Science.gov

Sample records for fungal spore coatings

  1. Bacillus subtilis Spore Coat

    PubMed Central

    Driks, Adam

    1999-01-01

    In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field. PMID:10066829

  2. Fungal spores: hazardous to health?

    PubMed Central

    Sorenson, W G

    1999-01-01

    Fungi have long been known to affect human well being in various ways, including disease of essential crop plants, decay of stored foods with possible concomitant production of mycotoxins, superficial and systemic infection of human tissues, and disease associated with immune stimulation such as hypersensitivity pneumonitis and toxic pneumonitis. The spores of a large number of important fungi are less than 5 microm aerodynamic diameter, and therefore are able to enter the lungs. They also may contain significant amounts of mycotoxins. Diseases associated with inhalation of fungal spores include toxic pneumonitis, hypersensitivity pneumonitis, tremors, chronic fatigue syndrome, kidney failure, and cancer. PMID:10423389

  3. Fungal Spores Viability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-11-01

    long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.

  4. Fungal Spores Viability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-04-01

    long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.

  5. Development of a fungal spore aerosol generator: test with Cladosporium cladosporioides and Penicillium citrinum.

    PubMed

    Lee, Byung Uk; Kim, Young Joong; Lee, Chang Ho; Yun, Sun Hwa; Bae, Gwi-Nam; Ji, Jun-Ho

    2008-04-01

    As the first step to develop efficient means to control fungal spore bioaerosols, we designed, manufactured, and evaluated a fungal spore aerosol generator. We studied the physical and biological properties of the fungal spore bioaerosols on two common fungal species. The results demonstrated that the fungal spore bioaerosol generator effectively produces fungal spore bioaerosols.

  6. Source strength of fungal spore aerosolization from moldy building material

    NASA Astrophysics Data System (ADS)

    Górny, Rafał L.; Reponen, Tiina; Grinshpun, Sergey A.; Willeke, Klaus

    The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm -2 from surfaces with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration at a frequency of 1 Hz at a power level of 14 W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71-88% of the spores released during a 30-min interval became airborne during the first 10 min.

  7. Model simulations of fungal spore distribution over the Indian region

    NASA Astrophysics Data System (ADS)

    Ansari, Tabish U.; Valsan, Aswathy E.; Ojha, N.; Ravikrishna, R.; Narasimhan, Balaji; Gunthe, Sachin S.

    2015-12-01

    Fungal spores play important role in the health of humans, animals, and plants by constituting a class of the primary biological aerosol particles (PBAPs). Additionally, these could mediate the hydrological cycle by acting as nuclei for ice and cloud formation (IN and CCN respectively). Various processes in the biosphere and the variations in the meteorological conditions control the releasing mechanism of spores through active wet and dry discharge. In the present paper, we simulate the concentration of fungal spores over the Indian region during three distinct meteorological seasons by combining a numerical model (WRF-Chem) with the fungal spore emissions based on land-use type. Maiden high-resolution regional simulations revealed large spatial gradient and strong seasonal dependence in the concentration of fungal spores over the Indian region. The fungal spore concentrations are found to be the highest during winter (0-70 μg m-3 in December), moderately higher during summer (0-35 μg m-3 in May) and lowest during the monsoon (0-25 μg m-3 in July). The elevated concentrations during winter are attributed to the shallower boundary layer trapping the emitted fungal spores in smaller volume. In contrast, the deeper boundary layer mixing in May and stronger monsoonal-convection in July distribute the fungal spores throughout the lower troposphere (∼5 km). We suggest that the higher fungal spore concentrations during winter could have potential health impacts. While, stronger vertical mixing could enable fungal spores to influence the cloud formation during summer and monsoon. Our study provides the first information about the distribution and seasonal variation of fungal spores over the densely populated and observationally sparse Indian region.

  8. Airborne mesophilic fungal spores in various residential environments

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.

    In the present work viable fungal spore counts and flora of indoor air were compared in various residences. Total viable spore counts were lowest in the urban/suburban residences and highest in the rural residences. Moisture problems in the urban environment did not increase total viable spore count, but affected composition of fungal flora. In the rural environment, spore counts were much higher in the old houses than in the new ones. Penicillium was the most prevalent fungus in the air of all the residences studied. Airborne Aspergillus, Cladosporium spores and yeast cells were more common in the damp residences and the old rural houses than in the other residences.

  9. Thirty-four identifiable airborne fungal spores in Havana, Cuba.

    PubMed

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F Javier; Fernandez-Gonzalez, Maria; Rojas-Flores, Teresa I

    2015-01-01

    The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 - October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores) and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. Cladosporium cladosporioides type was the most abundant with a total of 148,717 spores, followed by Leptosphaeria, Coprinus and the Aspergillus-Penicillium type spores, all of them with total values ranging from 20,591 - 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores) and the lowest in December (7,314 spores). Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores) was higher compared with that observed during the rainy season (17,460 spores).

  10. Spore Coat Architecture of Clostridium novyi-NT spores

    SciTech Connect

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  11. Direct whole-mount imaging of fungal spores by energy-filtering transmission electron microscopy.

    PubMed

    Kim, Ki Woo

    2009-02-01

    Whole-mount fungal spores were examined by energy-filtering transmission electron microscopy. Conidia of Penicillium species and Ustilaginoidea virens were suspended in distilled water and directly placed on a glow-discharged formvar-coated copper grid. Energy-filtered images were taken from 0 to 100eV loss regions. Due to their considerable inherent thickness, their globose morphology was evident. In zero-loss images, the fungal spores appeared to have higher contrast in general, showing darker periphery than unfiltered images. Most spores in zero-loss images exhibited almost homogeneous electron density across the spores. The contrast was partially inversed in low-loss images where more details of the outer cell wall ornamentations of spores could be discerned than zero-loss images. As obvious advantages of whole-mount spore imaging, it allows for ensuring two-dimensional images with higher spatial resolution than light microscopy and conventional scanning electron microscopy. If a higher resolution is needed to observe fungal surface structures such as fimbriae and rodlet layers, or discriminate an outer sheath enveloping spores, whole-mount spore imaging can be employed to unravel structural details. PMID:18707893

  12. Determination of the carbon content of airborne fungal spores.

    PubMed

    Bauer, Heidi; Kasper-Giebl, Anne; Zibuschka, Franziska; Hitzenberger, Regina; Kraus, Gunther F; Puxbaum, Hans

    2002-01-01

    Airborne fungal spores contribute potentially to the organic carbon of the atmospheric aerosol, mainly in the "coarse aerosol" size range 2.5-10 microm aerodynamic equivalent diameter (aed). Here, we report about a procedure to determine the organic carbon content of fungal spores frequently observed in the atmosphere. Furthermore, we apply a new (carbon/individual) factor to quantify the amount of fungal-spores-derived organic carbon in aerosol collected at a mountain site in Austria. Spores of representatives of Cladosporium sp., Aspergillus sp., Penicillium sp., and Alternaria sp., the four predominant airborne genera, were analyzed for their carbon content using two different analytical procedures. The result was an average carbon content of 13 pg C/spore (RSD, 46%), or expressed as a carbon-per-volume ratio, 0.38 pg C/microm3 (RSD, 30%). These values are comparable to conversion factors for bacteria and some representatives of the zooplankton. Because biopolymers are suspected of interfering with elemental carbon determination by thermal methods, the amount of "fungal carbon" that might be erroneously mistaken for soot carbon was determined using the "two-step combustion" method of Cachier et al. and termed as "apparent elemental carbon" (AEC). This fraction amounted to up to 46% of the initial fungal carbon content. Although the aerosol samples were collected in March under wintry conditions, the organic carbon from fungal spores amounted to 2.9-5.4% of organic carbon in the "coarse mode" size fraction.

