Sample records for fungal pathogens coccidioides

  1. Linear Epitopes of Paracoccidioides brasiliensis and Other Fungal Agents of Human Systemic Mycoses As Vaccine Candidates

    PubMed Central

    Travassos, Luiz R.; Taborda, Carlos P.

    2017-01-01

    Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South America; Histoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing β-(1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition. PMID:28344577

  2. Urease Produced by Coccidioides posadasii Contributes to the Virulence of This Respiratory Pathogen

    PubMed Central

    Mirbod-Donovan, Fariba; Schaller, Ruth; Hung, Chiung-Yu; Xue, Jianmin; Reichard, Utz; Cole, Garry T.

    2006-01-01

    Urease activity during in vitro growth in the saprobic and parasitic phases of Coccidioides spp. is partly responsible for production of intracellular ammonia released into the culture media and contributes to alkalinity of the external microenvironment. Although the amino acid sequence of the urease of Coccidioides posadasii lacks a predicted signal peptide, the protein is transported from the cytosol into vesicles and the central vacuole of parasitic cells (spherules). Enzymatically active urease is released from the contents of mature spherules during the parasitic cycle endosporulation stage. The endospores, together with the urease and additional material which escape from the ruptured parasitic cells, elicit an intense host inflammatory response. Ammonia production by the spherules of C. posadasii is markedly increased by the availability of exogenous urea found in relatively high concentrations at sites of coccidioidal infection in the lungs of mice. Direct measurement of the pH at these infection sites revealed an alkaline microenvironment. Disruption of the urease gene of C. posadasii resulted in a marked reduction in the amount of ammonia secreted in vitro by the fungal cells. BALB/c mice challenged intranasally with the mutant strain showed increased survival, a well-organized granulomatous response to infection, and better clearance of the pathogen than animals challenged with either the parental or the reconstituted (revertant) strain. We conclude that ammonia and enzymatically active urease released from spherules during the parasitic cycle of C. posadasii contribute to host tissue damage, which exacerbates the severity of coccidioidal infection and enhances the virulence of this human respiratory pathogen. PMID:16369007

  3. Development of an enzyme immunoassay for detection of antibodies against Coccidioides in dogs and other mammalian species.

    PubMed

    Chow, Nancy A; Lindsley, Mark D; McCotter, Orion Z; Kangiser, Dave; Wohrle, Ron D; Clifford, Wayne R; Yaglom, Hayley D; Adams, Laura E; Komatsu, Kenneth; Durkin, Michelle M; Baker, Rocky J; Shubitz, Lisa F; Derado, Gordana; Chiller, Tom M; Litvintseva, Anastasia P

    2017-01-01

    Coccidioides is a soil-dwelling fungus that causes coccidioidomycosis, a disease also known as Valley fever, which affects humans and a variety of animal species. Recent findings of Coccidioides in new, unexpected areas of the United States have demonstrated the need for a better understanding of its geographic distribution. Large serological studies on animals could provide important information on the geographic distribution of this pathogen. To facilitate such studies, we used protein A/G, a recombinant protein that binds IgG antibodies from a variety of mammalian species, to develop an enzyme immunoassay (EIA) that detects IgG antibodies against Coccidioides in a highly sensitive and high-throughput manner. We showed the potential of this assay to be adapted to multiple animal species by testing a collection of serum and/or plasma samples from dogs, mice, and humans with or without confirmed coccidioidomycosis. We then evaluated the performance of the assay in dogs, using sera from dogs residing in a highly endemic area, and found seropositivity rates significantly higher than those in dogs of non-endemic areas. We further evaluated the specificity of the assay in dogs infected with other fungal pathogens known to cross-react with Coccidioides. Finally, we used the assay to perform a cross-sectional serosurvey investigating dogs from Washington, a state in which infection with Coccidioides has recently been documented. In summary, we have developed a Coccidioides EIA for the detection of antibodies in canines that is more sensitive and has higher throughput than currently available methods, and by testing this assay in mice and humans, we have shown a proof of principle of its adaptability for other animal species.

  4. Development of an enzyme immunoassay for detection of antibodies against Coccidioides in dogs and other mammalian species

    PubMed Central

    Lindsley, Mark D.; McCotter, Orion Z.; Kangiser, Dave; Wohrle, Ron D.; Clifford, Wayne R.; Yaglom, Hayley D.; Adams, Laura E.; Komatsu, Kenneth; Durkin, Michelle M.; Baker, Rocky J.; Shubitz, Lisa F.; Derado, Gordana; Chiller, Tom M.; Litvintseva, Anastasia P.

    2017-01-01

    Coccidioides is a soil-dwelling fungus that causes coccidioidomycosis, a disease also known as Valley fever, which affects humans and a variety of animal species. Recent findings of Coccidioides in new, unexpected areas of the United States have demonstrated the need for a better understanding of its geographic distribution. Large serological studies on animals could provide important information on the geographic distribution of this pathogen. To facilitate such studies, we used protein A/G, a recombinant protein that binds IgG antibodies from a variety of mammalian species, to develop an enzyme immunoassay (EIA) that detects IgG antibodies against Coccidioides in a highly sensitive and high-throughput manner. We showed the potential of this assay to be adapted to multiple animal species by testing a collection of serum and/or plasma samples from dogs, mice, and humans with or without confirmed coccidioidomycosis. We then evaluated the performance of the assay in dogs, using sera from dogs residing in a highly endemic area, and found seropositivity rates significantly higher than those in dogs of non-endemic areas. We further evaluated the specificity of the assay in dogs infected with other fungal pathogens known to cross-react with Coccidioides. Finally, we used the assay to perform a cross-sectional serosurvey investigating dogs from Washington, a state in which infection with Coccidioides has recently been documented. In summary, we have developed a Coccidioides EIA for the detection of antibodies in canines that is more sensitive and has higher throughput than currently available methods, and by testing this assay in mice and humans, we have shown a proof of principle of its adaptability for other animal species. PMID:28380017

  5. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    PubMed

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. The habitat of Coccidioides spp. and the role of animals as reservoirs and disseminators in nature.

    PubMed

    Del Rocío Reyes-Montes, María; Pérez-Huitrón, María Ameyali; Ocaña-Monroy, Jorge Luis; Frías-De-León, María Guadalupe; Martínez-Herrera, Erick; Arenas, Roberto; Duarte-Escalante, Esperanza

    2016-10-10

    Coccidioidomycosis, a potentially fatal fungal infection, is considered an emergent mycotic disease because of the increased incidence of fungal infections registered over recent years. Infection occurs through the inhalation of arthroconidia from two main species of Coccidioides: Coccidioides immitis and C. posadasii, which are both endemic to arid and semi-arid regions of North America. Coccidioides species not only infect humans but can also infect other mammals (land, aquatic, wild or domestic), reptiles and birds. To obtain information regarding the habitat of Coccidioides spp. and the animals infected by this fungus and to identify the role that infected animals play as reservoirs and disseminators of this fungus in nature. A literature review was conducted to identify the habitat of Coccidioides spp. and the infected non-human animal species targeted by this fungus. This review allows us to suggest that Coccidioides spp. may be classified as halotolerant organisms; nevertheless, to perpetuate their life cycle, these organisms depend on different animal species (reservoirs) that serve as a link with the environment, by acting as disseminators of the fungi in nature.

  7. First case of mesh infection due to Coccidioides spp. and literature review of fungal mesh infections after hernia repair.

    PubMed

    Forrester, Joseph D; Gomez, Carlos A; Forrester, Jared A; Nguyen, Mike; Gregg, David; Deresinski, Stan; Banaei, Niaz; Weiser, Thomas G

    2015-10-01

    Fungal mesh infections are a rare complication of hernia repairs with mesh. The first case of Coccidioides spp. mesh infection is described, and a systematic literature review of all known fungal mesh infections was performed. Nine cases of fungal mesh infection are reviewed. Female and male patients are equally represented, median age is 49.5 years, and critical illness and preinfection antibiotic use were common. Fungal mesh infections are rare, but potentially fatal, complications of hernias repaired with mesh. © 2015 Blackwell Verlag GmbH.

  8. Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever.

    PubMed

    Engelthaler, David M; Roe, Chandler C; Hepp, Crystal M; Teixeira, Marcus; Driebe, Elizabeth M; Schupp, James M; Gade, Lalitha; Waddell, Victor; Komatsu, Kenneth; Arathoon, Eduardo; Logemann, Heidi; Thompson, George R; Chiller, Tom; Barker, Bridget; Keim, Paul; Litvintseva, Anastasia P

    2016-04-26

    Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. Coccidioidomycosis, or valley fever, is caused by the pathogenic fungi Coccidioides posadasii and C. immitis The fungal species and disease are primarily found in the American desert southwest, with spotted distribution throughout the Western Hemisphere. Initial molecular studies suggested a likely anthropogenic movement of C. posadasii from North America to South America. Here we comparatively analyze eighty-six genomes of the two Coccidioides species and establish local and species-wide population structures to not only clarify the earlier dispersal hypothesis but also provide evidence of likely ancestral populations and patterns of dispersal for the known subpopulations of C. posadasii. Copyright © 2016 Engelthaler et al.

  9. Extracellular ammonia at sites of pulmonary infection with Coccidioides posadasii contributes to severity of the respiratory disease.

    PubMed

    Wise, Hua Zhang; Hung, Chiung-Yu; Whiston, Emily; Taylor, John W; Cole, Garry T

    2013-01-01

    Coccidioides is the causative agent of a potentially life-threatening respiratory disease of humans. A feature of this mycosis is that pH measurements of the microenvironment of pulmonary abscesses are consistently alkaline due to ammonia production during the parasitic cycle. We previously showed that enzymatically active urease is partly responsible for elevated concentrations of extracellular ammonia at sites of lung infection and contributes to both localized host tissue damage and exacerbation of the respiratory disease in BALB/c mice. Disruption of the urease gene (URE) of Coccidioides posadasii only partially reduced the amount of ammonia detected during in vitro growth of the parasitic phase, suggesting that other ammonia-producing pathways exist that may also contribute to the virulence of this pathogen. Ureidoglycolate hydrolase (Ugh) expressed by bacteria, fungi and higher plants catalyzes the hydrolysis of ureidoglycolate to yield glyoxylate and the release CO2 and ammonia. This enzymatic pathway is absent in mice and humans. Ureidoglycolate hydrolase gene deletions were conducted in a wild type (WT) isolate of C. posadasii as well as the previously generated Δure knock-out strain. Restorations of UGH in the mutant stains were performed to generate and evaluate the respective revertants. The double mutant revealed a marked decrease in the amount of extracellular ammonia without loss of reproductive competence in vitro compared to both the WT and Δure parental strains. BALB/c mice challenged intranasally with the Δugh/Δure mutant showed 90% survival after 30 days, decreased fungal burden, and well-organized pulmonary granulomas. We conclude that loss of both Ugh and Ure activity significantly reduced the virulence of this fungal pathogen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Recent Advances in Our Understanding of the Environmental, Epidemiological, Immunological, and Clinical Dimensions of Coccidioidomycosis

    PubMed Central

    Nguyen, Chinh; Barker, Bridget Marie; Hoover, Susan; Nix, David E.; Ampel, Neil M.; Frelinger, Jeffrey A.; Orbach, Marc J.

    2013-01-01

    SUMMARY Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine. PMID:23824371

  11. Viability and molecular authentication of Coccidioides spp. isolates from the Instituto de Medicina Tropical de São Paulo culture collection, Brazil.

    PubMed

    Cavalcanti, Sarah Desirée Barbosa; Vidal, Mônica Scarpelli Martinelli; Sousa, Maria da Glória Teixeira de; Del Negro, Gilda Maria Barbaro

    2013-01-01

    Coccidioidomycosis is an emerging fungal disease in Brazil; adequate maintenance and authentication of Coccidioides isolates are essential for research into genetic diversity of the environmental organisms, as well as for understanding the human disease. Seventeen Coccidioides isolates maintained under mineral oil since 1975 in the Instituto de Medicina Tropical de São Paulo (IMTSP) culture collection, Brazil, were evaluated with respect to their viability, morphological characteristics and genetic features in order to authenticate these fungal cultures. Only five isolates were viable after almost 30 years, showing typical morphological characteristics, and sequencing analysis using Coi-F and Coi-R primers revealed 99% identity with Coccidioides genera. These five isolates were then preserved in liquid nitrogen and sterile water, and remained viable after two years of storage under these conditions, maintaining the same features.

  12. Coccidioidomycosis.

    PubMed Central

    Galgiani, J N

    1993-01-01

    Coccidioidomycosis is a systemic fungal infection endemic to the southwestern United States and other parts of the western hemisphere. Although producing a wide range of disorders in healthy persons, immunosuppression predisposes to especially severe disease. Thus, a knowledge of the pathogenesis of coccidioidal infections and its relation to the normal immune responses is useful to understand the diversity of problems that Coccidioides immitis may cause. Diagnosis usually requires laboratory studies such as fungal culture or specific serologic testing. Fortunately, many patients do not need to be treated for the infection to resolve. Therapy for the more severe forms of coccidioidal infection was once limited to amphotericin B but now includes azole antifungal agents. These expanded alternatives now require physicians to weigh many factors in determining the best management for specific patients. Images PMID:8212681

  13. Emerging Fungal Infections in the Pacific Northwest: The Unrecognized Burden and Geographic Range of Cryptococcus gattii and Coccidioides immitis.

    PubMed

    Lockhart, Shawn R; McCotter, Orion Z; Chiller, Tom M

    2016-06-01

    Both Cryptococcus gattii and Coccidioides can cause debilitating diseases if not identified early. It is imperative that clinicians recognize these diseases and begin treatment quickly when necessary. In order to have these two mycoses in their differential diagnosis, clinicians, microbiologists, and public health officials must be aware of the expanding geographic boundary in the case of Coccidioides immitis and the new emergence in the case of C. gattii. Accordingly, there is now mandatory reporting for cases of C. gattii and C. immitis in both Washington and Oregon, and the Centers for Disease Control and Prevention keeps a repository of available isolates. Through the One Health initiative, clinicians, veterinarians, and public health officials are collaborating to better understand the emergence and expanding geographic range of these extremely important fungal diseases.

  14. Combining Forces - The Use of Landsat TM Satellite Imagery, Soil Parameter Information, and Multiplex PCR to Detect Coccidioides immitis Growth Sites in Kern County, California

    PubMed Central

    Lauer, Antje; Talamantes, Jorge; Castañón Olivares, Laura Rosío; Medina, Luis Jaime; Baal, Joe Daryl Hugo; Casimiro, Kayla; Shroff, Natasha; Emery, Kirt W.

    2014-01-01

    Coccidioidomycosis is a fungal disease acquired through the inhalation of spores of Coccidioides spp., which afflicts primarily humans and other mammals. It is endemic to areas in the southwestern United States, including the San Joaquin Valley portion of Kern County, California, our region of interest (ROI). Recently, incidence of coccidioidomycosis, also known as valley fever, has increased significantly, and several factors including climate change have been suggested as possible drivers for this observation. Up to date details about the ecological niche of C. immitis have escaped full characterization. In our project, we chose a three-step approach to investigate this niche: 1) We examined Landsat-5-Thematic-Mapper multispectral images of our ROI by using training pixels at a 750 m×750 m section of Sharktooth Hill, a site confirmed to be a C. immitis growth site, to implement a Maximum Likelihood Classification scheme to map out the locations that could be suitable to support the growth of the pathogen; 2) We used the websoilsurvey database of the US Department of Agriculture to obtain soil parameter data; and 3) We investigated soil samples from 23 sites around Bakersfield, California using a multiplex Polymerase Chain Reaction (PCR) based method to detect the pathogen. Our results indicated that a combination of satellite imagery, soil type information, and multiplex PCR are powerful tools to predict and identify growth sites of C. immitis. This approach can be used as a basis for systematic sampling and investigation of soils to detect Coccidioides spp. PMID:25380290

  15. Fungi that Infect Humans.

    PubMed

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  16. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    PubMed Central

    Champer, Jackson; Ito, James I.; Clemons, Karl V.; Stevens, David A.; Kalkum, Markus

    2016-01-01

    We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here. PMID:26878023

  17. Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever

    PubMed Central

    Roe, Chandler C.; Hepp, Crystal M.; Teixeira, Marcus; Driebe, Elizabeth M.; Schupp, James M.; Gade, Lalitha; Waddell, Victor; Komatsu, Kenneth; Arathoon, Eduardo; Logemann, Heidi; Thompson, George R.; Chiller, Tom; Keim, Paul; Litvintseva, Anastasia P.

    2016-01-01

    ABSTRACT Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. PMID:27118594

  18. Card9- and MyD88-Mediated Gamma Interferon and Nitric Oxide Production Is Essential for Resistance to Subcutaneous Coccidioides posadasii Infection.

    PubMed

    Hung, Chiung-Yu; Castro-Lopez, Natalia; Cole, Garry T

    2016-04-01

    Coccidioidomycosis is a potentially life-threatening respiratory disease which is endemic to the southwestern United States and arid regions of Central and South America. It is responsible for approximately 150,000 infections annually in the United States alone. Almost every human organ has been reported to harbor parasitic cells of Coccidioides spp. in collective cases of the disseminated form of this mycosis. Current understanding of the mechanisms of protective immunity against lung infection has been largely derived from murine models of pulmonary coccidioidomycosis. However, little is known about the nature of the host response to Coccidioides in extrapulmonary tissue. Primary subcutaneous coccidioidal infection is rare but has been reported to result in disseminated disease. Here, we show that activation of MyD88 and Card9 signal pathways are required for resistance to Coccidioides infection following subcutaneous challenge of C57BL/6 mice, which correlates with earlier findings of the protective response to pulmonary infection. MyD88(-/-) andCard9(-/-) mice recruited reduced numbers of T cells, B cells, and neutrophils to the Coccidioides-infected hypodermis com pared to wild-type mice; however, neutrophils were dispensable for resistance to skin infection. Further studies have shown that gamma interferon (IFN-γ) production and activation of Th1 cells characterize resistance to subcutaneous infection. Furthermore, activation of a phagosomal enzyme, inducible nitric oxide synthase, which is necessary for NO production, is a requisite for fungal clearance in the hypodermis. Collectively, our data demonstrate that MyD88- and Card9-mediated IFN-γ and nitric oxide production is essential for protection against subcutaneous Coccidioides infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Systemic fungal infections in patients with human inmunodeficiency virus.

    PubMed

    Rodríguez-Cerdeira, C; Arenas, R; Moreno-Coutiño, G; Vásquez, E; Fernández, R; Chang, P

    2014-01-01

    Histoplasmosis is a systemic infection caused by the dimorphic fungus Histoplasma capsulatum. In immunocompromised patients, primary pulmonary infection can spread to the skin and meninges. Clinical manifestations appear in patients with a CD4(+) lymphocyte count of less than 150 cells/μL. Coccidioidomycosis is a systemic mycosis caused by Coccidioides immitis and Coccidioides posadasii. It can present as diffuse pulmonary disease or as a disseminated form primarily affecting the central nervous system, the bones, and the skin. Cryptococcosis is caused by Cryptococcus neoformans (var. neoformans and var. grubii) and Cryptococcus gattii, which are members of the Cryptococcus species complex and have 5 serotypes: A, B, C, D, and AD. It is a common opportunistic infection in patients with human immunodeficiency virus (HIV)/AIDS, even those receiving antiretroviral therapy. Histopathologic examination and culture of samples from any suspicious lesions are essential for the correct diagnosis of systemic fungal infections in patients with HIV/AIDS. Copyright © 2011 Elsevier España, S.L. and AEDV. All rights reserved.

  20. Cellular and Molecular Defects Underlying Invasive Fungal Infections—Revelations from Endemic Mycoses

    PubMed Central

    Lee, Pamela P.; Lau, Yu-Lung

    2017-01-01

    The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV), hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs). Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium) marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS)-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique climatic and geographical regions. PMID:28702025

  1. Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host.

    PubMed

    Boyce, Kylie J; Andrianopoulos, Alex

    2015-11-01

    The ability of pathogenic fungi to switch between a multicellular hyphal and unicellular yeast growth form is a tightly regulated process known as dimorphic switching. Dimorphic switching requires the fungus to sense and respond to the host environment and is essential for pathogenicity. This review will focus on the role of dimorphism in fungi commonly called thermally dimorphic fungi, which switch to a yeast growth form during infection. This group of phylogenetically diverse ascomycetes includes Talaromyces marneffei (recently renamed from Penicillium marneffei), Blastomyces dermatitidis (teleomorph Ajellomyces dermatitidis), Coccidioides species (C. immitis and C. posadasii), Histoplasma capsulatum (teleomorph Ajellomyces capsulatum), Paracoccidioides species (P. brasiliensis and P. lutzii) and Sporothrix schenckii (teleomorph Ophiostoma schenckii). This review will explore both the signalling pathways regulating the morphological transition and the transcriptional responses necessary for intracellular growth. The physiological requirements of yeast cells during infection will also be discussed, highlighting recent advances in the understanding of the role of iron and calcium acquisition during infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Cavitary Lung Disease in an HIV-Positive Patient

    DTIC Science & Technology

    2009-04-01

    Cryptococcus neoformans, and cytomegalovirus. She was treated with anidulafungin for aspergillosis. Discussion Pulmonary cavitation begins with...Histoplasma, Coccidioides, Blastomyces) and opportunistic pathogens (Aspergillus, Cryptococcus , Zygomycetes, Pneumocystis) Parasites: Paragonimus

  3. Coccidioidomycosis among persons undergoing lung transplantation in the coccidioidal endemic region.

    PubMed

    Chaudhary, Sachin; Meinke, Laura; Ateeli, Huthayfa; Knox, Kenneth S; Raz, Yuval; Ampel, Neil M

    2017-08-01

    Coccidioidomycosis, an endemic fungal infection, is more likely to be symptomatic and severe among those receiving allogeneic transplants. While several case series have been published for various transplanted organs, none has described the incidence and outcomes in those receiving lung transplants within the coccidioidal endemic region. Patients receiving a heart-lung, single-lung, or bilateral-lung transplantation at the University of Arizona between 1985 and 2009 were retrospectively reviewed. Coccidioidomycosis occurred post transplantation in 11 (5.8%) of 189 patients. All but one patient was diagnosed with pulmonary coccidioidomycosis and only one had a history of prior coccidioidomycosis. Two patients received transplants from donors found to have coccidioidomycosis at the time of transplantation and one death was directly attributed to coccidioidomycosis. The risk of developing active coccidioidomycosis was significantly higher if the patient did not receive some type of antifungal therapy post transplantation (P<.001). Within the coccidioidal endemic region, post-transplantation coccidioidomycosis was a definable risk among lung transplant recipients. Use of antifungals appeared to reduce this incidence of disease. Almost all cases resulted in pulmonary disease, suggesting that the lung is the primary site of infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Coccidioidomycosis Masquerading as Eosinophilic Ascites.

    PubMed

    Alavi, Kourosh; Atla, Pradeep R; Haq, Tahmina; Sheikh, Muhammad Y

    2015-01-01

    Endemic to the southwestern parts of the United States, coccidioidomycosis, also known as "Valley Fever," is a common fungal infection that primarily affects the lungs in both acute and chronic forms. Disseminated coccidioidomycosis is the most severe but very uncommon and usually occurs in immunocompromised individuals. It can affect the central nervous system, bones, joints, skin, and, very rarely, the abdomen. This is the first case report of a patient with coccidioidal dissemination to the peritoneum presenting as eosinophilic ascites (EA). A 27-year-old male presented with acute abdominal pain and distention from ascites. He had eosinophilia of 11.1% with negative testing for stool studies, HIV, and tuberculosis infection. Ascitic fluid exam was remarkable for low serum-ascites albumin gradient (SAAG), PMN count >250/mm(3), and eosinophils of 62%. Abdominal imaging showed thickened small bowel and endoscopic testing negative for gastric and small bowel biopsies. He was treated empirically for spontaneous bacterial peritonitis, but no definitive diagnosis could be made until coccidioidal serology returned positive. We noted complete resolution of symptoms with oral fluconazole during outpatient follow-up. Disseminated coccidioidomycosis can present in an atypical fashion and may manifest as peritonitis with low SAAG EA. The finding of EA in an endemic area should raise the suspicion of coccidioidal dissemination.

  5. Coccidioidomycosis Masquerading as Eosinophilic Ascites

    PubMed Central

    Alavi, Kourosh; Atla, Pradeep R.; Haq, Tahmina; Sheikh, Muhammad Y.

    2015-01-01

    Endemic to the southwestern parts of the United States, coccidioidomycosis, also known as “Valley Fever,” is a common fungal infection that primarily affects the lungs in both acute and chronic forms. Disseminated coccidioidomycosis is the most severe but very uncommon and usually occurs in immunocompromised individuals. It can affect the central nervous system, bones, joints, skin, and, very rarely, the abdomen. This is the first case report of a patient with coccidioidal dissemination to the peritoneum presenting as eosinophilic ascites (EA). A 27-year-old male presented with acute abdominal pain and distention from ascites. He had eosinophilia of 11.1% with negative testing for stool studies, HIV, and tuberculosis infection. Ascitic fluid exam was remarkable for low serum-ascites albumin gradient (SAAG), PMN count >250/mm3, and eosinophils of 62%. Abdominal imaging showed thickened small bowel and endoscopic testing negative for gastric and small bowel biopsies. He was treated empirically for spontaneous bacterial peritonitis, but no definitive diagnosis could be made until coccidioidal serology returned positive. We noted complete resolution of symptoms with oral fluconazole during outpatient follow-up. Disseminated coccidioidomycosis can present in an atypical fashion and may manifest as peritonitis with low SAAG EA. The finding of EA in an endemic area should raise the suspicion of coccidioidal dissemination. PMID:26266062

  6. A Case of Refractory Pulmonary Coccidioidomycosis Successfully Treated with Posaconazole Therapy

    PubMed Central

    Patel, RH; Pandya, S; Nanjappa, S; Greene, JN

    2018-01-01

    Coccidioidomycosis is an endemic fungal infection caused by the inhalation of the spores of Coccidioides species. Patients with underlying immunosuppressive illness can contract chronic or disseminated disease which requires prolonged systemic therapy. Pulmonary coccidioidomycosis remains as an illusory and abstruse disease, with increased prevalence that poses as a challenge for clinicians in developing an effective strategy for treatment. Here, we report successful treatment of a refractory case of chronic relapsing pulmonary coccidioidomycosis in a 50-year old woman with a thin-walled cavitary lung lesion who was ultimately treated with posaconazole.

  7. Assessing the Habitat of Coccidioides posadasii, the Valley Fever Pathogen: A Study of Environmental Variables and Human Incidence Data in Arizona

    NASA Astrophysics Data System (ADS)

    Mann, Sarina N.

    Coccidioidomycosis, or Valley Fever, is an infectious disease caused by inhalation of soil-dwelling fungus Coccidioides posadasii spores in the Lower Sonoran Life Zone (LSLZ) in Arizona. In the context of climate change, the habitat of environmentally-mediated infectious diseases, such as Valley Fever, are expected to change. Connections have been drawn between climate and Valley Fever infection. The operational scale of the organism is still unknown. Here, we use climatic variables, including precipitation, soil moisture, and temperature. We use PRISM precipitation and temperature data, and Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) as a measure of soil moisture for the entire state of Arizona, divided into 126 primary care areas (PCA). These data are analyzed and regressed with Valley Fever incidence to determine the effects of climatic variability on disease distribution and timing. This study confirms that Valley Fever occurrence is clustered in the LSLZ. Seasonal Valley Fever outbreak was found to be variable year-to-year based on climatic variability. The inconclusive regression analyses indicate that the operational scale of Coccidioides is smaller than the PCA region. All variables are related to Valley Fever infection, but one variable was not found to hold more predictive power than others.

  8. Defining Responses to Therapy and Study Outcomes in Clinical Trials of Invasive Fungal Diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer Consensus Criteria

    PubMed Central

    Segal, Brahm H.; Herbrecht, Raoul; Stevens, David A.; Ostrosky-Zeichner, Luis; Sobel, Jack; Viscoli, Claudio; Walsh, Thomas J.; Maertens, Johan; Patterson, Thomas F.; Perfect, John R.; Dupont, Bertrand; Wingard, John R.; Calandra, Thierry; Kauffman, Carol A.; Graybill, John R.; Baden, Lindsey R.; Pappas, Peter G.; Bennett, John E.; Kontoyiannis, Dimitrios P.; Cordonnier, Catherine; Viviani, Maria Anna; Bille, Jacques; Almyroudis, Nikolaos G.; Wheat, L. Joseph; Graninger, Wolfgang; Bow, Eric J.; Holland, Steven M.; Kullberg, Bart-Jan; Dismukes, William E.; De Pauw, Ben E.

    2009-01-01

    Invasive fungal diseases (IFDs) have become major causes of morbidity and mortality among highly immunocompromised patients. Authoritative consensus criteria to diagnose IFD have been useful in establishing eligibility criteria for antifungal trials. There is an important need for generation of consensus definitions of outcomes of IFD that will form a standard for evaluating treatment success and failure in clinical trials. Therefore, an expert international panel consisting of the Mycoses Study Group and the European Organization for Research and Treatment of Cancer was convened to propose guidelines for assessing treatment responses in clinical trials of IFDs and for defining study outcomes. Major fungal diseases that are discussed include invasive disease due to Candida species, Aspergillus species and other molds, Cryptococcus neoformans, Histoplasma capsulatum, and Coccidioides immitis. We also discuss potential pitfalls in assessing outcome, such as conflicting clinical, radiological, and/or mycological data and gaps in knowledge. PMID:18637757

  9. Coccidioides precipitin test

    MedlinePlus

    Coccidioidomycosis antibody test; Coccidioides blood test; Valley fever blood test ... There is no special preparation for the test. ... The precipitin test is one of several tests that can be done to determine if you are infected with coccidioides, which ...

  10. Coccidioidomycosis in travelers returning from Mexico--Pennsylvania, 2000.

    PubMed

    2000-11-10

    Coccidioidomycosis (CM), a fungal disease caused by Coccidioides immitis, is endemic in the southwestern United States and parts of Central and South America. The disease is acquired by inhaling the arthroconidia of C. immitis present in the soil. Outbreaks of CM occur when susceptible persons are exposed to airborne arthroconidia from dust storms, natural disasters, and earth excavation (1,2). Persons who travel to areas where the disease is endemic may become infected and develop symptoms after returning home (3,4). This report describes an outbreak of CM among travelers returning to Pennsylvania from a trip to Mexico.

  11. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    DTIC Science & Technology

    2007-12-01

    urease (URE) gene codes for a urea amidohydrolase protein that catalyzes urea hydrolysis. The protein was first isolated from C. immitis and...the Cu, Zn, Superoxide Dismutase (SOD), the Spherule Outer Wall glycoprotein (SOWgp), the T-Cell Reactive Protein (TCRP), and Urease (URE). It is...et al. 1997. Isolation and characterization of the urease gene (URE) from the pathogenic fungus Coccidioides immitis. Gene 198: 387-391. 54. Li, K

  12. Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis Incidence in the Antelope Valley of California, 1999-2014.

    PubMed

    Colson, Aaron J; Vredenburgh, Larry; Guevara, Ramon E; Rangel, Natalia P; Kloock, Carl T; Lauer, Antje

    2017-06-01

    Ongoing large-scale land development for renewable energy projects in the Antelope Valley, located in the Western Mojave Desert, has been blamed for increased fugitive dust emissions and coccidioidomycosis incidence among the general public in recent years. Soil samples were collected at six sites that were destined for solar farm construction and were analyzed for the presence of the soil-borne fungal pathogen Coccidioides immitis which is endemic to many areas of central and southern California. We used a modified culture-independent nested PCR approach to identify the pathogen in all soil samples and also compared the sampling sites in regard to soil physical and chemical parameters, degree of disturbance, and vegetation. Our results indicated the presence of C. immitis at four of the six sites, predominantly in non-disturbed soils of the Pond-Oban complex, which are characterized by an elevated pH and salt bush communities, but also in grassland characterized by different soil parameters and covered with native and non-native annuals. Overall, we were able to detect the pathogen in 40% of the soil samples (n = 42). Incidence of coccidioidomycosis in the Antelope Valley was positively correlated with land use and particulate matter in the air (PM10) (Pearson correlation coefficient >0.5). With the predicted population growth and ongoing large-scale disturbance of soil in the Antelope Valley in coming years, incidence of coccidioidomycosis will likely further increase if policy makers and land developers continue to ignore the risk of grading land without implementing long-term dust mitigation plans in Environmental Impact Reports.

  13. The influence of current and future climate on the spatial distribution of coccidioidomycosis in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Gorris, M. E.; Hoffman, F. M.; Zender, C. S.; Treseder, K. K.; Randerson, J. T.

    2017-12-01

    Coccidioidomycosis, otherwise known as valley fever, is an infectious fungal disease currently endemic to the southwestern U.S. The magnitude, spatial distribution, and seasonality of valley fever incidence is shaped by variations in regional climate. As such, climate change may cause new communities to become at risk for contracting this disease. Humans contract valley fever by inhaling fungal spores of the genus Coccidioides. Coccidioides grow in the soil as a mycelium, and when stressed, autolyze into spores 2-5 µm in length. Spores can become airborne from any natural or anthropogenic soil disturbance, which can be exacerbated by dry soil conditions. Understanding the relationship between climate and valley fever incidence is critical for future disease risk management. We explored several multivariate techniques to create a predictive model of county-level valley fever incidence throughout the southwestern U.S., including Arizona, California, New Mexico, Nevada, and Utah. We incorporated surface air temperature, precipitation, soil moisture, surface dust concentrations, leaf area index, and the amount of agricultural land, all of which influence valley fever incidence. A log-linear regression model that incorporated surface air temperature, soil moisture, surface dust concentration, and the amount of agricultural land explained 34% of the county-level variance in annual average valley fever incidence. We used this model to predict valley fever incidence for the Representative Concentration Pathway 8.5 using simulation output from the Community Earth System Model. In our analysis, we describe how regional hotspots of valley fever incidence may shift with sustained warming and drying in the southwestern U.S. Our predictive model of valley fever incidence may help mitigate future health impacts of valley fever by informing health officials and policy makers of the climate conditions suitable for disease outbreak.

