing 1 day of sampling. The fungal content of samples was analyzed by metabarcoding of the fungal internal transcribed sequence 1 (ITS1) and by qPCR for specific fungi. The metabarcoding results demonstrated that season had significant effects on airborne fungal communities. In contrast, location did not have strong effects on the communities, even though locations were separated by up to 900 km. Also, a number of plant pathogens had strikingly similar patterns of abundance at the three locations. Rooftop samples were more diverse than samples taken above fields, probably reflecting greater mixing of air from a range of microenvironments for the rooftop sites. Pathogens that were known to be present in the crop were also found in air samples taken above the field. This paper is one of the first detailed studies of fungal composition in air with the focus on plant pathogens and shows that it is possible to detect a range of pathogens in rooftop air samplers using metabarcoding.
Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick
de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael
2013-01-01
Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570
Gould, J; Northcote, D H
1986-01-01
The adsorption of radioactive mucilage by pathogenic fungi was shown to be dependent upon time, the composition of mucilage, the type of fungal surface (conidia, hyphae, hyphal apices), fungal species, pH and bivalent cations. All fungal adhesins were inactivated by either proteinase or polysaccharase treatments. Adsorption was not inhibited by the numberous mono-, di- and oligo-saccharides that were tested individually, but it was inhibited absolutely by several polysaccharides. This suggested that adsorption of mucilage by pathogens involved conformational and ionic interactions between plant and fungal polymers but not fungal lectins bound to sugar residues of mucilage. Several fractionation schemes showed that pathogens bound only the most acidic of the variety of polymers that comprise mucilage. There was not any absolute distinction between ability to bind radioactive mucilage and type of pathogen or non-pathogen. However, there were notable differences in characteristics of adsorption between two types of pathogen. Differences were revealed by comparison of the adsorption capacities of conidia and germinant conidia and chromatography of radioactive mucilage on germinant conidia. An ectotrophic root-infecting fungus (a highly specialized pathogen) bound a greater proportion of mucilage than did a vascular-wilt fungus (of catholic host and tissue range) with more than one class of site for adsorption. In contrast with the vascular-wilt fungus, sites for adsorption on the specialized pathogen were present solely on surfaces formed by germination. PMID:3954742
Piovia-Scott, Jonah; Pope, Karen; Worth, S Joy; Rosenblum, Erica Bree; Poorten, Thomas; Refsnider, Jeanine; Rollins-Smith, Louise A; Reinert, Laura K; Wells, Heather L; Rejmanek, Dan; Lawler, Sharon; Foley, Janet
2015-07-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.
Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto
2013-01-01
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557
Profiling a killer, the development of Cryptococcus neoformans
Kozubowski, Lukasz; Heitman, Joseph
2012-01-01
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity. PMID:21658085
Update on host-pathogen interactions in cystic fibrosis lung disease.
Hector, Andreas; Frey, Nina; Hartl, Dominik
2016-12-01
Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new "emerging" pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease.
NASA Astrophysics Data System (ADS)
Wu, Linkun; Chen, Jun; Wu, Hongmiao; Wang, Juanying; Wu, Yanhong; Lin, Sheng; Khan, Muhammad Umar; Zhang, Zhongyi; Lin, Wenxiong
2016-05-01
Under consecutive monoculture, the biomass and quality of Pseudostellaria heterophylla declines significantly. In this study, a three-year field experiment was conducted to identify typical growth inhibition effects caused by extended monoculturing of P. heterophylla. Deep pyrosequencing was used to examine changes in the structure and composition of soil fungal community along a three-year gradient of monoculture. The results revealed a distinct separation between the newly planted plot and the two-year, three-year monocultured plots. The Shannon and Simpson diversity indices were significantly higher in the two-year and three-year monoculture soils than in the newly planted soil. Consecutive monoculture of this plant led to a significant increase in relative abundance of Fusarium, Trichocladium and Myrothecium and Simplicillium, etc., but a significant decrease in the relative abundance of Penicillium. Quantitative PCR analysis confirmed a significant increase in Fusarium oxysporum, an agent known to cause wilt and rot disease of P. heterophylla. Furthermore, phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth of pathogenic F. oxysporum. Overall, this study demonstrated that consecutive monoculture of P. heterophylla can alter the fungal community in the rhizosphere, including enrichment of host-specific pathogenic fungi at the expense of plant-beneficial fungi.
Covey, Paul A; Kuwitzky, Brett; Hanson, Mia; Webb, Kimberly M
2014-08-01
Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.
Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae.
Knox, Benjamin P; Huttenlocher, Anna; Keller, Nancy P
2017-08-01
Invasive aspergillosis (IA) is a disease of the immunocompromised host and generally caused by the opportunistic fungal pathogen Aspergillus fumigatus. While both host and fungal factors contribute to disease severity and outcome, there are fundamental features of IA development including fungal morphological transition from infectious conidia to tissue-penetrating hyphae as well as host defenses rooted in mechanisms of innate phagocyte function. Here we address recent advances in the field and use real-time in vivo imaging in the larval zebrafish to visually highlight conserved vertebrate innate immune behaviors including macrophage phagocytosis of conidia and neutrophil responses post-germination. Copyright © 2017 Elsevier Inc. All rights reserved.
The Pathogen-Host Interactions database (PHI-base): additions and future developments.
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
An integrated genomic and transcriptomic survey of mucormycosis-causing fungi
Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.
2016-01-01
Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865
Genetic characterization of resistance to Sclerotinia in lettuce cultivar Eruption
USDA-ARS?s Scientific Manuscript database
Lettuce drop caused by the fungal pathogens Sclerotinia minor and S. sclerotiorum is a serious disease of lettuce. The use of genetic resistance as part of an integrated lettuce drop management strategy should have a significant economic advantage in mitigating yield loss. Sclerotinia resistance is ...
Pre-Breeding for root rot resistance using root morphology traits
USDA-ARS?s Scientific Manuscript database
Root rot caused by the fungal pathogen Rhizoctonia solani can be a major yield-limiting disease in minimal tillage or direct-seeded cereal production systems. Reduced tillage greatly influences the plant residue retained on the soil surfaces. This retained residue (green bridge) provides increased d...
A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)
USDA-ARS?s Scientific Manuscript database
Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed com...
Putative rust fungal effector proteins in infected bean and soybean leaves
USDA-ARS?s Scientific Manuscript database
The plant pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but the effector repertoire for U. appendiculatus and P. pachyrhizi is not fully def...
Of Two Make One: The Biosynthesis of Phenazines
USDA-ARS?s Scientific Manuscript database
Phenazine compounds produced by certain species of bacteria have antibiotic activity against a wide range of bacterial and fungal pathogens including many that cause important root diseases of plants. The antibiotic activity of these compounds has long been known but the mechanism of synthesis is po...
Ambrosia beetles associated with laurel wilt of avocado
USDA-ARS?s Scientific Manuscript database
Redbay ambrosia beetle, Xyleborus glabratus, is an exotic wood-boring pest first detected in 2002 near Savannah, Georgia. The beetle’s dominant fungal symbiont, Raffaelea lauricola, is the pathogen that causes laurel wilt, a lethal disease of trees in the family Lauraceae. Laurel wilt has since spr...
Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae
USDA-ARS?s Scientific Manuscript database
In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...
Potassium influences forage bermudagrass yield and fungal leaf disease severity in Mississippi
USDA-ARS?s Scientific Manuscript database
Leaf spot diseases are associated with K deficiency in forage bermudagrass. In 2010, a natural disease epiphytotic caused by six species of Bipolaris, Curvularia, and Exserohilum (dematiaceous hyphomycetes) was evaluated in 56 plots of ‘Tifton 44' bermudagrass in Mississippi. Pathogen occurrence, di...
Voisine, Linda; Gatto, Julia; Hélesbeux, Jean-Jacques; Séraphin, Denis; Peña-Rodriguez, Luis M.; Richomme, Pascal; Boedo, Cora; Yovanopoulos, Claire; Gyomlai, Melvina; Briard, Mathilde; Simoneau, Philippe; Poupard, Pascal; Berruyer, Romain
2014-01-01
Although different mechanisms have been proposed in the recent years, plant pathogen partial resistance is still poorly understood. Components of the chemical warfare, including the production of plant defense compounds and plant resistance to pathogen-produced toxins, are likely to play a role. Toxins are indeed recognized as important determinants of pathogenicity in necrotrophic fungi. Partial resistance based on quantitative resistance loci and linked to a pathogen-produced toxin has never been fully described. We tested this hypothesis using the Alternaria dauci – carrot pathosystem. Alternaria dauci, causing carrot leaf blight, is a necrotrophic fungus known to produce zinniol, a compound described as a non-host selective toxin. Embryogenic cellular cultures from carrot genotypes varying in resistance against A. dauci were confronted with zinniol at different concentrations or to fungal exudates (raw, organic or aqueous extracts). The plant response was analyzed through the measurement of cytoplasmic esterase activity, as a marker of cell viability, and the differentiation of somatic embryos in cellular cultures. A differential response to toxicity was demonstrated between susceptible and partially resistant genotypes, with a good correlation noted between the resistance to the fungus at the whole plant level and resistance at the cellular level to fungal exudates from raw and organic extracts. No toxic reaction of embryogenic cultures was observed after treatment with the aqueous extract or zinniol used at physiological concentration. Moreover, we did not detect zinniol in toxic fungal extracts by UHPLC analysis. These results suggest that strong phytotoxic compounds are present in the organic extract and remain to be characterized. Our results clearly show that carrot tolerance to A. dauci toxins is one component of its partial resistance. PMID:24983469
Characterization of a novel ADAM protease expressed by Pneumocystis carinii.