  13. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  14. The Fungal Spores Survival Under the Low-Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Soušková, Hana; Scholtz, V.; Julák, J.; Savická, D.

    This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

  15. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  16. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K.

    2010-10-01

    Recent atmospheric measurements show that biological particles are important ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm), 1% of the droplets froze by -28.5 °C and 10% froze by -30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. As such, freezing temperatures for droplets containing 1-5 spores are expected to be approximately -35.1±2.3 °C (1σ S.D.). Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, do not appear to explain recent atmospheric measurements showing that biological particles are important ice nuclei. The poor ice nucleation ability of Cladosporium sp. spores may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi). Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  17. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    NASA Astrophysics Data System (ADS)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  18. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables.

    PubMed

    Filali Ben Sidel, Farah; Bouziane, Hassan; Del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years (C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R (2) satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R (2) varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  19. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K.

    2011-02-01

    Recent atmospheric measurements show that biological particles are a potentially important class of ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm ), 1% of the droplets froze by -28.5 °C and 10% froze by -30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. Mean freezing temperatures for droplets containing 1-5 spores are expected to be approximately -35.1 ± 2.3 °C (1σ S. D.). Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, thus do not appear to explain recent atmospheric measurements showing that biological particles participate as atmospheric ice nuclei. The poor ice nucleation ability of Cladosporium sp. may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi). Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  20. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  1. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation.

    PubMed

    Laaberki, Maria-Halima; Dworkin, Jonathan

    2008-09-01

    Bacterial spores are resistant to a wide range of chemical and physical insults that are normally lethal for the vegetative form of the bacterium. While the integrity of the protein coat of the spore is crucial for spore survival in vitro, far less is known about how the coat provides protection in vivo against predation by ecologically relevant hosts. In particular, assays had characterized the in vitro resistance of spores to peptidoglycan-hydrolyzing enzymes like lysozyme that are also important effectors of innate immunity in a wide variety of hosts. Here, we use the bacteriovorous nematode Caenorhabditis elegans, a likely predator of Bacillus spores in the wild, to characterize the role of the spore coat in an ecologically relevant spore-host interaction. We found that ingested wild-type Bacillus subtilis spores were resistant to worm digestion, whereas vegetative forms of the bacterium were efficiently digested by the nematode. Using B. subtilis strains carrying mutations in spore coat genes, we observed a correlation between the degree of alteration of the spore coat assembly and the susceptibility to the worm degradation. Surprisingly, we found that the spores that were resistant to lysozyme in vitro can be sensitive to C. elegans digestion depending on the extent of the spore coat structure modifications.

  2. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  3. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Attri, Arun K.

    2016-10-01

    Fungal spores as a constituent of ambient particulate matter (PM) is of concern; they not only display the physical traits of a particle, but are also potential allergens and health risk. An investigation over fourteen month was undertaken at a rural site located in the Western Himalayan region, to evaluate the PM associated fungal spores' concentration and diversity. The season-wise change in the fungal spores concentration in the Coarse Particulate Matter (CPM) fraction (aerodynamic diameter > 10 μm) varied from 500 to 3899 spores m-3. Their average concentration over 14 months was 1517 spores m-3. Significant diversity of fungal spores in the CPM samples was observed; 27 individual genera of fungal spores were identified, of which many were known allergens. Presence of Ascomycota and Basidiomycota fungal spores was dominant in the samples; ∼20% of the spores were un-characterized. The season-wise variability in fungal spores showed a statistically significant high correlation with CPM load. Maximum number concentration of the spores in CPM was recorded in the summer, while minimum in the winter. The high diversity of spores occurred during monsoon and post monsoon months. The meteorological factors played an important role in the fungal spores' distribution profile. The temporal profile of the spores showed significant correlation with the ambient temperature (T), relative humidity (RH), wind speed (WS) and planetary boundary layer (PBL) height. Strong correlation of WS with fungal spores and CPM, and wind back trajectories suggest that re-suspension and wind assisted transport of PM contributes to ambient CPM associated fungal spores.

  4. Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins

    PubMed Central

    Ferencko, Linda; Rotman, Boris

    2010-01-01

    Background Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as a sieve to exclude exogenous large toxic molecules, such as lytic enzymes. Over recent years, however, new information about the coat's architecture and function have emerged from experiments using innovative tools such as automated scanning microscopy, and high resolution atomic force microscopy. Principal Findings Using thin-section electron microscopy, we found that the coat of Bacillus spores has topologically specific proteins forming a layer that is identifiable because it spontaneously becomes decorated with hydrophobic fluorogenic probes from the milieu. Moreover, spores with decorated coat proteins (termed F-spores) have the unexpected attribute of responding to external germination signals by generating intense fluorescence. Fluorescence data from diverse experimental designs, including F-spores constructed from five different Bacilli species, indicated that the fluorogenic ability of F-spores is under control of a putative germination-dependent mechanism. Conclusions This work uncovers a novel attribute of spore-coat proteins that we exploited to decorate a specific layer imparting germination-dependent fluorogenicity to F-spores. We expect that F-spores will provide a model system to gain new insights into structure/function dynamics of spore-coat proteins. PMID:20174569

  5. Fungal spore fragmentation as a function of airflow rates and fungal generation methods

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species ( Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences ( p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependent on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤0.4 m s -1 for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and A. niger, but not for C. cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples ( p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, whilethe results obtained from the UVAPS and SMAS were not identical for the same samples.

  6. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    PubMed Central

    Fiester, S. E.; Helfinstine, S. L.; Redfearn, J. C.; Uribe, R. M.; Woolverton, C. J.

    2012-01-01

    Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB) irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy). Irradiated spores were found (1) to contain structural damage as observed by electron microscopy, (2) to have spilled cytoplasmic contents as measured by spectroscopy, (3) to have reduced membrane integrity as determined by fluorescence cytometry, and (4) to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation. PMID:22319535

  7. Does Spore Count Matter in Fungal Allergy?: The Role of Allergenic Fungal Species

    PubMed Central

    Lin, Wan-Rou; Lee, Mey-Fann; Hsu, Ling-Yi; Tien, Chih-Jen; Shih, Feng-Ming; Hsiao, Shih-Ching

    2016-01-01

    Purpose Fungi have been known to be important aeroallergens for hundreds of years. Most studies have focused on total fungal concentration; however, the concentration of specific allergenic fungi may be more important on an individual basis. Methods Ten fungal allergic patients and 2 non-fungal allergic patients were enrolled. The patients with a decrease in physician or patient global assessment by more than 50% of their personal best were considered to have an exacerbation of allergic symptoms and to be in the active stage. Those who maintained their physician and patient global assessment scores at their personal best for more than 3 months were considered to be in the inactive stage. The concentrations of dominant fungi in the patients' houses and outdoors were measured by direct and viable counts at active and inactive stages. Results The exacerbation of allergic symptoms was not correlated with total fungal spore concentration or the indoor/outdoor ratio (I/O). Specific fungi, such as Cladosporium oxysporum (C. oxyspurum), C. cladosporioides, and Aspergillus niger (A. niger), were found to be significantly higher concentrations in the active stage than in the inactive stage. Presumed allergenic spore concentration threshold levels were 100 CFU/m3 for C. oxysporum, and 10 CFU/m3 for A. niger, Penicillium brevicompactum and Penicillium oxalicum. Conclusions The major factor causing exacerbation of allergic symptoms in established fungal allergic patients may be the spore concentration of specific allergenic fungi rather than the total fungal concentration. These results may be useful in making recommendations as regards environmental control for fungal allergic patients. PMID:27334778

  8. The Ice Nucleation Ability of Selected Atmospherically Abundant Fungal Spores

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Bertram, A. K.