  14. Coccidioides niches and habitat parameters in the southwestern United States: A matter of scale

    USGS Publications Warehouse

    Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E.; ,

    2007-01-01

    To determine habitat attributes and processes suitable for the growth of Coccidioides, soils were collected from sites in Arizona, California, and Utah where Coccidioides is known to have been present. Humans or animals or both have been infected by Coccidioides at all of the sites. Soil variables considered in the upper 20 cm of the soil profile included pH, electrical conductivity, salinity, selected anions, texture, mineralogy, vegetation types and density, and the overall geomorphologic and ecological settings. Thermometerswere buried to determine the temperature range in the upper part of the soil where Coccidioides is often found. With the exception of temperature regimes and soil textures, it is striking that none of the other variables or group of variables that might be definitive are indicative of the presence of Coccidioides. Vegetation ranges from sparse to relatively thick cover in lower Sonoran deserts, Chaparral-upper Sonoran brush and grasslands, and Mediterranean savannas and forested foothills. No particular grass, shrub, or forb is definitive. Material classified as very fine sand and silt is abundant in all of the Coccidioides-bearing soils and may be their most common shared feature. Clays are not abundant (less than 10%). All of the examined soil locations are noteworthy as generally 50% of the individuals who were exposed to the dust or were excavating dirt at the sites were infected. Coccidioides has persisted in the soil at a site in Dinosaur National Monument, Utah for 37 years and at a Tucson, Arizona site for 41 years. ?? 2007 New York Academy of Sciences.

  15. Isavuconazole Treatment of Cryptococcosis and Dimorphic Mycoses.

    PubMed

    Thompson, George R; Rendon, Adrian; Ribeiro Dos Santos, Rodrigo; Queiroz-Telles, Flavio; Ostrosky-Zeichner, Luis; Azie, Nkechi; Maher, Rochelle; Lee, Misun; Kovanda, Laura; Engelhardt, Marc; Vazquez, Jose A; Cornely, Oliver A; Perfect, John R

    2016-08-01

    Invasive fungal diseases (IFD) caused by Cryptococcus and dimorphic fungi are associated with significant morbidity and mortality. Isavuconazole (ISAV) is a novel, broad-spectrum, triazole antifungal agent (IV and by mouth [PO]) developed for the treatment of IFD. It displays potent activity in vitro against these pathogens and in this report we examine outcomes of patients with cryptococcosis or dimorphic fungal infections treated with ISAV. The VITAL study was an open-label nonrandomized phase 3 trial conducted to evaluate the efficacy and safety of ISAV treatment in management of rare IFD. Patients received ISAV 200 mg 3 times daily for 2 days followed by 200 mg once-daily (IV or PO). Proven IFD and overall response at end of treatment (EOT) were determined by an independent, data-review committee. Mortality and safety were also assessed. Thirty-eight patients received ISAV for IFD caused by Cryptococcus spp. (n = 9), Paracoccidioides spp. (n = 10), Coccidioides spp. (n = 9), Histoplasma spp. (n = 7) and Blastomyces spp. (n = 3). The median length of therapy was 180 days (range 2-331 days). At EOT 24/38 (63%) patients exhibited a successful overall response. Furthermore, 8 of 38 (21%) had stable IFD at the end of therapy without progression of disease, and 6 (16%) patients had progressive IFD despite this antifungal therapy. Thirty-three (87%) patients experienced adverse events. ISAV was well tolerated and demonstrated clinical activity against these endemic fungi with a safety profile similar to that observed in larger studies, validating its broad-spectrum in vitro activity and suggesting it may be a valuable alternative to currently available agents. NCT00634049. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. Molecular detection of airborne Coccidioides in Tucson, Arizona

    USGS Publications Warehouse

    Chow, Nancy A.; Griffin, Dale W.; Barker, Bridget M.; Loparev, Vladimir N.; Litvintseva, Anastasia P.

    2016-01-01

    Environmental surveillance of the soil-dwelling fungus Coccidioides is essential for the prevention of Valley fever, a disease primarily caused by inhalation of the arthroconidia. Methods for collecting and detectingCoccidioides in soil samples are currently in use by several laboratories; however, a method utilizing current air sampling technologies has not been formally demonstrated for the capture of airborne arthroconidia. In this study, we collected air/dust samples at two sites (Site A and Site B) in the endemic region of Tucson, Arizona, and tested a variety of air samplers and membrane matrices. We then employed a single-tube nested qPCR assay for molecular detection. At both sites, numerous soil samples (n = 10 at Site A and n = 24 at Site B) were collected and Coccidioides was detected in two samples (20%) at Site A and in eight samples (33%) at Site B. Of the 25 air/dust samples collected at both sites using five different air sampling methods, we detected Coccidioides in three samples from site B. All three samples were collected using a high-volume sampler with glass-fiber filters. In this report, we describe these methods and propose the use of these air sampling and molecular detection strategies for environmental surveillance of Coccidioides.

  17. Epigenetic regulation of development and pathogenesis in fungal plant pathogens.

    PubMed

    Dubey, Akanksha; Jeon, Junhyun

    2017-08-01

    Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  18. Computed tomography in cases of coccidioidal meningitis, with clinical correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetter, A.G.; Fischer, D.W.; Flom, R.A.

    1985-06-01

    Cranial computed tomographic (CT) scans of 22 patients with coccidioidal meningitis were reviewed and their clinical course was analyzed. Abnormalities of the ventricular system or the basilar cisterns or both were present in 16 instances. Although it is not a definitive diagnostic tool, the CT scan is helpful in suggesting a diagnosis of coccidioidal meningitis and in predicting the prognosis of patients affected by the disease. 19 references, 4 figures, 2 tables.

  19. Heat-Killed Yeast as a Pan-Fungal Vaccine.

    PubMed

    Martinez, Marife; Clemons, Karl V; Stevens, David A

    2017-01-01

    Fungal infections continue to rise worldwide. Antifungal therapy has long been a mainstay for the treatment of these infections, but often can fail for a number of reasons. These include acquired or innate drug resistance of the causative agent, poor drug penetration into the affected tissues, lack of cidal activity of the drug and drug toxicities that limit therapy. In some instances, such as coccidioidal meningitis, therapy is life-long. In addition, few new antifungal drugs are under development. In light of this information a preventative vaccine is highly desirable. Although numerous investigators have worked toward the development of fungal vaccines, none have become commercially available for use in humans. In the course of our studies, we have discovered that heat-killed yeast (HKY) of Saccharomyces cerevisiae can be used as a vaccine and have shown that it has efficacy in the prevention and reduction of five different fungal infections when used experimentally in mice, which raises the possibility of a pan-fungal vaccine preparation. In our studies we grow S. cerevisiae in broth and heat-kill the organism at 70 ° C for 3 h. The number of dead yeast cells is adjusted and mice are vaccinated subcutaneously beginning 3-7 weeks prior to infection. After infection, efficacy is assessed on the basis of survival and residual burden of the fungus in the target organs. Alternatively, efficacy can be assessed solely on fungal burden at a predetermined time postinfection. Although itself it is unlikely to be moved toward commercialization, HKY can be used a positive control vaccine for studies on specific molecular entities as vaccines, and as a guidepost for the key elements of potential, more purified, pan-fungal vaccine preparations.

  20. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation. PMID:25558092

  1. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation.

  2. Preventing and treating biologic-associated opportunistic infections.

    PubMed

    Winthrop, Kevin L; Chiller, Tom

    2009-07-01

    A variety of opportunistic pathogens have been reported to infect patients receiving tumor necrosis factor (TNF) antagonists for the treatment of autoimmune diseases. These pathogens are numerous, and include coccidioides, histoplasma, nontuberculous mycobacteria, Mycobacteria tuberculosis, and others of public health concern. Accordingly, TNF antagonists should be used with caution in patients at risk for tuberculosis, and screening for latent tuberculosis infection should be undertaken before anti-TNF therapy is initiated. Although screening and prevention efforts have decreased the risk of tuberculosis in this setting, optimal screening methods represent an area of evolving controversy. This article discusses the latest developments in screening methodologies for latent tuberculosis infection, as well as potential preventive and therapeutic considerations for opportunistic infections associated with anti-TNF agents and other biologic therapies.

  3. Evolution and genome architecture in fungal plant pathogens.

    PubMed

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  4. Coccidioides immitis identified in soil outside of its known range - Washington, 2013.

    PubMed

    Marsden-Haug, Nicola; Hill, Heather; Litvintseva, Anastasia P; Engelthaler, David M; Driebe, Elizabeth M; Roe, Chandler C; Ralston, Cindy; Hurst, Steven; Goldoft, Marcia; Gade, Lalitha; Wohrle, Ron; Thompson, George R; Brandt, Mary E; Chiller, Tom

    2014-05-23

    Coccidioidomycosis ("valley fever") is caused by inhaling spores of the soil-dwelling fungi Coccidioides immitis or Coccidioides posadasii. Most infections are subclinical. When clinical manifestations do occur (typically 1-4 weeks after exposure), they are similar to those associated with influenza or community-acquired pneumonia. Disseminated disease is rare. Residual pulmonary nodules can lead to chronic lung disease. Fluconazole or other triazoles often are used for treatment, but mild cases often resolve without specific therapy. A total of 17,802 cases were reported in the United States in 2012.

  5. Fungal infections of the spine.

    PubMed

    Kim, Choll W; Perry, Andrew; Currier, Brad; Yaszemski, Michael; Garfin, Steven R

    2006-03-01

    Fungal infections of the spine are relatively uncommon. Fungi such as Coccidioides immitis and Blastomyces dermatitidis are limited to specific geographical areas whereas cryptococcus, candida, and aspergillus are found worldwide. Candida and aspergillus are normal commensals of the body and produce disease in susceptible organisms when they gain access to the vascular system through intravenous lines, during implantation of prosthetic devices, or during surgery. For the other fungi, spinal involvement usually is the result of hematogenous or direct spread of organisms from an initial pulmonary source of infection. Involvement of the vertebral bodies can lead to vertebral compression fractures and gross deformity of the spine. Spread of infection along the anterior longitudinal ligament can lead to psoas or paravertebral abscesses. Early recognition of the disease requires a high index of suspicion, proper travel history, and a detailed physical examination. Treatment relies on the prompt institution of appropriate pharmacotherapy and constant monitoring of clinical progress. Resistance to medical therapy, spinal instability, and neurologic deficits are indications for débridement and stabilization with spinal fusion. Prognosis depends on the premorbid state of the patient, the type of fungal organism, and the timing of treatment. Level V (expert opinion). Please see the Guidelines for Authors for a complete description of levels of evidence.

  6. Metabolism in Fungal Pathogenesis

    PubMed Central

    Ene, Iuliana V.; Brunke, Sascha; Brown, Alistair J.P.; Hube, Bernhard

    2014-01-01

    Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host–fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies. PMID:25190251

  7. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions.

    PubMed

    Hua, Chenlei; Zhao, Jian-Hua; Guo, Hui-Shan

    2018-02-05

    Fungal pathogens represent a major group of plant invaders that are the causative agents of many notorious plant diseases. Large quantities of RNAs, especially small RNAs involved in gene silencing, have been found to transmit bidirectionally between fungal pathogens and their hosts. Although host-induced gene silencing (HIGS) technology has been developed and applied to protect crops from fungal infections, the mechanisms of RNA transmission, especially small RNAs regulating trans-kingdom RNA silencing in plant immunity, are largely unknown. In this review, we summarize and discuss recent important findings regarding trans-kingdom sRNAs and RNA silencing in plant-fungal pathogen interactions compared with the well-known RNAi mechanisms in plants and fungi. We focus on the interactions between plant and fungal pathogens with broad hosts, represented by the vascular pathogen Verticillium dahliae and non-vascular pathogen Botrytis cinerea, and discuss the known instances of natural RNAi transmission between fungal pathogens and host plants. Given that HIGS has been developed and recently applied in controlling Verticillium wilt diseases, we propose an ideal research system exploiting plant vasculature-Verticillium interaction to further study trans-kingdom RNA silencing. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  8. Export Controls: Controls Over the Export Licensing Process for Chemical and Biological Items

    DTIC Science & Technology

    2005-03-30

    Akabane virus Bovine spongiform encephalopathy agent Camel pox virus Central European tick-borne encephalitis Cercopithecine herpesvirus 1...Herpes B virus) Coccidioides immitis Coccidioides posadasii Cowdria ruminantium (Heartwater) Far Eastern tick-borne encephalitis Liberobacter

  9. Radionuclide studies in coccidioidal meningitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, H.F.; Lippert, R.G.; Radding, J.

    1976-10-01

    Although the uniformly fatal outcome in untreated meningitis due to Coccidioides immitis has been modified by amphotericin B, use of this drug presents a challenge to therapists striving to maximize its effectiveness and minimize its not inconsiderable toxicity. Many of the complications of intraventricular therapy, using an Ommaya reservoir, were encountered in a patient with coccidioidal meningitis, and this experience is reported to reemphasize the usefulness of radionuclide studies in guiding therapy and assessing the progress of the disease. The examples presented may be of interest to those faced with the difficult task of treating this still dangerous infection.

  10. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture.

    PubMed

    Wagner, K; Springer, B; Pires, V P; Keller, P M

    2018-05-03

    The rising incidence of invasive fungal infections and the expanding spectrum of fungal pathogens makes early and accurate identification of the causative pathogen a daunting task. Diagnostics using molecular markers enable rapid identification of fungi, offer new insights into infectious disease dynamics, and open new possibilities for infectious disease control and prevention. We performed a retrospective study using clinical specimens (N = 233) from patients with suspected fungal infection previously subjected to culture and/or internal transcribed spacer (ITS) PCR. We used these specimens to evaluate a high-throughput screening method for fungal detection using automated DNA extraction (QIASymphony), fungal ribosomal small subunit (18S) rDNA RT-PCR and amplicon sequencing. Fungal sequences were compared with sequences from the curated, commercially available SmartGene IDNS database for pathogen identification. Concordance between 18S rDNA RT-PCR and culture results was 91%, and congruence between 18S rDNA RT-PCR and ITS PCR results was 94%. In addition, 18S rDNA RT-PCR and Sanger sequencing detected fungal pathogens in culture negative (N = 13) and ITS PCR negative specimens (N = 12) from patients with a clinically confirmed fungal infection. Our results support the use of the 18S rDNA RT-PCR diagnostic workflow for rapid and accurate identification of fungal pathogens in clinical specimens.

  11. Antimicrobial and anti-inflammatory activity of switchgrass-derived extractives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Nicole; Ownley, Bonnie H.; Gwinn, Kimberly D.

    Switchgrass is an increasingly important biofuel crop, but knowledge of switchgrass fungal pathogens is not extensive. The purpose of this research was to identify the fungal pathogens that decrease crop yield of switchgrass grown in Tennessee and to investigate a potential sustainable disease management strategy from a value-added by-product of the switchgrass biofuel conversion process. The specific objectives were 1) to identify and characterize prevalent fungal pathogens of switchgrass in Tennessee, 2) assess switchgrass seed produced in the United States for seedborne fungal pathogens, and 3) evaluate switchgrass extractives for antimicrobial activity against plant pathogens.

  12. Screening Coccidioides Serology in Kidney Transplant Recipients: A 10-Year Cross-Sectional Analysis.

    PubMed

    Phonphok, Korntip; Beaird, Omer; Duong, Tin; Datta, Nakul; Schaenman, Joanna; Bunnapradist, Suphamai

    2018-05-29

    Kidney transplant recipients (KTRs) are at risk for reactivation and complicated infection due to Coccidioides. Pre-transplant serological screening should provide benefit for patients from endemic areas. We evaluated Coccidioides seroprevalence by area of residence in KTRs at a major transplant program in Los Angeles. We performed cross-sectional analyses of adult KTRs who underwent transplantation at UCLA between 2007-2016. Patients with Coccidioides serology by Enzyme Immunoassay (EIA) before or within 14 days from transplantation were included. Patients were classified as living in highly, established, suspected, or not endemic areas by their residential zip code. Overall prevalence of Coccidioides IgG and IgM were 1.4% and 2.8%, respectively. Of patients with positive serology, 31.4% had isolated IgG and 66.3% isolated IgM. Patients from established and highly endemic areas had IgG seropositivity of 3.7% versus 1.3% for patients living in suspected endemic areas(p<0.01). Rates of IgM seropositivity were 3.7% compared to 2.8% respectively(p=0.28). No patients from non-endemic areas had positive screening serology. Pre-transplant serological screening for Coccidioides is recommended in kidney transplant candidates from endemic areas. We observed high seroprevalence among patients from highly and established endemic areas, for whom universal prophylaxis is recommended. For residents from less well-established areas of endemicity, serological screening showed benefit in identifying patients at risk. In patients with isolated EIA IgM, performing repeat and confirmatory tests is recommended. Patients from non-endemic areas had low risk of infection, however a thorough social history is necessary to evaluate risk. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Universal fungal vaccines

    PubMed Central

    Hamad, Mawieh

    2012-01-01

    The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769

  14. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  15. 9 CFR 311.36 - Coccidioidal granuloma.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Coccidioidal granuloma. 311.36 Section 311.36 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.36...

  16. Molecular identification of Coccidioides spp. in soil samples from Brazil

    PubMed Central

    2011-01-01

    Background Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for C. posadasii by mice inoculation, all (100%) were positive by the molecular tool. Conclusion This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR PMID:21575248

  17. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides

    PubMed Central

    Teixeira, Marcus M.

    2016-01-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  18. Systems Biology Approaches for Host–Fungal Interactions: An Expanding Multi-Omics Frontier

    PubMed Central

    Culibrk, Luka; Croft, Carys A.

    2016-01-01

    Abstract Opportunistic fungal infections are an increasing threat for global health, and for immunocompromised patients in particular. These infections are characterized by interaction between fungal pathogen and host cells. The exact mechanisms and the attendant variability in host and fungal pathogen interaction remain to be fully elucidated. The field of systems biology aims to characterize a biological system, and utilize this knowledge to predict the system's response to stimuli such as fungal exposures. A multi-omics approach, for example, combining data from genomics, proteomics, metabolomics, would allow a more comprehensive and pan-optic “two systems” biology of both the host and the fungal pathogen. In this review and literature analysis, we present highly specialized and nascent methods for analysis of multiple -omes of biological systems, in addition to emerging single-molecule visualization techniques that may assist in determining biological relevance of multi-omics data. We provide an overview of computational methods for modeling of gene regulatory networks, including some that have been applied towards the study of an interacting host and pathogen. In sum, comprehensive characterizations of host–fungal pathogen systems are now possible, and utilization of these cutting-edge multi-omics strategies may yield advances in better understanding of both host biology and fungal pathogens at a systems scale. PMID:26885725

  19. Global food and fibre security threatened by current inefficiencies in fungal identification.

    PubMed

    Crous, Pedro W; Groenewald, Johannes Z; Slippers, Bernard; Wingfield, Michael J

    2016-12-05

    Fungal pathogens severely impact global food and fibre crop security. Fungal species that cause plant diseases have mostly been recognized based on their morphology. In general, morphological descriptions remain disconnected from crucially important knowledge such as mating types, host specificity, life cycle stages and population structures. The majority of current fungal species descriptions lack even the most basic genetic data that could address at least some of these issues. Such information is essential for accurate fungal identifications, to link critical metadata and to understand the real and potential impact of fungal pathogens on production and natural ecosystems. Because international trade in plant products and introduction of pathogens to new areas is likely to continue, the manner in which fungal pathogens are identified should urgently be reconsidered. The technologies that would provide appropriate information for biosecurity and quarantine already exist, yet the scientific community and the regulatory authorities are slow to embrace them. International agreements are urgently needed to enforce new guidelines for describing plant pathogenic fungi (including key DNA information), to ensure availability of relevant data and to modernize the phytosanitary systems that must deal with the risks relating to trade-associated plant pathogens.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  20. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3135...

  1. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3135...

  2. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3135...

  3. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3135...

  4. 21 CFR 866.3135 - Coccidioides immitis serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coccidioides immitis serological reagents. 866.3135 Section 866.3135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3135...

  5. A novel method for rapidly isolating microbes that suppress soil-borne phytopathogens

    NASA Astrophysics Data System (ADS)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Seedling establishment faces a large number of challenges related to soil physical properties as well as to fungal root diseases. It is extremely difficult to eliminate fungal pathogens from soils where their populations are established due to the persistent nature of their spores and since fumigation of resident fungi is very ineffective in clay-containing soils. Therefore it is necessary to find ways to overcome disease in areas where the soils are infected with fungal phytopathogens. The phenomenon of disease suppressive soils, where the pathogen is present but no disease observed, suggests that microbial antagonism in the soil may lead to the suppression of the growth of fungal pathogens. There are also cases in the literature where soil microorganisms were isolated that suppress the growth of phytopathogens. Antibiosis is one of the most important mechanisms responsible for fungal antagonism, with some significant antifungal compounds involved including antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Isolation of pathogen-suppressive microorganisms from the soil is time consuming and tedious. We established a simple method for direct isolation of soil microbes (bacteria and fungi) that suppress fungal phytopathogens as well as procedures for confirmation of disease suppression. We will discuss such methods, which were so far tested with the cotton fungal pathogens Thielaviopsis basicola, Verticillium dahliae and Fusarium oxysporum and Verticillium fungicola. We have isolated a diversity of T. basicola-suppressive fungi and bacteria from two vastly different soil types. Identification of the antagonistic isolates revealed that they are a diverse lot, some belong to groups known to be suppressive of a wide range of fungal pathogens, endorsing the power of this technique to rapidly and directly isolate soil-borne microbes antagonistic to a wide variety of fungal pathogens.

  6. Transcriptomic Crosstalk between Fungal Invasive Pathogens and Their Host Cells: Opportunities and Challenges for Next-Generation Sequencing Methods

    PubMed Central

    Enguita, Francisco J.; Costa, Marina C.; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José; Leitão, Ana Lúcia

    2016-01-01

    Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection. PMID:29376924

  7. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    PubMed

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  8. In vitro interactions between amphotericin B and hydrocortisone: potential implications for intrathecal therapy.

    PubMed

    Hodge, Greg; Cohen, Stuart H; Thompson, George R

    2015-09-01

    Fungal meningitis remains a severe and often lethal infection requiring aggressive antifungal therapy and in refractory cases the use of intrathecal amphotericin B (AmB). Administration of amphotericin B by this method may result in clinically apparent adverse reactions such as paresthesias, radiculitis, or myelopathy. Coadministration of hydrocortisone is therefore often given in an attempt to avoid these effects; however, the potential consequences of this approach on fungal growth or on drug synergy/antagonism had not previously been assessed. We used the checkerboard titration broth microdilution method to analyze interactions by fractional inhibitory concentration indices (FICIs). The combination of amphotericin B and hydrocortisone resulted in synergy or indifference against all isolates (Candida, Cryptococcus, and Coccidioides) during in vitro testing at low concentrations. Antagonism was observed using higher hydrocortisone concentrations (those not observed in vivo) suggesting possible steric hindrance or binding to AmB may occur at doses unlikely to be present during clinical care. Concurrent hydrocortisone and AmB administration should not be avoided due to in vitro antagonism concerns. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    PubMed

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry.

  10. QUANTIFICATION OF PATHOGENIC FUNGI IN WATER

    EPA Science Inventory

    The rate of systemic fungal infections in humans has shown a dramatic increase since 1980. Fungal infections are difficult to treat and fungal infection account for a significant proportion of all fatal hospital acquired (nosocomial) infections in the United States. Pathogenic ...

  11. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens

    PubMed Central

    Soto-Suárez, Mauricio; Baldrich, Patricia; Weigel, Detlef; Rubio-Somoza, Ignacio; San Segundo, Blanca

    2017-01-01

    MicroRNAs (miRNAs) play a pivotal role in regulating gene expression during plant development. Although a substantial fraction of plant miRNAs has proven responsive to pathogen infection, their role in disease resistance remains largely unknown, especially during fungal infections. In this study, we screened Arabidopsis thaliana lines in which miRNA activity has been reduced using artificial miRNA target mimics (MIM lines) for their response to fungal pathogens. Reduced activity of miR396 (MIM396 plants) was found to confer broad resistance to necrotrophic and hemibiotrophic fungal pathogens. MiR396 levels gradually decreased during fungal infection, thus, enabling its GRF (GROWTH-REGULATING FACTOR) transcription factor target genes to trigger host reprogramming. Pathogen resistance in MIM396 plants is based on a superactivation of defense responses consistent with a priming event during pathogen infection. Notably, low levels of miR396 are not translated in developmental defects in absence of pathogen challenge. Our findings support a role of miR396 in regulating plant immunity, and broaden our knowledge about the molecular players and processes that sustain defense priming. That miR396 modulates innate immunity without growth costs also suggests fine-tuning of miR396 levels as an effective biotechnological means for protection against pathogen infection. PMID:28332603

  12. Coccidioides Exposure and Coccidioidomycosis among Prison Employees, California, United States

    PubMed Central

    Niemeier, R. Todd; Burr, Gregory A.

    2015-01-01

    Responding to a request by corrections agency management, we investigated coccidioidomycosis in prison employees in central California, a coccidioidomycosis-endemic area. We identified 103 cases of coccidioidomycosis that occurred over 4.5 years. As a result, we recommended training and other steps to reduce dust exposure among employees and thus potential exposure to Coccidioides. PMID:25989420

  13. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti

    PubMed Central

    Cho, Hyun ji; Hong, Seong Won; Kim, Hyun-ju; Kwak, Youn-Sig

    2016-01-01

    Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti. PMID:26889115

  14. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  15. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  16. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    PubMed Central

    Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.

    2012-01-01

    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337

  17. Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.

    PubMed

    Egan, Martin J; Talbot, Nicholas J

    2008-08-01

    This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.

  18. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape

    NASA Astrophysics Data System (ADS)

    Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D.

    2017-01-01

    We assessed whether the presence and abundance of plant pathogens and antagonists change in soil fungal communities along a land abandonment gradient. The study was carried out in the Cilento area (Southern Italy) at a site with three different habitats found along a land abandonment gradient: agricultural land, Mediterranean shrubland and woodland. For all microbiological substrates the colony forming units were about 3.1 × 106 g-1 soil for agricultural land and about 1.1 × 106 g-1 soil for Mediterranean shrubland and woodland. We found the following genera in all habitats: Cladosporium, Mortierella, Penicillium and Trichoderma. In agricultural land, the significantly most abundant fungus genera were Aspergillus, Fusarium, Cylindrocarpon and Nectria; in Mediterranean shrubland, Rhizopus and Trichoderma; and in woodland, Bionectria, Mortierella, Cladosporium, Diplodia, Paecilomyces, Penicillium and Trichoderma. We found a total of 8, 8 and 9 species of fungal antagonist, and 16, 6 and 6 species of fungal plant pathogens in agricultural land, Mediterranean shrubland and woodland respectively. Fungal plant pathogens decreased significantly over a land abandonment gradient, while we no found significant differences among fungal antagonists in the three habitats. We conclude that a decrease in the number of fungal pathogen species occurs when formerly cultivated areas are abandoned. On the other hand, fungal antagonists seem not to be affected by this process.

  19. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  20. Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques.

    PubMed

    Czurda, Stefan; Lion, Thomas

    2017-01-01

    Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.

  1. Use of radiologic modalities in coccidioidal meningitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadalnik, R.C.; Goldstein, E.; Hoeprich, P.D.

    1981-01-01

    The diagnostic utility of pentetate indium trisodium CSF studies, technetium Tc 99m brain scans, and computerized tomographic (CT) scans was evaluated in eight patients in whom coccidioidal meningitis developed following a dust storm in the Central Valley of California. The 111In flow studies and the CT scans demonstrated hydrocephalus in five patients with clinical findings suggesting this complication. Ventriculitis has not previously been diagnosed before death in patients with coccidioidal meningitis; however, it was demonstrated in two patients by the technetium Tc 99m brain scan. The finding that communicating hydrocephalus occurs early in meningitis and interferes with CSF flow intomore » infected basilar regions has important therapeutic implications in that antifungal agents injected into the lumbar subarachnoid space may not reach these regions.« less

  2. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi

    PubMed Central

    2013-01-01

    Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298

  3. Fungal Communities Including Plant Pathogens in Near Surface Air Are Similar across Northwestern Europe.

    PubMed

    Nicolaisen, Mogens; West, Jonathan S; Sapkota, Rumakanta; Canning, Gail G M; Schoen, Cor; Justesen, Annemarie F

    2017-01-01

    Information on the diversity of fungal spores in air is limited, and also the content of airborne spores of fungal plant pathogens is understudied. In the present study, a total of 152 air samples were taken from rooftops at urban settings in Slagelse, DK, Wageningen NL, and Rothamsted, UK together with 41 samples from above oilseed rape fields in Rothamsted. Samples were taken during 10-day periods in spring and autumn, each sample representing 1 day of sampling. The fungal content of samples was analyzed by metabarcoding of the fungal internal transcribed sequence 1 (ITS1) and by qPCR for specific fungi. The metabarcoding results demonstrated that season had significant effects on airborne fungal communities. In contrast, location did not have strong effects on the communities, even though locations were separated by up to 900 km. Also, a number of plant pathogens had strikingly similar patterns of abundance at the three locations. Rooftop samples were more diverse than samples taken above fields, probably reflecting greater mixing of air from a range of microenvironments for the rooftop sites. Pathogens that were known to be present in the crop were also found in air samples taken above the field. This paper is one of the first detailed studies of fungal composition in air with the focus on plant pathogens and shows that it is possible to detect a range of pathogens in rooftop air samplers using metabarcoding.

  4. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  5. Cell-cell recognition of host surfaces by pathogens. The adsorption of maize (Zea mays) root mucilage by surfaces of pathogenic fungi.

    PubMed Central

    Gould, J; Northcote, D H

    1986-01-01

    The adsorption of radioactive mucilage by pathogenic fungi was shown to be dependent upon time, the composition of mucilage, the type of fungal surface (conidia, hyphae, hyphal apices), fungal species, pH and bivalent cations. All fungal adhesins were inactivated by either proteinase or polysaccharase treatments. Adsorption was not inhibited by the numberous mono-, di- and oligo-saccharides that were tested individually, but it was inhibited absolutely by several polysaccharides. This suggested that adsorption of mucilage by pathogens involved conformational and ionic interactions between plant and fungal polymers but not fungal lectins bound to sugar residues of mucilage. Several fractionation schemes showed that pathogens bound only the most acidic of the variety of polymers that comprise mucilage. There was not any absolute distinction between ability to bind radioactive mucilage and type of pathogen or non-pathogen. However, there were notable differences in characteristics of adsorption between two types of pathogen. Differences were revealed by comparison of the adsorption capacities of conidia and germinant conidia and chromatography of radioactive mucilage on germinant conidia. An ectotrophic root-infecting fungus (a highly specialized pathogen) bound a greater proportion of mucilage than did a vascular-wilt fungus (of catholic host and tissue range) with more than one class of site for adsorption. In contrast with the vascular-wilt fungus, sites for adsorption on the specialized pathogen were present solely on surfaces formed by germination. PMID:3954742

  6. Coccidioidomycosis in Biopsies with Presumptive Diagnosis of Malignancy in Dogs: Report of Three Cases and Comparative Discussion of Published Reports.

    PubMed

    Ramírez-Romero, Rafael; Silva-Pérez, Rolando Antonio; Lara-Arias, Jorge; Ramírez-Hernández, Cecilia; Marino-Martínez, Iván Alberto; Barbosa-Quintana, Álvaro; López-Mayagoitia, Alfonso

    2016-02-01

    Coccidioidomycosis is a respiratory fungal infection with occasional systemic dissemination. The disseminated coccidioidomycosis is considered a multifaceted disease. In medicine, disseminated coccidioidomycosis is included within a group of infectious diseases that have been referred as the great imitators. In many cases, malignancies are included in the presumptive diagnosis. In veterinary medicine, disseminated coccidioidomycosis is common in dogs. Nonetheless, despite of being a diagnostic dilemma, disseminated coccidioidomycosis is underestimated and frequently not included into differentials, even in endemic zones. Herein, we describe three cases of granulomatous inflammation caused by Coccidioides spp. which were masquerading malignancies in dogs (0.39 %). The presumptive diagnoses in these cases were osteosarcoma, lymphoma and neurofibroma, respectively. A PCR assay employing tissues in paraffin blocks resulted positive for C. posadasii in one of these cases. A comparative discussion on the ambiguous clinic-pathological presentation of disseminated coccidioidomycosis in dogs and humans is included.

  7. Seroincidence of Coccidioidomycosis during Military Desert Training Exercises

    PubMed Central

    Crum, Nancy F.; Potter, Mark; Pappagianis, Demosthenes

    2004-01-01

    Coccidioidomycosis is a common fungal infection acquired in the southwestern United States. This is the first study in over 2 decades to determine the seroincidence of Coccidioides immitis infections among U.S. military members performing training exercises in an area of endemicity. Only 8% of participants were aware of coccidioidomycosis, despite the majority having visited or lived previously in an area of endemicity. One (0.6%) of the 178 participants developed “definite” serologic evidence of infection over a 5-week training period; four (2.3%) additional patients developed “possible” coccidioidomycosis infections. None had complicated disease. The calculated annual incidence ranged from 6 to 32%. This study suggests that the risk of serious coccidioidomycosis is low among military personnel during desert training exercises; however, disease incidence may vary depending on specific activities and geographic factors. Due to the potential morbidity and mortality of this infection, preventative strategies, including vaccine development, are advocated. PMID:15472308

  8. Effector-triggered defence against apoplastic fungal pathogens

    PubMed Central

    Stotz, Henrik U.; Mitrousia, Georgia K.; de Wit, Pierre J.G.M.; Fitt, Bruce D.L.