Kennedy, Cassie C; Kottom, Theodore J; Limper, Andrew H
2009-08-01
Pneumocystis species are opportunistic fungal pathogens that cause severe pneumonia in immunocompromised hosts. Recent evidence has suggested that unidentified proteases are involved in Pneumocystis life cycle regulation. Proteolytically active ADAM (named for "a disintegrin and metalloprotease") family molecules have been identified in some fungal organisms, such as Aspergillus fumigatus and Schizosaccharomyces pombe, and some have been shown to participate in life cycle regulation. Accordingly, we sought to characterize ADAM-like molecules in the fungal opportunistic pathogen, Pneumocystis carinii (PcADAM). After an in silico search of the P. carinii genomic sequencing project identified a 329-bp partial sequence with homology to known ADAM proteins, the full-length PcADAM sequence was obtained by PCR extension cloning, yielding a final coding sequence of 1,650 bp. Sequence analysis detected the presence of a typical ADAM catalytic active site (HEXXHXXGXXHD). Expression of PcADAM over the Pneumocystis life cycle was analyzed by Northern blot. Southern and contour-clamped homogenous electronic field blot analysis demonstrated its presence in the P. carinii genome. Expression of PcADAM was observed to be increased in Pneumocystis cysts compared to trophic forms. The full-length gene was subsequently cloned and heterologously expressed in Saccharomyces cerevisiae. Purified PcADAMp protein was proteolytically active in casein zymography, requiring divalent zinc. Furthermore, native PcADAMp extracted directly from freshly isolated Pneumocystis organisms also exhibited protease activity. This is the first report of protease activity attributable to a specific, characterized protein in the clinically important opportunistic fungal pathogen Pneumocystis.
Emerging fungal diseases: the importance of the host.
Procop, Gary W; Roberts, Glenn D
2004-09-01
More yeasts and molds are now recognized to cause more human disease than ever before. This development is not due to a change in the virulence of these fungi, but rather to changes in the human host. These changes include immunosuppression secondary to the pandemic of HIV, the use of life-saving advances in chemotherapy and organ transplantation, and the use of corticosteroids and other immunosuppressive agents to treat a variety of diseases. Fungi that were once considered common saprophytes are now recognized as potential pathogens in these patients. This situation necessitates better communication than ever between the clinician, pathologist, and clinical mycologist to ensure the prompt and accurate determination of the cause of fungal diseases.
Effector-triggered defence against apoplastic fungal pathogens
Stotz, Henrik U.; Mitrousia, Georgia K.; de Wit, Pierre J.G.M.; Fitt, Bruce D.L.
2014-01-01
R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed ‘effector-triggered defence’ (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287
NASA Astrophysics Data System (ADS)
Carmona, Carlos P.; Navarro, Elena; Peco, Begoña
2016-01-01
Depending on their response to grazing, grassland species can be categorized as grazing increasers or decreasers. Grazing by livestock includes several different activities that can impact species differently. Recent evidence suggest that one of these actions, dung deposition, can reduce the germinative performance of decreaser species, thus favouring increasers. The present study tested the hypothesis that decreased germinative success of decreaser species is caused by a greater activity of fungal pathogens under the influence of dung leachates. We performed a phytotron experiment analysing the germination and fungal infections of fourteen species from Mediterranean grasslands. Species were grouped into phylogenetically-related pairs, composed of an increaser and a decreaser species. Seeds of each species were germinated under four different treatments (control, dung leachate addition, fungicide addition and dung leachate and fungicide addition), and the differences in germination percentage, germination speed and infection rate between each increaser species and its decreaser counterpart were analysed. Decreaser species were more affected by mortality than increaser ones, and these differences were higher under the presence of dung leachates. The differences in germinative performance after excluding the effect of seed mortality did not differ between treatments, showing that the main mechanism by which dung leachates favour increaser species is through increased mortality of the seeds of decreaser species. Drastic reductions in the number of dead seeds in the treatments including fungicide addition further revealed that fungal pathogens are responsible for these differences between species with different grazing response. The different vulnerabilities of increaser and decreaser species to the increased activity of fungal pathogens under the presence of dung leachates seems the main reason behind the differential effect of these leachates on species with different grazing response.
MacCallum, Donna M.; Brown, Gordon D.
2017-01-01
ABSTRACT The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468
The lipid language of plant-fungal interactions.
Christensen, Shawn A; Kolomiets, Michael V
2011-01-01
Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Boxwood plants are affected by many different diseases caused by fungi. Some boxwood diseases are deadly and quickly kill the infected plants, but with others, the plant can survive and even thrive when infected. The fungus that causes volutella blight is the most common of these weak boxwood pathog...
Rudd, Jason J.; Kanyuka, Kostya; Hassani-Pak, Keywan; Derbyshire, Mark; Andongabo, Ambrose; Devonshire, Jean; Lysenko, Artem; Saqi, Mansoor; Desai, Nalini M.; Powers, Stephen J.; Hooper, Juliet; Ambroso, Linda; Bharti, Arvind; Farmer, Andrew; Hammond-Kosack, Kim E.; Dietrich, Robert A.; Courbot, Mikael
2015-01-01
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection. PMID:25596183
Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L
2005-07-01
Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens.
Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L.; Lorito, Matteo; Kubicek, Christian P.; Mach, Robert L.
2005-01-01
Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens. PMID:16000810
Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato
2011-09-01
Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.
Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M.; Trapero-Casas, José L.; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A.; Pliego-Alfaro, Fernando
2018-01-01
The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. ‘Picual’ were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae. PMID:29875785
NASA Astrophysics Data System (ADS)
Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing
2018-05-01
Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.
Teixeira, Marcus M; de Almeida, Luiz G P; Kubitschek-Barreira, Paula; Alves, Fernanda L; Kioshima, Erika S; Abadio, Ana K R; Fernandes, Larissa; Derengowski, Lorena S; Ferreira, Karen S; Souza, Rangel C; Ruiz, Jeronimo C; de Andrade, Nathalia C; Paes, Hugo C; Nicola, André M; Albuquerque, Patrícia; Gerber, Alexandra L; Martins, Vicente P; Peconick, Luisa D F; Neto, Alan Viggiano; Chaucanez, Claudia B; Silva, Patrícia A; Cunha, Oberdan L; de Oliveira, Fabiana F M; dos Santos, Tayná C; Barros, Amanda L N; Soares, Marco A; de Oliveira, Luciana M; Marini, Marjorie M; Villalobos-Duno, Héctor; Cunha, Marcel M L; de Hoog, Sybren; da Silveira, José F; Henrissat, Bernard; Niño-Vega, Gustavo A; Cisalpino, Patrícia S; Mora-Montes, Héctor M; Almeida, Sandro R; Stajich, Jason E; Lopes-Bezerra, Leila M; Vasconcelos, Ana T R; Felipe, Maria S S
2014-10-29
The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Insecticide dip treatments to prevent walnut twig beetle colonization of black walnut logs
Jackson Audley; Adam Taylor; William E. Klingeman; Albert (Bud) Mayfield; Scott W. Myers
2016-01-01
The health, sustainability, and commercial viability of eastern black walnut (Juglans nigra) are currently under threat from thousand cankers disease. The disease is caused by an invasive bark beetle species, the walnut twig beetle (Pityophthorus juglandis), and its associated fungal pathogen (Geosmithia morbida...
Draft Genome Sequence of Cercospora arachidicola, Cause of Early Leaf Spot in Peanut
USDA-ARS?s Scientific Manuscript database
Cercospora arachidicola and Cercosporidium personatum, causal agents of early and late leaf spot, respectively, are important fungal pathogens of peanut. Leaf spot disease is a major contributor to the economic losses experienced by peanut farmers and the industry. Though peanut germplasms with so...
Pea disease diagnostic series - Powdery Mildew
USDA-ARS?s Scientific Manuscript database
Powdery mildew is a serious disease of pea worldwide, and it could be caused by two fungal species Erysiphe pisi and E. trifolii. White powdery patches on leaves, stems and pods are characteristics of the disease. The pathogen may form black fruiting bodies called chasmothecia near the end of the gr...
Genetics and mapping of a new anthracnose resistance Locus in Andean common bean Paloma
USDA-ARS?s Scientific Manuscript database
The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease of common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races ...
Detoxification of the Fusarium toxin fusaric acid by the soil fungus Aspergillus
USDA-ARS?s Scientific Manuscript database
The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (Fov) causes Fusarium wilt in cotton (Gossypium hirsutum L.) and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of Fov, FA plays an important role in virulence. To address the problems o...
The impact of the postharvest environment on the viability and virulence of decay fungi
USDA-ARS?s Scientific Manuscript database
Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resist...
A novel phakopsora pachyrhizi resistance allele (rpp) contributed by PI 567068A
USDA-ARS?s Scientific Manuscript database
Soybean rust (SBR) caused by the obligate, fungal pathogen Phakopsora pachyrhizi is an economic threat to soybean production, especially in the Americas. Host plant resistance is an important management strategy for SBR. The most recently described resistance to P. pachyrhizi (Rpp) gene is Rpp6 co...
USDA-ARS?s Scientific Manuscript database
The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is a cosmopolitan pest of high-value cash crops, including cotton (Gossypium hirsutum L.; Malvales: Malvaceae). The pest can ingest and transmit disease-causing bacterial and fungal pathogens of cotton. We hypothesized t...
The effect of zinc limitation on the transcriptome of Pseudomonas fluorescens Pf-5
USDA-ARS?s Scientific Manuscript database
Pseudomonas fluorescens Pf-5 is a soil bacterium that can protect several plant species from diseases caused by fungal and bacterial pathogens. Zinc is a vital micronutrient for bacteria but is deficient in some soil environments and toxic in large quantities. Hence, bacteria have evolved elaborate ...
A holistic approach to genetic conservation of Pinus strobiformis
K.M. Waring; R. Sniezko; B.A. Goodrich; C. Wehenkel; J.J. Jacobs
2017-01-01
Pinus strobiformis (southwestern white pine) is threatened by both a rapidly changing climate and the tree disease white pine blister rust, caused by an introduced fungal pathogen, Cronartium ribicola. We began a proactive program in ~2009 to sustain P. strobiformis that includes genetic conservation, research, and management strategies. Research...