    2010-12-01

    Ice clouds are widely recognized for their roles in the earth’s radiation budget and climate systems. However, their formation mechanisms are poorly understood thus constituting an uncertainty in the evaluation of the global radiation budget. An important mechanism of ice cloud formation is heterogeneous nucleation on aerosol particles. The surface properties of these particles, called ice nuclei (IN), directly affect the temperature at which ice nucleation occurs. There is a growing emphasis on the study of bioaerosols (e.g., bacteria, fungi, pollen) as IN since they are ubiquitous in the atmosphere. The focus of the current study is to determine the ice nucleation properties of spores obtained from a variety of fungi. Aerosolized spores were impacted onto a hydrophobic glass substrate and immersed in ultrapure water. A technique involving an optical light microscope coupled to a flow cell was used to precisely control temperature and humidity within the cell. A digital camera captured high-resolution video of the particles undergoing ice nucleation, allowing for the analyses of freezing events and particle sizes. The first experimental results using spores obtained from the fungal genera Cladosporium and Penicillium reveal an average temperature increase of ~1-5 K in the ice nucleation temperature compared to homogeneous nucleation (i.e., freezing of pure liquid water). Furthermore, there appears to be a relationship between the amount of spores present per droplet and the freezing temperature of water. These results are presented and discussed, and the potential contribution of these data to further the understanding of heterogeneous nucleation in the atmosphere is provided. Box plot summarizing freezing data for homogeneous nucleation experiments (leftmost box) and binned data from heterogeneous nucleation experiments involving spores of Cladosporium. Freezing data are distributed into 200 µm2 bins that represent the total area of all observable inclusions

  9. Transmission of fungal spores in space and their conditions for survival: a review.

    PubMed

    Volz, P A

    1997-01-01

    The transfer of fungal spores to suitable hosts or nutrient substrates frequently depends on spore discharge and aerial transport to transmit the species. Factors affecting spore translocation and travel have been evaluated mycologically and mathematically and are reviewed. Global disease spread and transmission monitoring are discussed.

  10. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  11. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    PubMed Central

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  12. Chlorine inactivation of fungal spores on cereal grains.

    PubMed

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  13. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    SciTech Connect

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  14. Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy).

    PubMed

    Telloli, Chiara; Chicca, Milvia; Leis, Marilena; Vaccaro, Carmela

    2016-08-01

    Airborne particulate matter (PM) containing fungal spores and pollen grains was sampled within a monitoring campaign of wheat threshing, plowing and sowing agricultural operations. Fungal spores and pollen grains were detected and identified on morphological basis. No studies were previously available about fungal spore and pollen content in agricultural PM in the Po Valley. Sampling was conducted in a Po Valley farmland in Mezzano (Ferrara, Italy). The organic particles collected were examined by scanning electron microscopy with energy dispersive X-ray spectrometer. Fungal spores and pollen grains were identified when possible at the level of species. The most frequent components of the organic particles sampled were spores of Aspergillus sp., which could represent a risk of developing allergies and aspergillosis for crop farmers. PMID:27521955

  15. A versatile nano display platform from bacterial spore coat proteins

    PubMed Central

    Wu, I-Lin; Narayan, Kedar; Castaing, Jean-Philippe; Tian, Fang; Subramaniam, Sriram; Ramamurthi, Kumaran S.

    2015-01-01

    Dormant bacterial spores are encased in a thick protein shell, the ‘coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation. PMID:25854653

  16. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  17. Fungal Spore Concentrations and Ergosterol Content in Aerosol Samples in the Caribbean During African Dust Events

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Bolaños-Rosero, B.; Mayol-Bracero, O. L.

    2015-12-01

    Fungal spores are a major component of primary biogenic aerosol particles that are emitted to the atmosphere, are ubiquitous, and play an important role in the chemistry and physics of the atmosphere, climate, and public health. Every year, during summer months, African dust (AD) particles are transported to the Caribbean region causing an increase in the concentrations of particulate matter in the atmosphere. AD is one of the most important natural sources of mineral particulate matter at the global scale, and many investigations suggest that it has the ability to transport dust-associated biological particles through long distances. The relationship between AD incursions and the concentration of fungal spores in the Caribbean region is poorly understood. In order to investigate the effects of AD incursions on fungal spore's emissions, fungal spore concentrations were monitored using a Burkard spore trap at the tropical montane cloud forest of Pico del Este at El Yunque National Forest, Puerto Rico. The presence of AD was supported with satellite images of aerosol optical thickness, and with the results from the air masses backward trajectories calculated with the NOAA HYSPLIT model. Basidiospores and Ascospores comprised the major components of the total spore's concentrations, up to a maximum of 98%, during both AD incursions and background days. A considerably decrease in the concentration of fungal spores during AD events was observed. Ergosterol, biomarker for measuring fungal biomass, concentrations were determined in aerosols that were sampled at a marine site, Cabezas de San Juan Nature Reserve, in Fajardo Puerto Rico, and at an urban site, Facundo Bueso building at the University of Puerto Rico. Additional efforts to understand the relationship between the arrival of AD to the Caribbean and a decrease in spore's concentrations are needed in order to investigate changes in local spore's vs the contribution of long-range spores transported within the AD.

  18. Arabitol and mannitol as tracers for the quantification of airborne fungal spores

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Claeys, Magda; Vermeylen, Reinhilde; Schueller, Elisabeth; Weinke, Gert; Berger, Anna; Puxbaum, Hans

    Fungal spores constitute a sizeable fraction of coarse organic carbon (OC) in the atmospheric aerosol. In order to avoid tedious spore count methods, tracers for quantifying the spore-OC in atmospheric aerosol are sought. Arabitol and mannitol have been proposed as such tracers, since no other emission sources for these compounds have been reported. By parallel investigations of spore counts and tracer determinations from PM 10 filter samples we could derive quantitative relationships between the amounts of tracer compounds and the numbers of spores in the atmosphere for different sites in the area of Vienna. We obtained over all average relationships of 1.2 pg arabitol spore -1, with a range of 0.8-1.8, and 1.7 pg mannitol spore -1, with a range of 1.2-2.4, with a clear site dependence. Thus, using these conversion factors from spore counts to spore-OC and spore-mass, along with analytical data for arabitol or mannitol in filter samples, the contribution of fungal spores to the OC and to the mass balance of atmospheric aerosol particles can be estimated.

  19. Modelling the impact of fungal spore ice nuclei on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Sesartic, Ana; Lohmann, Ulrike; Storelvmo, Trude

    2013-04-01

    Fungal spores are part of the atmospheric bioaerosols such as pollen or bacteria. Interest in bioaerosols is mainly related to their health effects, impacts on agriculture, ice nucleation and cloud droplet activation, as well as atmospheric chemistry (Morris et al. 2011). Spores of some fungal species have been found to be very efficient ice nuclei, e.g. in laboratory studies by Pouleur et al. (1992). Recent field studies by Poehlker et al. (2012) found that fungal spores are important contributors to the development of mist and clouds in rainforest ecosystems. In our study we investigated the impact of fungal spores acting as ice nuclei on clouds and precipitation on a global scale. Fungal spores as a new aerosol species were introduced into the global climate model ECHAM5-HAM (Sesartic et al. 2012) using observational fungal spore data compiled by Sesartic & Dallafior (2011). The addition of fungal spores lead to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path as well as stratiform precipitation in the model were observed in the boreal regions where tundra and forests act as sources of fungal spores. This goes hand in hand with a decreased ice crystal number concentration and increased effective radius of ice crystals. An increase in stratiform precipitation and snowfall can be observed in those regions as well. Although fungal spores contribute to heterogeneous freezing, their impact in the model was reduced by their low numbers compared to other heterogeneous ice nuclei. These results for fungal spores are comparable to the ones achieved with bacteria (Sesartic et al. 2012). REFERENCES Morris, C. E. et al. 2011: Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate, Biogeosciences, 8, 17-25. Poehlker, C. et al. 2012: Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol

  20. In silico modeling of spore inhalation reveals fungal persistence following low dose exposure

    PubMed Central

    Tanaka, Reiko J.; Boon, Neville J.; Vrcelj, Katarina; Nguyen, Anita; Vinci, Carmelina; Armstrong-James, Darius; Bignell, Elaine

    2015-01-01

    The human lung is constantly exposed to spores of the environmental mould Aspergillus fumigatus, a major opportunistic pathogen. The spectrum of resultant disease is the outcome of complex host-pathogen interactions, an integrated, quantitative understanding of which lies beyond the ethical and technical reach permitted by animal studies. Here we construct a mathematical model of spore inhalation and clearance by concerted actions of macrophages and neutrophils, and use it to derive a mechanistic understanding of pathogen clearance by the healthy, immunocompetent host. In particular, we investigated the impact of inoculum size upon outcomes of single-dose fungal exposure by simulated titrations of inoculation dose, from 106 to 102 spores. Simulated low-dose (102) spore exposure, an everyday occurrence for humans, revealed a counter-intuitive prediction of fungal persistence (>3 days). The model predictions were reflected in the short-term dynamics of experimental murine exposure to fungal spores, thereby highlighting the potential of mathematical modelling for studying relevant behaviours in experimental models of fungal disease. Our model suggests that infectious outcomes can be highly dependent upon short-term dynamics of fungal exposure, which may govern occurrence of cyclic or persistent subclinical fungal colonisation of the lung following low dose spore inhalation in non-neutropenic hosts. PMID:26364644

  1. Fungal spores are transported long distances in smoke from biomass fires

    NASA Astrophysics Data System (ADS)

    Mims, Sarah A.; Mims, Forrest M.

    Viable fungal spores are present in smoke from distant biomass fires. This finding has potentially important implications for prescribed burning, agricultural management and public health. While attempting to find fungal spores in dust blown from China to Texas, one of us (S.A.M.) discovered that smoke from Yucatan contains viable bacteria and fungal spores, including the genera Alternaria, Cladosporium, Fusariella and Curvularia. There was a high correlation ( r2=0.78) of spores and coarse carbon particles collected on microscope slides during 13 days of the 2002 smoke season. To eliminate possible contamination by local spores, an air sampler was flown from a kite at a Texas Gulf Coast beach during and after the 2003 smoke season on days when the NOAA back trajectory showed air arriving from Yucatan. Fifty-two spores and 19 coarse black carbon particles (>2.5 μm) were collected during a 30-min kite flight on the smoke day and 12 spores and four carbons on the day without smoke. We have found spores in smoke from an Arizona forest fire and in Asian smoke at Mauna Loa Observatory, Hawaii. We have tested these findings by burning dried grass, leaves, twigs and flood detritus. The smoke from all test fires contained many spores.

  2. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  3. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): diversity and origin.

    PubMed

    Docampo, Silvia; Trigo, M Mar; Recio, Marta; Melgar, Marta; García-Sánchez, José; Cabezudo, Baltasar

    2011-01-15

    Fungal spores are of great interest in aerobiology and allergy due to their high incidence in both outdoor and indoor environments and their widely recognized ability to cause respiratory diseases and other pathologies. In this work, we study the spore content of the atmosphere of the Cave of Nerja, a karstic cavity and an important tourist attraction situated on the eastern coast of Malaga (southern Spain), which receives more than half a million visitors every year. This study was carried out over an uninterrupted period of 4 years (2002-2005) with the aid of two Hirst-type volumetric pollen traps (Lanzoni VPPS 2000) situated in different halls of the cave. In the atmosphere of the Cave of Nerja, 72 different spore types were detected during the studied period and daily mean concentrations of up to 282,195 spores/m(3) were reached. Thirty-five of the spore types detected are included within Ascomycota and Basidiomycota (19 and 16 types, respectively). Of the remaining spore types, 32 were categorized within the group of so-called imperfect fungi, while Oomycota and Myxomycota were represented by 2 and 3 spore types, respectively. Aspergillus/Penicillium was the most abundant spore type with a yearly mean percentage that represented 50% of the total, followed by Cladosporium. Finally, the origin of the fungal spores found inside the cave is discussed on the basis of the indoor/outdoor concentrations and the seasonal behaviour observed. PMID:21138779

  4. Evaluation of fungal spore characteristics in Beijing, China, based on molecular tracer measurements

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui

    2013-03-01

    PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) and PM10 (particulate matter with aerodynamic diameters less than 10 μm) samples were collected by high-volume air samplers simultaneously at a rural site and an urban site in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, recently proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the urban site were 7.4 ± 9.4 and 21.0 ± 20.4 ng m-3, and the respective mannitol concentrations were 10.3 ± 9.5 and 31.9 ± 26.9 ng m-3. During summer and autumn, higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry season (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces (e.g., soil resuspension, transported dust, etc) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Moreover, statistical analysis according to typical seasonal patterns, including a dry season (December 2010 to March 2011) and a wet season (July to September 2011), revealed different variations of fungal spores in different seasons. Although fungal spore levels at rural sites were reported to be consistently higher than those at urban sites in other studies, our findings showed the opposite pattern, indicating a high abundance of fungal spores in the urban area of this Chinese megacity.

  5. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores

    NASA Astrophysics Data System (ADS)

    Reponen, Tiina; Willeke, Klaus; Ulevicius, Vidmantas; Reponen, Auvo; Grinshpun, Sergey A.

    Exposure to airborne fungal spores may cause respiratory symptoms. The hygroscopicity of airborne spores may significantly affect their aerodynamic diameter, and thus change their deposition pattern in the human respiratory tract. We have investigated the change in aerodynamic diameter of five different fungal species as a function of relative humidity. Liquid and dry dispersion methods were explored for the aerosolization of the fungal spores. A new system that produces non-aggregated spore aerosol directly from a moldy surface was designed and found suitable for this study. The spores were aerosolized from a mold growth on agar by ducting dry air over the surface, and spore chains in the flow were broken up by passing the entire flow through a critical orifice. Size-spectrometric measurements with an Aerodynamic Particle Sizer showed that the aerodynamic diameter of the tested fungal spores does not change significantly when the relative humidity increases from 30% to 90%. A more distinct spore size increase was found at a relative humidity of ˜ 100%. The highest change of the aerodynamic diameter was found with Cladosporium cladosporioides: it increased from 1.8 μm to 2.3 μm when the relative humidity increased from 30% to ˜ 100%. The size increase corresponds to an approximate doubling of the particle volume. In order to estimate the effect of hygroscopic growth on the respiratory deposition of spores, the mean depositions in the human respiratory tract were calculated for fungal spores with various size changes due to hygroscopic growth. A recently developed model of the International Commission of Radiological Protection was used for the respiratory deposition calculations. We found that the 27% increase in Cladosporium size results in a 20-30% increase in the respiratory deposition of these spores. We conclude that most fungal spores are only slightly hygroscopic and the hygroscopic increase does not significantly affect their respiratory deposition. Our

  6. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China

    NASA Astrophysics Data System (ADS)