    2014-01-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed ‘effector-triggered defence’ (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287

  9. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils.

    PubMed

    Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi

    2010-04-01

    Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.

  10. The lipid language of plant-fungal interactions.

    PubMed

    Christensen, Shawn A; Kolomiets, Michael V

    2011-01-01

    Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated. Published by Elsevier Inc.

  11. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens

    PubMed Central

    Alkan, Noam; Fortes, Ana M.

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204

  12. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  13. Valley Fever: Finding New Places for an Old Disease: Coccidioides immitis Found in Washington State Soil Associated With Recent Human Infection

    PubMed Central

    Litvintseva, Anastasia P.; Marsden-Haug, Nicola; Hurst, Steven; Hill, Heather; Gade, Lalitha; Driebe, Elizabeth M.; Ralston, Cindy; Roe, Chandler; Barker, Bridget M.; Goldoft, Marcia; Keim, Paul; Wohrle, Ron; Thompson, George R.; Engelthaler, David M.; Brandt, Mary E.; Chiller, Tom

    2015-01-01

    We used real-time polymerase chain reaction and culture to demonstrate persistent colonization of soils by Coccidioides immitis, an agent of valley fever, in Washington State linked to recent human infections and located outside the endemic range. Whole-genome sequencing confirmed genetic identity between isolates from soil and one of the case-patients. PMID:25165087

  14. Delayed Dermal Hypersensitivity in Mice to Spherule and Mycelial Extracts of Coccidioides immitis

    PubMed Central

    Kong, Yi-Chi M.; Savage, D. C.; Kong, Leighton N. L.

    1966-01-01

    Kong, Yi-chi M. (University of California, Berkeley), D. C. Savage, and Leighton N. L. Kong. Delayed dermal hypersensitivity in mice to spherule and mycelial extracts of Coccidioides immitis. J. Bacteriol. 91:876–883. 1966.—A delayed hypersensitivity reaction to spherule and mycelial extracts of Coccidioides immitis was elicited in the footpads of mice vaccinated with killed spherules. Emulsification of the spherules with Freund's adjuvants was unnecessary, but a high concentration of antigen was required to elicit the reaction. Injection of the extracts produced, initially, a swelling which subsided within 4 hr, and then induration, which began at 6 to 8 hr and reached a maximum at 24 hr. The time course of the reaction corresponded to that of the tuberculin reaction in BCG-vaccinated mice. The histological response to coccidioidal extracts was characterized by the early infiltration of both polymorphonuclear and mononuclear cells, and the subsequent predominance of mononuclear cells at 24 to 48 hr. By 72 hr, the mononuclear cells comprised >90% of the cellular infiltrate. Animals infected intranasally with arthrospores (1 to 5 ld50) reacted negatively before and during the crisis period; thereafter (by 28 to 31 days after infection), up to 50% of the survivors showed a delayed reaction. Images PMID:5894227

  15. Mycelial forms of Coccidioides spp. in the parasitic phase associated to pulmonary coccidioidomycosis with type 2 diabetes mellitus.

    PubMed

    Muñoz-Hernández, B; Martínez-Rivera, M A; Palma Cortés, G; Tapia-Díaz, A; Manjarrez Zavala, M E

    2008-09-01

    Pulmonary coccidioidomycosis shares characteristics with other pulmonary pathologies. In tissue, spherules containing endospores are markers of Coccidioides immitis and C. posadasii infection. Mycelial forms presenting without classical parasitic structures are often misdiagnosed. The study was performed at the National Institute of Respiratory Diseases (INER) of Mexico between September 1991 and June 2005 and analyzed the association between cases, controls, and risk factors, including co-morbidity. A case was defined as any patient who presented mycelial forms and a control as any patient who presented only spherules or no parasitic forms. All patients (n = 44) with pulmonary coccidioidomycosis were diagnosed by culture, histopathology, cytology, and immunology. Type 2 diabetic patients with pulmonary coccidioidomycosis were four times more likely than non-diabetics to develop parasitic mycelial forms (95% confidence interval [CI], 0.85-20.10; P < 0.01). We formulated a comprehensive definition based on the results as follows: patients with pulmonary coccidioidomycosis with an evolution longer than 8 months, cough, hemoptysis, radiological evidence of a cavitary lesion, and type 2 diabetes mellitus, develop parasitic mycelial forms of Coccidioides spp. Based on microscopic images of patient specimens, we propose incorporating mycelial forms into the parasitic phase of Coccidioides spp. in patients with type 2 diabetes mellitus and chronic and cavitary pulmonary coccidioidomycosis.

  16. The Interface between Fungal Biofilms and Innate Immunity.

    PubMed

    Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E

    2017-01-01

    Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  17. Iron and copper as virulence modulators in human fungal pathogens.

    PubMed

    Ding, Chen; Festa, Richard A; Sun, Tian-Shu; Wang, Zhan-You

    2014-07-01

    Fungal pathogens have evolved sophisticated machinery to precisely balance the fine line between acquiring essential metals and defending against metal toxicity. Iron and copper are essential metals for many processes in both fungal pathogens and their mammalian hosts, but reduce viability when present in excess. However, during infection, the host uses these two metals differently. Fe has a long-standing history of influencing virulence in pathogenic fungi, mostly in regards to Fe acquisition. Numerous studies demonstrate the requirement of the Fe acquisition pathway of Candida, Cryptococcus and Aspergillus for successful systemic infection. Fe is not free in the host, but is associated with Fe-binding proteins, leading fungi to develop mechanisms to interact with and to acquire Fe from these Fe-bound proteins. Cu is also essential for cell growth and development. Essential Cu-binding proteins include Fe transporters, superoxide dismutase (SOD) and cytochrome c oxidase. Although Cu acquisition plays critical roles in fungal survival in the host, recent work has revealed that Cu detoxification is extremely important. Here, we review fungal responses to altered metal conditions presented by the host, contrast the roles of Fe and Cu during infection, and outline the critical roles of fungal metal homeostasis machinery at the host-pathogen axis. © 2014 John Wiley & Sons Ltd.

  18. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW

    PubMed Central

    Shuping, D.S.S.; Eloff, J.N.

    2017-01-01

    Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Materials and Methods: Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms “plant fungal pathogen”, “plant extracts” and “phytopathogens”. Proposals are made on the best extractants and bioassay techniques to be used. Results: In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Conclusions: Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry. PMID:28638874

  19. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens

    USDA-ARS?s Scientific Manuscript database

    Infection of plant pathogenic fungi by mycoviruses can attenuate their virulence on plants and vigor in culture. In this study, we described the viromes of 275 isolates of five widely dispersed plant pathogenic fungal species (Colletotrichum truncatum, Macrophomina phaseolina, Phomopsis longicolla, ...

  20. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    USDA-ARS?s Scientific Manuscript database

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  1. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats

    Treesearch

    Jonathan M. Palmer; Kevin P. Drees; Jeffrey T. Foster; Daniel L. Lindner

    2018-01-01

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species....

  2. Environmental Variability and Fluctuation of Coccidioidomycosis (Valley Fever) In California: Based on a New Framework Involving Fungal Life Cycle

    NASA Astrophysics Data System (ADS)

    Jia, S.; Okin, G. S.; Shafir, S. C.

    2013-12-01

    Coccidioidomycosis (valley fever), caused by inhalation of spores from pathogenic fungus includingCoccidiodes immitis (C. immitis) and Coccidioides posadasii (C. posadasii), is a disease endemic to arid regions in the southwest US, as well as parts of Central and South America. With a projected increase of drought in this region, an improved understanding of environmental factors behind the outbreaks of coccidioidomycosis will enable the prediction of coccidioidomycosis in a changing climate regime. Previous research shows the infections correlate with climate conditions including precipitation, temperature, and dust. However, most studies focus only on the environmental conditions of fungus growth, which is the first stage in the fungal life cycle. In contrast, we extend the analysis to the following two stages in the life cycle, arthrospore formation and dispersal, to form a better model to predict the disease outbreaks. Besides climate conditions, we use relative spectral mixture analysis (RSMA) based on MODIS MOD43 nadir BRDF adjusted reflectance (NBAR) data to derive the relative dynamics of green vegetation, non-photosynthetic vegetation and bare soil coverage as better indicators of soil moisture, which is important for arthospore formation and dispersal. After detecting the hotspots of disease outbreaks, we correlate seasonal incidence from 2000 to 2010 with the environmental variables zero to eight seasons before to obtain candidates for stepwise regression. Regression result shows a seasonal difference in the leading explanatory variables. Such difference indicates the different seasonal main influential process from fungal life cycle. C. immitis (fungus responsible for coccidioidomycosis outbreaks in California) growth explains outbreaks in winter and fall better than other two stages in the life cycle, while arthospore formation is more responsible for spring and summer outbreaks. As the driest season, summer has the largest area related with arthospore dispersal. The seasonal difference of main influential process relates to the length of lags between the outbreaks and stages in fungal life cycle. During wet seasons of California including winter and fall, outbreaks are less correlated with the short-lag process such as dispersal of arthospores because of high soil moisture. In contrast, the long-lag process like C.immitis growth is influential on outbreaks in wet seasons. The arthospore formation, especially during the latest dry season (with a lag less than one year), is more responsible for outbreaks in spring and summer, when the influence of C. immitis growth is dampened by time. However, arthospores formed and preserved years ago may introduce uncertainty to the seasonal lag patterns. The long lags also exist in outbreaks related to arthospore formation. By including all three stages of fungal life cycle, we formed a more comprehensive framework in explaining the relationship between environmental conditions and disease outbreaks. Such analysis can be extended to a finer temporal resolution (e.g. per month) to obtain a clearer picture between environmental variability and coccidioidomycosis fluctuation.

  3. Mixed infections reveal virulence differences between host-specific bee pathogens.

    PubMed

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  4. Cytochemical Labeling for Fungal and Host Components in Plant Tissues Inoculated with Fungal Wilt Pathogens

    NASA Astrophysics Data System (ADS)

    Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.

    2004-08-01

    Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.

  5. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  6. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity.

    PubMed

    Mommer, Liesje; Cotton, T E Anne; Raaijmakers, Jos M; Termorshuizen, Aad J; van Ruijven, Jasper; Hendriks, Marloes; van Rijssel, Sophia Q; van de Mortel, Judith E; van der Paauw, Jan Willem; Schijlen, Elio G W M; Smit-Tiekstra, Annemiek E; Berendse, Frank; de Kroon, Hans; Dumbrell, Alex J

    2018-04-01

    There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  8. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.

    PubMed

    García-Guzmán, Graciela; Heil, Martin

    2014-03-01

    Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Transcriptomic insight into pathogenicity-associated factors of Conidiobolus obscurus, an obligate aphid-pathogenic fungus belonging to Entomopthoromycota.

    PubMed

    Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian

    2018-01-16

    Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Evolution of eukaryotic microbial pathogens via covert sexual reproduction

    PubMed Central

    Heitman, Joseph

    2010-01-01

    Sexual reproduction enables eukaryotic organisms to re-assort genetic diversity and purge deleterious mutations, producing better-fit progeny. Sex arose early and pervades eukaryotes. Fungal and parasite pathogens once thought asexual have maintained cryptic sexual cycles, including unisexual or parasexual reproduction. As pathogens become niche and host-adapted, sex appears to specialize to promote inbreeding and clonality yet maintain out-crossing potential. During self-fertile sexual modes, sex itself may generate genetic diversity de novo. Mating-type loci govern fungal sexual identity; how parasites establish sexual identity is unknown. Comparing and contrasting fungal and parasite sex promises to reveal how microbial pathogens evolved and are evolving. PMID:20638645

  11. Control of Passion Fruit Fungal Diseases Using Essential Oils Extracted from Rosemary (Rosmarinus officinalis) and Eucalyptus (Eucalyptus agglomerata) in Egerton University Main Campus Njoro, Kenya

    PubMed Central

    Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta

    2017-01-01

    Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary (Rosmarinus officinalis) and eucalyptus (Eucalyptus agglomerata) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary (r = 0.99) and eucalyptus (r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus (P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus (P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale. PMID:28458692

  12. Control of Passion Fruit Fungal Diseases Using Essential Oils Extracted from Rosemary (Rosmarinus officinalis) and Eucalyptus (Eucalyptus agglomerata) in Egerton University Main Campus Njoro, Kenya.

    PubMed

    Waithaka, Paul Njenga; Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta

    2017-01-01

    Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary ( Rosmarinus officinalis ) and eucalyptus ( Eucalyptus agglomerata ) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary ( r = 0.99) and eucalyptus ( r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus ( P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus ( P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale.

  13. Reactive oxygen species and plant resistance to fungal pathogens.

    PubMed

    Lehmann, Silke; Serrano, Mario; L'Haridon, Floriane; Tjamos, Sotirios E; Metraux, Jean-Pierre

    2015-04-01

    Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  15. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    PubMed

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  16. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans.

    PubMed

    Gauthier, Gregory M; Keller, Nancy P

    2013-12-01

    The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fungal model systems and the elucidation of pathogenicity determinants

    PubMed Central

    Perez-Nadales, Elena; Almeida Nogueira, Maria Filomena; Baldin, Clara; Castanheira, Sónia; El Ghalid, Mennat; Grund, Elisabeth; Lengeler, Klaus; Marchegiani, Elisabetta; Mehrotra, Pankaj Vinod; Moretti, Marino; Naik, Vikram; Oses-Ruiz, Miriam; Oskarsson, Therese; Schäfer, Katja; Wasserstrom, Lisa; Brakhage, Axel A.; Gow, Neil A.R.; Kahmann, Regine; Lebrun, Marc-Henri; Perez-Martin, José; Di Pietro, Antonio; Talbot, Nicholas J.; Toquin, Valerie; Walther, Andrea; Wendland, Jürgen

    2014-01-01

    Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity. PMID:25011008

  18. The early response during the interaction of fungal phytopathogen and host plant.

    PubMed

    Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen; Zheng, Wenming

    2017-05-01

    Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum , rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. © 2017 The Authors.

  19. The early response during the interaction of fungal phytopathogen and host plant

    PubMed Central

    Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen

    2017-01-01

    Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. PMID:28469008

  20. Fungal endophytes: modifiers of plant disease.

    PubMed

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  1. Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis.

    PubMed

    Zhang, Jie; Huang, Wuren; Yuan, Chuanfei; Lu, Yuzhen; Yang, Bing; Wang, Cheng-Yuan; Zhang, Peng; Dobens, Leonard; Zou, Zhen; Wang, Chengshu; Ling, Erjun

    2017-01-01

    Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs) in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia) by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.

  2. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    PubMed

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    PubMed

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Application of an oligonucleotide microarray-based nano-amplification technique for the detection of fungal pathogens.

    PubMed

    Lu, Weiping; Gu, Dayong; Chen, Xingyun; Xiong, Renping; Liu, Ping; Yang, Nan; Zhou, Yuanguo

    2010-10-01

    The traditional techniques for diagnosis of invasive fungal infections in the clinical microbiology laboratory need improvement. These techniques are prone to delay results due to their time-consuming process, or result in misidentification of the fungus due to low sensitivity or low specificity. The aim of this study was to develop a method for the rapid detection and identification of fungal pathogens. The internal transcribed spacer two fragments of fungal ribosomal DNA were amplified using a polymerase chain reaction for all samples. Next, the products were hybridized with the probes immobilized on the surface of a microarray. These species-specific probes were designed to detect nine different clinical pathogenic fungi including Candida albicans, Candida tropocalis, Candida glabrata, Candida parapsilosis, Candida krusei, Candida lusitaniae, Candida guilliermondii, Candida keyfr, and Cryptococcus neoformans. The hybridizing signals were enhanced with gold nanoparticles and silver deposition, and detected using a flatbed scanner or visually. Fifty-nine strains of fungal pathogens, including standard and clinically isolated strains, were correctly identified by this method. The sensitivity of the assay for Candida albicans was 10 cells/mL. Ten cultures from clinical specimens and 12 clinical samples spiked with fungi were also identified correctly. This technique offers a reliable alternative to conventional methods for the detection and identification of fungal pathogens. It has higher efficiency, specificity and sensitivity compared with other methods commonly used in the clinical laboratory.

  5. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison.

    PubMed

    Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C

    2016-01-01

    Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  6. Emerging IL-12 family cytokines in the fight against fungal infections.

    PubMed

    Thompson, Aiysha; Orr, Selinda J

    2018-05-21

    Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus. Copyright © 2018. Published by Elsevier Ltd.

  7. Long-distance endosome trafficking drives fungal effector production during plant infection

    PubMed Central

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero

    2014-01-01

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249

  8. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    PubMed

    Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M

    2007-07-27

    Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  9. Long-distance endosome trafficking drives fungal effector production during plant infection.

    PubMed

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero

    2014-10-06

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.

  10. Functionality of a maize chitinase potentially involved in ear rot pathogen resistance

    USDA-ARS?s Scientific Manuscript database

    Chitinases are thought to play a role in plant resistance to fungal pathogens by degrading the fungal cell wall, but few have been investigated to any great extent. The gene for a maize (Zea mays) chitinase “chitinase 2” previously reported to be induced by two ear rot pathogens in infected tissues ...

  11. De novo genome assembly of the fungal plant pathogen Pyrenophora semeniperda

    Treesearch

    Marcus M. Soliai; Susan E. Meyer; Joshua A. Udall; David E. Elzinga; Russell A. Hermansen; Paul M. Bodily; Aaron A. Hart; Craig E. Coleman

    2014-01-01

    Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a...

  12. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline

    Treesearch

    Jonah Piovia-Scott; Karen Pope; S. Joy Worth; Erica Bree Rosenblum; Dean Simon; Gordon Warburton; Louise A. Rollins-Smith; Laura K. Reinert; Heather L. Wells; Dan Rejmanek; Sharon Lawler; Janet Foley

    2015-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We...

  13. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    PubMed

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  14. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    PubMed Central

    Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra

    2014-01-01

    Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442

  15. Insights from paleomicrobiology into the indigenous peoples of pre-colonial America - a review.

    PubMed

    Darling, Millie I; Donoghue, Helen D

    2014-04-01

    This review investigates ancient infectious diseases in the Americas dated to the pre-colonial period and considers what these findings can tell us about the history of the indigenous peoples of the Americas. It gives an overview, but focuses on four microbial pathogens from this period: Helicobacter pylori, Mycobacterium tuberculosis, Trypanosoma cruzi and Coccidioides immitis, which cause stomach ulceration and gastric cancer, tuberculosis, Chagas disease and valley fever, respectively. These pathogens were selected as H. pylori can give insight into ancient human migrations into the Americas, M. tuberculosis is associated with population density and urban development, T. cruzi can elucidate human living conditions and C. immitis can indicate agricultural development. A range of methods are used to diagnose infectious disease in ancient human remains, with DNA analysis by polymerase chain reaction one of the most reliable, provided strict precautions are taken against cross contamination. The review concludes with a brief summary of the changes that took place after European exploration and colonisation.

  16. Insights from paleomicrobiology into the indigenous peoples of pre-colonial America - A Review

    PubMed Central

    Darling, Millie I; Donoghue, Helen D

    2014-01-01

    This review investigates ancient infectious diseases in the Americas dated to the pre-colonial period and considers what these findings can tell us about the history of the indigenous peoples of the Americas. It gives an overview, but focuses on four microbial pathogens from this period: Helicobacter pylori, Mycobacterium tuberculosis, Trypanosoma cruzi and Coccidioides immitis, which cause stomach ulceration and gastric cancer, tuberculosis, Chagas disease and valley fever, respectively. These pathogens were selected as H. pylori can give insight into ancient human migrations into the Americas, M. tuberculosis is associated with population density and urban development, T. cruzi can elucidate human living conditions and C. immitis can indicate agricultural development. A range of methods are used to diagnose infectious disease in ancient human remains, with DNA analysis by polymerase chain reaction one of the most reliable, provided strict precautions are taken against cross contamination. The review concludes with a brief summary of the changes that took place after European exploration and colonisation. PMID:24714964

  17. Neutrophil extracellular traps in fungal infection.

    PubMed

    Urban, Constantin F; Nett, Jeniel E

    2018-04-03

    Fungal infections are a continuously increasing problem in modern health care. Understanding the complex biology of the emerging pathogens and unraveling the mechanisms of host defense may form the basis for the development of more efficient diagnostic and therapeutic tools. Neutrophils play a pivotal role in the defense against fungal pathogens. These phagocytic hunters migrate towards invading fungal microorganisms and eradicate them by phagocytosis, oxidative burst and release of neutrophil extracellular traps (NETs). In the last decade, the process of NET formation has received unparalleled attention, with numerous studies revealing the relevance of this neutrophil function for control of various mycoses. Here, we describe NET formation and summarize its role as part of the innate immune defense against fungal pathogens. We highlight factors influencing the formation of these structures and molecular mechanisms employed by fungi to impair the formation of NETs or subvert their antifungal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  19. 78 FR 14508 - Notice of Affirmation of Addition of a Treatment Schedule for Methyl Bromide Fumigation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... fumigation of cottonseed for the fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (FOV). In a... to neutralize the fungal pathogen Fusarium oxysporum f. sp. vasinfectum (FOV) on cottonseed...

  20. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.

    PubMed

    Pareek, Manish; Rajam, Manchikatla Venkat

    2017-09-01

    Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Host pathogen relations: exploring animal models for fungal pathogens.

    PubMed

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  2. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grison, R.; Grezes-Besset, B.; Lucante, N.

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  3. Tropospheric ozone as a fungal elicitor.

    PubMed

    Zuccarini, Paolo

    2009-03-01

    Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens,i.e. it resembles fungal elicitors.This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review provides an overview of the implications of such a phenomenon for basic and applied research. After an introduction about the environmental implications of tropospheric ozone and plant responses to biotic stresses, the biochemistry of ozone stress is analysed, pointing out its similarities with plant responses to pathogens and its possible applications.

  4. Fungal Diversity in Field Mold-Damaged Soybean Fruits and Pathogenicity Identification Based on High-Throughput rDNA Sequencing

    PubMed Central

    Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu

    2017-01-01

    Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718

  5. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor

    PubMed Central

    Rappleye, Chad A.; Eissenberg, Linda Groppe; Goldman, William E.

    2007-01-01

    Successful infection by fungal pathogens depends on subversion of host immune mechanisms that detect conserved cell wall components such as β-glucans. A less common polysaccharide, α-(1,3)-glucan, is a cell wall constituent of most fungal respiratory pathogens and has been correlated with pathogenicity or linked directly to virulence. However, the precise mechanism by which α-(1,3)-glucan promotes fungal virulence is unknown. Here, we show that α-(1,3)-glucan is present in the outermost layer of the Histoplasma capsulatum yeast cell wall and contributes to pathogenesis by concealing immunostimulatory β-glucans from detection by host phagocytic cells. Production of proinflammatory TNFα by phagocytes was suppressed either by the presence of the α-(1,3)-glucan layer on yeast cells or by RNA interference based depletion of the host β-glucan receptor dectin-1. Thus, we have functionally defined key molecular components influencing the initial host–pathogen interaction in histoplasmosis and have revealed an important mechanism by which H. capsulatum thwarts the host immune system. Furthermore, we propose that the degree of this evasion contributes to the difference in pathogenic potential between dimorphic fungal pathogens and opportunistic fungi. PMID:17227865

  6. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani

    PubMed Central

    Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.

    2017-01-01

    Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271

  7. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae

    PubMed Central

    Mir, Albely Afifa; Park, Sook-Young; Sadat, Md. Abu; Kim, Seongbeom; Choi, Jaeyoung; Jeon, Junhyun; Lee, Yong-Hwan

    2015-01-01

    Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus. PMID:26134974

  8. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  9. Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    PubMed Central

    García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-01-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627

  10. Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers

    PubMed Central

    Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan

    2013-01-01

    Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949

  11. Sensitivity of the brown dog tick, Rhipicephalus sanguineus to fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    The brown dog tick, Rhipicephalus sanguineus, remains a primary ectoparasite concern in many dog kennels, shelters and residential homes. Challenges such as effective pesticide delivery and pesticide resistance confound control efforts. Use of biological control approaches such as fungal pathogen...

  12. Augmenting the efficacy of antifungal intervention via chemo-biological approaches

    USDA-ARS?s Scientific Manuscript database

    Mycotic infection is becoming a serious health problem since effective antifungal agents for control of pathogenic fungi, especially drug-resistant pathogens, is often very limited. Fungal resistance to antimycotic agents frequently involves mutations caused by environmental stressors. In fungal pat...

  13. Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example

    NASA Astrophysics Data System (ADS)

    Heitefuss, Rudolf

    2001-06-01

    Diseases of crop plants may lead to considerable yield losses. To control fungal diseases, fungicides are used extensively in present-day agricultural production. In order to reduce such external inputs, cultivars with natural resistance to important fungal pathogens are recommended in systems of integrated plant protection. Basic research, including genetics and molecular methods, is required to elucidate the mechanisms by which plants react to an attack by fungal pathogens and successfully defend themselves. This review examines our knowledge with respect to the multicomponent systems of resistance in plants, using powdery mildew on barley as an example. In addition, the question is adressed whether systemic acquired resistance and plants with transgenic resistance may be utilized in future plant protection strategies.

  14. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011-2014.

    PubMed

    Wilken, Jason A; Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C; Lee, Lauren; Materna, Barbara L

    2015-11-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power-generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011-April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non-Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department.

  15. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011–2014

    PubMed Central

    Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J.; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C.; Lee, Lauren; Materna, Barbara L.

    2015-01-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power–generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011–April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non–Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department. PMID:26484688

  16. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    PubMed

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.

  17. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    PubMed

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  18. The virulence of human pathogenic fungi: notes from the South of France.

    PubMed

    Reedy, Jennifer L; Bastidas, Robert J; Heitman, Joseph

    2007-08-16

    The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.

  19. Friends or foes? Emerging insights from fungal interactions with plants.

    PubMed

    Zeilinger, Susanne; Gupta, Vijai K; Dahms, Tanya E S; Silva, Roberto N; Singh, Harikesh B; Upadhyay, Ram S; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak S, Chandra

    2016-03-01

    Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions. © FEMS 2015.

  20. Friends or foes? Emerging insights from fungal interactions with plants

    PubMed Central

    Zeilinger, Susanne; Gupta, Vijai K.; Dahms, Tanya E. S.; Silva, Roberto N.; Singh, Harikesh B.; Upadhyay, Ram S.; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak S, Chandra

    2015-01-01

    Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant–fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant–fungal interactions. PMID:26591004

  1. The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles.

    PubMed

    Rodrigues, Marcio L; Nakayasu, Ernesto S; Almeida, Igor C; Nimrichter, Leonardo

    2014-01-31

    Several microbial molecules are released to the extracellular space in vesicle-like structures. In pathogenic fungi, these molecules include pigments, polysaccharides, lipids, and proteins, which traverse the cell wall in vesicles that accumulate in the extracellular space. The diverse composition of fungal extracellular vesicles (EV) is indicative of multiple mechanisms of cellular biogenesis, a hypothesis that was supported by EV proteomic studies in a set of Saccharomyces cerevisiae strains with defects in both conventional and unconventional secretory pathways. In the human pathogens Cryptococcus neoformans, Histoplasma capsulatum, and Paracoccidioides brasiliensis, extracellular vesicle proteomics revealed the presence of proteins with both immunological and pathogenic activities. In fact, fungal EV have been demonstrated to interfere with the activity of immune effector cells and to increase fungal pathogenesis. In this review, we discuss the impact of proteomics on the understanding of functions and biogenesis of fungal EV, as well as the potential role of these structures in fungal pathogenesis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    PubMed

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Harnessing Whole Genome Sequencing in Medical Mycology.

    PubMed

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  4. Disseminated coccidioidomycosis in a captive Indochinese tiger (Panthera tigris corbetti) with chronic renal disease.

    PubMed

    Helmick, Kelly E; Koplos, Peter; Raymond, James

    2006-12-01

    A 19-yr-old, 78.2-kg captive female Indochinese tiger (Panthera tigris corbetti) from the El Paso Zoo (El Paso, Texas, USA) with chronic renal disease was euthanized after a 10-day course of anorexia, depression, progressive rear limb weakness, muscle fasciculations, and head tremors. Postmortem findings included pericardial effusion, generalized lymphadenopathy, glomerulosclerosis, glomerular atrophy with membranous glomerulonephropathy, and pancreatic adenocarcinoma. Pyogranulomatous pneumonia, pericarditis, and lymphadenitis were associated with fungal spherules histomorphologically consistent with Coccidioides immitis. Rising antibodies to C. immitis were detected on samples obtained perimortem and 2 mo before euthanasia. Retrospective serology was negative for two additional Indochinese tigers, two Iranian leopards (Panthera pardus saxicolor), two jaguars (Panthera onca), two bobcats (Lynx rufus texensis), two ocelots (Leopardus pardalis), and three Amur leopards (Panthera pardus orientalis) housed at the zoo over an 8-yr period. Despite being located within the endemic region for C. immitis, this is only the second case of coccidioidomycosis reported from this institution.

  5. Interaction of entomopathogenic fungi with the host immune system.

    PubMed

    Qu, Shuang; Wang, Sibao

    2018-06-01

    Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. PCR Followed by Electrospray Ionization Mass Spectrometry for Broad-Range Identification of Fungal Pathogens

    PubMed Central

    Massire, Christian; Buelow, Daelynn R.; Zhang, Sean X.; Lovari, Robert; Matthews, Heather E.; Toleno, Donna M.; Ranken, Raymond R.; Hall, Thomas A.; Metzgar, David; Sampath, Rangarajan; Blyn, Lawrence B.; Ecker, David J.; Gu, Zhengming; Walsh, Thomas J.

    2013-01-01

    Invasive fungal infections are a significant cause of morbidity and mortality among immunocompromised patients. Early and accurate identification of these pathogens is central to direct therapy and to improve overall outcome. PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was evaluated as a novel means for identification of fungal pathogens. Using a database grounded by 60 ATCC reference strains, a total of 394 clinical fungal isolates (264 molds and 130 yeasts) were analyzed by PCR/ESI-MS; results were compared to phenotypic identification, and discrepant results were sequence confirmed. PCR/ESI-MS identified 81.4% of molds to either the genus or species level, with concordance rates of 89.7% and 87.4%, respectively, to phenotypic identification. Likewise, PCR/ESI-MS was able to identify 98.4% of yeasts to either the genus or species level, agreeing with 100% of phenotypic results at both the genus and species level. PCR/ESI-MS performed best with Aspergillus and Candida isolates, generating species-level identification in 94.4% and 99.2% of isolates, respectively. PCR/ESI-MS is a promising new technology for broad-range detection and identification of medically important fungal pathogens that cause invasive mycoses. PMID:23303501

  7. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality

    PubMed Central

    Wei, Ge; Lai, Yiling; Wang, Guandong; Chen, Huan; Li, Fang

    2017-01-01

    The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana. Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects. PMID:28533370

  8. Estimating sources of Valley Fever pathogen propagation in southern Arizona: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Pianalto, Frederick S.

    Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory disease caused by the inhalation of airborne spores from the fungi Coccidioides spp. The fungi reside in arid and semi-arid soils of the Americas. The disease has increased epidemically in Arizona and other areas within the last two decades. Despite this increase, the ecology of the fungi remains obscure, and environmental antecedents of the disease are largely unstudied. Two sources of soil disturbance, hypothesized to affect soil ecology and initiate spore dissemination, are investigated. Nocturnal desert rodents interact substantially with the soil substrate. Rodents are hypothesized to act as a reservoir of coccidioidomycosis, a mediator of soil properties, and a disseminator of fungal spores. Rodent distributions are poorly mapped for the study area. We build automated multi-linear regression models and decision tree models for ten rodent species using rodent trapping data from the Organ Pipe Cactus National Monument (ORPI) in southwest Arizona with a combination of surface temperature, a vegetation index and its texture, and a suite of topographic rasters. Surface temperature, derived from Landsat TM thermal images, is the most widely selected predictive variable in both automated methods. Construction-related soil disturbance (e.g. road construction, trenching, land stripping, and earthmoving) is a significant source of fugitive dust, which decreases air quality and may carry soil pathogens. Annual differencing of Landsat Thematic Mapper (TM) mid-infrared images is used to create change images, and thresholded change areas are associated with coordinates of local dust inspections. The output metric identifies source areas of soil disturbance, and it estimates the annual amount of dust-producing surface area for eastern Pima County spanning 1994 through 2009. Spatially explicit construction-related soil disturbance and rodent abundance data are compared with coccidioidomycosis incidence data using rank order correlation and regression methods. Construction-related soil disturbance correlates strongly with annual county-wide incidence. It also correlates with Tucson periphery incidence aggregated to zip codes. Abundance values for the desert pocket mouse (Chaetodipus penicillatus), derived from a soil-adjusted vegetation index, aspect (northing) and thermal radiance, correlate with total study period incidence aggregated to zip code.

  9. Fungi in healthy and diseased sea fans ( Gorgonia ventalina): is Aspergillus sydowii always the pathogen?

    NASA Astrophysics Data System (ADS)

    Toledo-Hernández, C.; Zuluaga-Montero, A.; Bones-González, A.; Rodríguez, J. A.; Sabat, A. M.; Bayman, P.

    2008-09-01

    Caribbean corals, including sea fans ( Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best.

  10. Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation

    PubMed Central

    Wagener, Jeanette; Malireddi, R. K. Subbarao; Lenardon, Megan D.; Köberle, Martin; Vautier, Simon; MacCallum, Donna M.; Biedermann, Tilo; Schaller, Martin; Netea, Mihai G.; Kanneganti, Thirumala-Devi; Brown, Gordon D.; Brown, Alistair J. P.; Gow, Neil A. R.