Improved lure for redbay ambrosia beetle developed by enrichment of a-copaene content
USDA-ARS?s Scientific Manuscript database
Over the past decade, the exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the USA, now established in seven southeastern states. Females are the primary vectors of a fungal pathogen, Raffaelea lauricola, that causes laurel wilt, a lethal disease of...
What lies beneath, unraveling the mysteries of Rhizoctonia and Pythium
USDA-ARS?s Scientific Manuscript database
Washington wheat and barley growers have long recognized that the soil-borne fungal pathogens Rhizoctonia and Pythium cause root rot, stunting and poor emergence and can chip away at yield, resulting in annual losses of 10 percent or more. Since several of these Rhizoctonia and Pythium species attac...
Paul G. Schaberg; Thomas M. Saielli; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney
2013-01-01
Hybridization of American chestnut (Castanea dentata) with Chinese chestnut (C. mollissima), followed by backcrossing to American chestnut, is conducted to increase the resistance of resulting stock to chestnut blight, caused by the fungal pathogen Cryphonectria parasitica (Murr.) Barr. Backcross breeding is...
Comparison of ambrosia beetle communities in two hosts with laurel wilt: swampbay vs. avocado
USDA-ARS?s Scientific Manuscript database
The invasive redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), is an exotic wood-boring pest first detected in 2002 near Savannah, Georgia. The beetle’s dominant fungal symbiont, Raffaelea lauricola, is the pathogen that causes laurel wilt, a lethal disease of tre...
Ambrosia beetle communities in forest and agriculture ecosystems with laurel wilt disease
USDA-ARS?s Scientific Manuscript database
The invasive redbay ambrosia beetle, Xyleborus glabratus, is an exotic wood-boring pest first detected in 2002 near Savannah, Georgia. The beetle’s dominant fungal symbiont, Raffaelea lauricola, is the pathogen that causes laurel wilt, a lethal disease of trees in the family Lauraceae. Redbay ambro...
Interpreting diplodiosis: bioactive metabolites in Stenocarpella maydis ear rot of maize
USDA-ARS?s Scientific Manuscript database
Stenocarpella maydis is a fungal pathogen of major importance that causes a dry-rot of maize ears and is associated with a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. Chemical investigations of S. maydis rotted kernels at harvest in Illinois led to t...
First report of DMI insensitive Cercospora beticola on sugar beet in Ontario, Canada
USDA-ARS?s Scientific Manuscript database
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important foliar disease of sugar beet in Ontario, Canada and worldwide. Fungicides are an important tool in the control of CLS. The first demethylation inhibitor (DMI) fungicide for sugar beet was regi...
Sugar beet cell wall protein confers fungal and pest resistance in genetically engineered plants
USDA-ARS?s Scientific Manuscript database
Sugar beet biomass and sugar yield are reduced by diseases caused by microbial pathogens and insect pest infestations. Since disease and pest control measures continue to rely on harmful chemical fungicides and insecticides, biotechnological approaches offer an alternate approach for disease and pe...
A mutagenesis-derived broad-spectrum disease resistance locus in wheat
USDA-ARS?s Scientific Manuscript database
Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. The most effective and widely uti...
Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro
2014-03-01
Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.
[Dermatomycoses due to pets and farm animals : neglected infections?].
Nenoff, P; Handrick, W; Krüger, C; Vissiennon, T; Wichmann, K; Gräser, Y; Tchernev, G
2012-11-01
Dermatomycoses due to contact with pets and livestock frequently affect children and young adults. Zoophilic dermatophytes are the main important causative agents. It has long been known that the often high inflammatory dermatophytoses of the skin and the scalp are caused mostly by Microsporum canis. Due to an absence of an obligation for reporting fungal infections of the skin to the Public Health Office in Germany, an unnoticed but significant change in responsible pathogens has occurred. Today an increasing number of infections due to zoophilic strains of Trichophyton interdigitale (formerly Trichophyton mentagrophytes) and Trichophyton species of Arthroderma benhamiae are found. The latter mentioned dermatophyte is the anamorph species of the teleomorph Arthroderma benhamiae, which originally was isolated in the Far East (Japan). Source of infection of these dermatophytes are small rodents, in particular guinea pigs. These animals are bought in pet shops by the parents of those children who later are affected by the fungal infection. The coincidental purchase of the relevant fungal pathogen is not obvious to the parents. As a consequence, highly contagious dermatophytoses occur, often tinea capitis sometimes with kerion formation. Further dermatophytes should be considered as cause of a zoophilic dermatomycosis. Both Trichophyton verrucosum, the cause of the ringworm in cattle, and Trichophyton erinacei following contact to hedgehogs are worthy of note. Yeasts cannot be ignored as cause of dermatomycosis, especially Malassezia pachydermatis, the only non-lipophilic species within the genus Malassezia, which can be transferred from dog to men. Cryptococcus neoformans also comes from animal sources. The mucous yeast occurs in bird's dropping, and it causes both pulmonary and central nervous system infections, but also primary and secondary cutaneous cryptococcosis in immunocompromised patients (HIV/AIDS) as possible consequence after contact to these animals.
Iron and copper as virulence modulators in human fungal pathogens.
Ding, Chen; Festa, Richard A; Sun, Tian-Shu; Wang, Zhan-You
2014-07-01
Fungal pathogens have evolved sophisticated machinery to precisely balance the fine line between acquiring essential metals and defending against metal toxicity. Iron and copper are essential metals for many processes in both fungal pathogens and their mammalian hosts, but reduce viability when present in excess. However, during infection, the host uses these two metals differently. Fe has a long-standing history of influencing virulence in pathogenic fungi, mostly in regards to Fe acquisition. Numerous studies demonstrate the requirement of the Fe acquisition pathway of Candida, Cryptococcus and Aspergillus for successful systemic infection. Fe is not free in the host, but is associated with Fe-binding proteins, leading fungi to develop mechanisms to interact with and to acquire Fe from these Fe-bound proteins. Cu is also essential for cell growth and development. Essential Cu-binding proteins include Fe transporters, superoxide dismutase (SOD) and cytochrome c oxidase. Although Cu acquisition plays critical roles in fungal survival in the host, recent work has revealed that Cu detoxification is extremely important. Here, we review fungal responses to altered metal conditions presented by the host, contrast the roles of Fe and Cu during infection, and outline the critical roles of fungal metal homeostasis machinery at the host-pathogen axis. © 2014 John Wiley & Sons Ltd.
Natural Pathogens of Laboratory Mice, Rats, and Rabbits and Their Effects on Research
Baker, David G.
1998-01-01
Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research. PMID:9564563
Hassan, I A; Critten, P; Isalska, B; Denning, D W
2006-07-01
Fungal infection is increasingly recognised as an important cause of morbidity and mortality, especially in immunocompromised patients. Little information exists on laboratory services available and the methods used by general microbiology laboratories to diagnose these important infections. To investigate the services microbiology laboratories in northwest England provide towards the diagnosis and management of superficial and deep fungal infections. A questionnaire was sent to laboratories to get a holistic view of the support given to clinicians looking after patients with fungal infections. The aim was not to investigate details of each laboratory's standard operating procedures. The completed questionnaires, which formed the basis of this report, were returned by all 21 laboratories which were recruited. This study was conducted between March 2004 and September 2004. Services were provided to District General Hospitals and to six tertiary centres, including eight teaching hospitals by 16 laboratories. Their bed capacity was 250-1300 beds. Total specimens (including bacterial and viral) processed annually were 42 000-500,000 whereas fungal ones were 560-5400. In most microbiology laboratories of northwest England, clinicians were aware of the potential of fungal pathogens to cause infections especially in immunocompromised patients. Additional measures such as prolonged incubation of samples were introduced to improve fungal yield from patients at high risk. It is necessary to train and educate laboratory and medical staff about the role of serology and molecular methods in diagnosis and management of patients with fungal infection.
USDA-ARS?s Scientific Manuscript database
Infection of plant pathogenic fungi by mycoviruses can attenuate their virulence on plants and vigor in culture. In this study, we described the viromes of 275 isolates of five widely dispersed plant pathogenic fungal species (Colletotrichum truncatum, Macrophomina phaseolina, Phomopsis longicolla, ...
Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites
USDA-ARS?s Scientific Manuscript database
Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...
De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici
2014-01-01
Background Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. Results We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). Conclusions The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits. PMID:24767544
β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage
Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu
2013-01-01
Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957
Mixed infections reveal virulence differences between host-specific bee pathogens.
Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R
2015-07-01
Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.
2018-01-01
ABSTRACT Karnal bunt of wheat is an internationally quarantined fungal pathogen disease caused by Tilletia indica and affects the international commercial seed trade of wheat. We announce here the first improved draft genome assembly of a monoteliosporic culture of the Tilletia indica fungus, consisting of 787 scaffolds with an approximate total genome size of 31.83 Mbp, which is more accurate and near to complete than the previous version. PMID:29773612
Cytokinins for immunity beyond growth, galls and green islands.
Naseem, Muhammad; Wölfling, Mirko; Dandekar, Thomas
2014-08-01
Cytokinins are essential plant hormones that control almost every aspect of plant growth and development. Their function in mediating plant susceptibility to fungal biotrophs and gall-causing pathogens is well known. Here we highlight the interaction between cytokinins and salicylic acid pathways. Furthermore, we discuss ways in which cytokinin signaling could crosstalk with plant immune networks. Some of these networks are modulated by pathogens to propagate disease, whereas others help the host to mitigate an infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kumar, Anil; Mishra, Pallavi; Maurya, Ranjeet; Mishra, A K; Gupta, Vijai K; Ramteke, Pramod W; Marla, Soma S
2018-05-17
Karnal bunt of wheat is an internationally quarantined fungal pathogen disease caused by Tilletia indica and affects the international commercial seed trade of wheat. We announce here the first improved draft genome assembly of a monoteliosporic culture of the Tilletia indica fungus, consisting of 787 scaffolds with an approximate total genome size of 31.83 Mbp, which is more accurate and near to complete than the previous version. Copyright © 2018 Kumar et al.