    Wu, Pei-Chih; Tsai, Jui-Chen; Li, Fang-Chun; Lung, Shih-Chun; Su, Huey-Jen

    2004-09-01

    Fungi are ubiquitous in nature and their spores are often dispersed into the atmosphere through turbulent airstreams. As yellow sandstorm blown from deserts in China had affected the ambient air quality with increasing levels of ambient particulates, often including significant amounts of biologically active particles has therefore become imperative for concerns of their health implications. Our study was aimed to examine the effects of yellow sandstorm events on the fungal composition and concentrations in ambient air. Atmospheric fungal spores were continuously collected using Burkard Volumetric Spore Trap. Samples collected between December 2000 and April 2001 were selected for priority analysis from days when the yellow sandstorms were reported to affect Taiwan according to the Central Weather Bureau in Taiwan. The composition of dominant spores such as Basidiospore, Penicillium/Aspergillus, Nigrospora, Arthrinium, Curvularia, Rusts, Stemphylium, Cercospora, Pithomyces, and unidentified fungi were significantly higher than those of background days. The increase of Basidiospore, Penicillium/Aspergillus, Nigrospora, and those unidentified fungi seems to be significantly associated with the increase of ambient particulate levels with regression coefficients ranging from 0.887 to 31.98. Our study has identified increasing ambient concentrations during sandstorm episodes are observed for some major fungi, Basidiospore, Penicillium, Aspergillus, and those unidentified fungi and the trends of the increase seems to associate with ambient particulate levels. Further efforts to clarify the relationship between those high fungal spore exposures and clinical adverse health effects are suggested in the future. In addition, effects of climatic factors and other particulate levels on the variation of ambient fungal spore levels are also desired in further study. Additional monitoring of ambient fungal spores in the first line of west coastline is hoped to assist in

  7. A natural O-ring optimizes the dispersal of fungal spores.

    PubMed

    Fritz, Joerg A; Seminara, Agnese; Roper, Marcus; Pringle, Anne; Brenner, Michael P

    2013-08-01

    The forcibly ejected spores of ascomycete fungi must penetrate several millimetres of nearly still air surrounding sporocarps to reach dispersive airflows, and escape is facilitated when a spore is launched with large velocity. To launch, the spores of thousands of species are ejected through an apical ring, a small elastic pore. The startling diversity of apical ring and spore shapes and dimensions make them favoured characters for both species descriptions and the subsequent inference of relationships among species. However, the physical constraints shaping this diversity and the adaptive benefits of specific morphologies are not understood. Here, we develop an elastohydrodynamic theory of the spore's ejection through the apical ring and demonstrate that to avoid enormous energy losses during spore ejection, the four principal morphological dimensions of spore and apical ring must cluster within a nonlinear one-dimensional subspace. We test this prediction using morphological data for 45 fungal species from two different classes and 18 families. Our sampling encompasses multiple loss and gain events and potentially independent origins of this spore ejection mechanism. Although the individual dimensions of the spore and apical ring are only weakly correlated with each other, they collapse into the predicted subspace with high accuracy. The launch velocity appears to be within 2 per cent of the optimum for over 90 per cent of all forcibly ejected species. Although the morphological diversity of apical rings and spores appears startlingly diverse, a simple principle can be used to organize it. PMID:23782534

  8. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.

    PubMed

    Hasnain, Syed M; Akhter, Tasneem; Waqar, Muhammad A

    2012-03-01

    Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and

  9. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.

    PubMed

    Hasnain, Syed M; Akhter, Tasneem; Waqar, Muhammad A

    2012-03-01

    Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and

  10. Rarely reported fungal spores and structures: An overlooked source of probative trace evidence in criminal investigations.

    PubMed

    Hawksworth, David L; Wiltshire, Patricia E J; Webb, Judith A

    2016-07-01

    The value of pollen and plant spores as trace evidence has long been established, but it is only in the last eight years that fungal spores have been analysed routinely from the same palynological samples. They have greatly enhanced the specificity of links between people, objects, and places. Most fungal species occupy restricted ecological niches and their distributions can be limited both spatially and geographically. Spores may be dispersed over very short distances from the fungal sporophore,(1) and their presence in any palynological assemblage may indicate a restricted area of ground, or the presence of particular plants (even specific dead plant material). Fungal spores can represent primary, secondary, or even tertiary proxy evidence of a location, and can indicate the presence of a plant even though the plant is not obvious at a crime scene. In some cases, spores from fungi which have rarely been reported, and are considered to be rare, have been of particular value in providing intelligence or evidence of contact. Ten examples are given from case work in which rarely reported or unusual fungi have proved to be important in criminal investigations.

  11. Rarely reported fungal spores and structures: An overlooked source of probative trace evidence in criminal investigations.

    PubMed

    Hawksworth, David L; Wiltshire, Patricia E J; Webb, Judith A

    2016-07-01

    The value of pollen and plant spores as trace evidence has long been established, but it is only in the last eight years that fungal spores have been analysed routinely from the same palynological samples. They have greatly enhanced the specificity of links between people, objects, and places. Most fungal species occupy restricted ecological niches and their distributions can be limited both spatially and geographically. Spores may be dispersed over very short distances from the fungal sporophore,(1) and their presence in any palynological assemblage may indicate a restricted area of ground, or the presence of particular plants (even specific dead plant material). Fungal spores can represent primary, secondary, or even tertiary proxy evidence of a location, and can indicate the presence of a plant even though the plant is not obvious at a crime scene. In some cases, spores from fungi which have rarely been reported, and are considered to be rare, have been of particular value in providing intelligence or evidence of contact. Ten examples are given from case work in which rarely reported or unusual fungi have proved to be important in criminal investigations. PMID:27017083

  12. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens

    PubMed Central

    Posada, Francisco J.; Vega, Fernando E.

    2005-01-01

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619

  13. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    PubMed

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  14. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    PubMed

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires. PMID:26473720

  15. The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila.

    PubMed

    Klobutcher, Lawrence A; Ragkousi, Katerina; Setlow, Peter

    2006-01-01

    Bacillus spores are highly resistant to many environmental stresses, owing in part to the presence of multiple "extracellular" layers. Although the role of some of these extracellular layers in resistance to particular stresses is known, the function of one of the outermost layers, the spore coat, is not completely understood. This study sought to determine whether the spore coat plays a role in resistance to predation by the ciliated protozoan Tetrahymena, which uses phagocytosis to ingest and degrade other microorganisms. Wild-type dormant spores of Bacillus subtilis were efficiently ingested by the protozoan Tetrahymena thermophila but were neither digested nor killed. However, spores with various coat defects were killed and digested, leaving only an outer shell termed a rind, and supporting the growth of Tetrahymena. A similar rind was generated when coat-defective spores were treated with lysozyme alone. The sensitivity of spores with different coat defects to predation by T. thermophila paralleled the spores' sensitivities to lysozyme. Spore killing by T. thermophila was by means of lytic enzymes within the protozoal phagosome, not by initial spore germination followed by killing. These findings suggest that a major function of the coat of spores of Bacillus species is to protect spores against predation. We also found that indigestible rinds were generated even from spores in which cross-linking of coat proteins was greatly reduced, implying the existence of a coat structure that is highly resistant to degradative enzymes.

  16. Temporal associations between daily counts of fungal spores and asthma exacerbations

    PubMed Central

    Atkinson, R W; Strachan, D P; Anderson, H R; Hajat, S; Emberlin, J

    2006-01-01

    Background Outdoor aeroallergens are one of a number of environmental factors thought to precipitate asthma exacerbations. Aims To investigate the short term associations between daily fungal spore concentrations and indicators of daily asthma exacerbations in a large urban population. Methods Daily counts of visits for asthma to family physicians and hospital accident and emergency (A&E) departments and emergency hospital admissions in London 1992–93 were compiled. Daily concentrations of fungal spores (30 species), daily average temperature, humidity, and concentrations of pollen and outdoor air pollution were also compiled. The analysis was restricted to the period when fungal spores were most prevalent (June to mid October). Non‐parametric regression time series methods were used to assess associations controlling for seasonality, day of week, and meteorological factors. The sensitivity of the findings to the inclusion of pollen and air pollution into the models was also assessed. Results In children aged 0–14 years the relative risks for increases in the number of A&E visits and hospital admissions associated with changes in fungal spore concentrations from the lower to upper quartiles were 1.06 (95% CI 0.94 to 1.18) and 1.07 (0.97 to 1.19) respectively. The addition of pollen or air pollutants had little impact on the observed associations. A number of individual spore taxa, in particular Alternaria, Epicoccum, Agrocybe, Mildews, and both coloured and colourless Basidiospores and Ascospores, were associated with increases in the number of emergency visits and hospital admissions for asthma, although the precision of these estimates were low. No evidence was found for associations in adults. Conclusions Fungal spore concentrations may provoke or exacerbate asthma attacks in children resulting in visits to A&E departments and emergency hospital admissions. These findings were unlikely to be due to confounding by other environmental factors. The

  17. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Ribeiro, H.; Delgado, J. L.; Abreu, I.