    2014-01-01

    Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease. Authors Summary Chitin is the second most abundant polysaccharide in nature after cellulose and an essential component of the cell wall of all fungal pathogens. The discovery of human chitinases and chitinase-like binding proteins indicates that fungal chitin is recognised by cells of the human immune system, shaping the immune response towards the invading pathogen. We show that three immune cell receptors– the mannose receptor, NOD2 and TLR9 recognise chitin and act together to mediate an anti-inflammatory response via secretion of the cytokine IL-10. This mechanism may prevent inflammation-based damage during fungal infection and restore immune balance after an infection has been cleared. By increasing the chitin content in the cell wall pathogenic fungi may influence the immune system in their favour, by down-regulating protective inflammatory immune responses. Furthermore, gene mutations and dysregulated enzyme activity in the described chitin recognition pathway are implicated in inflammatory conditions such as Crohn's Disease and asthma, highlighting the importance of the discovered mechanism in human health. PMID:24722226

  11. Evolution of polyketide synthesis in a Dothideomycete forest pathogen

    USDA-ARS?s Scientific Manuscript database

    Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in or...

  12. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    PubMed

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  13. Diagnosis of coccidioidomycosis by culture: safety considerations, traditional methods, and susceptibility testing.

    PubMed

    Sutton, Deanna A

    2007-09-01

    The recovery of Coccidioides spp. by culture and confirmation utilizing the AccuProbe nucleic acid hybridization method by GenProbe remain the definitive diagnostic method. Biosafety considerations from specimen collection through culture confirmation in the mycology laboratory are critical, as acquisition of coccidioidomycosis by laboratory workers is well documented. The designation of Coccidioides spp. as select agents of potential bioterrorism has mandated strict regulation of their transport and inventory. The genus appears generally susceptible, in vitro, although no defined breakpoints exist. Susceptibility testing may assist in documenting treatment failures.

  14. Phylogenetics of a fungal invasion: origins and widespread dispersal of white-nose syndrome

    Treesearch

    Kevin P. Drees; Jeffrey M. Lorch; Sebastien J. Puechmaille; Katy L. Parise; Gudrun Wibbelt; Joseph R. Hoyt; Keping Sun; Ariunbold Jargalsaikhan; Munkhnast Dalannast; Jonathan M. Palmer; Daniel L. Lindner; A. Marm Kilpatrick; Talima Pearson; Paul S. Keim; David S. Blehert; Jeffrey T. Foster; Joseph Heitman

    2017-01-01

    Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has...

  15. Succession of fungal and oomycete communities in glyphosate-killed wheat roots

    USDA-ARS?s Scientific Manuscript database

    Dying roots of herbicide-killed weeds or volunteer plants can foster an increase in plant pathogens, such as Rhizoctonia and Pythium spp. and serve as a ‘greenbridge’ for pathogens infecting subsequent crops. To investigate the succession of fungal and oomycete communities after herbicide sprays, we...

  16. Gene flow between divergent cereal - and grass-specific lineages of the rice blast fungus Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity, and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multi-host pathogen that infects ...

  17. Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Transcription profiles of Glycine tomentella genotypes having different responses to soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, were compared using suppression subtractive hybridization (SSH). Four cDNA libraries were constructed from infected and non-infected leaves of resis...

  18. New insights into the in vitro development and virulence of Culicinomyces spp. as fungal pathogens of Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Culicinomyces spp. (Hypocreales: Cordycipitaceae) are facultative fungal pathogens affecting the larval stages from a range of mosquito species and are especially notable in their ability to infect hosts through the digestive tract after conidial ingestion. While Culicinomyces spp. were studied main...

  19. Cheatgrass (Bromus tectorum) biocontrol using indigenous fungal pathogens

    Treesearch

    Susan E. Meyer; David L. Nelson; Suzette Clement; Julie Beckstead

    2008-01-01

    Cheatgrass (Bromus tectorum) is an exotic winter annual grass weed that has invaded millions of hectares in the Intermountain West. Restoration of cheatgrass-invaded wildlands is generally impractical without some form of cheatgrass control. We are investigating the possibility of manipulating indigenous fungal pathogens that already occur on...

  20. Molecular characterization and pathogenicity of fungal isolates for use against the small hive beetle (Aethina tumida)

    USDA-ARS?s Scientific Manuscript database

    The analysis of DNA sequences from fungal pathogens obtained from cadavers of the small hive beetle (SHB) collected from several apiaries in Florida revealed a mixture of saprobes and two potential primary entomopathogens, Metarhizium anisopliae and Beauveria bassiana. Spray tower bioassays indicate...

  1. Neuroinfections caused by fungi.

    PubMed

    Góralska, Katarzyna; Blaszkowska, Joanna; Dzikowiec, Magdalena

    2018-05-21

    Fungal infections of the central nervous system (FIs-CNS) have become significantly more common over the past 2 decades. Invasion of the CNS largely depends on the immune status of the host and the virulence of the fungal strain. Infections with fungi cause a significant morbidity in immunocompromised hosts, and the involvement of the CNS may lead to fatal consequences. One hundred and thirty-five articles on fungal neuroinfection in PubMed, Google Scholar, and Cochrane databases were selected for review using the following search words: "fungi and CNS mycoses", CNS fungal infections", "fungal brain infections", " fungal cerebritis", fungal meningitis", "diagnostics of fungal infections", and "treatment of CNS fungal infections". All were published in English with the majority in the period 2000-2018. This review focuses on the current knowledge of the epidemiology, clinical presentations, diagnosis, and treatment of selected FIs-CNS. The FIs-CNS can have various clinical presentations, mainly meningitis, encephalitis, hydrocephalus, cerebral abscesses, and stroke syndromes. The etiologic factors of neuroinfections are yeasts (Cryptococcus neoformans, Candida spp., Trichosporon spp.), moniliaceous moulds (Aspergillus spp., Fusarium spp.), Mucoromycetes (Mucor spp., Rhizopus spp.), dimorphic fungi (Blastomyces dermatitidis, Coccidioides spp., Histoplasma capsulatum), and dematiaceous fungi (Cladophialophora bantiana, Exophiala dermatitidis). Their common route of transmission is inhalation or inoculation from trauma or surgery, with subsequent hematogenous or contiguous spread. As the manifestations of FIs-CNS are often non-specific, their diagnosis is very difficult. A fast identification of the etiological factor of neuroinfection and the application of appropriate therapy are crucial in preventing an often fatal outcome. The choice of effective drug depends on its extent of CNS penetration and spectrum of activity. Pharmaceutical formulations of amphotericin B (AmB) (among others, deoxycholate-AmBd and liposomal L-AmB) have relatively limited distribution in the cerebrospinal fluid (CSF); however, their detectable therapeutic concentrations in the CNS makes them recommended drugs for the treatment of cryptococcal meningoencephalitis (AmBd with flucytosine) and CNS candidiasis (L-AmB) and mucormycosis (L-AmB). Voriconazole, a moderately lipophilic molecule with good CNS penetration, is recommended in the first-line therapy of CNS aspergillosis. Other triazoles, such as posaconazole and itraconazole, with negligible concentrations in the CSF are not considered effective drugs for therapy of CNS fungal neuroinfections. In contrast, clinical data have shown that a novel triazole, isavuconazole, achieved considerable efficacy for the treatment of some fungal neuroinfections. Echinocandins with relatively low or undetectable concentrations in the CSF do not play meaningful role in the treatment of FIs-CNS. Although the number of fungal species causing CNS mycosis is increasing, only some possess well-defined treatment standards (e.g., cryptococcal meningitis and CNS aspergillosis). The early diagnosis of fungal infection, accompanied by identification of the etiological factor, is needed to allow the selection of effective therapy in patients with FIs-CNS and limit their high mortality.

  2. Epidemiologic surveillance of cutaneous fungal infection in the United States from 1999 to 2002.

    PubMed

    Foster, K Wade; Ghannoum, Mahmoud A; Elewski, Boni E

    2004-05-01

    Cutaneous fungal infections are common in the United States, and causative organisms include dermatophytes, yeasts, and nondermatophyte molds. These organisms are in constant competition for their particular environmental niche, often resulting in the emergence of one or more predominant pathogens and displacement of other less competitive species. Changes in the incidence of fungal pathogens can be followed from laboratory culture results of infected cutaneous tissues over time. These data can be used to ascertain past and present trends in incidence, predict increases in antifungal resistance and the adequacy of our current pharmacologic repertoire, and provide insight into future developments. This study identifies epidemiologic trends and the predominant organisms causing superficial fungal infections in the United States. A total of 15,381 specimens were collected from clinically suspected tinea corporis, tinea cruris, tinea capitis, tinea faciei, tinea pedis, tinea manuum, and finger and toe onychomycosis from 1999 through 2002. Specimens were submitted to the Center for Medical Mycology in Cleveland, Ohio, for fungal culture and identification, and the incidence of each species was calculated. Dermatophytes remain the most commonly isolated fungal organisms except from clinically suspected finger onychomycosis, in which case Candida species comprise >70% of isolates. Trichophyton rubrum remains the most prevalent fungal pathogen, and increased incidence of this species was observed in finger and toe onychomycosis, tinea corporis and tinea cruris, tinea manuum, and tinea pedis. As the causal agent of tinea capitis, T tonsurans continues to increase in incidence, achieving near exclusionary proportions in the United States. Consideration of the current epidemiologic trends in the incidence of cutaneous fungal pathogens is of key importance to investigational efforts, diagnosis, and treatment.

  3. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  4. Identification of pathogenic fungi with an optoelectronic nose

    PubMed Central

    Zhang, Yinan; Askim, Jon R.; Zhong, Wenxuan; Orlean, Peter; Suslick, Kenneth S.

    2014-01-01

    Human fungal infections have gained recent notoriety following contamination of pharmaceuticals in the compounding process. Such invasive infections are a more serious global problem, especially for immunocompromised patients. While superficial fungal infections are common and generally curable, invasive fungal infections are often life-threatening and much harder to diagnose and treat. Despite the increasing awareness of the situation’s severity, currently available fungal diagnostic methods cannot always meet diagnostic needs, especially for invasive fungal infections. Volatile organic compounds produced by fungi provide an alternative diagnostic approach for identification of fungal strains. We report here an optoelectronic nose based on a disposable colorimetric sensor array capable of rapid differentiation and identification of pathogenic fungi based on their metabolic profiles of emitted volatiles. The sensor arrays were tested with 12 human pathogenic fungal strains grown on standard agar medium. Array responses were monitored with an ordinary flatbed scanner. All fungal strains gave unique composite responses within 3 hours and were correctly clustered using hierarchical cluster analysis. A standard jackknifed linear discriminant analysis gave a classification accuracy of 94% for 155 trials. Tensor discriminant analysis, which takes better advantage of the high dimensionality of the sensor array data, gave a classification accuracy of 98.1%. The sensor array is also able to observe metabolic changes in growth patterns upon the addition of fungicides, and this provides a facile screening tool for determining fungicide efficacy for various fungal strains in real time. PMID:24570999

  5. EffectorP: predicting fungal effector proteins from secretomes using machine learning.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Dodds, Peter N; Tini, Francesco; Covarelli, Lorenzo; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2016-04-01

    Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au. © 2015 CSIRO New Phytologist © 2015 New Phytologist Trust.

  6. [Modes of action of agrochemicals against plant pathogenic organisms].

    PubMed

    Leroux, Pierre

    2003-01-01

    The chemical control of plant pathogens concerns mainly fungal diseases of crops. Most of the available fungicides act directly on essential fungal functions such as respiration, sterol biosynthesis or cell division. Consequently, these compounds can exhibit undesirable toxicological and environmental effects and sometimes select fungal resistant strains. Plant activators are expected to provide sustainable disease management in several crops because the development of resistance is not expected. Considering the future, the discovery of novel antifungal molecules will reap advantage from throughput screening methodologies and functional genomics.

  7. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.

    PubMed

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D

    2016-11-03

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.

  8. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  9. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection.

    PubMed

    Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei

    2018-02-26

    Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.

  10. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes.

    PubMed

    Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin

    2011-01-01

    The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.

  11. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  12. Diversity and antibacterial activities of fungi derived from the Gorgonian Echinogorgia rebekka from the South China Sea.

    PubMed

    Wang, Ya-Nan; Shao, Chang-Lun; Zheng, Cai-Juan; Chen, Yi-Yan; Wang, Chang-Yun

    2011-01-01

    The diversity of symbiotic fungi associated with the gorgonian coral Echinogorgia rebekka from the Weizhou coral reef in the South China Sea was investigated. Combined with morphologic traits, ITS-rDNA sequences revealed 18 fungal strains from this gorgonian. All of the 18 fungi belonged to the phylum Ascomycota and were distributed among seven genera in five orders: Eurotiales (Aspergillus and Penicillium), Pleosporales (Alternaria), Capnodiales (Cladosporium), Trichosphaeriales (Nigrospora) and Hypocreales (Hypocrea and Nectria). Antibacterial activities of these fungal strains were investigated with five pathogenic bacteria. All of the 18 fungal strains displayed different levels of antibacterial activities, most of which exhibited moderate to high antibacterial activities to the Gram-positive pathogens Staphylococcus aureus and Micrococcus tetragenus, and showed relatively low bioactivities to other three pathogenic bacteria. Several fungal strains in the genera Penicillium and Cladosporium with strong antibacterial activities provide potential for further research on isolation of bioactive secondary metabolites.

  13. In Vitro Assessment of Extracts of the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) Against Different Plant Pathogenic Fungi.

    PubMed

    Baig, Mirza Nabeel; Shahid, Ahmad Ali; Ali, Muhammad

    2015-01-01

    Five isolates of the lingzhi or reishi medicinal mushroom Ganoderma lucidum (GL-1, GL-2, GL-3, GL-4, GL-5) were collected from different locations within and surrounding Lahore, Pakistan, to study the antifungal potential of their bioactive compounds. After studying morphology, different concentrations of the extracts were prepared in methanol and water using a Soxhlet extractor. Different cultures of fungal pathogens were acquired from the First Fungal Culture Bank of Pakistan, University of the Punjab, Lahore. The antimicrobial potential of 5 G. lucidum samples against 5 fungal pathogens (Fusarium oxysporum, Aspergillus niger, A. flavus, Penicillium sp., and Alternaria alternata) was observed. The lowest biomass reduction (7%) was observed in 1% and 2% concentrations of a methanolic extract and 6% in the case of a water extract. Major inhibition was observed using higher concentrations of the methanolic extract (3% and 4%). These extracts significantly suppressed fungal biomass up to 38% and 56% in A. niger, 47% in A. flavus, 58% in ,i>Penicillium sp., 46% in A. alternaria, and 45% in F. oxysporum compared with the control. It was concluded from these studies that methanolic extracts of G. lucidum showed better activity against all plant fungal pathogens when compared with the water extracts.

  14. Phylogenetic congruence between subtropical trees and their associated fungi.

    PubMed

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao

    2016-12-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

  15. A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilising electronic probes

    USDA-ARS?s Scientific Manuscript database

    Early stage infections caused by fungal/oomycete spores can remain undetected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target mul...

  16. Effects of pre- and post-harvest application of selenium on inducing disease resistance and selenium accumulation in fruits

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea, a ubiquitous fungal pathogen, causes severe damage (gray mold rot) on a large number of economically important fruits, vegetables, and ornamental crops at both pre- and post-harvest, which renders fruits unmarketable. Penicillium expansum is a widely spread fungal pathogen that cau...

  17. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations

    Treesearch

    Paul W. Bradley; Stephanie S. Gervasi; Jessica Hua; Rickey D. Cothran; Rick A. Relyea; Deanna H. Olson; Andrew R. Blaustein

    2015-01-01

    Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However,...

  18. FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici

    USDA-ARS?s Scientific Manuscript database

    Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat st...

  19. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  20. Storage of resting spores of the gypsy moth fungal pathogen, Entomophaga maimaiga

    Treesearch

    Ann E. Hajek; Micheal M. Wheeler; Callie C. Eastburn; Leah S. Bauer

    2001-01-01

    The fungal pathogen, Entomophaga maimaiga causes epizootics in populations of the important North American forest defoliator gypsy moth (Lymantria dispar). Increasing use of thisfungus for biological control is dependent on our ability to produce and manipulate the long-lived overwintering resting spores (azygospores). E. maimaiga resting spores undergo obligate...

  1. Community ecology of fungal pathogens on Bromus tectorum [Chapter 7

    Treesearch

    Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

    2016-01-01

    Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact...

  2. Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2-/- mice.

    PubMed

    Verma, A H; Bueter, C L; Rothenberg, M E; Deepe, G S

    2017-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2 -/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2 -/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.

  3. Study of Pathogens of Fungal Keratitis and the Sensitivity of Pathogenic Fungi to Therapeutic Agents with the Disk Diffusion Method.

    PubMed

    Wang, Lulu; Wang, Liya; Han, Lei; Yin, Weijing

    2015-01-01

    To identify the causative fungi of fungal keratitis, test their susceptibility to antifungal agents with the disk diffusion method and study the relationship between the organisms, the inhibition zones and the clinical outcomes. 535 patients with fungal keratitis in one eye were included in this study. Pathogenic fungi were isolated by corneal scraping, identified by fungal cultivation and subjected to drug sensitivity tests conducted with the disk diffusion method. The patients were treated initially with voriconazole, terbinafine and natamycin eye drops for one week. Further treatment continued using the most effective drug according to the drug sensitivity results. The patients were followed up every week until three months after cured. The inhibition zones of fungi cultured with voriconazole, terbinafine and natamycin were compared. The relationship between inhibition zones and organism, organism and treatment results measure, and each treatment results measure and inhibition zones were evaluated. Of 535 patients, 53.84%, 19.25% and 26.91% were infected with Aspergillus, Fusarium and other fungi, respectively. Keratitis patients infected with Aspergillus keratitis had the worst outcome. The size of the inhibition zones of Aspergillus spp., Fusarium spp. and other fungal genera differed significantly in response to voriconazole, terbinafine and natamycin. The inhibition zone associated with natamycin correlated significantly with the clinical outcome of fungal keratitis (OR = 0.925), but no other such correlations were found for the other drugs tested. Aspergillus and Fusarium were the predominant pathogenic genera causing fungal keratitis in our patients. Among the causative fungi, infections due to Aspergillus spp. were associated with the worst outcomes. The inhibition zones of fungal isolates in response to natamycin significantly correlated with the treatment outcomes of keratitis. Specifically, the smaller the natamycin inhibition zone, the lower the probability that the fungal keratitis had been eliminated.

  4. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant.

    PubMed

    Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus

    2014-07-01

    Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

  5. Distribution and Identification of Endophytic Streptomyces Species from Schima wallichii as Potential Biocontrol Agents against Fungal Plant Pathogens.

    PubMed

    Passari, Ajit K; Mishra, Vineet K; Gupta, Vijai K; Saikia, Ratul; Singh, Bhim P

    2016-08-26

    The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.

  6. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen.

    PubMed

    Wei, Yangdou; Shen, Wenyun; Dauk, Melanie; Wang, Feng; Selvaraj, Gopalan; Zou, Jitao

    2004-01-02

    Unidirectional transfer of nutrients from plant host to pathogen represents a most revealing aspect of the parasitic lifestyle of plant pathogens. Whereas much effort has been focused on sugars and amino acids, the identification of other significant metabolites is equally important for comprehensive characterization of metabolic interactions between plants and biotrophic fungal pathogens. Employing a strategy of targeted gene disruption, we generated a mutant strain (gpdhDelta) defective in glycerol-3-phosphate dehydrogenase in a hemibiotrophic plant pathogen, Colletotrichum gloeosporioides f.sp. malvae. The gpdhDelta strain had severe defects in carbon utilization as it could use neither glucose nor amino acids for sustained growth. Although the mutant mycelia were able to grow on potato dextrose agar medium, they displayed arrhythmicity in growth and failure to conidiate. The metabolic defect of gpdhDelta could be entirely ameliorated by glycerol in chemically defined minimal medium. Furthermore, glycerol was the one and only metabolite that could restore rhythmic growth and conidiation of gpdhDelta. Despite the profound defects in carbon source utilization, in planta the gpdhDelta strain exhibited normal pathogenicity, proceeded normally in its life cycle, and produced abundant conidia. Analysis of plant tissues at the peripheral zone of fungal infection sites revealed a time-dependent reduction in glycerol content. This study provides strong evidence for a role of glycerol as a significant transferred metabolite from plant to fungal pathogen.

  7. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    NASA Astrophysics Data System (ADS)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to be the driver of the degradation process. Thus, earthworms contribute to a sustainable control of fungal pathogens like Fusarium and its mycotoxins in wheat straw by reducing the risk of plant diseases and environmental pollution as ecosystem services. Further studies are planned within the EU-project SoilMan under the BiodivERsA network. In context of the suppression of fungal plant pathogens and the detoxification of their mycotoxins by soil organisms in agroecosystems it is hypothesised that (1) processes related to services or disservices are induced and directed by abundance and activity of functional groups of soil biota; (2) dynamics and interaction in the soil biota community control ecosystem function and services.

  8. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections

    PubMed Central

    Reeder, Sophia M.; Palmer, Jonathan M.; Prokkola, Jenni M.; Lilley, Thomas M.; Reeder, DeeAnn M.

    2017-01-01

    ABSTRACT White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases. PMID:28614673

  9. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections.

    PubMed

    Reeder, Sophia M; Palmer, Jonathan M; Prokkola, Jenni M; Lilley, Thomas M; Reeder, DeeAnn M; Field, Kenneth A

    2017-11-17

    White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.

  10. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  11. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  12. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  13. Genome‐wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata

    PubMed Central

    Guo, Yanan; Sim, Andre D.; Kabir, M. Shahjahan; Chettri, Pranav; Ozturk, Ibrahim K.; Hunziker, Lukas; Ganley, Rebecca J.; Cox, Murray P.

    2015-01-01

    Summary We present genome‐wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal‐specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up‐regulation of genes encoding fungal cell wall‐modifying enzymes and signalling proteins. Later necrotrophic stages show the up‐regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in‐depth through‐time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host. PMID:25919703

  14. Effect of Commercial Cyanobacteria Products on the Growth and Antagonistic Ability of Some Bioagents under Laboratory Conditions

    PubMed Central

    El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.

    2013-01-01

    Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948

  15. The impact of the postharvest environment on the viability and virulence of decay fungi.

    PubMed

    Liu, Jia; Sui, Yuan; Wisniewski, Michael; Xie, Zhigang; Liu, Yiqing; You, Yuming; Zhang, Xiaojing; Sun, Zhiqiang; Li, Wenhua; Li, Yan; Wang, Qi

    2018-07-03

    Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resistance and pathogen virulence. Both of these processes, however, are significantly impacted by environmental factors, such as temperature, UV, oxidative stress, and water activity. In the present review, the impact of various physical postharvest treatments (e.g., heat and UV) on the viability and virulence of postharvest pathogens is reviewed and discussed. Oxidative injury, protein impairment, and cell wall degradation have all been proposed as the mechanisms by which these abiotic stresses reduce fungal viability and pathogenicity. The response of decay fungi to pH and the ability of pathogens to modulate the pH of the host environment also affect pathogenicity. The effects of the manipulation of the postharvest environment by ethylene, natural edible coatings, and controlled atmosphere storage on fungal viability are also discussed. Lastly, avenues of future research are proposed.

  16. Valley fever: finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection.

    PubMed

    Litvintseva, Anastasia P; Marsden-Haug, Nicola; Hurst, Steven; Hill, Heather; Gade, Lalitha; Driebe, Elizabeth M; Ralston, Cindy; Roe, Chandler; Barker, Bridget M; Goldoft, Marcia; Keim, Paul; Wohrle, Ron; Thompson, George R; Engelthaler, David M; Brandt, Mary E; Chiller, Tom

    2015-01-01

    We used real-time polymerase chain reaction and culture to demonstrate persistent colonization of soils by Coccidioides immitis, an agent of valley fever, in Washington State linked to recent human infections and located outside the endemic range. Whole-genome sequencing confirmed genetic identity between isolates from soil and one of the case-patients. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions.

    PubMed

    Kidane, Yared H; Lawrence, Christopher; Murali, T M

    2013-10-07

    Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host's tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc.

  18. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions

    PubMed Central

    2013-01-01

    Background Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host’s tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host’s tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. Results In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Conclusions Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc PMID:24099000

  19. Live-cell Video Microscopy of Fungal Pathogen Phagocytosis

    PubMed Central

    Lewis, Leanne E.; Bain, Judith M.; Okai, Blessing; Gow, Neil A.R.; Erwig, Lars Peter

    2013-01-01

    Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a broad range of dynamic processes, including cell migration, replication and vesicular trafficking. Here we describe in detail how to prepare host and fungal cells, and to conduct the video microscopy experiments. These methods can provide a user-guide for future studies with other phagocytes and microorganisms. PMID:23329139

  20. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    PubMed

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-04

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  2. Factors related to the distribution and prevalence of the fungal pathogen Batrachochytrium dentrobatidis in Rana cascadae and other amphibians in the Klamath Mountains

    Treesearch

    Jonah Piovia-Scott; Karen L. Pope; Sharon P. Lawler; Esther M. Cole; Janet E. Foley

    2011-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis, has been associated with declines and extinctions of montane amphibians worldwide. To gain insight into factors affecting its distribution and prevalence we focus on the amphibian community of the Klamath Mountains in northwest...

  3. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, while plants in turn utilize immune receptors to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and V. alb...

  4. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    USDA-ARS?s Scientific Manuscript database

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  5. Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans.

    PubMed

    Raj, Shriya; Nazemidashtarjandi, Saeed; Kim, Jihyun; Joffe, Luna; Zhang, Xiaoxue; Singh, Ashutosh; Mor, Visesato; Desmarini, Desmarini; Djordjevic, Julianne; Raleigh, Daniel P; Rodrigues, Marcio L; London, Erwin; Del Poeta, Maurizio; Farnoud, Amir M

    2017-11-01

    Fungal glucosylceramide (GlcCer) is a plasma membrane sphingolipid in which the sphingosine backbone is unsaturated in carbon position 8 (C8) and methylated in carbon position 9 (C9). Studies in the fungal pathogen, Cryptococcus neoformans, have shown that loss of GlcCer synthase activity results in complete loss of virulence in the mouse model. However, whether the loss of virulence is due to the lack of the enzyme or to the loss of the sphingolipid is not known. In this study, we used genetic engineering to alter the chemical structure of fungal GlcCer and studied its effect on fungal growth and pathogenicity. Here we show that unsaturation in C8 and methylation in C9 is required for virulence in the mouse model without affecting fungal growth in vitro or common virulence factors. However, changes in GlcCer structure led to a dramatic susceptibility to membrane stressors resulting in increased cell membrane permeability and rendering the fungal mutant unable to grow within host macrophages. Biophysical studies using synthetic vesicles containing GlcCer revealed that the saturated and unmethylated sphingolipid formed vesicles with higher lipid order that were more likely to phase separate into ordered domains. Taken together, these studies show for the first time that a specific structure of GlcCer is a major regulator of membrane permeability required for fungal pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum

    PubMed Central

    Duba, Adrian; Goriewa-Duba, Klaudia; Wachowska, Urszula

    2018-01-01

    Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonospora nodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat–pathogens interactions which can be used to develop new strategies for controlling fungal diseases. PMID:29642627

  7. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response.

    PubMed

    Carreto-Binaghi, Laura Elena; Aliouat, El Moukhtar; Taylor, Maria Lucia

    2016-06-01

    Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs' surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host's lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins' regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.

  8. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

  9. Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms.

    PubMed

    Chen, Shan; Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J

    2018-02-01

    Circadian rhythms govern immune cell function, giving rise to time-of-day variation in the recognition and clearance of bacterial or viral pathogens; to date, however, no such regulation of the host-fungal interaction has been described. In this report, we use murine models to explore circadian control of either fungal-macrophage interactions in vitro or pathogen clearance from the lung in vivo. First, we show that expression of the important fungal pattern recognition receptor Dectin-1 ( clec7a), from either bone marrow-derived or peritoneum-derived macrophages, is not under circadian regulation at either the level of transcript or cell surface protein expression. Consistent with this finding, the phagocytic activity of macrophages in culture against spores of the pathogen Aspergillus fumigatus also did not vary over time. To account for the multiple cell types and processes that may be coordinated in a circadian fashion in vivo, we examined the clearance of A. fumigatus from the lungs of immunocompetent mice. Interestingly, animals inoculated at night demonstrated a 2-fold enhancement in clearance compared with animals inoculated in the morning. Taken together, our data suggest that while molecular recognition of fungi by immune cells may not be circadian, other processes in vivo may still allow for time-of-day differences in fungal clearance from the lung.

  10. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Waukee, IA; Ellanskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Gilliam, Jacob T [Norwalk, IA; Hunter-Cevera, Jennie [Elliott City, MD; Presnail, James K [Avondale, PA; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2009-09-15

    The invention relates to antifungal compositions and methods for protecting a plant from a fungal pathogen. Compositions including antifungal polypeptides isolated from a fungal fermentation broth are provided.

  11. Expression of a Novel Antimicrobial Peptide Penaeidin4-1 in Creeping Bentgrass (Agrostis stolonifera L.) Enhances Plant Fungal Disease Resistance

    PubMed Central

    Zhou, Man; Hu, Qian; Li, Zhigang; Li, Dayong; Chen, Chin-Fu; Luo, Hong

    2011-01-01

    Background Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response. Methodology/Principal Findings The antimicrobial peptide - Penaeidin4-1 (Pen4-1) from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4). Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants. Conclusion/Significance Our results demonstrate the effectiveness of Pen4-1 in a perennial species against fungal pathogens and suggest a potential strategy for engineering broad-spectrum fungal disease resistance in crop species. PMID:21931807

  12. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    PubMed Central

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056

  13. Antifungal activity and fungal metabolism of steroidal glycosides of Easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2011-06-08

    Botrytis cinerea Pers. Fr. is a plant pathogenic fungus and the causal organism of blossom blight of Easter lily (Lilium longiflorum Thunb.). Easter lily is a rich source of steroidal glycosides, compounds which may play a role in the plant-pathogen interaction of Easter lily. Five steroidal glycosides, including two steroidal glycoalkaloids and three furostanol saponins, were isolated from L. longiflorum and evaluated for fungal growth inhibition activity against B. cinerea, using an in vitro plate assay. All of the compounds showed fungal growth inhibition activity; however, the natural acetylation of C-6''' of the terminal glucose in the steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (2), increased antifungal activity by inhibiting the rate of metabolism of the compound by B. cinerea. Acetylation of the glycoalkaloid may be a plant defense response to the evolution of detoxifying mechanisms by the pathogen. The biotransformation of the steroidal glycoalkaloids by B. cinerea led to the isolation and characterization of several fungal metabolites. The fungal metabolites that were generated in the model system were also identified in Easter lily tissues infected with the fungus by LC-MS. In addition, a steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (6), was identified as both a fungal metabolite of the steroidal glycoalkaloids and as a natural product in L. longiflorum for the first time.

  14. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual function protein that facilitates infection while protecting from wheat-produced chitinases

    USDA-ARS?s Scientific Manuscript database

    All fungal plant pathogens produce effectors to manipulate the plant immune system to colonize and gain nutrients from the plant cell. Much is known about how fungal pathogens classified as biotrophs use effectors to interact with their hosts and how the host responds, however, less is known about ...

  15. Insight into tradeoff between wood decay and parasitism from the genome of a fungal forest pathogen

    Treesearch

    Ake Olson; Andrea Aerts; Fred Asiegbu; Lassaad Belbahri; Ourdia Bouzid; Anders Broberg; Bjorn Canback; Pedro M. Coutinho; Dan Cullen; Kerstin Dalman; Giuliana Deflorio; Linda T.A. van Diepen; Christophe Dunand; Sebastien Duplessis; Mikael Durling; Paolo Gonthier; Jane Grimwood; Carl Gunnar Fossdal; David Hansson; Bernard Henrissat; Ari Hietala; Kajsa Himmelsrand; Dirk Hoffmeister; Nils Hogberg; Timothy Y. James; Magnus Karlsson; Annegret Kohler; Ursula Kues; Yong-Hwan Lee; Yao-Cheng Lin; Marten Lind; Erika Lindquist; Vincent Lombard; Susan Lucas; Karl Lunden; Emmanuelle Morin; Claude Murat; Jongsun Park; Tommaso Raffaello; Pierre Rouze; Asaf Salamov; Jeremy Schmutz; Halvor Solheim; Jerry Stahlberg; Heriberto Velez; Ronald P. deVries; Ad Wiebenga; Steve Woodward; Igor Yakovlev; Matteo Garbelotto; Francis Martin; Igor V. Grigoriev; Jan Stenlid

    2012-01-01

    • Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. • We report the annotated genome sequence and transcript...

  16. Molecular Identification of Human Fungal Pathogens

    DTIC Science & Technology

    2007-03-01

    in mycology . Unfortunately, individuals with this training are in short supply in both civilian and military hospitals. The objective of this study...is to enable laboratory technicians to make proper identifications without experience in mycology by using standardized techniques developed in...regardless of mycological expertise, to identify any human fungal pathogen faster and more accurately than is presently possible, using a single

  17. Eosinophils Subvert Host Resistance to an Intracellular Pathogen by Instigating Non-Protective IL-4 in CCR2−/− Mice

    PubMed Central

    Verma, Akash H.; Bueter, Chelsea L.; Rothenberg, Marc E.; Deepe, George S.

    2016-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases, however, their influence on intracellular pathogens is less clear. We previously reported that CCR2−/− mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated IL-4 response. We sought to identify the cellular source promulgating interleukin (IL)-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2−/− animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity. PMID:27049063

  18. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.

    PubMed

    Mukherjee, Krishnendu; Vilcinskas, Andreas

    2018-01-01

    Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.