NASA Astrophysics Data System (ADS)
Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.
2004-08-01
Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.
Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.
García-Guzmán, Graciela; Heil, Martin
2014-03-01
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian
2018-01-16
Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Evolution of eukaryotic microbial pathogens via covert sexual reproduction
Heitman, Joseph
2010-01-01
Sexual reproduction enables eukaryotic organisms to re-assort genetic diversity and purge deleterious mutations, producing better-fit progeny. Sex arose early and pervades eukaryotes. Fungal and parasite pathogens once thought asexual have maintained cryptic sexual cycles, including unisexual or parasexual reproduction. As pathogens become niche and host-adapted, sex appears to specialize to promote inbreeding and clonality yet maintain out-crossing potential. During self-fertile sexual modes, sex itself may generate genetic diversity de novo. Mating-type loci govern fungal sexual identity; how parasites establish sexual identity is unknown. Comparing and contrasting fungal and parasite sex promises to reveal how microbial pathogens evolved and are evolving. PMID:20638645
Tarkkanen, Ahti; Raivio, Virpi; Anttila, Veli-Jukka; Tommila, Petri; Ralli, Reijo; Merenmies, Lauri; Immonen, Ilkka
2004-04-01
To report a case of delayed fungal endophthalmitis by Paecilomyces variotii following uncomplicated cataract surgery. To our knowledge this is the first reported case of postoperative endophthalmitis by this species. We report the longterm clinical follow-up of an 83-year-old female who underwent uncomplicated sutureless, small-incision cataract surgery. She developed recurring uveitis 4 months after surgery. Vitreous tap and finally complete vitrectomy with removal of the capsular bag including the intraocular lens were performed. Fungi were studied by histopathology and culture. At histopathological examination, the fungi were found to be closely related with the capsular bag. A few mononuclear inflammatory cells were encountered. At culture, Paecilomyces variotii, a common ubiquitous non-pathogenic saprophyte, was identified. Despite systemic, intravitreal and topical antifungal therapy after vitrectomy the uveitis recurred several times, but no fungal organisms were isolated from the repeat intraocular specimen. At 18 months postoperatively the subject's visual acuity was finger counting at 2 metres. At the time of surgery the operating room air-conditioning system was undergoing repairs. Cases of fungal endophthalmitis after contamination from air-conditioning ventilation systems have been reported before, but none of the cases reported have been caused by P. variotii. P. variotii, a non-pathogenic environmental saprophyte, may be disastrous if introduced into the eye. International recommendations on the environmental control of the operating room air-conditioning ventilation system should be strictly followed. No intraoperative surgery should be undertaken while the air-conditioning system is undergoing repairs or service.
Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta
2017-01-01
Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary (Rosmarinus officinalis) and eucalyptus (Eucalyptus agglomerata) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary (r = 0.99) and eucalyptus (r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus (P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus (P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale. PMID:28458692
Waithaka, Paul Njenga; Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta
2017-01-01
Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary ( Rosmarinus officinalis ) and eucalyptus ( Eucalyptus agglomerata ) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary ( r = 0.99) and eucalyptus ( r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus ( P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus ( P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale.
Reactive oxygen species and plant resistance to fungal pathogens.
Lehmann, Silke; Serrano, Mario; L'Haridon, Floriane; Tjamos, Sotirios E; Metraux, Jean-Pierre
2015-04-01
Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aspergillus alliaceus, a new potential biological control of the root parasitic weed Orobanche.
Aybeke, Mehmet; Sen, Burhan; Okten, Suzan
2014-07-01
During extensive surveys in fields heavily infested by broomrape in the Trakya Region-Turkey, a different new fungus, Aspergillus alliaceus, was isolated from the infected broomrape. It is aimed to investigate whether or not it is really a pathogen for Orobanche. The fungi was exposed to a greenhouse environment in order to assess its pathogenicity and virulence against Orobanche cernua. In addition, infection tests on Orobanche seeds were also performed under laboratory conditions. The fungus was subjected using two different methods, exposure to a liquid culture with conidial solution and a sclerotial solid culture with fungal mycelia. Cytological studies were carried out at light, TEM and SEM levels. The results show that the sclerotial solid culture with fungal mycelia quickly caused necrosis and was more effective than the other type. It also greatly diminished attachments, tubercles, and caused the emergence of shoots and an increase in the total shoot number of Orobanche. In addition, both when the fungi was exposed to both soil and used to contaminate sunflower seeds, its pathogenicity was more effective. Consequently, it was determined that A. alliaceus was an effective potential biological control of broomrape throughout its life cycle from dormant seed to mature plant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alphus Dan Wilson; Lisa Beth Forse
2017-01-01
White-nose syndrome (WNS), caused by the fungal dermatophyte (Pseudogymnoascus destructans), is considered the most important disease affecting hibernating bats in North America. The identification of dermatophytic fungi, isolated from the skins of cave-dwelling bat species, is necessary to distinguish pathogenic (disease-causing) microbes from those that are innocuous...
Otomastoiditis caused by Candida auris: Case report and literature review.
Choi, Hyoung Il; An, Jin; Hwang, Jae Joon; Moon, Soo-Youn; Son, Jun Seong
2017-08-01
Fungal otomastoiditis is a rare disease, but can be fatal for immunocompromised patients. Recently, there have been increasing cases of otologic infection caused by Candida auris. Candida auris can be easily misdiagnosed for other species and treatment is difficult due to multidrug resistance. Clinician should be aware of this rare pathogen, and it should be treated with appropriate antifungal agent with surgical debridement. © 2017 Blackwell Verlag GmbH.
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen
Santiago-Tirado, Felipe H.; Onken, Michael D.; Cooper, John A.; Klein, Robyn S.
2017-01-01
ABSTRACT The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. PMID:28143979
Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks.
Benedict, Kaitlin; Richardson, Malcolm; Vallabhaneni, Snigdha; Jackson, Brendan R; Chiller, Tom
2017-12-01
Several high-profile outbreaks have drawn attention to invasive fungal infections (IFIs) as an increasingly important public health problem. IFI outbreaks are caused by many different fungal pathogens and are associated with numerous settings and sources. In the community, IFI outbreaks often occur among people without predisposing medical conditions and are frequently precipitated by environmental disruption. Health-care-associated IFI outbreaks have been linked to suboptimal hospital environmental conditions, transmission via health-care workers' hands, contaminated medical products, and transplantation of infected organs. Outbreak investigations provide important insights into the epidemiology of IFIs, uncover risk factors for infection, and identify opportunities for preventing similar events in the future. Well recognised challenges with IFI outbreak recognition, response, and prevention include the need for improved rapid diagnostic methods, the absence of routine surveillance for most IFIs, adherence to infection control practices, and health-care provider awareness. Additionally, IFI outbreak investigations have revealed several emerging issues, including new populations at risk because of travel or relocation, occupation, or immunosuppression; fungal pathogens appearing in geographical areas in which they have not been previously recognised; and contaminated compounded medications. This report highlights notable IFI outbreaks in the past decade, with an emphasis on these emerging challenges in the USA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discrimination of fungal infections on grape berries via spectral signatures
NASA Astrophysics Data System (ADS)
Molitor, Daniel; Griesser, Michaela; Schütz, Erich; Khuen, Marie-Therese; Schefbeck, Christa; Ronellenfitsch, Franz Kai; Schlerf, Martin; Beyer, Marco; Schoedl-Hummel, Katharina; Anhalt, Ulrike; Forneck, Astrid
2016-04-01
The fungal pathogens Botrytis cinerea and Penicillium expansum are causing economic damages on grapevine worldwide. Especially the simultaneous occurrence of both often results in off-flavours highly threatening wine quality. For the classification of grape quality as well as for the determination of targeted enological treatments, the knowledge of the level of fungal attack is of highest interest. However, visual assessment and pathogen discrimination are cost-intensive. Consequently, a pilot laboratory study aimed at (i) detecting differences in spectral signatures between grape berry lots with different levels of infected berries (B. cinerea and/or P. expansum) and (ii) detecting links between spectral signatures and biochemical as well as quantitative molecular markers for fungal attack. To this end, defined percentages (infection levels) of table grape berries were inoculated with fungal spore suspensions. Spectral measurements were taken using a FieldSpec 3 Max spectroradiometer (ASD Inc., Boulder/Colorado, USA) in regular intervals after inoculation. In addition, fungal attack was determined enzymatically) and quantitatively (real-time PCR). In addition, gluconic acid concentrations (as a potential markers for fungal attack) were determined photometrically. Results indicate that based on spectral signatures, a discrimination of P. expansum and B. cinerea infections as well as of different B. cinerea infection levels is possible. Real-time PCR analyses, detecting DNA levels of both fungi, showed yet a low detection level. Whereas the gluconic acid concentrations turned out to be specific for the two fungi tested (B. cinerea vs. P. expansum) and thus may serve as a differentiating biochemical marker. Correlation analyses between spectral measurements and biological data (gluconic acid concentrations, fungi DNA) as well as further common field and laboratory trials are targeted.
Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P.; Heilmann, Kristopher; Ruthel, Gordon
2016-01-01
ABSTRACT Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. PMID:27601572
Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.
Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo
2015-04-01
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.
Fungal endophytes: modifiers of plant disease.
Busby, Posy E; Ridout, Mary; Newcombe, George
2016-04-01
Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.
Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis.
Zhang, Jie; Huang, Wuren; Yuan, Chuanfei; Lu, Yuzhen; Yang, Bing; Wang, Cheng-Yuan; Zhang, Peng; Dobens, Leonard; Zou, Zhen; Wang, Chengshu; Ling, Erjun
2017-01-01
Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs) in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia) by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.
Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.
Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha
2017-01-15
Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The wild grass Brachypodium distachyon (Brachypodium) is a new model system for temperate cereals, but its potential for studying interactions between grasses and their pathogens remains underexploited. Leaf rust caused by members of the fungal genus Puccinia is a major disease affecting temperate c...