    2009-01-01

    Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005-2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores ( Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores ( Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.

  18. Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination.

    PubMed

    Barkal, Layla J; Walsh, Naomi M; Botts, Michael R; Beebe, David J; Hull, Christina M

    2016-05-16

    Germination of spores into actively growing cells is a process essential for survival and pathogenesis of many microbes. Molecular mechanisms governing germination, however, are poorly understood in part because few tools exist for evaluating and interrogating the process. Here, we introduce an assay that leverages developments in microfluidic technology and image processing to quantitatively measure germination with unprecedented resolution, assessing both individual cells and the population as a whole. Using spores from Cryptococcus neoformans, a leading cause of fatal fungal disease in humans, we developed a platform to evaluate spores as they undergo morphological changes during differentiation into vegetatively growing yeast. The assay uses pipet-accessible microdevices that can be arrayed for efficient testing of diverse microenvironmental variables, including temperature and nutrients. We discovered that temperature influences germination rate, a carbon source alone is sufficient to induce germination, and the addition of a nitrogen source sustains it. Using this information, we optimized the assay for use with fungal growth inhibitors to pinpoint stages of germination inhibition. Unexpectedly, the clinical antifungal drugs amphotericin B and fluconazole did not significantly alter the process or timing of the transition from spore to yeast, indicating that vegetative growth and germination are distinct processes in C. neoformans. Finally, we used the high temporal resolution of the assay to determine the precise defect in a slow-germination mutant. Combining advances in microfluidics with a robust fungal molecular genetic system allowed us to identify and alter key temporal, morphological, and molecular events that occur during fungal germination. PMID:27026574

  19. Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit.

    PubMed

    Saucedo-Lucero, J O; Quijano, G; Arriaga, S; Muñoz, R

    2014-07-15

    The performance of a fungal perlite-based biofilter coupled to a post-treatment photoreactor was evaluated over 234 days in terms of n-hexane removal, emission and deactivation of fungal spores. The biofilter and photoreactor were operated at gas residence times of 1.20 and 0.14min, respectively, and a hexane loading rate of 115±5gm(-3)h(-1). Steady n-hexane elimination capacities of 30-40gm(-3)h(-1) were achieved, concomitantly with pollutant mineralization efficiencies of 60-90%. No significant influence of biofilter irrigation frequency or irrigation nitrogen concentration on hexane abatement was recorded. Photolysis did not support an efficient hexane post-treatment likely due to the short EBRT applied in the photoreactor, while overall hexane removal and mineralization enhancements of 25% were recorded when the irradiated photoreactor was packed with ZnO-impregnated perlite. However, a rapid catalyst deactivation was observed, which required a periodic reactivation every 48h. Biofilter irrigation every 3 days supported fungal spore emissions at concentrations ranging from 2.4×10(3) to 9.0×10(4)CFUm(-3). Finally, spore deactivation efficiencies of ≈98% were recorded for the photolytic and photocatalytic post-treatment processes. This study confirmed the potential of photo-assisted post-treatment processes to mitigate the emission of hazardous fungal spores and boost the abatement performance of biotechnologies. PMID:24887128

  20. Distribution of sterols in the fungi. I - Fungal spores

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  1. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    SciTech Connect

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ≅ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric

  2. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

    NASA Astrophysics Data System (ADS)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-08-01

    We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -31.5 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from -20 °C to -25 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in

  3. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Schueller, Elisabeth; Weinke, Gert; Berger, Anna; Hitzenberger, Regina; Marr, Iain L.; Puxbaum, Hans

    Fungal spores are ubiquitous components of atmospheric aerosols and are therefore also contributors to the organic carbon (OC) component and to the mass of PM 10 (PM—particulate matter) aerosols. In this study we use spore counts and an experimentally derived factor of 13 pg C and of 33 pg fresh weight per spore for assessing quantitatively the contribution to OC and PM 10. The concentrations of airborne fungal spores were determined at a suburban (Schafberg) and a traffic-dominated urban site (Rinnböckstrasse) in Vienna, Austria, during spring and summer. Fungal spores OC ranged from 22 to 677 ng m -3 with a summer mean value of around 350 ng m -3 at the suburban site and 300 ng m -3 at the urban traffic site. At the suburban site fungal spores contributed on average 6% in spring and 14% in summer to aerosol OC mass concentration. At the traffic-dominated site fungal spores accounted for 2% of OC in spring and for 8% in summer. The fungal contribution to PM 10 was also notable and amounted to 3% and 7% at the suburban and to 1% and 4% at the urban site in spring and summer, respectively. Impactor measurements of OC at the suburban site showed that in summer fungal spores were predominant contributors to the coarse aerosol OC, and accounted on average for 60% of the OC in the PM 2-10 fraction. Fungal spores thus can be regarded as main components to PM 10, total OC and, most importantly, coarse OC even in urban areas.

  4. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain)

    NASA Astrophysics Data System (ADS)

    Sabariego, S.; Díaz de la Guardia, C.; Alba, F.

    A study was made of the link between climatic factors and the daily content of certain fungal spores in the atmosphere of the city of Granada in 1994. Sampling was carried out with a Burkard 7-day-recording spore trap. The spores analysed corresponded to the taxa Alternaria, Ustilago and Cladosporium, with two morphologically different spore types in the latter genus, cladosporioides and herbarum. These spores were selected both for their allergenic capacity and for the high level of their presence in the atmosphere, particularly during the spring and autumn. The spores of Cladosporium were the most abundant (93.82% of the total spores identified). The Spearman correlation coefficients between the spore concentrations studied and the meteorological parameters show different indices depending on the taxon being analysed. Alternaria and Cladosporium are significantly correlated with temperature and hours of sunlight, while Ustilago shows positive correlation indices with relative humidity and negative indices with wind speed.

  5. Spores

    MedlinePlus

    ... do not destroy their spores. A process called sterilization destroys spores and bacteria. It is done at ... and under high pressures. In health care settings, sterilization is usually done using a device called an ...

  6. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage.

    PubMed

    Schalamuk, S; Velazquez, S; Chidichimo, H; Cabello, M

    2006-01-01

    We investigated the influence of tilling, N fertilization and crop stage on arbuscular mycorrhizae (AM) fungal species diversity in a wheat monoculture in the Pampa region of Argentina. Glomalean spores were isolated by wet sieving and decanting from conventionally tilled and nontilled soils cropped with wheat with or without N fertilization, at three phenological stages of the crop (tilling, flowering and grain filling) and fallow. Morphological characterization yielded at least 24 AM fungi taxa in the field samples, belonging to six genera of AMF: Acaulospora Archaeospora, Entrophospora, Gigaspora, Glomus and Scutellospora. Tilling and fertilization treatments did not result in decreased spore biodiversity. Wheat phenology influenced AM communities, with highest spore biodiversity during grain filling.