  19. Accessories make the outfit: Accessory Chromosomes and other dispensable DNA regions in plant-pathogenic Fungi.

    PubMed

    Bertazzoni, Stefania; Williams, Angela; Jones, Darcy A B; Syme, Robert A; Tan, Kar-Chun; Hane, James Kyawzwar

    2018-04-17

    Fungal pathogen genomes can often be divided into core and accessory regions. Accessory regions may be comprised of either accessory regions (ARs) within core chromosomes (CCs), or wholly-dispensable (accessory) chromosomes (ACs). Fungal ACs and ARs typically accumulate mutations and structural rearrangements more rapidly over time than CCs, and many harbour genes relevant to host-pathogen interactions. These regions are of particular interest in plant pathology and include host-specific virulence factors and secondary metabolite synthesis gene clusters. This review outlines known ACs and ARs in fungal genomes, methods used for their detection, their common properties that differentiate them from the core genome, and what is currently known of their various roles in pathogenicity. Reports on the evolutionary processes generating and shaping AC/AR compartments are discussed, including repeat induced point mutation (RIP) and breakage-fusion-bridge (BFB) cycles. Previously ACs have been studied extensively within key genera including Fusarium, Zymoseptoria and Alternaria, but are growing in their frequency of observation and perceived importance across a wider range of fungal species. Recent advances in sequencing technologies permit affordable genome assembly and re-sequencing of populations that will facilitate further discovery and routine screening of ACs.

  20. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions.

    PubMed

    Shalaby, Samer; Horwitz, Benjamin A

    2015-08-01

    Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.

  1. Plant hormones: a fungal point of view.

    PubMed

    Chanclud, Emilie; Morel, Jean-Benoit

    2016-10-01

    Most classical plant hormones are also produced by pathogenic and symbiotic fungi. The way in which these molecules favour the invasion of plant tissues and the development of fungi inside plant tissues is still largely unknown. In this review, we examine the different roles of such hormone production by pathogenic fungi. Converging evidence suggests that these fungal-derived molecules have potentially two modes of action: (i) they may perturb plant processes, either positively or negatively, to favour invasion and nutrient uptake; and (ii) they may also act as signals for the fungi themselves to engage appropriate developmental and physiological processes adapted to their environment. Indirect evidence suggests that abscisic acid, gibberellic acid and ethylene produced by fungi participate in pathogenicity. There is now evidence that auxin and cytokinins could be positive regulators required for virulence. Further research should establish whether or not fungal-derived hormones act like other fungal effectors. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  2. Secondary metabolites in fungus-plant interactions

    PubMed Central

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  3. Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens.

    PubMed

    López-García, B; Hernández, M; Segundo, B S

    2012-07-01

    This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0.3 μmol l(-1) of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Assessment of Fungal Growth in Liquid Cultures and Bioassay of Toxic Products.

    ERIC Educational Resources Information Center

    Isaac, Susan; And Others

    1988-01-01

    Outlined is a procedure for the assessment of fungal growth under different cultural conditions, together with a demonstration of the toxic nature of exudates released from a fungal pathogen during growth in culture, using a simple bioassay. (Author/CW)

  5. A fungal metallo-beta-lactamase necessary for biotransformation of maize phytoprotectant compounds

    USDA-ARS?s Scientific Manuscript database

    Xenobiotic compounds such as phytochemicals, microbial metabolites, and agrochemicals can impact the diversity and frequency of fungal species occurring in agricultural environments. Resistance to xenobiotics may allow plant pathogenic fungi to dominate the overall fungal community, with potential ...

  6. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.

    PubMed

    Briones-Martin-Del-Campo, Marcela; Orta-Zavalza, Emmanuel; Juarez-Cepeda, Jacqueline; Gutierrez-Escobedo, Guadalupe; Cañas-Villamar, Israel; Castaño, Irene; De Las Peñas, Alejandro

    2014-01-01

    Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  7. [Acute encephalitis. Neuropsychiatric manifestations as expression of influenza virus infection].

    PubMed

    Moreno-Flagge, Noris; Bayard, Vicente; Quirós, Evelia; Alonso, Tomás

    2009-01-01

    The aim is to review the encephalitis in infants and adolescents as well as its etiology, clinical manifestation, epidemiology, physiopathology, diagnostic methods and treatment, and the neuropsyquiatric signs appearing an influenza epidemy. Encephalitis is an inflammation of the central nervous system (CNS) which involves the brain. The clinical manifestations usually are: headache, fever and confusional stage. It could also be manifested as seizures, personality changes, or psiqyiatric symptoms. The clinical manifestations are related to the virus and the cell type affected in the brain. A meningitis or encephalopathy need to be ruled out. It could be present as an epidemic or isolated form, beeing this the most frequent form. It could be produced by a great variety of infections agents including virus, bacterias, fungal and parasitic. Viral causes are herpesvirus, arbovirus, rabies and enterovirus. Bacterias such as Borrelia burgdorferi, Rickettsia and Mycoplasma neumoniae. Some fungal causes are: Coccidioides immitis and Histoplasma capsulatum. More than 100 agents are related to encephalitis. The diagnosis of encephalitis is a challenge for the clinician and its infectious etiology is clear in only 40 to 70% of all cases. The diagnosis of encephalitis can be established with absolute certainty only by the microscopic examination of brain tissue. Epidemiology is related to age of the patients, geographic area, season, weather or the host immune system. Early intervention can reduce the mortality rate and sequels. We describe four patients with encephalitis and neuropsychiatric symptoms during an influenza epidemic.

  8. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    NASA Astrophysics Data System (ADS)

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  9. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    PubMed Central

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents. PMID:28134269

  10. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    PubMed

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans

    PubMed Central

    2017-01-01

    ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618

  12. Augmenting the efficacy of fungal and mycotoxin control via chemosensitization

    USDA-ARS?s Scientific Manuscript database

    Antimycotic chemosensitization could serve as an effective method for control of fungal pathogens. In a chemo-biological platform to enhance antimycotic susceptibility of fungi or to overcome fungal tolerance to conventional antimycotic agents, the model yeast S. cerevisiae could be a functional too...

  13. Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity.

    PubMed

    Sterkel, Alana K; Lorenzini, Jenna L; Fites, J Scott; Subramanian Vignesh, Kavitha; Sullivan, Thomas D; Wuthrich, Marcel; Brandhorst, Tristan; Hernandez-Santos, Nydiaris; Deepe, George S; Klein, Bruce S

    2016-03-09

    Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    PubMed

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M. Perry against crown rot and anthracnose pathogens isolated from banana.

    PubMed

    Ranasinghe, L; Jayawardena, B; Abeywickrama, K

    2002-01-01

    To develop a post-harvest treatment system against post-harvest fungal pathogens of banana using natural products. Colletotrichum musae was isolated and identified as the causative agent responsible for anthracnose peel blemishes while three fungi, namely Lasiodiplodia theobromae, C. musae and Fusarium proliferatum, were identified as causative agents responsible for crown rot. During the liquid bioassay, cinnamon [Cinnamomum zeylanicum (L.)] leaf, bark and clove [Syzygium aromaticum (L.)] oils were tested against the anthracnose and crown rot pathogens. The test oils were fungistatic and fungicidal against the test pathogens within a range of 0.03-0.11% (v/v). Cinnamon and clove essential oils could be used as antifungal agents to manage post harvest fungal diseases of banana. Cinnamon and clove essential oil could be used as alternative post-harvest treatments on banana. Banana treated with essential oil is chemically safe and acceptable to consumers. Benomyl (Benlate), which is currently used to manage fungal pathogens, can cause adverse health effects and could be replaced with volatile essential oils.

  16. Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata

    PubMed Central

    Schuck, Stefan; Baldwin, Ian T.

    2014-01-01

    The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context. PMID:25036191

  17. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  18. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics.

    PubMed

    Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe

    2015-05-08

    Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.

  19. The role of effectors and host immunity in plant-necrotrophic fungal interactions.

    PubMed

    Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang

    2014-01-01

    Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.

  20. System-level impact of mitochondria on fungal virulence: to metabolism and beyond

    PubMed Central

    Calderone, Richard; Li, Dongmei; Traven, Ana

    2015-01-01

    The mitochondrion plays wide-ranging roles in eukaryotic cell physiology. In pathogenic fungi, this central metabolic organelle mediates a range of functions related to disease, from fitness of the pathogen to developmental and morphogenetic transitions to antifungal drug susceptibility. In this review, we present the latest findings in this area. We focus on likely mechanisms of mitochondrial impact on fungal virulence pathways through metabolism and stress responses, but also potentially via control over signaling pathways. We highlight fungal mitochondrial proteins that lack human homologs, and which could be inhibited as a novel approach to antifungal drug strategy. PMID:26002841

  1. Fungal flora and aflatoxin contamination in Pakistani wheat kernels (Triticum aestivum L.) and their attribution in seed germination.

    PubMed

    Asghar, Muhammad Asif; Ahmed, Aftab; Iqbal, Javed; Zahir, Erum; Nauman, Hina

    2016-07-01

    This study aimed to isolate fungal pathogens and to subsequently quantify aflatoxin (AF; B 1  + B 2  + G 1  + G 2 ) contamination in wheat crops grown in Pakistan. Accordingly, a total of 185 wheat samples were collected from different areas of Pakistan and numerous potent fungal pathogens were isolated. AF contamination attributed to the presence of intoxicating fungal pathogens and resulting metabolic activities were quantified using a high performance liquid chromatography-fluorescence detector coupled with postcolumn derivatization. Additionally, the effect of fungal pathogens on seed germination was also examined. The results obtained showed that 50% of tested wheat samples were found to be contaminated with a diverse range of fungal species. The rate of recurrence of fungal pathogens were Aspergillus 31%, Penicillium 9%, Fusarium 8%, Rhizopus 3%, and Alternaria 2%. The presence of Tilletia indica and Claviceps purpurea species was found to be inevident in all tested wheat samples. AFB 1 contamination was detected in 48 (26.0%) samples and AFB 2 in 13 (7.0%) samples. AFG 1 and AFG 2 were not found in any of the tested samples. The contamination range of AFB 1 and AFB 2 was 0.05-4.78 μg/kg and 0.02-0.48 μg/kg, respectively. The total amount of AFs (B 1  + B 2 ) found in 48 (26.0%) samples had a mean level of 0.53 ± 0.40 μg/kg and a contamination range of 0.02-5.26 μg/kg. The overall results showed that in 137 (74.0%) samples, AFs were not found within detectable limits. Furthermore, in 180 (97.2%) samples, AF levels were found to be below the maximum tolerated levels (MTL) recommended by the European Union (4 μg/kg). In five (2.7%) samples, AF contamination was higher than the MTL of the European Union. However, these samples were fit for human consumption with reference to the MTL (20 μg/kg) assigned by the USA (Food and Drug Administration and Food and Agriculture Organization) and Pakistan (Pakistan Standards and Quality Control Authority). Germination rates in healthy and contaminated wheat kernels were 84.6% and 45.2%, respectively. Based on the obtained results, it was concluded that the levels of fungal pathogen and AF contamination in Pakistani-grown wheat are not a potential threat to consumer health. However, control procedures along with a strict monitoring policy are mandatory to further minimize the prevalence of fungal carriers and the potency of AFs in crops cultivated in Pakistan. Copyright © 2016. Published by Elsevier B.V.

  2. Antioxidant genes of plants and fungal pathogens are distinctly regulated during disease development in different Rhizoctonia solani pathosystems.

    PubMed

    Samsatly, Jamil; Copley, Tanya R; Jabaji, Suha H

    2018-01-01

    Biotic stress, as a result of plant-pathogen interactions, induces the accumulation of reactive oxygen species in the cells, causing severe oxidative damage to plants and pathogens. To overcome this damage, both the host and pathogen have developed antioxidant systems to quench excess ROS and keep ROS production and scavenging systems under control. Data on ROS-scavenging systems in the necrotrophic plant pathogen Rhizoctonia solani are just emerging. We formerly identified vitamin B6 biosynthetic machinery of R. solani AG3 as a powerful antioxidant exhibiting a high ability to quench ROS, similar to CATALASE (CAT) and GLUTATHIONE S-TRANSFERASE (GST). Here, we provide evidence on the involvement of R. solani vitamin B6 biosynthetic pathway genes; RsolPDX1 (KF620111.1), RsolPDX2 (KF620112.1), and RsolPLR (KJ395592.1) in vitamin B6 de novo biosynthesis by yeast complementation assays. Since gene expression studies focusing on oxidative stress responses of both the plant and the pathogen following R. solani infection are very limited, this study is the first coexpression analysis of genes encoding vitamin B6, CAT and GST in plant and fungal tissues of three pathosystems during interaction of different AG groups of R. solani with their respective hosts. The findings indicate that distinct expression patterns of fungal and host antioxidant genes were correlated in necrotic tissues and their surrounding areas in each of the three R. solani pathosystems: potato sprout-R. solani AG3; soybean hypocotyl-R. solani AG4 and soybean leaves-R. solani AG1-IA interactions. Levels of ROS increased in all types of potato and soybean tissues, and in fungal hyphae following infection of R. solani AGs as determined by non-fluorescence and fluorescence methods using H2DCF-DA and DAB, respectively. Overall, we demonstrate that the co-expression and accumulation of certain plant and pathogen ROS-antioxidant related genes in each pathosystem are highlighted and might be critical during disease development from the plant's point of view, and in pathogenicity and developing of infection structures from the fungal point of view.

  3. Antioxidant genes of plants and fungal pathogens are distinctly regulated during disease development in different Rhizoctonia solani pathosystems

    PubMed Central

    Samsatly, Jamil; Copley, Tanya R.

    2018-01-01

    Biotic stress, as a result of plant-pathogen interactions, induces the accumulation of reactive oxygen species in the cells, causing severe oxidative damage to plants and pathogens. To overcome this damage, both the host and pathogen have developed antioxidant systems to quench excess ROS and keep ROS production and scavenging systems under control. Data on ROS-scavenging systems in the necrotrophic plant pathogen Rhizoctonia solani are just emerging. We formerly identified vitamin B6 biosynthetic machinery of R. solani AG3 as a powerful antioxidant exhibiting a high ability to quench ROS, similar to CATALASE (CAT) and GLUTATHIONE S-TRANSFERASE (GST). Here, we provide evidence on the involvement of R. solani vitamin B6 biosynthetic pathway genes; RsolPDX1 (KF620111.1), RsolPDX2 (KF620112.1), and RsolPLR (KJ395592.1) in vitamin B6 de novo biosynthesis by yeast complementation assays. Since gene expression studies focusing on oxidative stress responses of both the plant and the pathogen following R. solani infection are very limited, this study is the first coexpression analysis of genes encoding vitamin B6, CAT and GST in plant and fungal tissues of three pathosystems during interaction of different AG groups of R. solani with their respective hosts. The findings indicate that distinct expression patterns of fungal and host antioxidant genes were correlated in necrotic tissues and their surrounding areas in each of the three R. solani pathosystems: potato sprout-R. solani AG3; soybean hypocotyl-R. solani AG4 and soybean leaves-R. solani AG1-IA interactions. Levels of ROS increased in all types of potato and soybean tissues, and in fungal hyphae following infection of R. solani AGs as determined by non-fluorescence and fluorescence methods using H2DCF-DA and DAB, respectively. Overall, we demonstrate that the co-expression and accumulation of certain plant and pathogen ROS-antioxidant related genes in each pathosystem are highlighted and might be critical during disease development from the plant’s point of view, and in pathogenicity and developing of infection structures from the fungal point of view. PMID:29466404

  4. Seed treatments to control seedborne fungal pathogens of vegetable crops.

    PubMed

    Mancini, Valeria; Romanazzi, Gianfranco

    2014-06-01

    Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.

  5. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence.

    PubMed

    Frick, Winifred F; Cheng, Tina L; Langwig, Kate E; Hoyt, Joseph R; Janicki, Amanda F; Parise, Katy L; Foster, Jeffrey T; Kilpatrick, A Marm

    2017-03-01

    Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations. © 2016 by the Ecological Society of America.

  6. Morphological characteristics and pathogenicity of fungi associated with Roselle (Hibiscus Sabdariffa) diseases in Penang, Malaysia.

    PubMed

    Eslaminejad, Touba; Zakaria, Maziah

    2011-11-01

    Roselle, or Jamaica sorrel (Hibiscus sabdariffa) is a popular vegetable in many tropical regions, cultivated for its leaves, seeds, stems and calyces which, the dried calyces are used to prepare tea, syrup, jams and jellies and as beverages. The main objectives of this study were to identify and characterise fungal pathogens associated with Roselle diseases based on their morphological and cultural characteristics and to determine the pathogenicity of four fungi infecting Roselle seedlings, namely Phoma exigua, Fusarium nygamai, Fusarium tgcq and Rhizoctonia solani in Penang. A total of 200 fungal isolates were obtained from 90 samples of symptomatic Roselle tissues. The isolates were identified based on cultural and morphological characteristics, as well as their pathogenicity. The fungal pathogen most frequently isolated was P. exigua (present in 45% of the samples), followed by F. nygamai (25%), Rhizoctonia solani (19%) and F. camptoceras (11%). Pathogenicity tests showed that P. exigua, F. nygamai, F. camptoceras and R. solani were able to infect both wounded and unwounded seedlings with different degrees of severity as indicated by the Disease severity (DS). R. solani was the most pathogenic fungus affecting both wounded and unwounded Roselle seedlings, followed by P. exigua that was highly pathogenic on wounded seedlings. F. nygamai was less pathogenic while the least pathogenic fungus was F. camptoceras, infecting only the unwounded seedlings but, surprisingly, not the wounded plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections.

    PubMed

    Taghavi, Mehdi; Khosravi, Alireza; Mortaz, Esmaeil; Nikaein, Donya; Athari, Seyyed Shamsadin

    2017-08-05

    Recent years have seen the rise of invasive fungal infections, which are mostly due to the increase in patients. Three major opportunistic fungal species in human are Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans that pose the biggest concern for these immunocompromised patients' mortality. The growing occurrence of opportunistic fungal infections has sparked the interest to understand defense mechanisms against pathogenic fungi. Toll-like receptors (TLRs), as a part of innate immune system, play an important role for recognizing the invading microorganisms and initiating sufficient immune responses. Recent studies have revealed an integrated role for TLR, signaling inactivating immune defense mechanisms against exact fungi. Among TLRs, TLR2 and TLR4 are the major participants in fungi recognition. The present paper highlights the role of TLR participants in fungal recognition as well as their mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Tissue-Resident Macrophages in Fungal Infections.

    PubMed

    Xu, Shengjie; Shinohara, Mari L

    2017-01-01

    Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.

  9. Statistical modeling of valley fever data in Kern County, California

    NASA Astrophysics Data System (ADS)

    Talamantes, Jorge; Behseta, Sam; Zender, Charles S.

    2007-03-01

    Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it ( Coccidioides immitis) is normally soil-dwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.

  10. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study provides new evidence for bacterial VOC-elicited plant ISR that protects Arabidopsis plants from infection by the necrotrophic fungus B. cinerea. Our work reveals that bacterial VOCs primarily act via an indirect mechanism to elicit plant ISR, and have a major role in biocontrol against fungal pathogens. PMID:26941721

  11. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    PubMed

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  12. Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?

    PubMed Central

    Kumar, Dilip; Barad, Shiri; Sionov, Edward; Prusky, Dov B.

    2017-01-01

    Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit. PMID:28895896

  13. De novo Genome Assembly of the Fungal Plant Pathogen Pyrenophora semeniperda

    PubMed Central

    Soliai, Marcus M.; Meyer, Susan E.; Udall, Joshua A.; Elzinga, David E.; Hermansen, Russell A.; Bodily, Paul M.; Hart, Aaron A.; Coleman, Craig E.

    2014-01-01

    Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a biocontrol agent due to its effectiveness at killing seeds within the seed bank; however, few genetic resources exist for the fungus. Here, the genome of P. semeniperda isolate assembled from sequence reads of 454 pyrosequencing is presented. The total assembly is 32.5 Mb and includes 11,453 gene models encoding putative proteins larger than 24 amino acids. The models represent a variety of putative genes that are involved in pathogenic pathways typically found in necrotrophic fungi. In addition, extensive rearrangements, including inter- and intrachromosomal rearrangements, were found when the P. semeniperda genome was compared to P. tritici-repentis, a related fungal species. PMID:24475219

  14. Nutrition acquisition strategies during fungal infection of plants.

    PubMed

    Divon, Hege H; Fluhr, Robert

    2007-01-01

    In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.

  15. Biological activity of the mite Sancassania sp. (Acari: Acaridae) from bat guano associated with the pathogenic fungus Histoplasma capsulatum.

    PubMed

    Estrada-Bárcenas, Daniel A; Palacios-Vargas, José G; Estrada-Venegas, Edith; Klimov, Pavel B; Martínez-Mena, Alejandro; Taylor, Maria Lucia

    2010-03-01

    Mites and the mammal pathogenic fungus Histoplasma capsulatum are the major components of bat guano microbiota. Interactions between mites and H. capsulatum were evaluated under laboratory conditions. Acarid mites, mainly Sancassania sp., were the most abundant microarthropod in the sampled guano of the Mexican bat Tadarida brasiliensis mexicana and, based on its morphology, Sancassania sp. was similar to the cosmopolitan species Sancassania sphaerogaster. The mycophagous and vectoring activities of this mite were tested for H. capsulatum and two other fungal species, Sporothrix schenckii (pathogenic) and Aspergillus sclerotiorum (non-pathogenic). S. ca. sphaerogaster was able to reproduce in H. capsulatum and S. schenckii colonies, multiplying in great numbers under controlled fungal mycelial-phase culture conditions. H. capsulatum colonies were completely destroyed after 14 days of in vitro interaction with mites. In contrast, S. ca. sphaerogaster did not reproduce in A. sclerotiorum cultures. S. ca. sphaerogaster was found vectoring H. capsulatum, but not the two other fungal species studied.

  16. Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response.

    PubMed

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N; Kanwar, S S

    2017-02-01

    In the present study, different transcripts of Trichoderma harzianum ThHP-3 were evaluated for their response against four fungal pathogens Fusarium oxysporum, Colletotrichum capsici, Colletotrichum truncatum and Gloesercospora sorghi using RT-qPCR. The time course study of T. harzianum transcripts related to signal transduction, lytic enzymes, secondary metabolites and various transporters revealed variation in expression against four fungal pathogens. In a broader term, the transcripts were upregulated at various time intervals but the optimum expression of cyp3, abc, nrp, tga1, pmk, ech42 and glh20 varied with respect to host fungi. Additionally, the expression of transcripts related to transporters/cytochromes was also observed against Fusarium oxysporum after 96h whereas transcripts related to secondary metabolites and lytic enzymes showed significant difference in expression against Colletotrichum spp. from 72 to 96h. This is first study on transcriptomic response of T. harzianum against pathogenic fungi which shows their host specific response. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tissue age and plant genotype affect the microbiota of apple and pear bark.

    PubMed

    Arrigoni, Elena; Antonielli, Livio; Pindo, Massimo; Pertot, Ilaria; Perazzolli, Michele

    2018-06-01

    Plant tissues host complex fungal and bacterial communities, and their composition is determined by host traits such as tissue age, plant genotype and environmental conditions. Despite the importance of bark as a possible reservoir of plant pathogenic microorganisms, little is known about the associated microbial communities. In this work, we evaluated the composition of fungal and bacterial communities in the pear (Abate and Williams cultivars) and apple (Golden Delicious and Gala cultivars) bark of three/four-year-old shoots (old bark) or one-year-old shoots (young bark), using a meta-barcoding approach. The results showed that both fungal and bacterial communities are dominated by genera with ubiquitous attitudes, such as Aureobasidium, Cryptococcus, Deinococcus and Hymenobacter, indicating intense microbial migration to surrounding environments. The shoot age, plant species and plant cultivar influenced the composition of bark fungal and bacterial communities. In particular, bark communities included potential biocontrol agents that could maintain an equilibrium with potential plant pathogens. The abundance of fungal (e.g. Alternaria, Penicillium, Rosellinia, Stemphylium and Taphrina) and bacterial (e.g. Curtobacterium and Pseudomonas) plant pathogens was affected by bark age and host genotype, as well as those of fungal genera (e.g. Arthrinium, Aureobasidium, Rhodotorula, Sporobolomyces) and bacterial genera (e.g. Bacillus, Brevibacillus, Methylobacterium, Sphingomonas and Stenotrophomonas) with possible biocontrol and plant growth promotion properties. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Proteomics of survival structures of fungal pathogens.

    PubMed

    Loginov, Dmitry; Šebela, Marek

    2016-09-25

    Fungal pathogens are causal agents of numerous human, animal, and plant diseases. They employ various infection modes to overcome host defense systems. Infection mechanisms of different fungi have been subjected to many comprehensive studies. These investigations have been facilitated by the development of various '-omics' techniques, and proteomics has one of the leading roles in this regard. Fungal conidia and sclerotia could be considered the most important structures for pathogenesis as their germination is one of the first steps towards a host infection. They represent interesting objects for proteomic studies because of the presence of unique proteins with unexplored biotechnological potential required for pathogen viability, development and the subsequent host infection. Proteomic peculiarities of survival structures of different fungi, including those of biotechnological significance (e.g., Asperillus fumigatus, A. nidulans, Metarhizium anisopliae), in a dormant state, as well as changes in the protein production during early stages of fungal development are the subjects of the present review. We focused on biological aspects of proteomic studies of fungal survival structures rather than on an evaluation of proteomic approaches. For that reason, proteins that have been identified in this context are discussed from the point of view of their involvement in different biological processes and possible functions assigned to them. This is the first review paper summarizing recent advances in proteomics of fungal survival structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Transposable Elements as Stress Adaptive Capacitors Induce Genomic Instability in Fungal Pathogen Magnaporthe oryzae

    PubMed Central

    Chadha, Sonia; Sharma, Mradul

    2014-01-01

    A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. PMID:24709911

  20. Independent Subtilases Expansions in Fungi Associated with Animals

    PubMed Central

    Muszewska, Anna; Taylor, John W.; Szczesny, Pawel; Grynberg, Marcin

    2011-01-01

    Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive. PMID:21727238

  1. A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts*

    PubMed Central

    Prados-Rosales, Rafael C.; Roldán-Rodríguez, Raquel; Serena, Carolina; López-Berges, Manuel S.; Guarro, Josep; Martínez-del-Pozo, Álvaro; Di Pietro, Antonio

    2012-01-01

    The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity. PMID:22553200

  2. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi

    PubMed Central

    2011-01-01

    Background Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. Results 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. Conclusions Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens. PMID:21247460

  3. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids.

    PubMed

    Mor, Visesato; Rella, Antonella; Farnoud, Amir M; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B; Wiederhold, Nathan P; Fothergill, Annette W; Kirkpatrick, William R; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L; Luberto, Chiara; Nimrichter, Leonardo; Del Poeta, Maurizio

    2015-06-23

    Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals. Copyright © 2015 Mor et al.

  4. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    PubMed Central

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  5. Combining ALS-Inhibiting Herbicides with the Fungal Pathogen Mycoleptodiscus terrestris for Control of Hydrilla

    DTIC Science & Technology

    2009-07-01

    pyridinecarboxylic acid), have undergone registration and a third, bispyribac- sodium ( sodium 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy] benzoate ) is...evaluate the effectiveness of three ALS-inhibiting herbicides (penoxsulam, imazamox, and bispyribac- sodium ) and a fungal pathogen applied alone and in...and weights were recorded. Study 3 - Bispyribac- sodium + Mt. A concentrated stock solution of bispyribac- sodium was prepared by dissolving a

  6. Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis.

    PubMed

    Takahara, Hiroyuki; Dolf, Andreas; Endl, Elmar; O'Connell, Richard

    2009-08-01

    Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.

  7. Spatial and temporal dynamics of the colonization of Pinus radiata by Fusarium circinatum, of conidiophora development in the pith and of traumatic resin duct formation.

    PubMed

    Martín-Rodrigues, Noemí; Espinel, Santiago; Sanchez-Zabala, Joseba; Ortíz, Amaia; González-Murua, Carmen; Duñabeitia, Miren K

    2013-06-01

    · Fusarium circinatum causes pitch canker disease in a wide range of pine trees, including Pinus radiata, with devastating economic consequences. · To assess the spatial and temporal dynamics of growth of this pathogen in radiata pine, we examined the process of infection using both real-time PCR to quantify fungal biomass inside the plant host, and confocal microscopy using a green fluorescent protein (GFP)-tagged strain of F. circinatum. · Pathogen growth exhibited three distinct phases: an initial exponential increase in fungal biomass, concomitant with pathogen colonization of the cortex and phloem; a slowdown in fungal growth coincident with sporulating hyphae deep within the host; and stabilization of the fungal biomass when the first wilting symptoms appeared. The number of resin ducts in the xylem was found to increase in response to infection and the fungus grew inside both constitutive and traumatic resin ducts. · These results indicate that conidiation may contribute to the spatial or temporal dissemination of the pathogen. Moreover, the present findings raise the intriguing possibility that the generation of traumatic resin ducts may be of more benefit to the fungus than to the plant. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.

  8. Entomopathogenic fungi for mosquito control: A review

    PubMed Central

    Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem

    2004-01-01

    Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235

  9. Lack of Utility of the Lysis-Centrifugation Blood Culture Method for Detection of Fungemia in Immunocompromised Cancer Patients

    PubMed Central

    Creger, Richard J.; Weeman, Kisa E.; Jacobs, Michael R.; Morrissey, Anne; Parker, Pamela; Fox, Robert M.; Lazarus, Hillard M.

    1998-01-01

    We retrospectively compared the utility of a fungal isolation device (Isolator) versus conventional techniques for recovering fungal organisms from blood cultures obtained from neutropenic cancer patients. Positive cultures were deemed true pathogens, possible pathogens, or contaminants according to laboratory and clinical criteria. Fifty-three patients had 66 positive blood cultures for fungi, nine on multiple occasions. In 20 episodes true pathogens were recovered, 6 from broth medium alone, 4 from the Isolator system alone, and 10 from both systems. False-negative cultures were noted in 4 of 20 (20%) cases in which broth medium was used and in 6 of 20 (30%) cases in which the Isolator system was used. Possible pathogens were detected in 4 of 66 blood culture-positive cases. Forty-two positive cultures were considered contaminants, 1 collected from standard medium and 41 of 42 (98%) which grew only in Isolators. Eleven of 18 patients with true fungal infections expired as a result of infection, while 4 of 33 patients with a contaminant expired, none from a fungal cause. We do not advocate the routine use of Isolator tubes in the evaluation of the febrile, neutropenic patient due to the high rates of false positives and of contamination. PMID:9431970

  10. Isolation of potentially pathogenic fungi from selected pigeons' feeding sites in Karachi: A new dimension to health hazard.

    PubMed

    Naz, Sehar Afshan; Yaseen, Muhammad; Jabeen, Nusrat; Shafique, Maryam

    2017-06-01

    To determine the presence of pathogenic fungal strains in areas where pigeons are present in a large number. This study was conducted at the Federal Urdu University of Arts, Science and Technology, Karachi, from February 2015 to March2016, and comprised samples of soil contaminated with pigeons' excreta. The samples were collected from 20 different pigeon-feeding places in the city. These samples were processed for the isolation and identification of fungi by using standard conventional methods. The fungal strains isolated were also tested for their susceptibility to commonly used antifungal agents by disc diffusion technique. There were 105 samples. A wide variety of fungal strains belonging to different genera of Aspergillus, Rhizopus, Penicillium, Fusarium and Candida were isolated and identified by using conventional methods. The antifungal resistance pattern of these strains also depicts emergence of resistance against commonly used antifungal agents such as amphotericin B and fluconazole. The soil and air of places densely populated with pigeons were found to be loaded with fungal spores and many of them were potential pathogens.

  11. Hybrid histidine kinases in pathogenic fungi.

    PubMed

    Defosse, Tatiana A; Sharma, Anupam; Mondal, Alok K; Dugé de Bernonville, Thomas; Latgé, Jean-Paul; Calderone, Richard; Giglioli-Guivarc'h, Nathalie; Courdavault, Vincent; Clastre, Marc; Papon, Nicolas

    2015-03-01

    Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs. © 2015 John Wiley & Sons Ltd.

  12. The role of effectors and host immunity in plant–necrotrophic fungal interactions

    PubMed Central

    Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang

    2014-01-01

    Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi. PMID:25513773

  13. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers

    PubMed Central

    2018-01-01

    ABSTRACT Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. PMID:29871918

  14. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology.

    PubMed

    Tan, Kar-Chun; Ipcho, Simon V S; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S

    2009-09-01

    SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.

  15. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    PubMed

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  16. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective.

    PubMed

    Mousa, Walaa Kamel; Raizada, Manish N

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.

  17. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  18. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  19. Genome-wide identification, classification and expression analysis in fungal-plant interactions of cutinase gene family and functional analysis of a putative ClCUT7 in Curvularia lunata.

    PubMed

    Liu, Tong; Hou, Jumei; Wang, Yuying; Jin, Yazhong; Borth, Wayne; Zhao, Fengzhou; Liu, Zheng; Hu, John; Zuo, Yuhu

    2016-06-01

    Cutinase is described as playing various roles in fungal-plant pathogen interactions, such as eliciting host-derived signals, fungal spore attachment and carbon acquisition during saprophytic growth. However, the characteristics of the cutinase genes, their expression in compatible interactions and their roles in pathogenesis have not been reported in Curvularia lunata, an important leaf spot pathogen of maize in China. Therefore, a cutinase gene family analysis could have profound significance. In this study, we identified 13 cutinase genes (ClCUT1 to ClCUT13) in the C. lunata genome. Multiple sequence alignment showed that most fungal cutinase proteins had one highly conserved GYSQG motif and a similar DxVCxG[ST]-[LIVMF](3)-x(3)H motif. Gene structure analyses of the cutinases revealed a complex intron-exon pattern with differences in the position and number of introns and exons. Based on phylogenetic relationship analysis, C. lunata cutinases and 78 known cutinase proteins from other fungi were classified into four groups with subgroups, but the C. lunata cutinases clustered in only three of the four groups. Motif analyses showed that each group of cutinases from C. lunata had a common motif. Real-time PCR indicated that transcript levels of the cutinase genes in a compatible interaction between pathogen and host had varied expression patterns. Interestingly, the transcript levels of ClCUT7 gradually increased during early pathogenesis with the most significant up-regulation at 3 h post-inoculation. When ClCUT7 was deleted, pathogenicity of the mutant decreased on unwounded maize (Zea mays) leaves. On wounded maize leaves, however, the mutant caused symptoms similar to the wild-type strain. Moreover, the ClCUT7 mutant had an approximately 10 % reduction in growth rate when cutin was the sole carbon source. In conclusion, we identified and characterized the cutinase family genes of C. lunata, analyzed their expression patterns in a compatible host-pathogen interaction, and explored the role of ClCUT7 in pathogenicity. This work will increase our understanding of cutinase genes in other fungal-plant pathogens.