USDA-ARS?s Scientific Manuscript database
Fusarium Head Blight (FHB) is a disease caused by the fungal pathogen Fusarium graminearum that affects wheat and other small grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON), accumulate during infection and increa...
USDA-ARS?s Scientific Manuscript database
Ambrosia beetles in the Euwallacea nr. fornicatus complex vector a fungal pathogen that causes Fusarium dieback, a disease that impacts avocado (Persea americana), woody ornamentals, and native trees in Florida and California. Currently, these pests are detected with quercivorol lures (containing p-...
Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...
USDA-ARS?s Scientific Manuscript database
Pomes, mainly apples and pears, are economically important fruits produced and consumed worldwide. The United States is the second largest producer of pome fruit in the world behind China. Penicillium expansum and other Penicillium spp. are the most common fungal plant pathogens that cause blue mold...
Pathogenicity of diaporthe spp. isolates recovered from soybean (glycine max) seeds in Paraguay
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) caused by Diaporthe longicolla (Hobbs) J.M. Santos, Vrandecic & A.J.L. Phillips has been documented as part of a soybean [Glycine max (L.) Merr.] fungal disease complex that affects the quality of soybean seed. In 2006, 16 isolates of Diaporthe were recovered from soybean...
Development of soybean with novel sources of resistance to Phomopsis seed decay
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) is an important soybean disease that results in poor seed quality in most soybean production areas of the United States. PSD is caused primarily by the fungal pathogen Phomopsis longicolla. In 2009, due to the prevalence of hot and humid environments from pod fill to harve...
Detoxification of the fusarium toxin fusaric acid by the soil fungus aspergillus tubingensis
USDA-ARS?s Scientific Manuscript database
The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) causes cotton wilt and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of F.o.v., FA plays an important role in virulence. To address the problems of emerging virulent isolates su...
USDA-ARS?s Scientific Manuscript database
Sclerotinia Stem Rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is ubiquitous in cooler climates where soybean crops are grown. Breeding for resistance to SSR remains challenging in crops like soybean, where no single gene provides strong resistance, but instead, multiple genes w...
USDA-ARS?s Scientific Manuscript database
Cider apple (Malus ×domestica Borkh.) is an emerging crop in western Washington and the Pacific Northwest (PNW) region, but a major obstacle to planting new orchards and orchard productivity is the widespread occurrence of apple anthracnose canker, caused by the fungal pathogen Neofabraea malicortic...
USDA-ARS?s Scientific Manuscript database
The invasive redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae) vectors the fungal pathogen (Raffaelea lauricola) that causes laurel wilt, a disease responsible for widespread mortality of trees in the Lauraceae in the southeastern U.S. Early detection of in...
USDA-ARS?s Scientific Manuscript database
Globally, grain mold is a major hurdle affecting sorghum productivity and quality. This disease is caused by complex fungal pathogens, among them Fusarium thapsinum and Curvularia lunata are the major fungi prevalent in many sorghum growing regions. This study examined the effect of inoculating a ...
Screening of sorghum lines against long smut and grain mold pathogens
USDA-ARS?s Scientific Manuscript database
Long smut infection is severe in the drier regions of Africa and Asia; whereas, grain mold is the most important widespread complex disease where sorghum is grown worldwide. Both fungal diseases cause significant losses in grain yield and quality. Long smut has not yet been observed in the United ...
Comparative RNA-seq for the investigation of tolerance to Verticillium wilt in black raspberry
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae Kleb., a cause of verticillium wilt, is a wide-spread, soil-borne fungal pathogen with a wide host range that includes many fruit and vegetable crops. Verticillium dahliae has been isolated from Rubus species showing symptoms of the disease. Very little is known about the intera...
White-nose syndrome pathology grading in Nearctic and Palearctic bats
Jiri Pikula; Sybill K. Amelon; Hana Bandouchova; Tomáš Bartonička; Hana Berkova; Jiri Brichta; Sarah Hooper; Tomasz Kokurewicz; Miroslav Kolarik; Bernd Köllner; Veronika Kovacova; Petr Linhart; Vladimir Piacek; Gregory G. Turner; Jan Zukal; Natália Martínková; Sharon Swartz
2017-01-01
While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we...
Identification of blast resistance genes for managing rice blast disease
USDA-ARS?s Scientific Manuscript database
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...
Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823
USDA-ARS?s Scientific Manuscript database
Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...
Batrachochytrium salamandrivorans: The North American response and a call for action
Matthew J. Gray; James P. Lewis; Priya Nanjappa; Blake Klocke; Frank Pasmans; An Martel; Craig Stephen; Gabriela Parra Olea; Scott A. Smith; Allison Sacerdote-Velat; Michelle R. Christman; Jennifer M. Williams; Deanna H. Olson; Deborah A. Hogan
2015-01-01
Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen that has caused recent die-offs of native salamanders in Europe and is known to be lethal to at least some North American species in laboratory trials [1]. Bsal appears to have originated in Asia, and may have been introduced by humans...
Candida lusitaniae causing fatal meningitis.
Sarma, P. S.; Durairaj, P.; Padhye, A. A.
1993-01-01
Fatal meningitis due to Candida lusitaniae in a 35 year old previously healthy man is described. C. lusitaniae is an opportunistic fungal pathogen reported infrequently in the English literature. This is the third case report of meningitis and the first fatal infection in an adult from Central India due to C. lusitaniae known to the authors. PMID:8290437
Is Pyrenophora semeniperda the cause of downy brome (Bromus tectorum) die-offs?
Owen W. Baughman; Susan E. Meyer
2013-01-01
Downy brome (cheatgrass) is a highly successful, exotic, winter annual invader in semi-arid western North America, forming near-monocultures across many landscapes. A frequent but poorly understood phenomenon in these heavily invaded areas is periodic 'die-off' or complete stand failure. The fungal pathogen Pyrenophora semeniperda is abundant in cheatgrass...
Thomas M. Saielli; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney
2012-01-01
American chestnut (Castanea dentata (Marsh.) Borkh.) was functionally removed as a forest tree by chestnut blight (caused by the fungal pathogen Cryphonectria parasitica (Murr.) Barr). Hybrid-backcross breeding between blight-resistant Chinese chestnut (Castanea mollissima Blume) and American chestnut is used to...
USDA-ARS?s Scientific Manuscript database
Parastagonospora nodorum is a necrotrophic fungal pathogen causing Septoria nodorum blotch (SNB) on wheat. We have identified nine necrotrophic effector-host dominant sensitivity gene interactions, and we have cloned three of the necrotrophic effector (NE) genes, including SnToxA, SnTox1 and SnTox3...
USDA-ARS?s Scientific Manuscript database
The disease Septoria nodorum blotch (SNB) is caused by the necrotrophic fungal pathogen Parastagonospora nodorum, which induces cell death in wheat through the production of necrotrophic effectors (NEs). The objective of this project is to determine the relative importance of three host gene-NE int...
USDA-ARS?s Scientific Manuscript database
Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...
A review of oak wilt management: a summary of treatment options and their efficacy
Karrie A. Koch; Gina L. Quiram; Robert C. Venette
2010-01-01
Oak wilt, caused by the invasive fungal pathogen Ceratocystis fagacearum (Bretz) Hunt, is a serious and fatal disease of oaks, Quercus spp., with red oaks (section Lobatae) generally being more susceptible than white oaks (section Quercus). Oak wilt was first recognized in North America in 1944...
DNA-based detection of the fungal pathogen Geomyces destructans in soils from bat hibernacula
Daniel L. Lindner; Andrea Gargas; Jeffrey M. Lorch; Mark T. Banik; Jessie A. Glaeser; Thomas H. Kunz; David S. Blehert
2011-01-01
White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical...
USDA-ARS?s Scientific Manuscript database
Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...
Briard, Benoit; Heddergott, Christoph; Latgé, Jean-Paul
2016-03-15
Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. Microbiota studies have shown that pathogens cannot be studied individually anymore and that the establishment and progression of a specific disease are due not to a single microbial species but are the result of the activity of many species living together. To date, the interaction between members of the human microbiota has been analyzed in situations of direct contact or liquid-mediated contact between organisms. This study showed unexpectedly that human opportunistic pathogens can interact at a distance after sensing volatiles emitted by another microbial species. This finding will open a new research avenue for the understanding of microbial communities. Copyright © 2016 Briard et al.
Pandolfi, V; Jorge, E C; Melo, C M R; Albuquerque, A C S; Carrer, H
2010-07-06
The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.
Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra
2015-01-01
This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473
Kulikov, S N; Alimova, F K; Zakharova, N G; Nemtsev, S V; Varlamov, V P
2006-01-01
Mycological analysis throughout the vegetation period of potato (Solanum tuberosum) made it possible to study in detail the structure of micromycete community, to determine typical dominant (frequency, more than 60%), typical common (frequency, 30 to 60%), typical rare (frequency, 10 to 30%), and casual (frequency, less than 10%) species and to estimate changes in the microorganism community caused by plant protection preparations with different mechanisms of action. It was shown that, as a result of occurrence of resistant forms, synthetic preparations against fungal pathogens of potato (such as TMTD, Ridomil gold MC, and Cupricol) were only slightly more effective than biological preparations (Trichodermin and AgroChit), with the former considerably changing the natural saprophytic mycological community. An increase in the soil pool of Trichoderma harzianum as a result of application of a biological preparation based on this antagonistic fungus correlated with its effectiveness against the soil pathogen Fusarium sp., which causes root rots. A chitosan-based elicitor preparation more effectively suppressed the development of early (Alternaria sp. and Macrosporium sp.) and late (Phytophthora sp.) blights of leaves and had a weaker effect on the soil microflora.