  7. Pulmonary Injury after Combined Exposures to Low-Dose Low-LET Radiation and Fungal Spores

    PubMed Central

    Marples, B.; Downing, L.; Sawarynski, K. E.; Finkelstein, J. N.; Williams, J. P.; Martinez, A. A.; Wilson, G. D.; Sims, M. D.

    2013-01-01

    Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury. PMID:21275606

  8. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  9. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion.

    PubMed

    Fischer, Mark W F; Stolze-Rybczynski, Jessica L; Davis, Diana J; Cui, Yunluan; Money, Nicholas P

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m s(-1) over a distance of <0.1mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m s(-1) and travel as far as 2.5m (Re>100). PMID:21036338

  10. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion.

    PubMed

    Fischer, Mark W F; Stolze-Rybczynski, Jessica L; Davis, Diana J; Cui, Yunluan; Money, Nicholas P

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m s(-1) over a distance of <0.1mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m s(-1) and travel as far as 2.5m (Re>100).

  11. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores

    NASA Astrophysics Data System (ADS)

    Sousa, S. I. V.; Martins, F. G.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Ribeiro, H.; Oliveira, M.; Abreu, I.

    The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, pollen and fungal spores. Considering the potential relevance of crossed effects of non-biological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants and meteorological parameters on the concentrations of pollen and fungal spores using linear correlations and multiple linear regressions. For that, the seasonal variation of ozone, particulate matter with an equivalent aerodynamic diameter smaller than 10 μm, pollen and fungal spores were assessed and statistical correlations were analysed between those parameters. The data were collected through 2003-2005 in Porto, Portugal. The linear correlations showed that ozone and particulate matter had no significant influence on the concentration of pollen and fungal spores. On the contrary, when using multiple linear regressions those parameters showed to have some influence on the biological pollutants, although results were different depending on the year analysed. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations, both when using linear and multiple linear correlations. Relative humidity also showed to have some influence on the fungal spore dispersion when multiple linear regressions were used. Nevertheless, the conclusions for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant may not be, even so, consistent enough. Furthermore, the comparison of the results here presented with those obtained by other authors for only one period should be made carefully.

  12. Synergistic effects of ajoene and the microwave power density memories of water on germination inhibition of fungal spores.

    PubMed

    Rai, S; Singh, U P; Mishra, G D; Singh, S P; Samarketu; Wagner, K G

    1995-05-01

    The synergistic effects of ajoene and the microwave power density memories of water on germination inhibition of some fungal spores are examined. The study reveals power memory varying different synergistic effects of different concentrations of ajoene on the inhibition of spore germination.

  13. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection.

  14. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  15. Study on the ice nucleation activity of fungal spores (Ascomycota and Basidiomycota)

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2012-04-01

    Biogenic ice nucleation (IN) in the atmosphere is a topic of growing interest, as, according to IPCC, the impact of IN on global climate is crucial to perform reliable climate model calculations. About 20 years ago IN activity of a few lichen and Fusarium species [1,2] was reported, while all other investigated fungi were IN-negative. However, as the fungal kingdom is vast, many abundant species, especially the Basidiomycota (most mushrooms), were not tested before. Furthermore, the focus of the past studies was on the IN activity of the mycelium as a cryoprotective mechanism, and not on the airborne spores. We carried out oil immersion measurements [3] with spores from 17 different fungal species of ecological, economical or sanitary importance. Most of these species have not been investigated before, like exponents of Aspergillus, Trichoderma and Agaricales (most mushrooms). Apart from F. avenaceum, spores of all measured species showed moderate or no IN activity, supporting the hypothesis that significant IN activity is a rather exclusive property of only a few species within the fungal kingdom. [1] Kieft TL and Ruscetti T: J. Bacteriol. 172, 3519-3523, 1990. [2] Pouleur S et al.: Appl. Environ. Microbiol., 58, 2960-2964, 1992. [3] Marcolli C et al.: Atmos. Chem. Phys. 7, 5081-5091, 2007.

  16. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  17. Mixed Production of Filamentous Fungal Spores for Preventing Soil-Transmitted Helminth Zoonoses: A Preliminary Analysis

    PubMed Central

    Arias, M. S.; Cazapal-Monteiro, C. F.; Suárez, J.; Miguélez, S.; Francisco, I.; Arroyo, F. L.; Suárez, J. L.; Paz-Silva, A.; Sánchez-Andrade, R.; Mendoza de Gives, P.

    2013-01-01

    Helminth zoonoses are parasitic infections shared by humans and animals, being the soil-transmitted helminths (STHs) mainly caused by roundworms (ascarids) and hookworms. This study was aimed to assess the individual and/or mixed production of two helminth-antagonistic fungi, one ovicide (Mucor circinelloides) and other predator (Duddingtonia flagrans). Fungi were grown both in Petri plates and in a submerged culture (composed by water, NaCl, Na2HPO4· 12 H2O, and wheat (Triticum aestivum)). A Fasciola hepatica recombinant protein (FhrAPS) was incorporated to the cultures to improve fungal production. All the cultured plates showed fungal growth, without difference in the development of the fungi when grown alone or mixed. High counts of Mucor spores were produced in liquid media cultures, and no significant differences were achieved regarding single or mixed cultures, or the incorporation of the FhrAPS. A significantly higher production of Duddingtonia spores after the incorporation of the FhrAPS was observed. When analyzing the parasiticide efficacy of the fungal mixture, viability of T. canis eggs reduced to 51%, and the numbers of third stage cyathostomin larvae reduced to 4%. It is concluded, the capability of a fungal mixture containing an ovicide (Mucor) and a predator species (Duddingtonia) for growing together in a submerged medium containing the FhrAPS offers a very interesting tool for preventing STHs. PMID:23710451

  18. Real-time in situ electron spin resonance measurements on fungal spores of Penicillium digitatum during exposure of oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Mizuno, Hiroko; Tanaka, Hiromasa; Tamiya, Kazuhiro; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Iseki, Sachiko; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2012-07-01

    We report the kinetic analysis of free radicals on fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge using real time in situ electron spin resonance (ESR) measurements. We have obtained information that the ESR signal from the spores was observed and preliminarily assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal is possibly linked to the inactivation of the fungal spore. The real-time in situ ESR has proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  19. Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Pan, Yong-Le; Hill, Steven C.; Redding, Brandon

    2015-03-01

    Photophoretic trapping-Raman spectroscopy (PTRS) is a new technique for measuring Raman spectra of particles that are held in air using photophoretic forces. It was initially demonstrated with Raman spectra of strongly-absorbing carbon nanoparticles (Pan et al. [44] (Opt Express 2012)). In the present paper we report the first demonstration of the use of PTRS to measure Raman spectra of absorbing and weakly-absorbing bioaerosol particles (pollens and spores). Raman spectra of three pollens and one smut spore in a size range of 6.2-41.8 μm illuminated at 488 nm are shown. Quality spectra were obtained in the Raman shift range of 1600-3400 cm-1 in this exploratory study. Distinguishable Raman scattering signals with one or a few clear Raman peaks for all four aerosol particles were observed within the wavenumber region 2940-3030 cm-1. Peaks in this region are consistent with previous reports of Raman peaks in the 1600-3400 cm-1 range for pollens and spores excited at 514 nm measured by a conventional Raman spectrometer. Noise in the spectra, the fluorescence background, and the weak Raman signals in most of the 1600-3400 cm-1 region make some of the spectral features barely discernable or not discernable for these bioaerosols except the strong signal within 2940-3030 cm-1. Up to five bands are identified in the three pollens and only two bands appear in the fungal spore, but this may be because the fungal spore is so much smaller than any of the pollens. The fungal spore signal relative to the air-nitrogen Raman band is approximately 10 times smaller than that ratio for the pollens. The five bands are tentatively assigned to the CH2 symmetric stretch at 2948 cm-1, CH2 Fermi resonance stretch at 2970 cm-1, CH3 symmetric stretch at 2990 cm-1, CH3 out-of-plane end asymmetric stretch at 3010 cm-1, and unsaturated =CH stretch at 3028 cm-1. The two dominant bands of the up-to-five Raman bands in the 2940-3030 cm-1 region have a consistent band spacing of 25 cm-1 in all

  20. Ice nucleation and its effect on the atmospheric transport of fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes

    NASA Astrophysics Data System (ADS)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-02-01

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and

  1. Effects of Surface Fires and Below Ground Heating on the Biogeochemical Structures of Endomycorrhizal Fungal Spores

    NASA Astrophysics Data System (ADS)

    Bishop, M.; Werts, S. P.