  20. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.

  1. Imaging O2 changes induced in tomato roots by fungal pathogen

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Turco, E.; Rodeghiero, M.; Bellin, A.

    2014-12-01

    In the last decade, planar optodes have demonstrated to be a useful non-invasive tool to monitor real time oxygen concentrations in a wide range of applications. However, only limited investigations have been carried out to explore the use of optodes in plant respiration studies. In particular, their use to study plant-pathogen interactions has been not deeply investigated. Here, we present for the first time an in vitro experimental setup capable to depict the dynamical effects of the fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol) on tomato roots by the use of a recently developed optical non-invasive optode oxygen sensor (Visisens, Presens, Germany). Fol is a soil-borne pathogen and the causal agent of wilt in tomato plants, a destructive worldwide disease. The interaction Fol-tomato is widely accepted as a model system in plant pathology. In this work, oxygen concentrations are monitored continuously in time and considered a proxy for root respiration and metabolic activity. The experimental procedure reveals three different dynamic stages: 1) a uniform oxygen consumption in tomato roots earlier before pathogen colonization, 2) a progressive decrease in the oxygen concentration indicating a high metabolic activity as soon as the roots were surrounded and colonized by the fungal mycelium, and 3) absence of root respiration, as a consequence of root death. Our results suggest the ability of the fungal mycelium to move preferentially towards and along the root as a consequence of the recognition event.

  2. Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist

    USGS Publications Warehouse

    Freeman, Stanley; Rodriguez, Rusty J.

    1993-01-01

    The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.

  3. Molecular Signatures of Nicotinoid-Pathogen Synergy in the Termite Gut

    PubMed Central

    Sen, Ruchira; Raychoudhury, Rhitoban; Cai, Yunpeng; Sun, Yijun; Lietze, Verena-Ulrike; Peterson, Brittany F.; Scharf, Michael E.; Boucias, Drion G.

    2015-01-01

    Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies. PMID:25837376

  4. [Tropical and travel-related dermatomycoses : Part 2: cutaneous infections due to yeasts, moulds, and dimorphic fungi].

    PubMed

    Nenoff, P; Reinel, D; Krüger, C; Grob, H; Mugisha, P; Süß, A; Mayser, P

    2015-07-01

    Besides dermatophytoses, a broad range of cutaneous infections due to yeasts and moulds may occur in subtropical and tropical countries where they can affect travellers. Not to be forgotten are endemic occurring dimorphic or biphasic fungi in countries with hot climate, which cause systemic and secondary cutaneous infections in immunosuppressed and immunocompetent people. In the tropics, the prevalence of pityriasis versicolor, caused by the lipophilic yeast Malassezia spp., is about 30-40 %, in distinct areas even 50 %. Increased hyperhidrosis under tropical conditions and simultaneously humidity congestion have to be considered as significant disposing factors for pityriasis versicolor. In tropical countries, therefore, an exacerbation of a preexisting pityriasis versicolor in travellers is not rare. Today, mostly genital yeast infections due to the new species Candida africana can be found worldwide. Due to migration from Africa this yeast pathogen has reached Germany and Europe. Eumycetomas due to mould fungi are rarely diagnosed in Europe. These deep cutaneous mould infections are only found in immigrants from African countries. The therapy of eumycetoma is protracted and often not successful. Cutaneous cryptococcoses due to the yeast species Cryptococcus neoformans and Cryptococcus gattii occur worldwide; however, they are found more frequently in the tropics. Immunosuppressed patients, especially those with HIV/AIDS, are affected by cryptococcoses. Furthermore, Cryptococcus gattii also causes infections in immunocompetent hosts in Central Africa, Australia, California, and Central America.Rarely found are infections due to dimorphic fungi after travel to countries where these fungal pathogens are endemic. In individual cases, cutaneous or lymphogenic transferred sporotrichosis due to Sporothrix schenkii can occur. Furthermore, scarcely known is secondary cutaneous coccidioidomycosis due to Coccidioides immitis after travelling to desert-like endemic regions in southwestern states of the United States and in Latin America, where primary respiratory infection due to this biphasic fungus can be acquired. The antifungal agent itraconazole is the treatment of choice for sporotrichosis and coccidioidomycosis. Talaromyces marneffei-until recently known as Penicillium marneffei-is only found in Southeastern Asia. Mycosis due to this dimorphic fungus has to be considered as an AIDS-defining opportunistic infection. After hematogeneous spread, Talaromyces marneffei affects the skin and mucous membranes of the mouth. Amphotericin B and itraconazole can be used for therapy.

  5. Common fungal diseases of Russian forests

    Treesearch

    Evgeny P. Kuz' michevl; Ella s. Sokolova; Elena G. Kulikova

    2001-01-01

    Describes common fungal diseases of Russian forests, including diagnostic signs and symptoms, pathogen biology, damage caused by the disease, and methods of control. The fungal diseases are divided into two groups: those that are the most common in Russian forests and those that are found only in Russia. Within each group, diseases are subdivided by plant organ...

  6. Long-term No-Till: A Major Driver of Fungal Communities in Dryland Wheat Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-ter...

  7. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges

    PubMed Central

    Selin, Carrie; de Kievit, Teresa R.; Belmonte, Mark F.; Fernando, W. G. Dilantha

    2016-01-01

    Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930

  8. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections.

    PubMed

    de Souza, Patrícia Canteri; Morey, Alexandre Tadachi; Castanheira, Gabriel Marcondes; Bocate, Karla Paiva; Panagio, Luciano Aparecido; Ito, Fabio Augusto; Furlaneto, Márcia Cristina; Yamada-Ogatta, Sueli Fumie; Costa, Idessânia Nazareth; Mora-Montes, Hector Manuel; Almeida, Ricardo Sergio

    2015-11-01

    Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.

  9. Human Skin Fungal Diversity

    PubMed Central

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A.; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H.; Segre, Julia A.

    2013-01-01

    Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota1. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders2,3,4. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also play major roles in microbial community stability, human health and disease5. Genomic methodologies to identify fungal species and communities have been limited compared with tools available for bacteria6. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes7. Here, we sequenced and analyzed fungal communities of 14 skin sites in 10 healthy adults. Eleven core body and arm sites were dominated by Malassezia fungi, with species-level classifications revealing greater topographical resolution between sites. By contrast, three foot sites, plantar heel, toenail, and toeweb, exhibited tremendous fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that skin physiologic attributes and topography differentially shape these two microbial communities. These results provide a framework for future investigation of interactions between pathogenic and commensal fungal and bacterial communities in maintaining human health and contributing to disease pathogenesis. PMID:23698366

  10. An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays

    PubMed Central

    Hancock, P.A; Thomas, M.B; Godfray, H.C.J

    2008-01-01

    It has recently been proposed that mosquito vectors of human diseases, particularly malaria, may be controlled by spraying with fungal biopesticides that increase the rate of adult mortality. Though fungal pathogens do not cause instantaneous mortality, they can kill mosquitoes before they are old enough to transmit disease. A model is developed (i) to explore the potential for fungal entomopathogens to reduce significantly infectious mosquito populations, (ii) to assess the relative value of the many different fungal strains that might be used, and (iii) to help guide the tactical design of vector-control programmes. The model follows the dynamics of different classes of adult mosquitoes with the risk of mortality due to the fungus being assumed to be a function of time since infection (modelled using the Weibull distribution). It is shown that substantial reductions in mosquito numbers are feasible for realistic assumptions about mosquito, fungus and malaria biology and moderate to low daily fungal infection probability. The choice of optimal fungal strain and spraying regime is shown to depend on local mosquito and malaria biology. Fungal pathogens may also influence the ability of mosquitoes to transmit malaria and such effects are shown to further reduce vectorial capacity. PMID:18765347

  11. Polyketides, toxins and pigments in Penicillium marneffei.

    PubMed

    Tam, Emily W T; Tsang, Chi-Ching; Lau, Susanna K P; Woo, Patrick C Y

    2015-10-30

    Penicillium marneffei (synonym: Talaromyces marneffei) is the most important pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS pandemic, particularly in China and other Southeast Asian countries, has led to the emergence of P. marneffei infection as an important AIDS-defining condition. Recently, we published the genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. This number is much higher than those of Coccidioides immitis and Histoplasma capsulatum, important pathogenic thermally dimorphic fungi in the Western world. Phylogenetically, these polyketide synthase genes were distributed evenly with their counterparts found in Aspergillus species and other fungi, suggesting that polyketide synthases in P. marneffei did not diverge from lineage-specific gene duplication through a recent expansion. Gene knockdown experiments and ultra-high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase genes were involved in the biosynthesis of various pigments in P. marneffei, including melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and ankaflavin, some of which were mycotoxins and virulence factors of the fungus.

  12. Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway.

    PubMed

    Fuller, Kevin K; Rhodes, Judith C

    2012-01-01

    Diverse fungal species are the cause of devastating agricultural and human diseases. As successful pathogenesis is dependent upon the ability of the fungus to adapt to the nutritional and chemical environment of the host, the understanding of signaling pathways required for such adaptation will provide insights into the virulence of these pathogens and the potential identification of novel targets for antifungal intervention. The cAMP-PKA signaling pathway is well conserved across eukaryotes. In the nonpathogenic yeast, S. cerevisiae, PKA is activated in response to extracellular nutrients and subsequently regulates metabolism and growth. Importantly, this pathway is also a regulator of pathogenesis, as defects in PKA signaling lead to an attenuation of virulence in diverse plant and human pathogenic fungi. This review will compare and contrast PKA signaling in S. cerevisiae vs. various pathogenic species and provide a framework for the role of this pathway in regulating fungal virulence.

  13. Nonhost Resistance of Barley to Different Fungal Pathogens Is Associated with Largely Distinct, Quantitative Transcriptional Responses1[W][OA

    PubMed Central

    Zellerhoff, Nina; Himmelbach, Axel; Dong, Wubei; Bieri, Stephane; Schaffrath, Ulrich; Schweizer, Patrick

    2010-01-01

    Nonhost resistance protects plants against attack by the vast majority of potential pathogens, including phytopathogenic fungi. Despite its high biological importance, the molecular architecture of nonhost resistance has remained largely unexplored. Here, we describe the transcriptional responses of one particular genotype of barley (Hordeum vulgare subsp. vulgare ‘Ingrid’) to three different pairs of adapted (host) and nonadapted (nonhost) isolates of fungal pathogens, which belong to the genera Blumeria (powdery mildew), Puccinia (rust), and Magnaporthe (blast). Nonhost resistance against each of these pathogens was associated with changes in transcript abundance of distinct sets of nonhost-specific genes, although general (not nonhost-associated) transcriptional responses to the different pathogens overlapped considerably. The powdery mildew- and blast-induced differences in transcript abundance between host and nonhost interactions were significantly correlated with differences between a near-isogenic pair of barley lines that carry either the Mlo wild-type allele or the mutated mlo5 allele, which mediates basal resistance to powdery mildew. Moreover, during the interactions of barley with the different host or nonhost pathogens, similar patterns of overrepresented and underrepresented functional categories of genes were found. The results suggest that nonhost resistance and basal host defense of barley are functionally related and that nonhost resistance to different fungal pathogens is associated with more robust regulation of complex but largely nonoverlapping sets of pathogen-responsive genes involved in similar metabolic or signaling pathways. PMID:20172964

  14. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

    PubMed

    Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R

    2017-01-24

    The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the "conditionally essential" amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases. Copyright © 2017 Wagener et al.

  15. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    PubMed

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  16. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    PubMed

    Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot; Paulitz, Timothy

    2017-01-01

    In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  17. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites.

    PubMed

    Silva, Fábio de Azevedo; Liotti, Rhavena Graziela; Boleti, Ana Paula de Araújo; Reis, Érica de Melo; Passos, Marilene Borges Silva; Dos Santos, Edson Lucas; Sampaio, Olivia Moreira; Januário, Ana Helena; Branco, Carmen Lucia Bassi; Silva, Gilvan Ferreira da; Mendonça, Elisabeth Aparecida Furtado de; Soares, Marcos Antônio

    2018-01-01

    Paullinia cupana is associated with a diverse community of pathogenic and endophytic microorganisms. We isolated and identified endophytic fungal communities from the roots and seeds of P. cupana genotypes susceptible and tolerant to anthracnose that grow in two sites of the Brazilian Amazonia forest. We assessed the antibacterial, antitumor and genotoxic activity in vitro of compounds isolated from the strains Trichoderma asperellum (1BDA) and Diaporthe phaseolorum (8S). In concert, we identified eight fungal species not previously reported as endophytes; some fungal species capable of inhibiting pathogen growth; and the production of antibiotics and compounds with bacteriostatic activity against Pseudomonas aeruginosa in both susceptible and multiresistant host strains. The plant genotype, geographic location and specially the organ influenced the composition of P. cupana endophytic fungal community. Together, our findings identify important functional roles of endophytic species found within the microbiome of P. cupana. This hypothesis requires experimental validation to propose management of this microbiome with the objective of promoting plant growth and protection.

  18. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites

    PubMed Central

    Liotti, Rhavena Graziela; Boleti, Ana Paula de Araújo; Reis, Érica de Melo; Passos, Marilene Borges Silva; dos Santos, Edson Lucas; Sampaio, Olivia Moreira; Januário, Ana Helena; Branco, Carmen Lucia Bassi; da Silva, Gilvan Ferreira; de Mendonça, Elisabeth Aparecida Furtado

    2018-01-01

    Paullinia cupana is associated with a diverse community of pathogenic and endophytic microorganisms. We isolated and identified endophytic fungal communities from the roots and seeds of P. cupana genotypes susceptible and tolerant to anthracnose that grow in two sites of the Brazilian Amazonia forest. We assessed the antibacterial, antitumor and genotoxic activity in vitro of compounds isolated from the strains Trichoderma asperellum (1BDA) and Diaporthe phaseolorum (8S). In concert, we identified eight fungal species not previously reported as endophytes; some fungal species capable of inhibiting pathogen growth; and the production of antibiotics and compounds with bacteriostatic activity against Pseudomonas aeruginosa in both susceptible and multiresistant host strains. The plant genotype, geographic location and specially the organ influenced the composition of P. cupana endophytic fungal community. Together, our findings identify important functional roles of endophytic species found within the microbiome of P. cupana. This hypothesis requires experimental validation to propose management of this microbiome with the objective of promoting plant growth and protection. PMID:29649297

  19. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens.

    PubMed

    Depotter, Jasper R L; Rodriguez-Moreno, Luis; Thomma, Bart P H J; Wood, Thomas A

    2017-11-01

    Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.

  20. Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.

    PubMed

    Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo

    2010-08-01

    A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.

  1. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    PubMed Central

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  2. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    PubMed

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  3. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity

    PubMed Central

    Fischer, Gregory J.; Keller, Nancy P.

    2016-01-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived non-enzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions. PMID:26920885

  4. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline

    PubMed Central

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique

    2017-01-01

    ABSTRACT Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. PMID:28986378

  5. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    PubMed

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. Copyright © 2017 American Society for Microbiology.

  6. A Novel Receptor-Like Kinase Involved in Fungal Pathogen Defense in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Plants are under constant attack from a variety of disease causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor-like kinases (RLKs) are involved in the recognition of pathogen-associated molecular patterns (PAMPs)...

  7. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

    PubMed Central

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  8. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis.

    PubMed

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-05-06

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.

  9. Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis

    PubMed Central

    Morrissey, John P.; Osbourn, Anne E.

    1999-01-01

    Many plants produce low-molecular-weight compounds which inhibit the growth of phytopathogenic fungi in vitro. These compounds may be preformed inhibitors that are present constitutively in healthy plants (also known as phytoanticipins), or they may be synthesized in response to pathogen attack (phytoalexins). Successful pathogens must be able to circumvent or overcome these antifungal defenses, and this review focuses on the significance of fungal resistance to plant antibiotics as a mechanism of pathogenesis. There is increasing evidence that resistance of fungal pathogens to plant antibiotics can be important for pathogenicity, at least for some fungus-plant interactions. This evidence has emerged largely from studies of fungal degradative enzymes and also from experiments in which plants with altered levels of antifungal secondary metabolites were generated. Whereas the emphasis to date has been on degradative mechanisms of resistance of phytopathogenic fungi to antifungal secondary metabolites, in the future we are likely to see a rapid expansion in our knowledge of alternative mechanisms of resistance. These may include membrane efflux systems of the kind associated with multidrug resistance and innate resistance due to insensitivity of the target site. The manipulation of plant biosynthetic pathways to give altered antibiotic profiles will also be valuable in telling us more about the significance of antifungal secondary metabolites for plant defense and clearly has great potential for enhancing disease resistance for commercial purposes. PMID:10477313

  10. Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience.

    PubMed

    Fones, Helen N; Fisher, Matthew C; Gurr, Sarah J

    2017-03-01

    While fungi can make positive contributions to ecosystems and agro-ecosystems, for example, in mycorrhizal associations, they can also have devastating impacts as pathogens of plants and animals. In undisturbed ecosystems, most such negative interactions will be limited through the coevolution of fungi with their hosts. In this article, we explore what happens when pathogenic fungi spread beyond their natural ecological range and become invasive on naïve hosts in new ecosystems. We will see that such invasive pathogens have been problematic to humans and their domesticated plant and animal species throughout history, and we will discuss some of the most pressing fungal threats of today.

  11. Integrated inference and evaluation of host–fungi interaction networks

    PubMed Central

    Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.

    2015-01-01

    Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851

  12. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Swainsonine, a cytotoxic fungal alkaloid and a potential cancer therapy drug, is produced by the insect pathogen and plant symbiont, Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glo...

  13. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites

    PubMed Central

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C.

    2016-01-01

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions. PMID:27706030

  14. Evolution of entomopathogenicity in fungi.

    PubMed

    Humber, Richard A

    2008-07-01

    The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.

  15. Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies

    PubMed Central

    Konrad, Matthias; Vyleta, Meghan L.; Theis, Fabian J.; Stock, Miriam; Tragust, Simon; Klatt, Martina; Drescher, Verena; Marr, Carsten; Ugelvig, Line V.; Cremer, Sylvia

    2012-01-01

    Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”). PMID:22509134

  16. Aspergillus sydowii and Other Potential Fungal Pathogens in Gorgonian Octocorals of the Ecuadorian Pacific.

    PubMed

    Soler-Hurtado, M Mar; Sandoval-Sierra, José Vladimir; Machordom, Annie; Diéguez-Uribeondo, Javier

    2016-01-01

    Emerging fungal diseases are threatening ecosystems and have increased in recent decades. In corals, the prevalence and consequences of these infections have also increased in frequency and severity. Coral reefs are affected by an emerging fungal disease named aspergillosis, caused by Aspergillus sydowii. This disease and its pathogen have been reported along the Caribbean and Pacific coasts of Colombia. Despite this, an important number of coral reefs worldwide have not been investigated for the presence of this pathogen. In this work, we carried out the surveillance of the main coral reef of the Ecuadorian Pacific with a focus on the two most abundant and cosmopolitan species of this ecosystem, Leptogorgia sp. and Leptogorgia obscura. We collected 59 isolates and obtained the corresponding sequences of the Internal Transcribed Spacers (ITS) of the ribosomal DNA. These were phylogenetically analyzed using MrBayes, which indicated the presence of two isolates of the coral reef pathogen A. sydowii, as well as 16 additional species that are potentially pathogenic to corals. Although the analyzed gorgonian specimens appeared healthy, the presence of these pathogens, especially of A. sydowii, alert us to the potential risk to the health and future survival of the Pacific Ecuadorian coral ecosystem under the current scenario of increasing threats and stressors to coral reefs, such as habitat alterations by humans and global climate change.

  17. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    PubMed

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Expressed sequence tags from the flower pathogen Claviceps purpurea.

    PubMed

    Oeser, Birgitt; Beaussart, François; Haarmann, Thomas; Lorenz, Nicole; Nathues, Eva; Rolke, Yvonne; Scheffer, Jan; Weiner, January; Tudzynski, Paul

    2009-09-01

    SUMMARY The ascomycete Claviceps purpurea (ergot) is a biotrophic flower pathogen of rye and other grasses. The deleterious toxic effects of infected rye seeds on humans and grazing animals have been known since the Middle Ages. To gain further insight into the molecular basis of this disease, we generated about 10 000 expressed sequence tags (ESTs)-about 25% originating from axenic fungal culture and about 75% from tissues collected 6-20 days after infection of rye spikes. The pattern of axenic vs. in planta gene expression was compared. About 200 putative plant genes were identified within the in planta library. A high percentage of these were predicted to function in plant defence against the ergot fungus and other pathogens, for example pathogenesis-related proteins. Potential fungal pathogenicity and virulence genes were found via comparison with the pathogen-host interaction database (PHI-base; http://www.phi-base.org) and with genes known to be highly expressed in the haustoria of the bean rust fungus. Comparative analysis of Claviceps and two other fungal flower pathogens (necrotrophic Fusarium graminearum and biotrophic Ustilago maydis) highlighted similarities and differences in their lifestyles, for example all three fungi have signalling components and cell wall-degrading enzymes in their arsenal. In summary, the analysis of axenic and in planta ESTs yielded a collection of candidate genes to be evaluated for functional roles in this plant-microbe interaction.

  19. Fungal-Induced Cell Cycle Impairment, Chromosome Instability and Apoptosis via Differential Activation of NF-κB

    PubMed Central

    Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie

    2012-01-01

    Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis. PMID:22396644

  20. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    PubMed

    Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie

    2012-01-01

    Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis.

  1. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  2. Emerging fungal infections among children: A review on its clinical manifestations, diagnosis, and prevention

    PubMed Central

    Jain, Akansha; Jain, Shubham; Rawat, Swati

    2010-01-01

    The incidence of fungal infections is increasing at an alarming rate, presenting an enormous challenge to healthcare professionals. This increase is directly related to the growing population of immunocompromised individuals especially children resulting from changes in medical practice such as the use of intensive chemotherapy and immunosuppressive drugs. Although healthy children have strong natural immunity against fungal infections, then also fungal infection among children are increasing very fast. Virtually not all fungi are pathogenic and their infection is opportunistic. Fungi can occur in the form of yeast, mould, and dimorph. In children fungi can cause superficial infection, i.e., on skin, nails, and hair like oral thrush, candida diaper rash, tinea infections, etc., are various types of superficial fungal infections, subcutaneous fungal infection in tissues under the skin and lastly it causes systemic infection in deeper tissues. Most superficial and subcutaneous fungal infections are easily diagnosed and readily amenable to treatment. Opportunistic fungal infections are those that cause diseases exclusively in immunocompromised individuals, e.g., aspergillosis, zygomycosis, etc. Systemic infections can be life-threatening and are associated with high morbidity and mortality. Because diagnosis is difficult and the causative agent is often confirmed only at autopsy, the exact incidence of systemic infections is difficult to determine. The most frequently encountered pathogens are Candida albicans and Aspergillus spp. But other fungi such as non-albicans Candida spp. are increasingly important. PMID:21180463

  3. The defensive role of foliar endophytic fungi for a South American tree

    PubMed Central

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  4. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems

    PubMed Central

    Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot

    2017-01-01

    In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists. PMID:28898288

  5. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    NASA Astrophysics Data System (ADS)

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  6. LAMP detection assays for boxwood blight pathogens: A comparative genomics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less

  7. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, Howard S.; LeBrun, Roger A.; Heyer, Klaus; Zhioua, Elyes

    2002-01-01

    The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Guérin-Méneville, house crickets, Acheta domesticus (L.), and the milkweed bugs Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Placing treated insects with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4–10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.

  8. LAMP detection assays for boxwood blight pathogens: A comparative genomics approach

    DOE PAGES

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; ...

    2016-05-20

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less

  9. Rapid real-time diagnostic PCR for Trichophyton rubrum and Trichophyton mentagrophytes in patients with tinea unguium and tinea pedis using specific fluorescent probes.

    PubMed

    Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi

    2013-03-01

    Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.

    PubMed

    Berr, Alexandre; McCallum, Emily J; Alioua, Abdelmalek; Heintz, Dimitri; Heitz, Thierry; Shen, Wen-Hui

    2010-11-01

    As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.

  11. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry.

    PubMed

    Huang, Ying; Xiao, Xu; Huang, Hongying; Jing, Jinquan; Zhao, Hejuan; Wang, Lin; Long, Xi-En

    2018-04-27

    Soil weakness across consecutive cropping fields can be partially explained by the changes in microbial community diversity and structure. Succession patterns and co-occurrence mechanisms of bacteria and fungi, especially beneficial or pathogenic memberships in continuous cropping strawberry fields and their response to edaphic factors remained unclear. In this study, Illumina sequencing of bacterial 16S ribosomal RNA and fungal internal transcribed spacer genes was applied in three time-course (1, 5, and 10 years) fields across spring and winter. Results showed that the richness and diversity of bacterial and fungal communities increased significantly (p < 0.05) in 1-year field and decreased afterwards across two seasons. Network analysis revealed beneficial bacterial and fungal genus (Bacillus and Trichoderma) dominated under 1-year field whereas Fusarium accumulated under 10-year field at either season. Moreover, Trichoderma harzianum and Bacillus subtilis that have been reported to effectively control Fusarium wilt in strawberries accumulated significantly under 1-year field. Canonical correspondence analysis showed that beneficial bacterial Rhodospirillales and Rhizobiales and fungal Glomerales accumulated in 1-year field and their distributions were significantly affected by soil pH, microbial biomass C (MBC), and moisture. On the contrary, fungal pathogenic species Fusarium oxysporum strongly increased under 10-year field at the winter sample and the abundance was positively (p < 0.01) correlated with soil moisture. Our study suggested that the potential of microcosm under 1-year field stimulates the whole microbial diversity and favors different beneficial taxa across two seasons. Soil pH, moisture, and MBC were the most important edaphic factors leading to contrasting beneficial and pathogenic memberships across consecutive strawberry cropping fields.

  12. Population genomics of fungal and oomycete pathogens

    USDA-ARS?s Scientific Manuscript database

    We are entering a new era in plant pathology where whole-genome sequences of many individuals of a pathogen species are becoming readily available. This era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. Population gen...

  13. Invasive Fungal Infections after Natural Disasters

    PubMed Central

    Benedict, Kaitlin

    2014-01-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed. PMID:24565446

  14. Invasive fungal infections after natural disasters.

    PubMed

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  15. Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi

    PubMed Central

    Fortwendel, Jarrod R.

    2013-01-01

    Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence. PMID:24855584

  16. Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence

    PubMed Central

    Brand, Alexandra

    2012-01-01

    Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo. PMID:22121367

  17. Soil moisture mediated interaction between Polygonatum biflorum and leaf spot disease

    Treesearch

    Robert J. II Warren; Erin Mordecai

    2010-01-01

    Fungal pathogens can regulate the abundance and distribution of natural plant populations by inhibiting the growth, survival, and reproduction of their hosts. The abiotic environment is a crucial component in host–pathogen interactions in natural plant populations as favorable conditions drive pathogen development, reproduction, and persistence. Foliar plant pathogens...

  18. Fire effects on the cheatgrass seed bank pathogen Pyrenophora semeniperda

    Treesearch

    Julie Beckstead; Laura E. Street; Susan E. Meyer; Phil S. Allen

    2011-01-01

    The generalist fungal pathogen Pyrenophora semeniperda occurs primarily in cheatgrass (Bromus tectorum) seed banks, where it causes high mortality. We investigated the relationship between this pathogen and its cheatgrass host in the context of fire, asking whether burning would facilitate host escape from the pathogen or increase host vulnerability. We used a series...

  19. Amoeba provide insight into the origin of virulence in pathogenic fungi.

    PubMed

    Casadevall, Arturo

    2012-01-01

    Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.

  20. Global Warming Will Bring New Fungal Diseases for Mammals

    PubMed Central

    Garcia-Solache, Monica A.; Casadevall, Arturo

    2010-01-01

    ABSTRACT Fungi are major pathogens of plants, other fungi, rotifers, insects, and amphibians, but relatively few cause disease in mammals. Fungi became important human pathogens only in the late 20th century, primarily in hosts with impaired immunity as a consequence of medical interventions or HIV infection. The relatively high resistance of mammals has been attributed to a combination of a complex immune system and endothermy. Mammals maintain high body temperatures relative to environmental temperatures, creating a thermally restrictive ambient for the majority of fungi. According to this view, protection given by endothermy requires a temperature gradient between those of mammals and the environment. We hypothesize that global warming will increase the prevalence of fungal diseases in mammals by two mechanisms: (i) increasing the geographic range of currently pathogenic species and (ii) selecting for adaptive thermotolerance for species with significant pathogenic potential but currently not pathogenic by virtue of being restricted by mammalian temperatures. PMID:20689745

  1. Trimming Surface Sugars Protects Histoplasma from Immune Attack.

    PubMed

    Brown, Gordon D

    2016-04-26

    Dectin-1 is an essential innate immune receptor that recognizes β-glucans in fungal cell walls. Its importance is underscored by the mechanisms that fungal pathogens have evolved to avoid detection by this receptor. One such pathogen is Histoplasma capsulatum, and in a recent article in mBio, Rappleye's group presented data showing that yeasts of this organism secrete a β-glucanase, Eng1, which acts to prune β-glucans that are exposed on the fungal cell surface [A. L. Garfoot et al., mBio 7(2):e01388-15, 2016, http://dx.doi.org/10.1128/mBio.01388-15]. The trimming of these sugars reduces immune recognition through Dectin-1 and subsequent inflammatory responses, enhancing the pathogenesis of H. capsulatum. Copyright © 2016 Brown.

  2. Online Databases for Taxonomy and Identification of Pathogenic Fungi and Proposal for a Cloud-Based Dynamic Data Network Platform

    PubMed Central

    Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent

    2017-01-01

    ABSTRACT The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. PMID:28179406

  3. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses.

    PubMed

    Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping

    2014-07-01

    We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.

  4. A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

    PubMed Central

    Goos, Sarah; Kämper, Jörg; Sauer, Norbert

    2010-01-01

    Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717

  5. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra

    Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover,more » our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.« less

  6. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem

    DOE PAGES

    Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; ...

    2016-11-11

    Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover,more » our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.« less

  7. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem

    PubMed Central

    Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; Guse, Tilo; Bauer, Lisa; Seitner, Denise; Rabanal, Fernando A; Czedik-Eysenberg, Angelika; Uhse, Simon; Bindics, Janos; Genenncher, Bianca; Navarrete, Fernando; Kellner, Ronny; Ekker, Heinz; Kumlehn, Jochen; Vogel, John P; Gordon, Sean P; Marcel, Thierry C; Münsterkötter, Martin; Walter, Mathias C; Sieber, Christian MK; Mannhaupt, Gertrud; Güldener, Ulrich; Kahmann, Regine; Djamei, Armin

    2016-01-01

    Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver. DOI: http://dx.doi.org/10.7554/eLife.20522.001 PMID:27835569

  8. Glycosylinositolphosphoceramides in Aspergillus fumigatus.

    PubMed

    Simenel, Catherine; Coddeville, Bernadette; Delepierre, Muriel; Latgé, Jean-Paul; Fontaine, Thierry

    2008-01-01

    Fungal glycosylinositolphosphoceramides (GIPCs) are involved in cell growth and fungal-host interactions. In this study, six GIPCs from the mycelium of the human pathogen Aspergillus fumigatus were purified and characterized using Q-TOF mass spectrometry and 1H, 13C, and 31P NMR. All structures have the same inositolphosphoceramide moiety with the presence of a C(18:0)-phytosphingosine conjugated to a 2-hydroxylated saturated fatty acid (2-hydroxy-lignoceric acid). The carbohydrate moiety defines two types of GIPC. The first, a mannosylated zwitterionic glycosphingolipid contains a glucosamine residue linked in alpha1-2 to an inositol ring that has been described in only two other fungal pathogens. The second type of GIPC presents an alpha-Manp-(1-->3)-alpha-Manp-(1-->2)-IPC common core. A galactofuranose residue is found in four GIPC structures, mainly at the terminal position via a beta1-2 linkage. Interestingly, this galactofuranose residue could be substituted by a choline-phosphate group, as observed only in the GIPC of Acremonium sp., a plant pathogen.

  9. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections.

    PubMed

    Zhang, Lisha; Ni, Hao; Du, Xuan; Wang, Sheng; Ma, Xiao-Wei; Nürnberger, Thorsten; Guo, Hui-Shan; Hua, Chenlei

    2017-07-01

    Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. When Subterranean Termites Challenge the Rules of Fungal Epizootics

    PubMed Central

    Chouvenc, Thomas; Su, Nan-Yao

    2012-01-01

    Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle. PMID:22470575

  11. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  12. Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi.

    PubMed

    Zhang, Ning; Cai, Guohong; Price, Dana C; Crouch, Jo Anne; Gladieux, Pierre; Hillman, Bradley; Khang, Chang Hyun; LeBrun, Marc-Henri; Lee, Yong-Hwan; Luo, Jing; Qiu, Huan; Veltri, Daniel; Wisecaver, Jennifer H; Zhu, Jie; Bhattacharya, Debashish

    2018-04-12

    The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from five additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specific. The blast clade genomes contain more secretome and avirulence effector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed differing proportions of TE classes among Magnaporthales genomes, suggesting that species-specific patterns may hold clues to the history of host/environmental adaptation in these fungi.

  13. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  14. Role of Lipid Composition and Lipid Peroxidation in the Sensitivity of Fungal Plant Pathogens to Aluminum Chloride and Sodium Metabisulfite▿

    PubMed Central

    Avis, Tyler J.; Michaud, Mélanie; Tweddell, Russell J.