López-Berges, Manuel S.; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio
2012-01-01
Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. PMID:22968717
Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad
2012-02-01
Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lu, Weiping; Gu, Dayong; Chen, Xingyun; Xiong, Renping; Liu, Ping; Yang, Nan; Zhou, Yuanguo
2010-10-01
The traditional techniques for diagnosis of invasive fungal infections in the clinical microbiology laboratory need improvement. These techniques are prone to delay results due to their time-consuming process, or result in misidentification of the fungus due to low sensitivity or low specificity. The aim of this study was to develop a method for the rapid detection and identification of fungal pathogens. The internal transcribed spacer two fragments of fungal ribosomal DNA were amplified using a polymerase chain reaction for all samples. Next, the products were hybridized with the probes immobilized on the surface of a microarray. These species-specific probes were designed to detect nine different clinical pathogenic fungi including Candida albicans, Candida tropocalis, Candida glabrata, Candida parapsilosis, Candida krusei, Candida lusitaniae, Candida guilliermondii, Candida keyfr, and Cryptococcus neoformans. The hybridizing signals were enhanced with gold nanoparticles and silver deposition, and detected using a flatbed scanner or visually. Fifty-nine strains of fungal pathogens, including standard and clinically isolated strains, were correctly identified by this method. The sensitivity of the assay for Candida albicans was 10 cells/mL. Ten cultures from clinical specimens and 12 clinical samples spiked with fungi were also identified correctly. This technique offers a reliable alternative to conventional methods for the detection and identification of fungal pathogens. It has higher efficiency, specificity and sensitivity compared with other methods commonly used in the clinical laboratory.
Machado, Ana Karla; Brown, Neil A; Urban, Martin; Kanyuka, Kostya
2017-01-01
Abstract Fusarium graminearum is a major fungal pathogen of cereals worldwide, causing seedling, stem base and floral diseases, including Fusarium head blight (FHB). In addition to yield and quality losses, FHB contaminates cereal grain with mycotoxins, including deoxynivalenol, which are harmful to human, animal and ecosystem health. Currently, FHB control is only partially effective due to several intractable problems. RNA interference (RNAi) is a natural mechanism that regulates gene expression. RNAi has been exploited in the development of new genomic tools that allow the targeted silencing of genes of interest in many eukaryotes. Host‐induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes in planta during attempted infection and thereby reduces disease levels. HIGS relies on the host plant's ability to produce mobile small interfering RNA molecules, generated from long double‐stranded RNA, which are complementary to targeted fungal genes. These molecules are transferred from the plant to invading fungi via an uncharacterised mechanism, to cause gene silencing. Here, we describe recent advances in RNAi‐mediated control of plant pathogenic fungi, highlighting the key advantages and disadvantages. We then discuss the developments and implications of combining HIGS with other methods of disease control. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28967180
Improving mycoinsecticides for insect biological control.
Ortiz-Urquiza, Almudena; Luo, Zhibing; Keyhani, Nemat O
2015-02-01
The desire for decreased reliance on chemical pesticides continues to fuel interest in alternative means for pest control including the use of naturally occurring microbial insect pathogens. Insects, as vectors of disease causing agents or as agricultural pests, are responsible for millions of deaths and significant economic losses worldwide, placing stresses on productivity (GDP) and human health and welfare. In addition, alterations in climate change are likely to affect insect ranges, expanding their access to previously constrained geographic areas, a potentially worrisome outcome. Metarhizium anisopliae and Beauveria bassiana, two cosmopolitan fungal pathogens of insects found in almost all ecosystems, are the most commonly applied mycoinsecticides for a variety of insect control purposes. The availability of the complete genomes for both organisms coupled to robust technologies for their transformation has led to several advances in engineering these fungi for greater efficacy and/or utility in pest control applications. Here, we will provide an overview of the fungal-insect and fungal-plant interactions that occur and highlight recent advances in the genetic engineering of these fungi. The latter work has resulted in the development of strains displaying (1) increased resistance to abiotic stress, (2) increased cuticular targeting and degradation, (3) increased virulence via expression of insecticidal protein/peptide toxins, (4) the ability to block transmission of disease causing agents, and (5) the ability to target specific insect hosts, decrease host fecundity, and/or alter insect behaviors.
Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR
Zeng, Qing-Yin; Hansson, Per; Wang, Xiao-Ru
2005-01-01
Background Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed. Results We designed two pairs of specific primers for G. abietina based on the 18S rDNA sequence variation pattern. These primers were validated against a wide range of fungi and 14 potential conifer hosts. Based on these specific primers, two nested PCR systems were developed. The first system employed universal fungal primers to enrich the fungal DNA targets in the first round, followed by a second round selective amplification of the pathogen. The other system employed G. abietina-specific primers in both PCR steps. Both approaches can detect the presence of G. abietina in composite samples with high sensitivity, as little as 7.5 fg G. abietina DNA in the host genomic background. Conclusion The methods described here are rapid and can be applied directly to a wide range of conifer species, without the need for fungal isolation and cultivation. Therefore, it represents a promising alternative to disease inspection in forest nurseries, plantations and quarantine control facilities. PMID:16280082
de Oliveira, Renata Buccheri; Atobe, Jane Harumi; Souza, Simone Aparecida; de Castro Lima Santos, Daniel Wagner
2014-08-01
Invasive fungal infections (IFIs) represent one of the main causes of morbimortality in immunocompromised patients. Pneumocystosis, cryptococcosis and histoplasmosis are the most frequently occurring IFIs in patients with acquired immunodeficiency syndrome (AIDS). Fungi, such as Candida spp. and Aspergillus spp., may cause severe diseases during the course of an HIV infection. Following the introduction of highly active anti-retroviral therapy, there has been a marked reduction of opportunistic fungal infections, which today is 20-25 % of the number of infections observed in the mid-1990s. This study is an observational and retrospective study aimed at the characterising IFI incidence and describing the epidemiology, clinical diagnostic and therapeutic features and denouement in HIV/AIDS patients. In HIV/AIDS patients, the IFI incidence is 54.3/1,000 hospitalisation/year, with a lethality of 37.7 %. Cryptococcosis represents the main opportunistic IFI in the population, followed by histoplasmosis. Nosocomial pathogenic yeast infections are caused principally by Candida spp., with a higher candidemia incidence at our institution compared to other Brazilian centres.
Wachowska, Urszula; Packa, Danuta
2017-01-01
Fungi of the genus Fusarium infect cereal crops during the growing season and cause head blight and other diseases. Their toxic secondary metabolites (mycotoxins) contaminate grains. Several dozen toxic compounds produced by fungal pathogens have been identified to date. Type B trichothecenes—deoxynivalenol, its acetyl derivatives and nivalenol (produced mainly by F. graminearum and F. culmorum)—are most commonly detected in cereal grains. “T-2 toxin” (produced by, among others, F. sporotrichioides) belongs to type-A trichothecenes which are more toxic than other trichothecenes. Antagonistic bacteria and fungi can affect pathogens of the genus Fusarium via different modes of action: direct (mycoparasitism or hyperparasitism), mixed-path (antibiotic secretion, production of lytic enzymes) and indirect (induction of host defense responses). Microbial modification of trichothecenes involves acetylation, deacetylation, oxidation, de-epoxidation, and epimerization, and it lowers the pathogenic potential of fungi of the genus Fusarium. Other modifing mechanisms described in the paper involve the physical adsorption of mycotoxins in bacterial cells and the conjugation of mycotoxins to glucose and other compounds in plant and fungal cells. The development of several patents supports the commercialization and wider application of microorganisms biodegrading mycotoxins in grains and, consequently, in feed additives. PMID:29261142
Ngaki, Micheline N.; Wang, Bing; Sahu, Binod B.; Srivastava, Subodh K.; Farooqi, Mohammad S.; Kambakam, Sekhar; Swaminathan, Sivakumar
2016-01-01
Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction. PMID:27760122
Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto
2013-12-01
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C
2016-01-01
Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.
He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo
2012-01-01
Background To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. Methods and Findings First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 103 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. Conclusions The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions. PMID:22479577
He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo
2012-01-01
To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3) CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions.
Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens
Klosterman, Steven J.; Subbarao, Krishna V.; Kang, Seogchan; Veronese, Paola; Gold, Scott E.; Thomma, Bart P. H. J.; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D.; Barbara, Dez J.; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G.; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J.; Heiman, David I.; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A.; Dobinson, Katherine F.; Ma, Li-Jun
2011-01-01
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases. PMID:21829347
Lai, Tongfei; Chen, Yong; Li, Boqiang; Qin, Guozheng; Tian, Shiping
2014-05-30
Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for understanding the mechanism of NO regulating virulence of the fungal pathogen, but are beneficial for screening new targets of antifungal compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M
2007-07-27
Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.
Horowitz, Sigal; Freeman, Stanley; Sharon, Amir
2002-07-01
ABSTRACT Colletotrichum acutatum, which causes anthracnose disease on strawberry, can also persist on several other plant species without causing disease symptoms. The genetic and molecular bases that determine pathogenic and nonpathogenic lifestyles in C. acutatum are unclear. We developed a transformation system for C. acutatum by electroporation of germinating conidia, and transgenic isolates that express the green fluorescent protein (GFP) were produced. Details of the pathogenic and nonpathogenic lifestyles of C. acutatum were determined by using GFP-transgenic isolates. Major differences between colonization-mediating processes of strawberry and of other plants were observed. On the main host, strawberry, the germinating conidia formed branched, thick hyphae, and large numbers of appressoria were produced that were essential for plant penetration. In strawberry, the fungus developed rapidly, filling the mesophyll with dense mycelium that invaded the cells and caused necrosis of the tissue. In nonpathogenic interactions on pepper, eggplant, and tomato, the conidia germinated, producing thin, straight germ tubes. Appressoria were produced but failed to germinate and penetrate leaf tissue, resulting in epiphytic growth without invasion of the plant. Penetration of the plant occurred only several days after inoculation and was restricted to the intercellular spaces of the first cell layers of infected tissue without causing any visible damage. Much of the new fungal biomass continued to develop on the surface of inoculated organs in the nonpathogenic interaction. The differences in fungal development on strawberry compared with the other plant species suggest that signal molecules, which may be present only in strawberry, trigger appressorial germination and penetration of the primary host.
Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yangrae; Ohm, Robin A.; Grigoriev, Igor V.
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2more » gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.« less
[Mycoviruses and importance in mycology].
Keçeli, Sema Aşkın
2017-10-01
Opportunistic fungal infections like invasive candidiasis and aspergillozis have high mortality rate particularly in immunosupressive patients. The rate of therapy success with antifungal agents is usually low. Although immunotherapy methods have been developed to increase the host response against antifungals, there has been a need for new antifungal therapeutic agents in the treatment of invasive aspergillozis and other opportunistic fungal infections. Mycoviruses are the viruses that specifically infect fungi. The use of mycoviruses in the treatment of invasive fungal infections has not been suggested yet. However, as mentioned in this review, the researches about the use of mycoviruses as a therapeutic agent have been still carried on. Mycoviruses have no infectivity as free particules. Many of them have RNA genome. They are classified as: Fungi containing "double stranded (ds) RNA, ds DNA or single stranded RNA". Although most of them are found in plant pathogenic fungi, they are also found in human pathogenic fungi. In most of the mycoviruses identified up to now, dsRNA genome are present. Mycoviruses that can be pathogenic for human and carrying dsRNA genome have been classified as Partitiviridae, Totiviridae, Chrysoviridae, Reoviridae and Hypoviridae. A part of mycoviruses may not cause any sign of infection in fungal host. The other part of mycoviruses causes hypovirulence or lethal effect. When hypovirulence occured in fungi, the observed effects are the decrease in pigmentation, mycelium formation, asexual sporulation, growing rate and the loss of fertility. The transfer of mycovirus to fungi may occur by intracellular or extracellular way. The transfer of genetic content to fungi occurs in two way: transformation and transfection. In both ways, there is a need for a spheroblast that has no cell wall. There are various scenarios about mycoviruses for the their use in the treatment. In the first scenario, the transfer of selective mycovirus is ensured by extracellular way, and then the binding of mycovirus to target fungus by genetic modifications is aimed. The second scenario is about the use of mycovirus as a vector for genetic transformation. In fact, this method is applied by using toxins in fungal diseases of plants. In addition, the production of lethal antibodies or peptides derived from antibodies obtained from toxin-coding cytoplasmic dsRNA mycovirus toxins may be a new therapeutic approach. It has been claimed that these derivatives may be used as parentheral therapeutic agents against human pathogenic fungi including Candida albicans. In this review article, the importance of mycoviruses in mycology has been discussed.
Functionality of a maize chitinase potentially involved in ear rot pathogen resistance
USDA-ARS?s Scientific Manuscript database
Chitinases are thought to play a role in plant resistance to fungal pathogens by degrading the fungal cell wall, but few have been investigated to any great extent. The gene for a maize (Zea mays) chitinase “chitinase 2” previously reported to be induced by two ear rot pathogens in infected tissues ...
De novo genome assembly of the fungal plant pathogen Pyrenophora semeniperda
Marcus M. Soliai; Susan E. Meyer; Joshua A. Udall; David E. Elzinga; Russell A. Hermansen; Paul M. Bodily; Aaron A. Hart; Craig E. Coleman
2014-01-01
Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a...
Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong
2017-09-26
Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.
Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans
Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan
2015-01-01
Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs. PMID:26195510
Fatal Purpureocillium lilacinum pneumonia in a green tree python.
Meyer, Jean; Loncaric, Igor; Richter, Barbara; Spergser, Joachim
2018-03-01
A 10-y-old female green tree python ( Morelia viridis) died of fungal pneumonia caused by Purpureocillium lilacinum, which was confirmed histologically and by PCR and subsequent DNA sequencing. The same fungal species was cultivated from a swab taken from the terrarium in which the snake was housed. Clinical and environmental P. lilacinum isolates were indistinguishable by the typing method applied, strongly suggesting clonal relatedness of both isolates. Because no other underlying predisposing respiratory infection could be detected by virus-specific PCR or histopathology, P. lilacinum was considered a primary pulmonary pathogen in this tree python.
Castell-Miller, Claudia V.; Gutierrez-Gonzalez, Juan J.; Tu, Zheng Jin; ...
2016-06-02
Here, the fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice ( Oryza sativa) and two North American specialty crops, American wildrice ( Zizania palustris) and switchgrass ( Panicum virgatu). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N 50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated.more » Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.« less
Castell-Miller, Claudia V.; Gutierrez-Gonzalez, Juan J.; Tu, Zheng Jin; Bushley, Kathryn E.; Hainaut, Matthieu; Henrissat, Bernard; Samac, Deborah A.
2016-01-01
The fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice (Oryza sativa) and two North American specialty crops, American wildrice (Zizania palustris) and switchgrass (Panicum virgatum). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated. Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms. PMID:27253872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castell-Miller, Claudia V.; Gutierrez-Gonzalez, Juan J.; Tu, Zheng Jin
Here, the fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice ( Oryza sativa) and two North American specialty crops, American wildrice ( Zizania palustris) and switchgrass ( Panicum virgatu). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N 50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated.more » Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.« less
Lee, Pamela P.; Lau, Yu-Lung
2017-01-01
The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV), hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs). Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium) marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS)-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique climatic and geographical regions. PMID:28702025
Bloem, Elke; Haneklaus, Silvia; Kesselmeier, Jürgen; Schnug, Ewald
2012-08-08
The emission of gaseous sulfur (S) compounds by plants is related to several factors, such as the plant S status or fungal infection. Hydrogen sulfide (H(2)S) is either released or taken up by the plant depending on the ambient air concentration and the plant demand for S. On the contrary, carbonyl sulfide (COS) is normally taken up by plants. In a greenhouse experiment, the dependence of H(2)S and COS exchange with ambient air on the S status of oilseed rape (Brassica napus L.) and on fungal infection with Sclerotinia sclerotiorum was investigated. Thiol contents were determined to understand their influence on the exchange of gaseous S compounds. The experiment revealed that H(2)S emissions were closely related to pathogen infections as well as to S nutrition. S fertilization caused a change from H(2)S consumption by S-deficient oilseed rape plants to a H(2)S release of 41 pg g(-1) (dw) min(-1) after the addition of 250 mg of S per pot. Fungal infection caused an even stronger increase of H(2)S emissions with a maximum of 1842 pg g(-1) (dw) min(-1) 2 days after infection. Healthy oilseed rape plants acted as a sink for COS. Fungal infection caused a shift from COS uptake to COS releases. The release of S-containing gases thus seems to be part of the response to fungal infection. The roles the S-containing gases may play in this response are discussed.
Current ecological understanding of fungal-like pathogens of fish: what lies beneath?
Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra
2014-01-01
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442
New Insights for Diagnosis of Pineapple Fusariosis by MALDI-TOF MS Technique.
Santos, Cledir; Ventura, José Aires; Lima, Nelson
2016-08-01
Fusarium is one of the most economically important fungal genus, since it includes many pathogenic species which cause a wide range of plant diseases. Morphological or molecular biology identification of Fusarium species is a limiting step in the fast diagnosis and treatment of plant disease caused by these fungi. Mass spectrometry by matrix-assisted laser/desorption ionisation-time-of-flight (MALDI-TOF)-based fingerprinting approach was applied to the fungal growth monitoring and direct detection of strain Fusarium guttiforme E-480 inoculated in both pineapple cultivars Pérola and Imperial side shoots, that are susceptible and resistant, respectively, to this fungal strain. MALDI-TOF MS technique was capable to detect fungal molecular mass peaks in the susceptible pineapple stem side shoot tissue. It is assumed that these molecular masses are mainly constituted by ribosomal proteins. MALDI-TOF-based fingerprinting approach has herein been demonstrated to be sensitive and accurate for the direct detection of F. guttiforme E-480 molecular masses on both susceptible and resistant pineapple side stem free of any pre-treatment. According to the results obtained, the changing on molecular mass peaks of infected susceptible pineapple tissue together with the possibility of fungal molecular masses analysis into this pineapple tissue can be a good indication for an early diagnosis by MALDI-TOF MS of pineapple fusariosis.
Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt
Hassan, Naglaa; Shimizu, Masafumi
2014-01-01
Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737
Cryptococcus: from environmental saprophyte to global pathogen
May, Robin C.; Stone, Neil R.H.; Wiesner, Darin L.; Bicanic, Tihana; Nielsen, Kirsten
2016-01-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development. PMID:26685750
Cryptococcus: from environmental saprophyte to global pathogen.
May, Robin C; Stone, Neil R H; Wiesner, Darin L; Bicanic, Tihana; Nielsen, Kirsten
2016-02-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.
Neutrophil extracellular traps in fungal infection.
Urban, Constantin F; Nett, Jeniel E
2018-04-03
Fungal infections are a continuously increasing problem in modern health care. Understanding the complex biology of the emerging pathogens and unraveling the mechanisms of host defense may form the basis for the development of more efficient diagnostic and therapeutic tools. Neutrophils play a pivotal role in the defense against fungal pathogens. These phagocytic hunters migrate towards invading fungal microorganisms and eradicate them by phagocytosis, oxidative burst and release of neutrophil extracellular traps (NETs). In the last decade, the process of NET formation has received unparalleled attention, with numerous studies revealing the relevance of this neutrophil function for control of various mycoses. Here, we describe NET formation and summarize its role as part of the innate immune defense against fungal pathogens. We highlight factors influencing the formation of these structures and molecular mechanisms employed by fungi to impair the formation of NETs or subvert their antifungal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.
Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul
2016-05-03
Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... fumigation of cottonseed for the fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (FOV). In a... to neutralize the fungal pathogen Fusarium oxysporum f. sp. vasinfectum (FOV) on cottonseed...
The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases.
Bradford, L Latéy; Ravel, Jacques
2017-04-03
Most of what is known about fungi in the human vagina has come from culture-based studies and phenotypic characterization of single organisms. Though valuable, these approaches have masked the complexity of fungal communities within the vagina. The vaginal mycobiome has become an emerging field of study as genomics tools are increasingly employed and we begin to appreciate the role these fungal communities play in human health and disease. Though vastly outnumbered by its bacterial counterparts, fungi are important constituents of the vaginal ecosystem in many healthy women. Candida albicans, an opportunistic fungal pathogen, colonizes 20% of women without causing any overt symptoms, yet it is one of the leading causes of infectious vaginitis. Understanding its mechanisms of commensalism and patho-genesis are both essential to developing more effective therapies. Describing the interactions between Candida, bacteria (such as Lactobacillus spp.) and other fungi in the vagina is funda-mental to our characterization of the vaginal mycobiome.
The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases
2017-01-01
ABSTRACT Most of what is known about fungi in the human vagina has come from culture-based studies and phenotypic characterization of single organisms. Though valuable, these approaches have masked the complexity of fungal communities within the vagina. The vaginal mycobiome has become an emerging field of study as genomics tools are increasingly employed and we begin to appreciate the role these fungal communities play in human health and disease. Though vastly outnumbered by its bacterial counterparts, fungi are important constituents of the vaginal ecosystem in many healthy women. Candida albicans, an opportunistic fungal pathogen, colonizes 20% of women without causing any overt symptoms, yet it is one of the leading causes of infectious vaginitis. Understanding its mechanisms of commensalism and patho-genesis are both essential to developing more effective therapies. Describing the interactions between Candida, bacteria (such as Lactobacillus spp.) and other fungi in the vagina is funda-mental to our characterization of the vaginal mycobiome. PMID:27657355
de Oliveira, Carlos Eduardo Vasconcelos; Magnani, Marciane; de Sales, Camila Veríssimo; Pontes, Alline Lima de Souza; Campos-Takaki, Galba Maria; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite
2014-12-01
The aim of this study was to extract chitosan (CHI) from Mucor circinelloides UCP 050 grown in a corn steep liquor (CSL)-based medium under optimized conditions and to assess the efficacy of the obtained CHI to inhibit the post-harvest pathogenic fungi Aspergillus niger URM 5162 and Rhizopus stolonifer URM 3482 in laboratory media and as a coating on table grapes (Vitis labrusca L.). The effect of CHI coating on some physical, physicochemical and sensory characteristics of the fruits during storage was assessed. The greatest amount of CHI was extracted from M. circinelloides UCP 050 grown in medium containing 7 g of CSL per 100 mL at pH 5.5 with rotation at 180 rpm. CHI from M. circinelloides UCP 050 caused morphological changes in the spores of the fungal strains tested and inhibited mycelial growth and spore germination. CHI coating delayed the growth of the assayed fungal strains in artificially infected grapes, as well as autochthonous mycoflora during storage. CHI coating preserved the quality of grapes during storage, as measured by their physical, physicochemical and sensory attributes. These results demonstrate that edible coatings derived from M. circinelloides CHI could be a useful alternative for controlling pathogenic fungi and maintaining the post-harvest quality of table grapes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Grosch, Rita; Scherwinski, Katja; Lottmann, Jana; Berg, Gabriele
2006-12-01
A broad spectrum of fungal antagonists was evaluated as potential biocontrol agents (BCAs) against the soil-borne pathogen Rhizoctonia solani using a new combination of in vitro and in vivo assays. The in vitro characterisation of diverse parameters including the ability to parasitise mycelium and to inhibit the germination of Rhizoctonia sclerotia at different temperatures resulted in the selection of six potential fungal antagonists. These were genotypically characterised by their BOX-PCR fingerprints, and identified as Trichoderma reesei and T. viride by partial 18S rDNA sequencing. When potato sprouts were treated with Trichoderma, all isolates significantly reduced the incidence of Rhizoctonia symptoms. Evaluated under growth chamber conditions, the selected Trichoderma isolates either partly or completely controlled the dry mass loss of lettuce caused by R. solani. Furthermore, the antagonistic Trichoderma strains were active under field conditions. To analyse the effect of Trichoderma treatment on indigenous root-associated microbial communities, we performed a DNA-dependent SSCP (Single-Strand Conformation Polymorphism) analysis of 16S rDNA/ITS sequences. In this first assessment study for Trichoderma it was shown that the pathogen and the vegetation time had much more influence on the composition of the microbiota than the BCA treatment. After evaluation of all results, three Trichoderma strains originally isolated from Rhizoctonia sclerotia were selected as promising BCAs.
Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation.
Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E
2018-01-01
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes decreased at midseason, and Glomeromycetes increased in fall. Ecological guilds of fungi containing an animal-pathogen lifestyle, as well as potential egg-parasitic taxa previously isolated from parasitized SCN eggs, increased at midseason. The animal pathogen guilds included known (e.g., Pochonia chlamydosporia ) and new candidate biocontrol organisms. This research advances knowledge of the ecology of nematophagous fungi in agroecosystems and their use as biocontrol agents of the SCN.
Cotesta, Simona; Perruccio, Francesca; Knapp, Britta; Fu, Yue; Studer, Christian; Pries, Verena; Riedl, Ralph; Helliwell, Stephen B.; Petrovic, Katarina T.; Movva, N. Rao; Sanglard, Dominique; Tao, Jianshi; Hoepfner, Dominic
2016-01-01
Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. PMID:27855158
Batrachochytrium salamandrivorans and the risk of a second amphibian pandemic
Yap, Tiffany A.; Nguyen, Natalie T.; Serr, Megan; Shepak, Alex; Vredenburg, Vance
2017-01-01
Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bdwas described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsaloriginated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.
NASA Astrophysics Data System (ADS)
Grogan, Laura F.; Mulvenna, Jason; Gummer, Joel P. A.; Scheele, Ben C.; Berger, Lee; Cashins, Scott D.; McFadden, Michael S.; Harlow, Peter; Hunter, David A.; Trengove, Robert D.; Skerratt, Lee F.
2018-03-01
The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.
Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin
2010-09-01
Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.
Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.
Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther
2017-01-01
Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grison, R.; Grezes-Besset, B.; Lucante, N.
1996-05-01
Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.
Tropospheric ozone as a fungal elicitor.
Zuccarini, Paolo
2009-03-01
Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens,i.e. it resembles fungal elicitors.This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review provides an overview of the implications of such a phenomenon for basic and applied research. After an introduction about the environmental implications of tropospheric ozone and plant responses to biotic stresses, the biochemistry of ozone stress is analysed, pointing out its similarities with plant responses to pathogens and its possible applications.
Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu
2017-01-01
Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718
Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor
Rappleye, Chad A.; Eissenberg, Linda Groppe; Goldman, William E.
2007-01-01
Successful infection by fungal pathogens depends on subversion of host immune mechanisms that detect conserved cell wall components such as β-glucans. A less common polysaccharide, α-(1,3)-glucan, is a cell wall constituent of most fungal respiratory pathogens and has been correlated with pathogenicity or linked directly to virulence. However, the precise mechanism by which α-(1,3)-glucan promotes fungal virulence is unknown. Here, we show that α-(1,3)-glucan is present in the outermost layer of the Histoplasma capsulatum yeast cell wall and contributes to pathogenesis by concealing immunostimulatory β-glucans from detection by host phagocytic cells. Production of proinflammatory TNFα by phagocytes was suppressed either by the presence of the α-(1,3)-glucan layer on yeast cells or by RNA interference based depletion of the host β-glucan receptor dectin-1. Thus, we have functionally defined key molecular components influencing the initial host–pathogen interaction in histoplasmosis and have revealed an important mechanism by which H. capsulatum thwarts the host immune system. Furthermore, we propose that the degree of this evasion contributes to the difference in pathogenic potential between dimorphic fungal pathogens and opportunistic fungi. PMID:17227865
Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua
2018-04-20
Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R.; Brennan, Richard G.
2017-01-01
SUMMARY Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. PMID:28298477
Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.
2017-01-01
Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271
Mir, Albely Afifa; Park, Sook-Young; Sadat, Md. Abu; Kim, Seongbeom; Choi, Jaeyoung; Jeon, Junhyun; Lee, Yong-Hwan
2015-01-01
Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus. PMID:26134974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Prouty, A.J.; Albersheim, P.
1975-01-01
A polysaccharide from the fungal pathogen Colletotrichum lindemuthianum causes browning and phytoalexin production when applied to the cut surfaces of bean (Phaseolus vulgaris) cotyledons and hypocotyls. The application of an amount of polysaccharide equivalent to less than 100 ng of glucose will elicit this response in the bean tissues. The polysaccharide has been isolated both from culture filtrates and from the mycelial walls of the fungus. Purification of the polysaccharide involved anion and cation exchange chromatography and gel filtration. The polysaccharide has an apparent molecular weight between 1,000,000 and 5,000,000 daltons, and consists predominantly of 3- and 4-linked glucosyl residues.more » (auth)« less
Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo
2014-01-01
In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis
García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo
2015-01-01
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627
USDA-ARS?s Scientific Manuscript database
Anthracnose, caused by the fungal pathogen Colletotrichum sublineolum Henn. ex. Sacc. and Trotter 1913, is an economically damaging disease of sorghum [Sorghum bicolor (L.) Moench] in hot and humid production regions of the world. Control of anthracnose is almost exclusively through the use of genet...
USDA-ARS?s Scientific Manuscript database
Golovinomyces cichoracearum (Gc) and Podosphaera xanthii (Px) (Ascomycetes, Erysiphaceae) are the most important fungal species causing cucurbit powdery mildew (CPM), a serious disease of field and greenhouse cucurbits. Both species are highly variable, as indicated by the existence of large number ...
A review of factors affecting cave climates for hibernating bats in temperate North America
Roger W. Perry
2013-01-01
The fungal pathogen Geomyces destructans, which causes white-nose syndrome in bats, thrives in the cold and moist conditions found in caves where bats hibernate. To aid managers and researchers address this disease, an updated and accessible review of cave hibernacula and cave microclimates is presented. To maximize energy savings and reduce...