    2007-01-01

    Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539

  15. Currency notes and coins as a possible source of transmitting fungal pathogens of man and plants.

    PubMed

    Wanule, Dinesh; Jalander, Vaghmare; Gachande, B D; Sirsikar, A N

    2011-10-01

    Currency (notes and coins) handling by people during transaction is one of the most mobile objects within the community, which has a potential of transmitting pathogens. A survey carried out recently in Nanded city (Maharashtra) revealed heavy contamination of currency notes and coins by important fungal pathogens of plants and man, i.e. Aspergillus niger (60.37%), A. flavus (3.98%), A.nidulans (0.2%), Penicillium citrinum (17.80%), Alternaria tenuis (0.20%), Curvularia pallescens (0.20%), Cladosporium cladosporioides (10.69%), Rhizopus stolonifer (1.04%), an unidentified Aspergillus species .1 (0.20%) and another unidentified Aspergillus species.2 (3.14%), Fusarium sp. (0.20%), Trichoderma viride (0.20%),white sterile mycelium (0.62%) and brown sterile mycelium (0.62%). The study highlights the importance of preventing and controlling fungal contamination of currency notes and coins in public health and plant protection. Currency notes or coins are rarely suspected as infection sources and often not quarantined at airport or seaport terminal. Possible transmission of pathogens or "alien", invasive species through currency across borders or across countries needs to be taken into consideration especially under circumstances of serious outbreak of important disease or when there is a threat of biological warfare.

  16. Next-Generation Sequencing of Coccidioides immitis Isolated during Cluster Investigation

    PubMed Central

    Engelthaler, David M.; Chiller, Tom; Schupp, James A.; Colvin, Joshua; Beckstrom-Sternberg, Stephen M.; Driebe, Elizabeth M.; Moses, Tracy; Tembe, Waibhav; Sinari, Shripad; Beckstrom-Sternberg, James S.; Christoforides, Alexis; Pearson, John V.; Carpten, John; Keim, Paul; Peterson, Ashley; Terashita, Dawn

    2011-01-01

    Next-generation sequencing enables use of whole-genome sequence typing (WGST) as a viable and discriminatory tool for genotyping and molecular epidemiologic analysis. We used WGST to confirm the linkage of a cluster of Coccidioides immitis isolates from 3 patients who received organ transplants from a single donor who later had positive test results for coccidioidomycosis. Isolates from the 3 patients were nearly genetically identical (a total of 3 single-nucleotide polymorphisms identified among them), thereby demonstrating direct descent of the 3 isolates from an original isolate. We used WGST to demonstrate the genotypic relatedness of C. immitis isolates that were also epidemiologically linked. Thus, WGST offers unique benefits to public health for investigation of clusters considered to be linked to a single source. PMID:21291593

  17. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    PubMed Central

    de Jonge, Ronnie; Peter van Esse, H.; Maruthachalam, Karunakaran; Bolton, Melvin D.; Santhanam, Parthasarathy; Saber, Mojtaba Keykha; Zhang, Zhao; Usami, Toshiyuki; Lievens, Bart; Subbarao, Krishna V.; Thomma, Bart P. H. J.

    2012-01-01

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and Verticillium albo-atrum, but the corresponding Verticillium effector remained unknown thus far. By high-throughput population genome sequencing, a single 50-Kb sequence stretch was identified that only occurs in race 1 strains, and subsequent transcriptome sequencing of Verticillium-infected Nicotiana benthamiana plants revealed only a single highly expressed ORF in this region, designated Ave1 (for Avirulence on Ve1 tomato). Functional analyses confirmed that Ave1 activates Ve1-mediated resistance and demonstrated that Ave1 markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis. Interestingly, Ave1 is homologous to a widespread family of plant natriuretic peptides. Besides plants, homologous proteins were only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Colletotrichum higginsianum, Cercospora beticola, and Fusarium oxysporum f. sp. lycopersici. The distribution of Ave1 homologs, coincident with the presence of Ave1 within a flexible genomic region, strongly suggests that Verticillium acquired Ave1 from plants through horizontal gene transfer. Remarkably, by transient expression we show that also the Ave1 homologs from F. oxysporum and C. beticola can activate Ve1-mediated resistance. In line with this observation, Ve1 was found to mediate resistance toward F. oxysporum in tomato, showing that this immune receptor is involved in resistance against multiple fungal pathogens. PMID:22416119

  18. Protein deficiency lowers resistance of Mormon crickets to the pathogenic fungus Beauveria bassiana.

    PubMed

    Srygley, R B; Jaronski, S T

    Little is known about the effects of dietary macronutrients on the capacity of insects to ward off a fungal pathogen. Here we tested the hypothesis that Mormon crickets fed restricted protein diets have lower enzymatic assays of generalized immunity, slower rates of encapsulation of foreign bodies, and greater mortality from infection by Beauveria bassiana, a fungal pathogen. Beginning in the last nymphal instar, Mormon crickets were fed a high, intermediate, or low protein diet with correspondingly low, intermediate, or high carbohydrate proportions. After they eclosed to adult, we drew hemolymph, topically applied B. bassiana, maintained them on diet treatments, and measured mortality for 21 days. Mormon crickets fed high protein diets had higher prophenoloxidase titers, greater encapsulation response, and higher survivorship to Beauveria fungal infection than those on low protein diets. We replicated the study adding very high and very low protein diets to the treatments. A high protein diet increased phenoloxidase titers, and those fed the very high protein diet had more circulating prophenoloxidase. Mormon crickets fed the very low protein diet were the most susceptible to B. bassiana infection, but the more concentrated phenoloxidase and prophenoloxidase associated with the highest protein diets did not confer the greatest protection from the fungal pathogen as in the first replicate. We conclude that protein-restricted diets caused Mormon crickets to have lower phenoloxidase titers, slower encapsulation of foreign bodies, and greater mortality from B. bassiana infection than those fed high protein diets. These results support the nutrition-based dichotomy of migrating Mormon crickets, protein-deficient ones are more susceptible to pathogenic fungi whereas carbohydrate-deficient ones are more vulnerable to bacterial challenge. Published by Elsevier Ltd.

  19. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are.

    PubMed

    Pedras, M Soledade C; Hossain, Sajjad

    2011-12-01

    Glucosinolates represent a large group of plant natural products long known for diverse and fascinating physiological functions and activities. Despite the relevance and huge interest on the roles of indole glucosinolates in plant defense, little is known about their direct interaction with microbial plant pathogens. Toward this end, the metabolism of indolyl glucosinolates, their corresponding desulfo-derivatives, and derived metabolites, by three fungal species pathogenic on crucifers was investigated. While glucobrassicin, 1-methoxyglucobrassicin, 4-methoxyglucobrassicin were not metabolized by the pathogenic fungi Alternaria brassicicola, Rhizoctonia solani and Sclerotinia sclerotiorum, the corresponding desulfo-derivatives were metabolized to indolyl-3-acetonitrile, caulilexin C (1-methoxyindolyl-3-acetonitrile) and arvelexin (4-methoxyindolyl-3-acetonitrile) by R. solani and S. sclerotiorum, but not by A. brassicicola. That is, desulfo-glucosinolates were metabolized by two non-host-selective pathogens, but not by a host-selective. Indolyl-3-acetonitrile, caulilexin C and arvelexin were metabolized to the corresponding indole-3-carboxylic acids. Indolyl-3-acetonitriles displayed higher inhibitory activity than indole desulfo-glucosinolates. Indolyl-3-methanol displayed antifungal activity and was metabolized by A. brassicicola and R. solani to the less antifungal compounds indole-3-carboxaldehyde and indole-3-carboxylic acid. Diindolyl-3-methane was strongly antifungal and stable in fungal cultures, but ascorbigen was not stable in solution and displayed low antifungal activity; neither compound appeared to be metabolized by any of the three fungal species. The cell-free extracts of mycelia of A. brassicicola displayed low myrosinase activity using glucobrassicin as substrate, but myrosinase activity was not detectable in mycelia of either R. solani or S. sclerotiorum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions

    PubMed Central

    Henkes, Gunnar J.; Jousset, Alexandre; Bonkowski, Michael; Thorpe, Michael R.; Scheu, Stefan; Lanoue, Arnaud; Schurr, Ulrich; Röse, Ursula S. R.

    2011-01-01

    Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition. PMID:21561952

  1. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    PubMed

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  2. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is also required for pathogenicity and expression of plant effector proteins. F. graminearum, an imp...

  3. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum

    USDA-ARS?s Scientific Manuscript database

    Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environm...

  4. Tools of the crook – infection strategies of fungal plant pathogens

    USDA-ARS?s Scientific Manuscript database

    Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of d...

  5. Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt.

    PubMed

    Lee, Soo Chan; Billmyre, R Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C; Cuomo, Christina A; Heitman, Joseph

    2014-07-08

    Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (-) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. Importance: The U.S. FDA reported that yogurt products were contaminated with M. circinelloides, a mucoralean fungal pathogen, and >200 consumers complained of symptoms, including vomiting, nausea, and diarrhea. The manufacturer voluntarily withdrew the affected yogurt products from the market. Compared to other food-borne pathogens, including bacteria, viruses, and parasites, less focus has been placed on the risk of fungal pathogens. This study evaluates the potential risk from the food-borne fungal pathogen M. circinelloides that was isolated from the contaminated commercial yogurt. We successfully cultured an M. circinelloides isolate and found that the isolate belongs to the species M. circinelloides f. circinelloides, which is often associated with human infections. In murine and insect host models, the isolate was virulent. While information disseminated in the popular press would suggest this fungal contaminant poses little or no risk to consumers, our results show instead that it is capable of causing significant infections in animals. Copyright © 2014 Lee et al.

  6. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products

    PubMed Central

    Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N.

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  7. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    PubMed

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  8. Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry

    PubMed Central

    Xu, Xiangming; Passey, Thomas; Wei, Feng; Saville, Robert; Harrison, Richard J.

    2015-01-01

    A phenomenon of yield decline due to weak plant growth in strawberry was recently observed in non-chemo-fumigated soils, which was not associated with the soil fungal pathogen Verticillium dahliae, the main target of fumigation. Amplicon-based metagenomics was used to profile soil microbiota in order to identify microbial organisms that may have caused the yield decline. A total of 36 soil samples were obtained in 2013 and 2014 from four sites for metagenomic studies; two of the four sites had a yield-decline problem, the other two did not. More than 2000 fungal or bacterial operational taxonomy units (OTUs) were found in these samples. Relative abundance of individual OTUs was statistically compared for differences between samples from sites with or without yield decline. A total of 721 individual comparisons were statistically significant – involving 366 unique bacterial and 44 unique fungal OTUs. Based on further selection criteria, we focused on 34 bacterial and 17 fungal OTUs and found that yield decline resulted probably from one or more of the following four factors: (1) low abundance of Bacillus and Pseudomonas populations, which are well known for their ability of supressing pathogen development and/or promoting plant growth; (2) lack of the nematophagous fungus (Paecilomyces species); (3) a high level of two non-specific fungal root rot pathogens; and (4) wet soil conditions. This study demonstrated the usefulness of an amplicon-based metagenomics approach to profile soil microbiota and to detect differential abundance in microbes. PMID:26504572

  9. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles

    USDA-ARS?s Scientific Manuscript database

    Termites adjust their response to entomopathogenic fungi according to the profile of the fungal volatile organic compounds (VOCs). This study first demonstrated the pathogenicity of Metarhizium anisopliae, Beauveria bassiana and Isaria fumosorosea (=Paecilomyces fumosoroseus) towards the Formosan s...

  10. Valley Fever

    MedlinePlus

    ... mold) called Coccidioides. The fungi live in the soil of dry areas like the southwestern U.S. You ... include Workers in jobs that expose them to soil dust. These include construction workers, agricultural workers, and ...

  11. Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt.

    PubMed

    Morsy, Ahmed A; Elshahawy, Ibrahim E

    2016-05-01

    Dracaena sanderiana, of the family Liliaceae, is among the ornamental plants most frequently imported into Egypt. Typical anthracnose symptoms were observed on the stems of imported D. sanderiana samples. The pathogen was isolated, demonstrated to be pathogenic based on Koch's rule and identified as Colletotrichum dracaenophilum. The optimum temperature for its growth ranges from 25 to 30 °C, maintained for 8 days. Kemazed 50% wettable powder (WP) was the most effective fungicide against the pathogen, as no fungal growth was observed over 100 ppm. The biocontrol agents Trichoderma harzianum and Trichoderma viride followed by Bacillus subtilis and Bacillus pumilus caused the highest reduction in fungal growth. To the best of our knowledge, this report describes the first time that this pathogen was observed on D. sanderiana in Egypt.

  12. Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt

    PubMed Central

    Morsy, Ahmed A.; Elshahawy, Ibrahim E.

    2016-01-01

    Dracaena sanderiana, of the family Liliaceae, is among the ornamental plants most frequently imported into Egypt. Typical anthracnose symptoms were observed on the stems of imported D. sanderiana samples. The pathogen was isolated, demonstrated to be pathogenic based on Koch’s rule and identified as Colletotrichum dracaenophilum. The optimum temperature for its growth ranges from 25 to 30 °C, maintained for 8 days. Kemazed 50% wettable powder (WP) was the most effective fungicide against the pathogen, as no fungal growth was observed over 100 ppm. The biocontrol agents Trichoderma harzianum and Trichoderma viride followed by Bacillus subtilis and Bacillus pumilus caused the highest reduction in fungal growth. To the best of our knowledge, this report describes the first time that this pathogen was observed on D. sanderiana in Egypt. PMID:27222738

  13. PTS1 Peroxisomal Import Pathway Plays Shared and Distinct Roles to PTS2 Pathway in Development and Pathogenicity of Magnaporthe oryzae

    PubMed Central

    Wang, Jiaoyu; Zhang, Zhen; Wang, Yanli; Li, Ling; Chai, Rongyao; Mao, Xueqin; Jiang, Hua; Qiu, Haiping; Du, Xinfa; Lin, Fucheng; Sun, Guochang

    2013-01-01

    Peroxisomes participate in various important metabolisms and are required in pathogenicity of fungal plant pathogens. Peroxisomal matrix proteins are imported from cytoplasm into peroxisomes through peroxisomal targeting signal 1 (PTS1) or peroxisomal targeting signal 2 (PTS2) import pathway. PEX5 and PEX7 genes participate in the two pathways respectively. The involvement of PEX7 mediated PTS2 import pathway in fungal pathogenicity has been documented, while that of PTS1 remains unclear. Through null mutant analysis of MoPEX5, the PEX5 homolog in Magnaporthe oryzae, we report the crucial roles of PTS1 pathway in the development and host infection in the rice blast fungus, and compared with those of PTS2. We found that MoPEX5 disruption specifically blocked the PTS1 pathway. Δmopex5 was unable to use lipids as sole carbon source and lost pathogenicity completely. Similar as Δmopex7, Δmopex5 exhibited significant reduction in lipid utilization and mobilization, appressorial turgor genesis and H2O2 resistance. Additionally, Δmopex5 presented some distinct defects which were undetected in Δmopex7 in vegetative growth, conidial morphogenesis, appressorial morphogenesis and melanization. The results indicated that the PTS1 peroxisomal import pathway, in addition to PTS2, is required for fungal development and pathogenicity of the rice blast fungus, and also, as a main peroxisomal import pathway, played a more predominant role than PTS2. PMID:23405169

  14. Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers[W

    PubMed Central

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Duplessis, Sébastien; Ellis, Brian E.

    2012-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens. PMID:22517321

  15. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis.

    PubMed

    Koo, Sophia; Thomas, Horatio R; Daniels, S David; Lynch, Robert C; Fortier, Sean M; Shea, Margaret M; Rearden, Preshious; Comolli, James C; Baden, Lindsey R; Marty, Francisco M

    2014-12-15

    Invasive aspergillosis (IA) remains a leading cause of mortality in immunocompromised patients, in part due to the difficulty of diagnosing this infection. Using thermal desorption-gas chromatography/mass spectrometry, we characterized the in vitro volatile metabolite profile of Aspergillus fumigatus, the most common cause of IA, and other pathogenic aspergilli. We prospectively collected breath samples from patients with suspected invasive fungal pneumonia from 2011 to 2013, and assessed whether we could discriminate patients with proven or probable IA from patients without aspergillosis, as determined by European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions, by direct detection of fungal volatile metabolites in these breath samples. The monoterpenes camphene, α- and β-pinene, and limonene, and the sesquiterpene compounds α- and β-trans-bergamotene were distinctive volatile metabolites of A. fumigatus in vitro, distinguishing it from other pathogenic aspergilli. Of 64 patients with suspected invasive fungal pneumonia based on host risk factors, clinical symptoms, and radiologic findings, 34 were diagnosed with IA, whereas 30 were ultimately diagnosed with other causes of pneumonia, including other invasive mycoses. Detection of α-trans-bergamotene, β-trans-bergamotene, a β-vatirenene-like sesquiterpene, or trans-geranylacetone identified IA patients with 94% sensitivity (95% confidence interval [CI], 81%-98%) and 93% specificity (95% CI, 79%-98%). In patients with suspected fungal pneumonia, an Aspergillus secondary metabolite signature in breath can identify individuals with IA. These results provide proof-of-concept that direct detection of exogenous fungal metabolites in breath can be used as a novel, noninvasive, pathogen-specific approach to identifying the precise microbial cause of pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen.

    PubMed

    Jaber, Sana; Mercier, Alex; Knio, Khouzama; Brun, Sylvain; Kambris, Zakaria

    2016-09-05

    Insects are well known vectors of human and animal pathogens and millions of people are killed by mosquito-borne diseases every year. The use of insecticides to target insect vectors has been hampered by the issues of toxicity to the environment and by the selection of resistant insects. Therefore, biocontrol strategies based on naturally occurring microbial pathogens emerged as a promising control alternative. The entomopathogenic fungus Beauveria bassiana is well characterized and have been approved by the United States Environmental Protection Agency as a pest biological control method. However, thousands of other fungi are unexploited and it is important to identify and use different fungi for biocontrol with possibly some vector specific strains. The aim of this study was to identify new fungal entomopathogens that may be used as potential mosquito biocontrol agents. Cadavers of arthropods were collected from pesticide free areas and the fungi associated isolated, cultured and identified. Then the ability of each isolate to kill laboratory insects was assayed and compared to that of B. bassiana. In total we have isolated and identified 42 fungal strains from 17 different arthropod cadavers. Twenty four fungal isolates were cultivated in the laboratory and were able to induce sporulation. When fungal spores were microinjected into Drosophila melanogaster, eight isolates proved to be highly pathogenic while the remaining strains showed moderate or no pathogenicity. Then a selection of isolates was tested against Aedes mosquitoes in a model mimicking natural infections. Only one fungus (Aspergillus nomius) was as pathogenic as B. bassiana and able to kill 100 % of the mosquitoes. The obtained results are encouraging and demonstrate the feasibility of this simple approach for the identification of new potential mosquito killers. Indeed, it is essential to anticipate and prepare biocontrol methods to fight the expansion of mosquitoes' habitat predicted in certain geographical areas in association with the occurring climatic changes.

  17. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--the quality controlled standard tool for routine identification of human and animal pathogenic fungi.

    PubMed

    Irinyi, Laszlo; Serena, Carolina; Garcia-Hermoso, Dea; Arabatzis, Michael; Desnos-Ollivier, Marie; Vu, Duong; Cardinali, Gianluigi; Arthur, Ian; Normand, Anne-Cécile; Giraldo, Alejandra; da Cunha, Keith Cassia; Sandoval-Denis, Marcelo; Hendrickx, Marijke; Nishikaku, Angela Satie; de Azevedo Melo, Analy Salles; Merseguel, Karina Bellinghausen; Khan, Aziza; Parente Rocha, Juliana Alves; Sampaio, Paula; da Silva Briones, Marcelo Ribeiro; e Ferreira, Renata Carmona; de Medeiros Muniz, Mauro; Castañón-Olivares, Laura Rosio; Estrada-Barcenas, Daniel; Cassagne, Carole; Mary, Charles; Duan, Shu Yao; Kong, Fanrong; Sun, Annie Ying; Zeng, Xianyu; Zhao, Zuotao; Gantois, Nausicaa; Botterel, Françoise; Robbertse, Barbara; Schoch, Conrad; Gams, Walter; Ellis, David; Halliday, Catriona; Chen, Sharon; Sorrell, Tania C; Piarroux, Renaud; Colombo, Arnaldo L; Pais, Célia; de Hoog, Sybren; Zancopé-Oliveira, Rosely Maria; Taylor, Maria Lucia; Toriello, Conchita; de Almeida Soares, Célia Maria; Delhaes, Laurence; Stubbe, Dirk; Dromer, Françoise; Ranque, Stéphane; Guarro, Josep; Cano-Lira, Jose F; Robert, Vincent; Velegraki, Aristea; Meyer, Wieland

    2015-05-01

    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Herman, Philippe; El-Kirat-Chatel, Sofiane; Lipke, Peter N.; Kucharíková, Soňa; van Dijck, Patrick; Dufrêne, Yves F.

    2013-10-01

    Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.

  19. Metals in fungal virulence

    PubMed Central

    Gerwien, Franziska; Skrahina, Volha; Kasper, Lydia; Brunke, Sascha

    2017-01-01

    Abstract Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the ‘nutritional immunity’, in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species—focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species—not the least to exploit this knowledge for new antifungal strategies. PMID:29069482

  20. Molecular detection of fungi of public health importance in wild animals from Southern Brazil.

    PubMed

    Losnak, Debora O; Rocha, Francielle R; Almeida, Barbara S; Batista, Keila Z S; Althoff, Sérgio L; Haupt, Josiane; Ruiz, Luciana S; Anversa, Laís; Lucheis, Simone B; Paiz, Laís M; Donalisio, Maria Rita; Richini Pereira, Virginia B

    2018-07-01

    Some animals have an important relationship with fungal infections, and searching for pathogens in animal samples may be an opportunity for eco-epidemiological research. Since studies involving wildlife are generally restricted, using samples from road kills is an alternative. The aim of this study was to verify whether pathogenic fungi of public health importance occur in wildlife road kills from Santa Catarina State, Brazil. Organ samples (n = 1063) from 297 animals were analysed according to Polymerase Chain Reaction (PCR) using universal primers to detect fungi in general and, subsequently, using primers specific to Paracoccidioides brasiliensis, Histoplasma capsulatum and Cryptococcus spp. There were 102 samples positive for fungal species. Eight samples were positive for P. brasiliensis, three samples were positive for Cryptococcus spp. and one sample had coinfection by these two fungi. No sample was positive for Histoplasma spp. according to the molecular detection. Genetic sequencing allowed the identification of Fungal sp. in 89 samples, Cryptococcus neoformans in two samples and Aspergillus penicillioides in three samples. This study shows the importance of wild animals in the epidemiology of fungal infections and assists in the mapping of pathogen occurrence in a region that was not previously evaluated. © 2018 Blackwell Verlag GmbH.

  1. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage.

    PubMed

    Christian, Natalie; Herre, Edward Allen; Mejia, Luis C; Clay, Keith

    2017-07-12

    It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree ( Theobroma cacao ) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale , a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general. © 2017 The Author(s).

  2. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.

    PubMed

    Wan, Jinrong; Zhang, Xue-Cheng; Neece, David; Ramonell, Katrina M; Clough, Steve; Kim, Sung-Yong; Stacey, Minviluz G; Stacey, Gary

    2008-02-01

    Chitin, a polymer of N-acetyl-d-glucosamine, is found in fungal cell walls but not in plants. Plant cells can perceive chitin fragments (chitooligosaccharides) leading to gene induction and defense responses. We identified a LysM receptor-like protein (LysM RLK1) required for chitin signaling in Arabidopsis thaliana. The mutation in this gene blocked the induction of almost all chitooligosaccharide-responsive genes and led to more susceptibility to fungal pathogens but had no effect on infection by a bacterial pathogen. Additionally, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants but not in the mutant. Together, our data indicate that LysM RLK1 is essential for chitin signaling in plants (likely as part of the receptor complex) and is involved in chitin-mediated plant innate immunity. The LysM RLK1-mediated chitin signaling pathway is unique, but it may share a conserved downstream pathway with the FLS2/flagellin- and EFR/EF-Tu-mediated signaling pathways. Additionally, our work suggests a possible evolutionary relationship between the chitin and Nod factor perception mechanisms due to the similarities between their potential receptors and between the signal molecules perceived by them.

  3. A Spectral Mapping Signature for the Rapid Ohia Death (ROD) Pathogen in Hawaiian Forests

    USDA-ARS?s Scientific Manuscript database

    Pathogenic invasions are a major disruptive source of change in both agricultural and natural ecosystems. In forests, fungal pathogens can kill habitat-generating plant species such as canopy trees, but methods for remote detection, mapping and monitoring of such outbreaks are poorly developed. Cera...

  4. Comparative population genomics of Fusarium graminearum reveals adaptive divergence among cereal head blight pathogens

    USDA-ARS?s Scientific Manuscript database

    In this study we sequenced the genomes of 60 Fusarium graminearum, the major fungal pathogen responsible for Fusarium head blight (FHB) in cereal crops world-wide. To investigate adaptive evolution of FHB pathogens, we performed population-level analyses to characterize genomic structure, signatures...

  5. Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii

    PubMed Central

    Duvaux, Ludovic; Shiller, Jason; Vandeputte, Patrick; Dugé de Bernonville, Thomas; Thornton, Christopher; Papon, Nicolas; Le Cam, Bruno; Bouchara, Jean-Philippe

    2017-01-01

    ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species. PMID:28912311

  6. Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi

    USDA-ARS?s Scientific Manuscript database

    The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated geno...

  7. RECONSTRUCTING THE EVOLUTIONARY HISTORY OF THE FOREST FUNGAL PATHOGEN, ARMILLARIA MELLEA, IN A TEMPERATE WORLDWIDE POPULATIONS

    USDA-ARS?s Scientific Manuscript database

    The forest pathogen Armillaria mellea s.s. (Basidiomycota, Physalacriaceae) is among the most significant forest pathogens causing root rot in northern temperate forest trees worldwide. Phylogenetic reconstructions for A. mellea show distinct European, Asian and North American lineages. The North Am...

  8. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Treesearch

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  9. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expr...

  10. Global genetic structure of the fungal grapevine pathogen Eutypa lata

    USDA-ARS?s Scientific Manuscript database

    The ascomycete fungus Eutypa lata is a trunk pathogen of cultivated grapevine (Vitis vinifera) in all major grape-growing regions of the world. Throughout its geographic range, it is considered a generalist pathogen that can complete its life cycle on a broad range of hosts. To decipher the cosmopol...

  11. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  12. RNA-mediated Gene Silencing in the Cereal Fungal Pathogen Cochliobolus sativus

    USDA-ARS?s Scientific Manuscript database

    Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is the causal agent of spot blotch, common root rot and black point in barley and wheat. However, little is known about the mechanisms underlying the pathogenicity and virulence of the pathogen. In this study, we developed a high-throughput RNA-...

  13. 9 CFR 311.36 - Coccidioidal granuloma.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... systemic changes because of such disease shall be condemned. (b) Carcasses affected with localized lesions of this disease may be passed for human food after the affected parts are removed and condemned. ...

  14. Online Databases for Taxonomy and Identification of Pathogenic Fungi and Proposal for a Cloud-Based Dynamic Data Network Platform.

    PubMed

    Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent; Meyer, Wieland

    2017-04-01

    The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. Copyright © 2017 American Society for Microbiology.

  15. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam.

    PubMed

    Xing, Yong-Mei; Chen, Juan; Cui, Jin-Long; Chen, Xiao-Mei; Guo, Shun-Xing

    2011-04-01

    Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.

  16. [Animals as a potential source of human fungal infections].

    PubMed

    Dworecka-Kaszak, Bozena

    2008-01-01

    Changing environment is a reason, that many saprotrophic fungi became opportunists and in the end also maybe a pathogenic. Host specific adaptation is not so strong among fungi, so there are many common fungal pathogens for people and for animals. Animals suffering from dermatomycosis are well recognize as source of human superficial mycoses. Breeding of different exotic animals such as parrots, various Reptiles and Amphibians, miniature Rodents and keeping them as a pets in the peoples houses, have become more and more popular in the recent years. This article is shortly presenting which animals maybe a potential source of fungal infections for humans. Looking for the other mycoses as systemic mycoses, especially candidiasis or aspergilosis there are no data, which allow excluding sick animals as a source of infection for human, even if those deep mycoses have endogenic reactivation mechanism. Immunocompromised people are in high-risk group when they take care of animals. Another important source of potentially pathogenic, mostly air-born fungi may be animal use in experimental laboratory work. During the experiments is possible that laboratory workers maybe hurt and these animals and their environment, food and house boxes could be the possible source of microorganisms, pathogenic for humans or other animals. Unusual way to inoculate these potentially pathogens into the skin of laboratory personnel may cause granulomatous, local lesions on their hands.

  17. The Insect Pathogens.

    PubMed

    Lovett, Brian; St Leger, Raymond J

    2017-03-01

    Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.

  18. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    PubMed Central

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-01-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses. PMID:27892507

  19. Starvation and imidacloprid exposure influence immune response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a fungal pathogen

    USDA-ARS?s Scientific Manuscript database

    In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigate...

  20. Current advances on genetic resistance to rice blast disease

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most threatening fungal diseases resulting in significant annual crop losses worldwide. Blast disease has been effectively managed by a combination of resistant (R) gene deployment, application of fungicides, and suita...

  1. Pre- and postharvest fungal apple diseases

    USDA-ARS?s Scientific Manuscript database

    The domesticated apple (Malus domestica) is the most significant pome fruit grown and consumed worldwide. China is the largest producer followed by the United States on a global scale. However, fungal plant pathogens cause significant economic losses in the field and in storage which negatively impa...

  2. Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense...

  3. Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood (Ascosphaera apis) and stonebrood (Aspergillus flavus) are well known fungal brood diseases of honeybees (Apis mellifera), but they have hardly been systematically studied because the difficulty of rearing larvae in vitro has precluded controlled experimentation. Chalkbrood is a chronic h...

  4. Developments in Fungal Taxonomy

    PubMed Central

    Guarro, Josep; Gené, Josepa; Stchigel, Alberto M.

    1999-01-01

    Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales). PMID:10398676

  5. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes.

    PubMed

    Mathioni, Sandra M; Patel, Nrupali; Riddick, Bianca; Sweigard, James A; Czymmek, Kirk J; Caplan, Jeffrey L; Kunjeti, Sridhara G; Kunjeti, Saritha; Raman, Vidhyavathi; Hillman, Bradley I; Kobayashi, Donald Y; Donofrio, Nicole M

    2013-01-01

    Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.

  6. Lack of host specialization on winter annual grasses in the fungal seed bank pathogen Pyrenophora semeniperda

    Treesearch

    Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...

  7. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae

    PubMed Central

    2011-01-01

    Background Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. Results To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS) replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC), larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Conclusion Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of enhanced resistance, insect larvae tend to have evolved increased tolerance of the fungal competitor. Future studies should examine whether sensitivity to allelopathic microbial metabolites drives a trade-off between resistance and tolerance in insect external defense. PMID:21756302

  8. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae.

    PubMed

    Trienens, Monika; Rohlfs, Marko

    2011-07-14

    Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS) replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC), larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of enhanced resistance, insect larvae tend to have evolved increased tolerance of the fungal competitor. Future studies should examine whether sensitivity to allelopathic microbial metabolites drives a trade-off between resistance and tolerance in insect external defense.

  9. Superficial fungal infections.

    PubMed

    Schwartz, Robert A

    Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.

  10. Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici

    PubMed Central

    Kim, Jiyoung

    2008-01-01

    The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici. PMID:23997634

  11. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew.

    PubMed

    Khalaf, Eman M; Raizada, Manish N

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens ( Rhizoctonia solani , Fusarium graminearum , Phytophthora capsici , Pythium aphanideratum ). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea , the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus . All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro , respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus , and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins.

  12. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    PubMed Central

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus, and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins. PMID:29459850

  13. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis.

    PubMed

    Teixeira, Marcus M; de Almeida, Luiz G P; Kubitschek-Barreira, Paula; Alves, Fernanda L; Kioshima, Erika S; Abadio, Ana K R; Fernandes, Larissa; Derengowski, Lorena S; Ferreira, Karen S; Souza, Rangel C; Ruiz, Jeronimo C; de Andrade, Nathalia C; Paes, Hugo C; Nicola, André M; Albuquerque, Patrícia; Gerber, Alexandra L; Martins, Vicente P; Peconick, Luisa D F; Neto, Alan Viggiano; Chaucanez, Claudia B; Silva, Patrícia A; Cunha, Oberdan L; de Oliveira, Fabiana F M; dos Santos, Tayná C; Barros, Amanda L N; Soares, Marco A; de Oliveira, Luciana M; Marini, Marjorie M; Villalobos-Duno, Héctor; Cunha, Marcel M L; de Hoog, Sybren; da Silveira, José F; Henrissat, Bernard; Niño-Vega, Gustavo A; Cisalpino, Patrícia S; Mora-Montes, Héctor M; Almeida, Sandro R; Stajich, Jason E; Lopes-Bezerra, Leila M; Vasconcelos, Ana T R; Felipe, Maria S S

    2014-10-29

    The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.

  14. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans)

    PubMed Central

    Radhakrishnan, Venkatraman Srinivasan; Reddy Mudiam, Mohana Krishna; Kumar, Manish; Dwivedi, Surya Prakash; Singh, Surinder Pal; Prasad, Tulika

    2018-01-01

    Purpose A significant increase in the incidence of fungal infections and drug resistance has been observed in the past decades due to limited availability of broad-spectrum antifungal drugs. Nanomedicines have shown significant antimicrobial potential against various drug-resistant microbes. Silver nanoparticles (AgNps) are known for their antimicrobial properties and lower host toxicity; however, for clinical applications, evaluation of their impact at cellular and molecular levels is essential. The present study aims to understand the cellular and molecular mechanisms of AgNp-induced toxicity in a common fungal pathogen, Candida albicans. Methods AgNps were synthesized by chemical reduction method and characterized using UV–visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence, and zeta potential. The anti-Candida activity of AgNps was assessed by broth microdilution and spot assays. Effects of AgNps on cellular and molecular targets were assessed by monitoring the intracellular reactive oxygen species (ROS) production in the absence and presence of natural antioxidant, changes in surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, membrane ergosterol, and fatty acids. Results Spherical AgNps (10–30 nm) showed minimum inhibitory concentration (minimum concentration required to inhibit the growth of 90% of organisms) at 40 μg/mL. Our results demonstrated that AgNps induced dose-dependent intracellular ROS which exerted antifungal effects; however, even scavenging ROS by antioxidant could not offer protection from AgNp mediated killing. Treatment with AgNps altered surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, ergosterol content, and fatty acid composition, especially oleic acid. Conclusion To summarize, AgNps affected multiple cellular targets crucial for drug resistance and pathogenicity in the fungal cells. The study revealed new cellular targets of AgNps which include fatty acids like oleic acid, vital for hyphal morphogenesis (a pathogenic trait of Candida). Yeast to hypha transition being pivotal for virulence and biofilm formation, targeting virulence might emerge as a new paradigm for developing nano silver-based therapy for clinical applications in fungal therapeutics. PMID:29760548

  15. Effect of chitinase on resistance to fungal pathogens in sea buckthorn, Hippophae rhamnoides, and cloning of Class I and III chitinase genes.

    PubMed

    Sun, Yan-Lin; Hong, Soon-Kwan

    2012-08-01

    Sea buckthorn (Hippophae rhamnoides L.) is naturally distributed from Asia to Europe. It has been widely planted as an ornamental shrub and is rich in nutritional and medicinal compounds. Fungal pathogens that cause diseases such as dried-shrink disease are threats to the production of this plant. In this study, we isolated the dried-shrink disease pathogen from bark and total chitinase protein from leaves of infected plants. The results of the Oxford Cup experiment suggested that chitinase protein inhibited the growth of this pathogen. To improve pathogen resistance, we cloned chitinase Class I and III genes in H. rhamnoides, designated Hrchi1 and Hrchi3. The full-length cDNA of the open reading frame region of Hrchi1 contained 903 bp encoding 300 amino acids and Hrchi3 contained 894 bp encoding 297 amino acids. Active domain analysis, protein types, and secondary and 3D structures were predicted using online software.

  16. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    PubMed

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  17. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle.

    PubMed

    Tsui, Clement K M; Roe, Amanda D; El-Kassaby, Yousry A; Rice, Adrianne V; Alamouti, Sepideh M; Sperling, Felix A H; Cooke, Janice E K; Bohlmann, Jörg; Hamelin, Richard C

    2012-01-01

    We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insect-fungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in north-south differentiation of MPB and G. clavigera populations points to the fungal pathogen's dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and observation of MPB movement data. Our results highlight the potential of this pathogen for both expansion and sexual reproduction, and also identify some possible barriers to gene flow. Understanding the ecological and evolutionary dynamics of this fungus-beetle association is important for the modelling and prediction of MPB epidemics. © 2011 Crown in the right of Canada.

  18. CSF coccidioides complement fixation

    MedlinePlus

    ... The name of this infection is coccidioidomycosis, or valley fever. When the infection involves the covering of the ... and the A.D.A.M. Editorial team. Valley Fever Read more NIH MedlinePlus Magazine Read more Health ...

  19. Coccidioidomycosis among cast and crew members at an outdoor television filming event--California, 2012.

    PubMed

    Wilken, Jason A; Marquez, Patricia; Terashita, Dawn; McNary, Jennifer; Windham, Gayle; Materna, Barbara

    2014-04-18

    In March 2013, the California Department of Public Health (CDPH) identified two Doctor's First Reports of Occupational Injury or Illness (DFRs) regarding Los Angeles County residents who had worked at the same jobsite in January 2012 and had been evaluated for possible work-associated coccidioidomycosis (valley fever). Occupational exposure to Coccidioides, the causative fungi, typically is associated with soil-disrupting activities. The physicians noted that both workers were cast or crew members filming a television series episode, and the site of possible exposure was an outdoor set in Ventura County, California. On the basis of their job titles, neither would have been expected to have been engaged in soil-disrupting activities. Los Angeles County Department of Public Health (LACDPH) conducted an outbreak investigation by using CDPH-provided occupational surveillance records, traditional infectious disease surveillance, and social media searches. This report describes the results of that investigation, which identified a total of five laboratory-confirmed and five probable cases linked to this filming event. The employer and site manager were interviewed. The site manager stated that they would no longer allow soil-disruptive work at the site and would incorporate information about the potential risk for Coccidioides exposure onsite into work contracts. Public health professionals, clinicians, and the television and film industry should be aware that employees working outdoors in areas where Coccidioides is endemic (e.g., central and southern California), even those not engaged in soil-disruptive work, might be at risk for coccidioidomycosis.

  20. Operational guidelines (version 1.0) for geological fieldwork in areas endemic for Coccidioidomycosis (Valley Fever)

    USGS Publications Warehouse

    Fisher, Frederick S.; Bultman, Mark W.; Pappagianis, Demosthenes

    2000-01-01

    Coccidioidomycosis (Valley Fever) is a disease caused by the inhalation of the arthroconidia (spores) of Coccidioides immitis, a fungus that lives in the soils of southwestern United States. Although large numbers of people are exposed to the arthroconidia and are consequently infected, very few individuals contract the more serious forms of the disease. Earth scientists working in field areas where Coccidioides immitis is endemic have an increased risk of becoming infected. Because field operations often disturb the upper surface of the ground, they may inhale large numbers of arthroconidia. This also increases their risk of developing more severe forms of the disease. Any other occupations or activities that create dusty conditions in endemic areas also have increased risk of infection. Risk management strategies can lower the incidence of infection and also reduce the numbers of arthroconidia inhaled thereby decreasing the chances of developing more serious disease. Dust control, by utilizing dust masks, and dust prevention, by limiting ground disturbing activities, are the primary weapons against infection. However, infection risk can also be lowered by conducting fields studies in the winter months; avoiding sites favorable for Coccidioides immitis growth; seeking prompt medical treatment if flu-like or respiratory illness occur during, or within a few weeks following, fieldwork; getting a coccidioidin skin test to determine susceptibility to the disease; and by educating all members of the field party about the possibilities and consequences of infection.

  1. Polyglycine hydrolases secreted by pathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...

  2. Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Crane, Virginia C.; Ellanskaya, Irina; Ellanskaya, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric J.; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-04-20

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  3. Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System.

    PubMed

    Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li

    2017-09-20

    The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.

  4. Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen.

    PubMed

    Johnston, Simon A; May, Robin C

    2013-03-01

    Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.

  5. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  6. Proteomics of plant pathogenic fungi.

    PubMed

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  7. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids

    PubMed Central

    Mor, Visesato; Rella, Antonella; Farnoud, Amir M.; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B.; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J.; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B.; Wiederhold, Nathan P.; Fothergill, Annette W.; Kirkpatrick, William R.; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L.; Luberto, Chiara; Nimrichter, Leonardo

    2015-01-01

    ABSTRACT Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. PMID:26106079

  8. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism.

    PubMed

    Yao, Lin; Tan, Chong; Song, Jinzhu; Yang, Qian; Yu, Lijie; Li, Xinling

    2016-01-01

    Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection.

    PubMed

    Hernández-Santos, Nydiaris; Wiesner, Darin L; Fites, J Scott; McDermott, Andrew J; Warner, Thomas; Wüthrich, Marcel; Klein, Bruce S

    2018-04-11

    Lung epithelial cells (LECs) are strategically positioned in the airway mucosa to provide barrier defense. LECs also express pattern recognition receptors and a myriad of immune genes, but their role in immunity is often concealed by the activities of "professional" immune cells, particularly in the context of fungal infection. Here, we demonstrate that NF-κB signaling in LECs is essential for immunity against the pulmonary fungal pathogen Blastomyces dermatitidis. LECs orchestrate innate antifungal immunity by augmenting the numbers of interleukin-17A (IL-17A)- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing innate lymphocytes, specifically "natural" Th17 (nTh17) cells. Innate lymphocyte-derived IL-17A and GM-CSF in turn enable phagocyte-driven fungal killing. LECs regulate the numbers of nTh17 cells via the production of chemokines such as CCL20, a process dependent on IL-1α-IL-1 receptor (IL-1R) signaling on LECs. Therefore, LECs orchestrate IL-17A- and GM-CSF-mediated immunity in an IL-1R-dependent manner and represent an essential component of innate immunity to pulmonary fungal pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease

    USDA-ARS?s Scientific Manuscript database

    Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic and hemibiotrophic pathogens. Here, we report the positional cloning of the wheat gene, Snn1, a member of the wall-associated kinase class of receptors, which are ...

  11. Molecular approaches to detecting and discriminating among prions, a class of pathogenic molecules(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Prions (PrPSc)are the pathogens that cause a set of fatal neurological diseases that include scrapie and chronic wasting disease (CWD). They are composed solely of protein and unlike viral, bacterial, or fungal pathogens, the information necessary to convert the normal cellular prion protein (PrPC) ...

  12. Crop Fertilization Impacts Epidemics and Optimal Latent Period of Biotrophic Fungal Pathogens.

    PubMed

    Précigout, Pierre-Antoine; Claessen, David; Robert, Corinne

    2017-10-01

    Crop pathogens are known to rapidly adapt to agricultural practices. Although cultivar resistance breakdown and resistance to pesticides have been broadly studied, little is known about the adaptation of crop pathogens to fertilization regimes and no epidemiological model has addressed that question. However, this is a critical issue for developing sustainable low-input agriculture. In this article, we use a model of life history evolution of biotrophic wheat fungal pathogens in order to understand how they could adapt to changes in fertilization practices. We focus on a single pathogen life history trait, the latent period, which directly determines the amount of resources allocated to growth and reproduction along with the speed of canopy colonization. We implemented three fertilization scenarios, corresponding to major effects of increased nitrogen fertilization on crops: (i) increase in nutrient concentration in leaves, (ii) increase of leaf lifespan, and (iii) increase of leaf number (tillering) and size that leads to a bigger canopy size. For every scenario, we used two different fitness measures to identify putative evolutionary responses of latent period to changes in fertilization level. We observed that annual spore production increases with fertilization, because it results in more resources available to the pathogens. Thus, diminishing the use of fertilizers could reduce biotrophic fungal epidemics. We found a positive relationship between the optimal latent period and fertilization when maximizing total spore production over an entire season. In contrast, we found a negative relationship between the optimal latent period and fertilization when maximizing the within-season exponential growth rate of the pathogen. These contrasting results were consistent over the three tested fertilization scenarios. They suggest that between-strain diversity in the latent period, as has been observed in the field, may be due to diversifying selection in different cultural environments.

  13. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6).

    PubMed

    Darwish, Omar; Li, Shuxian; May, Zane; Matthews, Benjamin; Alkharouf, Nadim W

    2016-01-01

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.

  14. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)

    PubMed Central

    May, Zane; Matthews, Benjamin; Alkharouf, Nadim W.

    2016-01-01

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe– Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. Availability: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx PMID:28197060

  15. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans

    PubMed Central

    Swidergall, Marc; Solis, Norma V.; Lionakis, Michail S.; Filler, Scott G.

    2017-01-01

    Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase signaling in an inoculum-dependent manner, and is required for induction of a pro-inflammatory and antifungal response. EphA2−/− mice have impaired inflammatory responses and reduced IL-17 signaling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans. PMID:29133884

  16. Facing the challenges of multiscale modelling of bacterial and fungal pathogen–host interactions

    PubMed Central

    Schleicher, Jana; Conrad, Theresia; Gustafsson, Mika; Cedersund, Gunnar; Guthke, Reinhard

    2017-01-01

    Abstract Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological organization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models. Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale modelling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational approaches for multiscale modelling of host–pathogen interactions and point out current challenges. Finally, we provide an outlook for future requirements of multiscale modelling. PMID:26857943

  17. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  18. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    PubMed Central

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  19. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India.

    PubMed

    Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay

    2015-09-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

  20. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.

    PubMed

    Langwig, Kate E; Frick, Winifred F; Reynolds, Rick; Parise, Katy L; Drees, Kevin P; Hoyt, Joseph R; Cheng, Tina L; Kunz, Thomas H; Foster, Jeffrey T; Kilpatrick, A Marm

    2015-01-22

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome

    PubMed Central

    Langwig, Kate E.; Frick, Winifred F.; Reynolds, Rick; Parise, Katy L.; Drees, Kevin P.; Hoyt, Joseph R.; Cheng, Tina L.; Kunz, Thomas H.; Foster, Jeffrey T.; Kilpatrick, A. Marm

    2015-01-01

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. PMID:25473016

  2. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

    PubMed Central

    Naglot, A.; Goswami, S.; Rahman, I.; Shrimali, D. D.; Yadav, Kamlesh K.; Gupta, Vikas K.; Rabha, Aprana Jyoti; Gogoi, H. K.; Veer, Vijay

    2015-01-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity. PMID:26361476

  3. The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development

    PubMed Central

    Thomazella, Daniela P T; Teixeira, Paulo José P L; Oliveira, Halley C; Saviani, Elzira E; Rincones, Johana; Toni, Isabella M; Reis, Osvaldo; Garcia, Odalys; Meinhardt, Lyndel W; Salgado, Ione; Pereira, Gonçalo A G

    2012-01-01

    The tropical pathogen Moniliophthora perniciosa causes witches’ broom disease in cacao. As a hemibiotrophic fungus, it initially colonizes the living host tissues (biotrophic phase), and later grows over the dead plant (necrotrophic phase). Little is known about the mechanisms that promote these distinct fungal phases or mediate the transition between them. An alternative oxidase gene (Mp-aox) was identified in the M. perniciosa genome and its expression was analyzed througout the fungal life cycle. In addition, the effects of inhibitors of the cytochrome-dependent respiratory chain (CRC) and alternative oxidase (AOX) were evaluated on the in vitro development of M. perniciosa. Larger numbers of Mp-aox transcripts were observed in the biotrophic hyphae, which accordingly showed elevated sensitivity to AOX inhibitors. More importantly, the inhibition of CRC prevented the transition from the biotrophic to the necrotrophic phase, and the combined use of a CRC and AOX inhibitor completely halted fungal growth. On the basis of these results, a novel mechanism is presented in which AOX plays a role in the biotrophic development of M. perniciosa and regulates the transition to its necrotrophic stage. Strikingly, this model correlates well with the infection strategy of animal pathogens, particularly Trypanosoma brucei, which uses AOX as a strategy for pathogenicity. PMID:22443281

  4. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.

    PubMed

    Shah, Punit; Powell, Ann L T; Orlando, Ron; Bergmann, Carl; Gutierrez-Sanchez, Gerardo

    2012-04-06

    Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.

  5. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells.

    PubMed

    Ziegler, Sabrina; Weiss, Esther; Schmitt, Anna-Lena; Schlegel, Jan; Burgert, Anne; Terpitz, Ulrich; Sauer, Markus; Moretta, Lorenzo; Sivori, Simona; Leonhardt, Ines; Kurzai, Oliver; Einsele, Hermann; Loeffler, Juergen

    2017-07-21

    Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.

  6. Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics.

    PubMed

    Kniemeyer, Olaf; Schmidt, André D; Vödisch, Martin; Wartenberg, Dirk; Brakhage, Axel A

    2011-06-01

    Both fungi Candida albicans and Aspergillus fumigatus can cause a number of life-threatening systemic infections in humans. The commensal yeast C. albicans is one of the main causes of nosocomial fungal infectious diseases, whereas the filamentous fungus A. fumigatus has become one of the most prevalent airborne fungal pathogens. Early diagnosis of these fungal infections is challenging, only a limited number of antifungals for treatment are available, and the molecular details of pathogenicity are hardly understood. The completion of both the A. fumigatus and C. albicans genome sequence provides the opportunity to improve diagnosis, to define new drug targets, to understand the functions of many uncharacterised proteins, and to study protein regulation on a global scale. With the application of proteomic tools, particularly two-dimensional gel electrophoresis and LC/MS-based methods, a comprehensive overview about the proteins of A. fumigatus and C. albicans present or induced during environmental changes and stress conditions has been obtained in the past 5 years. However, for the discovery of further putative virulence determinants, more sensitive and targeted proteomic methods have to be applied. Here, we review the recent proteome data generated for A. fumigatus and C. albicans that are related to factors required for pathogenicity. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Evidence for maintenance of sex by pathogens in plants.

    PubMed

    Busch, Jeremiah W; Neiman, Maurine; Koslow, Jennifer M

    2004-11-01

    The predominance of outcrossing despite the substantial transmission advantage of self-fertilization remains a paradox. Theory suggests that selection can favor outcrossing if it enables the production of offspring that are less susceptible to pathogen attack than offspring produced via self-fertilization. Thus, if pathogen pressure is contributing to the maintenance of outcrossing in plants, there may be a positive correlation between the number of pathogen species attacking plant species and the outcrossing rate of the plant species. We tested this hypothesis by examining the association between outcrossing rate and the number of fungal pathogen species that attack a large, taxonomically diverse set of seed plants. We show that plant species attacked by more fungal pathogen species have higher outcrossing rates than plants with fewer enemies. This relationship persists after correcting for study bias among natural and agricultural species of plants. We also accounted for the nested hierarchy of relationships among plant lineages by conducting phylogenetically independent contrasts (PICs) within genera and families that were adequately represented in our dataset. A meta-analysis of the correlation between pathogen and outcrossing PICs shows that there is a positive correlation between pathogen species number and outcrossing rates. This pattern is consistent with the hypothesis that pathogen-mediated selection may contribute to the maintenance of outcrossing in species of seed plants.

  8. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host

    PubMed Central

    Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno

    2012-01-01

    Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656

  9. Laboratory Diagnosis and Characterization of Fungal Disease in Patients with Cystic Fibrosis (CF): A Survey of Current UK Practice in a Cohort of Clinical Microbiology Laboratories.

    PubMed

    Boyle, Maeve; Moore, John E; Whitehouse, Joanna L; Bilton, Diana; Downey, Damian G

    2018-03-02

    There is much uncertainty as to how fungal disease is diagnosed and characterized in patients with cystic fibrosis (CF). A 19-question anonymous electronic questionnaire was developed and distributed to ascertain current practice in clinical microbiology laboratories providing a fungal laboratory service to CF centres in the UK. Analyses of responses identified the following: (1) current UK laboratory practice, in general, follows the current guidelines, but the scope and diversity of what is currently being delivered by laboratories far exceeds what is detailed in the guidelines; (2) there is a lack of standardization of fungal tests amongst laboratories, outside of the current guidelines; (3) both the UK CF Trust Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis and the US Cumulative Techniques and Procedures in Clinical Microbiology (Cumitech) Guidelines 43 Cystic Fibrosis Microbiology need to be updated to reflect both new methodological innovations, as well as better knowledge of fungal disease pathophysiology in CF; (4) there is a need for clinical medicine to decide upon a stratification strategy for the provision of new fungal assays that will add value to the physician in the optimal management of CF patients; (5) there is also a need to rationale what assays should be performed at local laboratory level and those which are best served at National Mycology Reference Laboratory level; and (6) further research is required in developing laboratory assays, which will help ascertain the clinical importance of 'old' fungal pathogens, as well as 'emerging' fungal pathogens.

  10. Effects of Water Stress on the Endophytic Fungal Communities of Pinus koraiensis Needles Infected by Cenangium ferruginosum

    PubMed Central

    Lee, Sun Keun; Lee, Seung Kyu; Bae, Hanhong; Seo, Sang-Tae

    2014-01-01

    To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings. PMID:25606004

  11. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

    PubMed Central

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  12. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    PubMed

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.

  13. Pathogenic ability and saline stress tolerance of two Fusarium isolates from Odontesthes bonariensis eggs.

    PubMed

    Pacheco Marino, Suani G; Cabello, Marta N; Dinolfo, María I; Stenglein, Sebastián A; Saparrat, Mario C N; Salibián, Alfredo

    2016-01-01

    Several fungal species represent a potential risk to embryos of Odontesthes bonariensis (Cuvier and Valenciennes, 1835), a euryhaline freshwater fish that lives in the Pampean inland waters and has potential economic relevance. To identify two fungi isolated from O. bonariensis eggs exposed to saline conditions and to characterize their pathogenicity and tolerance to sodium chloride solutions. The isolates were identified by morphological features, and a preliminar phylogenetic analysis using sequences of translation elongation factor 1-alpha (EF-1α) and calmodulin (CAM) was performed. Koch's postulates were tested to identify the causative agent of fungal infection. The influence of NaCl on the fungal growth was evaluated in in vitro assays. The isolates LPSC 1001 and 1002 were identified as representatives of the genus Fusarium, and belonging to the Fusarium incarnatum-Fusarium equiseti species complex (FIESC) and the Fusarium solani species complex (FSSC), respectively. Histological observations on eggs exposed in vitro to both isolates in infectivity assays confirmed the ability of the fungal isolates to penetrate to egg's chorionic membrane, leading to the death of embryos. Increasing NaCl concentration in the culture medium reduced the growth of the isolates LPSC 1001 and 1002, being completely inhibited at 160 and 120g/l NaCl respectively. The isolates LPSC 1001 (FIESC) and 1002 (FSSC) were identified as fungal pathogens to O. bonariensis eggs. The use of NaCl solutions as antifungal treatment was not effective to control the infection with these strains. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  14. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity and stealth pathogenesis

    USDA-ARS?s Scientific Manuscript database

    A finished genome was obtained for Mycosphaerella graminicola, the fungal cause of septoria tritici blotch and a global threat to wheat production, containing thirteen core and eight dispensable chromosomes. The latter, called collectively the dispensome, were dynamic in field and progeny isolates. ...

  15. Impacts of fungal stalk rot pathogens on physicochemical properties of sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Stalk rot diseases are among the most ubiquitous and damaging fungal diseases of sorghum worldwide. Although reports of quantitative stalk rot yield losses are available, the impact of stalk rot on the physicochemical attributes of sorghum grain is currently unknown. This study was conducted to test...

  16. Composition of fungal communities in soil and endophytic in raspberry production systems

    USDA-ARS?s Scientific Manuscript database

    Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up comple...

  17. Mating-type locus characterization and variation in Pyrenophora semeniperda

    Treesearch

    Julie Leanna Henry

    2015-01-01

    Pyrenophora semeniperda is a generalist fungal pathogen that occurs primarily on monocot seed hosts. It is in the phylum Ascomycota, which includes both self-compatible (homothallic) and self-incompatible (heterothallic) species. Homothallic fungal species contain complementary mating-type (MAT) idiomorphs in a single unikaryotic strain, while heterothallic strains...

  18. Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmai

    USDA-ARS?s Scientific Manuscript database

    Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. In previous work, the concentrated, or cell-free metabolites of X. szentirmaii exhibited high toxicity against various fungal plant pathogens and showed great potential ...

  19. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil

    2018-04-01

    Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Identification of Putative Coffee Rust Mycoparasites via Single-Molecule DNA Sequencing of Infected Pustules

    PubMed Central

    Marino, John A.; Perfecto, Ivette; Vandermeer, John

    2015-01-01

    The interaction of crop pests with their natural enemies is a fundament to their control. Natural enemies of fungal pathogens of crops are poorly known relative to those of insect pests, despite the diversity of fungal pathogens and their economic importance. Currently, many regions across Latin America are experiencing unprecedented epidemics of coffee rust (Hemileia vastatrix). Identification of natural enemies of coffee rust could aid in developing management strategies or in pinpointing species that could be used for biocontrol. In the present study, we characterized fungal communities associated with coffee rust lesions by single-molecule DNA sequencing of fungal rRNA gene bar codes from leaf discs (≈28 mm2) containing rust lesions and control discs with no rust lesions. The leaf disc communities were hyperdiverse in terms of fungi, with up to 69 operational taxonomic units (putative species) per control disc, and the diversity was only slightly reduced in rust-infected discs, with up to 63 putative species. However, geography had a greater influence on the fungal community than whether the disc was infected by coffee rust. Through comparisons between control and rust-infected leaf discs, as well as taxonomic criteria, we identified 15 putative mycoparasitic fungi. These fungi are concentrated in the fungal family Cordycipitaceae and the order Tremellales. These data emphasize the complexity of diverse fungi of unknown ecological function within a leaf that might influence plant disease epidemics or lead to the development of species for biocontrol of fungal disease. PMID:26567299

  1. Prevalence of entomophthoralean fungi (Entomophthoromycota) of aphids in relation to developmental stages.

    PubMed

    Manfrino, Romina G; Gutierrez, Alejandra C; Rueda Páramo, Manuel E; Salto, César E; López Lastra, Claudia C

    2016-08-01

    Transmission of fungal pathogens of aphids may be affected by the host developmental stage. Brassica and Lactuca sativa L. crops were sampled in Santa Fe, Argentina, to determine the prevalence of fungal-diseased aphids and investigate the differences between developmental stages of aphids. The fungal pathogens identified were Zoophthora radicans (Bref.) A. Batko, Pandora neoaphidis (Remaud. & Hennebert) Humber and Entomophthora planchoniana Cornu. Their prevalence on each crop was calculated. The numbers of infected aphids were significantly different between the different developmental stages on all crops except B. oleracea var. botrytis L. The entomophthoralean fungi identified are important mortality factors of aphids on horticultural crops in Santa Fe. The numbers of infected nymphs and adults were significantly different, nymphs being the most affected developmental stage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Inhibitory effects of Bacillus subtilis on plant pathogens of conservatory in high latitudes

    NASA Astrophysics Data System (ADS)

    Xue, Chun-Mei; Wang, Xue; Yang, Jia-Li; Zhang, Yue-Hua

    2018-03-01

    Researching the effect of three kinds of Bacillus and their mixed strains inhibitory on common fungal diseases of conservatory vegetables. The results showed that B. megaterium culture medium had a significant inhibition effect on Cucumber Fusarium wilt, and the inhibition rate was up to 84.36%; B. mucilaginosus and B. megaterium sterile superna-tant had an obvious inhibitory effect on brown disease of eggplant, and the inhibition rate as high as 85.49%; B. subtilis sterile supernatant had a good inhibitory effect on the spore germination of C. Fusarium wilt, and the inhibition rate was 76.83%. The results revealed that Bacillus had a significant inhibitory effect on five common fungal pathogens. Three kinds of Bacillus can be used for the prevention and control of common fungal diseases in conservatory vegetables.

  3. Coccidioides complement fixation

    MedlinePlus

    ... antibodies are detected in the blood sample. Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your health care provider about the meaning of your specific test results.

  4. Fungal Production and Manipulation of Plant Hormones.

    PubMed

    Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea

    2018-01-01

    Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. [Organization and preservation of the collection of pathogenic and fungal symbionts of insects and other arthropods from CEPAVE (CONICET-UNLP), La Plata, Argentina].

    PubMed

    Gutierrez, Alejandra Concepción; Tornesello-Galván, Julieta; Manfrino, Romina Guadalupe; Hipperdinger, Marcela; Falvo, Marianel; D'Alessandro, Celeste; López Lastra, Claudia Cristina

    The collection of fungal pathogens and symbionts of insects and other arthropods of the Centro de Estudios Parasitológicos y de Vectores, La Plata, Argentina, is unique because it preserves in vivo and in vitro cultures of fungal pathogens. This culture collection is open for research, teaching, consulting services, and strain deposit. It contains 421 strains belonging to 23 genera (16 Ascomycota, 4 Entomophthoromycotina, 2 Glomeromycota and 1 Oomycota), and the cultures are preserved by different methods such as cryopreservation in freezer at -20°C and -70°C, paper, distilled water and lyophilization. Fungi were isolated from insects, other arthropods, and soil (by using insect baits and selective media). Species were identified by morphological features and in a few strains by molecular taxonomy (PCR of rDNA). This collection is a reference center for species identification/certifications, research and teaching purposes, strain deposit, transference and consultancy services, and its overall goal is to preserve the fungal germplasm and ex situ diversity. Most of the strains are native of Argentina. The collection was originated in 1988 and is registered in the Latin American Federation for Culture Collections and in the World Federation of Culture Collections. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less

  7. Modelling the host-pathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization.

    PubMed

    Dühring, Sybille; Ewald, Jan; Germerodt, Sebastian; Kaleta, Christoph; Dandekar, Thomas; Schuster, Stefan

    2017-07-01

    The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage- Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage- C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells. © 2017 The Author(s).

  8. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens.

    PubMed

    Gabriel, K T; Joseph Sexton, D; Cornelison, C T

    2018-05-01

    Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens. © 2017 The Society for Applied Microbiology.

  9. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  10. The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression

    PubMed Central

    Martinez, Vanesa G.; Escoda-Ferran, Cristina; Tadeu Simões, Inês; Arai, Satoko; Orta Mascaró, Marc; Carreras, Esther; Martínez-Florensa, Mario; Yelamos, José; Miyazaki, Toru; Lozano, Francisco

    2014-01-01

    Apoptosis inhibitor of macrophages (AIMs), a homologue of human Spα, is a mouse soluble member of the scavenger receptor cysteine-rich superfamily (SRCR-SF). This family integrates a group of proteins expressed by innate and adaptive immune cells for which no unifying function has yet been described. Pleiotropic functions have been ascribed to AIM, from viability support in lymphocytes during thymic selection to lipid metabolism and anti-inflammatory effects in autoimmune pathologies. In the present report, the pathogen binding properties of AIM have been explored. By using a recombinant form of AIM (rAIM) expressed in mammalian cells, it is shown that this protein is able to bind and aggregate Gram-positive and Gram-negative bacteria, as well as pathogenic and saprophytic fungal species. Importantly, endogenous AIM from mouse serum also binds to microorganisms and secretion of AIM was rapidly induced in mouse spleen macrophages following exposure to conserved microbial cell wall components. Cytokine release induced by well-known bacterial and fungal Toll-like receptor (TLR) ligands on mouse splenocytes was also inhibited in the presence of rAIM. Furthermore, mouse models of pathogen-associated molecular patterns (PAMPs)-induced septic shock of bacterial and fungal origin showed that serum AIM levels changed in a time-dependent manner. Altogether, these data suggest that AIM plays a general homeostatic role by supporting innate humoral defense during pathogen aggression. PMID:24583716

  11. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes

    USGS Publications Warehouse

    Rodriguez, R.J.; Redman, R.S.

    1997-01-01

    This chapter discusses various biochemical, genetic, ecological, and evolutionary aspects of fungi that express either symbiotic or saprophytic life-styles. An enormous pool of potential pathogens exists in both agricultural and natural ecosystems, and virtually all plant species are susceptible to one or more fungal pathogens. Fungal pathogens have the potential to impact on the genetic structure of populations of individual plant species, the composition of plant communities and the process of plant succession. Endophytic fungi exist for at least part of their life cycles within the tissues of a plant host. This group of fungi is distinguished from plant pathogens because they do not elicit significant disease symptoms. However, endophytes do maintain the genetic and biochemical mechanisms required for infection and colonization of plant hosts. Fungi that obtain chemical nutrients from dead organic matter are known as saprophytes and are critical to the dynamics and resilience of ecosystems. There are two modes of saprophytic growth: one in which biomolecules that are amenable to transport across cell walls and membranes are directly absorbed, and another in which fungi must actively convert complex biopolymers into subunit forms amenable to transportation into cells. Regardless of life-style, fungi employ similar biochemical mechanisms for the acquisition and conversion of nutrients into complex biomolecules that are necessary for vegetative growth, production and dissemination of progeny, organismal competition, and survival during periods of nutrient deprivation or environmental inclemency.

  12. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects.

    PubMed

    Nelson, Jessica M; Hauser, Duncan A; Hinson, Rosemary; Shaw, A Jonathan

    2018-05-01

    Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. A saponin-detoxifying enzyme mediates suppression of plant defences

    NASA Astrophysics Data System (ADS)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  15. Seed diseases and seedborne pathogens of North America

    Treesearch

    Michelle Cram; Stephen Fraedrich

    2010-01-01

    Seedborne pathogenic fungi can greatly affect seed quality and cause diseases that impact seedling production in nurseries. Management strategies for the control of various seedborne diseases are based on the epidemiology of the diseases and the biology of the host and pathogen. This paper provides a brief review of seedborne fungal problems that affect conifer seeds...

  16. Linking ecology and epidemiology to understand predictors of multi-host responses to an emerging pathogen, the amphibian chytrid fungus

    Treesearch

    Stephanie S. Gervasi; Patrick R. Stephens; Jessica Hua; Catherine L. Searle; Gisselle Yang Xie; Jenny Urbina; Deanna H. Olson; Betsy A. Bancroft; Virginia Weis; John I. Hammond; Rick A. Relyea; Andrew R. Blaustein; Stefan Lötters

    2017-01-01

    Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different...

  17. QTL mapping of sulfur tolerance in melon

    USDA-ARS?s Scientific Manuscript database

    Elemental sulfur is a cheap, effective fungicide with multi-site action, which inhibits the evolution of pathogen resistance. Fungal pathogens cause significant yield losses in melon production. Many melon genotypes, however, suffer leaf necrosis in response to elemental sulfur application preventin...

  18. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3-Genes, Genomes, Genetics.

    USDA-ARS?s Scientific Manuscript database

    Pyrenophora tritici-repentis is a necrotrophic fungal pathogen and causal agent of tan spot disease of wheat, which has increased significantly over the last few decades. Pathogenicity by this fungus is due to host-selective toxins. These toxins are recognized by their host plant in a genotype-speci...

  19. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  20. Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass

    USDA-ARS?s Scientific Manuscript database

    Dollar spot is one of the most destructive and economically important fungal diseases of amenity turfgrasses. The causal agent was first described in 1937 as the ascomycete Sclerotinia homoeocarpa. However, the genus-level taxonomic placement of this fungus has been the subject of an ongoing debate ...

Top