    2015-12-01

    The impact of surface fires on soil properties can vary from negligible to severe, depending on a multitude of factors on both the surface of the soil and within the soil itself. Once a fire moves through an ecosystem, there are no simple ways to know exactly how deep the heat from the fire penetrated into the soil or what those temperatures actually were. Having this information may provide insight into ecosystem recovery and may have further applications to archaeological studies. We are investigating the biogeochemical structure of endomycorrhizal fungal spores, which show little to no morphological change when exposed to temperatures exceeding 500°C and should remain present in the soil following a fire event. We obtained soil samples from a pine dominated forest and a deciduous forest in two different soil types from the piedmont of the southeastern US and extracted the fungal spores for temperature experiments. We utilized a scanning electron microscope with emission dispersive spectroscopy to seek information on the biogeochemical structure of the spores and note any changes in nature of the structure and makeup as temperature increased. Initial results suggest that oxygen ratios may be changing with temperature, however, more work is being done on various species to see if there are species-specific trends.

  2. Viability of fungal and actinomycetal spores after microwave radiation of building materials.

    PubMed

    Górny, Rafał L; Mainelis, Gediminas; Wlazło, Agnieszka; Niesler, Anna; Lis, Danuta O; Marzec, Stanisław; Siwińska, Ewa; Łudzeń-Izbińska, Beata; Harkawy, Aleksander; Kasznia-Kocot, Joanna

    2007-01-01

    The effects of microwave radiation on viability of fungal and actinomycetal spores growing on agar (medium optimal for growth) as well as on wooden panel and drywall (common building construction/finishing materials) were studied. All materials were incubated at high (97-99%) and low (32-33%) relative humidity to mimic "wet" and "dry" environmental conditions. Two microwave power densities (10 and 60 mW/cm2) and three times of exposure (5, 30, and 60 min) were tested to find the most effective parameters of radiation which could be applied to non-invasive reduction or cleaning of building materials from microbial contaminants. Additionally, a control of the surface temperature during the experiments allowed differentiation between thermal and microwave effect of such radiation. The results showed that the viability of studied microorganisms differed depending on their strains, growth conditions, power density of microwave radiation, time of exposure, and varied according to the applied combination of the two latter elements. The effect of radiation resulting in a decrease of spore viability on "wet" wooden panel and drywall was generally observed at 60 min exposure. Shorter exposure times decreased the viability of fungal spores only, while in actinomycetes colonizing the studied building materials, such radiation caused an opposite (supporting growth) effect.

  3. Semiochemicals from ex situ abiotically stressed cactus tissue: a contributing role of fungal spores?

    PubMed

    Beck, John J; Baig, Nausheena; Cook, Daniel; Mahoney, Noreen E; Marsico, Travis D

    2014-12-24

    Semiochemicals play a central role in communication between plants and insects, such as signaling the location of a suitable host. Fungi on host plants can also play an influential role in communicating certain plant vulnerabilities to an insect. The spiroketal conophthorin is an important semiochemical produced by developing fungal spores. Spiroketals are also used as signals for scolytid communication. Plants and fungi are known to emit varying volatile profiles under biotic and abiotic stress. This paper reports distinctive temporal-volatile profiles from three abiotic treatments, room temperature (control), -15 °C (cold), and -15 °C to room temperature (shock), of cactus tissue plugs. Volatiles from the three treatments included monoterpenes from control plugs, compounds of varying classes and origin at later stages for cold plugs, and known semiochemicals, including spiroketals, at later stages for shock plugs. The results highlight several important findings: a unique tissue source of the spiroketals; abiotic cold-shock stress is indicated as the cause of spiroketal production; and, given previous findings of spirogenesis, fungal spore involvement is a probable biosynthetic origin of the spiroketals. These findings suggest an important role of fungal volatiles as signaling plant vulnerability to insects.

  4. Production of Beauveria bassiana Fungal Spores on Rice to Control the Coffee Berry Borer, Hypothenemus hampei, in Colombia

    PubMed Central

    Posada-Flórez, Francisco J

    2008-01-01

    Two isolates of fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) were grown on cooked rice using diphasic liquid-solid fermentation in plastic bags to produce and harvest spore powder. The cultures were dried and significant differences were found for isolates and time of harvest. The spores were harvested manually and mechanically and after the cultures were dried for nine days, when moisture content was near 10%. After harvesting, spores were submitted to quality control to assess concentration, germination, purity, moisture content, particle size and pathogenicity to the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae). Spore productivity on cooked rice was less than 1×1010 spores/g using both manually and mechanically harvesting methodologies. Germination at 24 hours was over 75% and pathogenicity against H. hampei was over 92.5%. This methodology is suitable for laboratory and field studies, but not for industrial production when a high concentration of spores are required for formulation and field applications.

  5. Analysis of the antimicrobial effects of nonthermal plasma on fungal spores in ionic solutions.

    PubMed

    Kang, Min Ho; Hong, Young June; Attri, Pankaj; Sim, Geon Bo; Lee, Geon Joon; Panngom, Kamonporn; Kwon, Gi Chung; Choi, Eun Ha; Uhm, Han S; Park, Gyungsoon

    2014-07-01

    The antimicrobial efficiency of reactive species-based control strategies is significantly affected by the dynamics of reactive species in the biological environment. Atmospheric-pressure nonthermal plasma is an ionized gas in which various reactive species are produced. The various levels of antimicrobial activity may result from the dynamic interaction of the plasma-generated reactive species with the environment. However, the nature of the interaction between plasma and environments is poorly understood. In this study, we analyzed the influence of the ionic strength of surrounding solutions (environment) on the antimicrobial activity of plasma in relation to the plasma-generated reactive species using a model filamentous fungus, Neurospora crassa. Our data revealed that the presence of sodium chloride (NaCl) in the background solution attenuated the deleterious effects of plasma on germination, internal structure, and genomic DNA of fungal spores. The protective effects of NaCl were not explained exclusively by pH, osmotic stability, or the level of reactive species in the solution. These were strongly associated with the ionic strength of the background solution. The presence of ions reduced plasma toxicity, which might be due to a reduced access of reactive species to fungal spores, and fungal spores were inactivated by plasma in a background fluid of nonionic osmolytes despite the low level of reactive species. Our results suggest that the surrounding environment may affect the behavior of reactive species, which leads to different biological consequences regardless of their quantity. Moreover, the microbicidal effect of plasma can be synergistically regulated through control of the microenvironment.

  6. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  7. Nanoparticle uptake by airway phagocytes after fungal spore challenge in murine allergic asthma and chronic bronchitis

    PubMed Central

    2014-01-01

    Background In healthy lungs, deposited micrometer-sized particles are efficiently phagocytosed by macrophages present on airway surfaces; however, uptake of nanoparticles (NP) by macrophages appears less effective and is largely unstudied in lung disease. Using mouse models of allergic asthma and chronic obstructive pulmonary disease (COPD), we investigated NP uptake after challenge with common biogenic ambient air microparticles. Methods Bronchoalveolar lavage (BAL) cells from diseased mice (allergic asthma: ovalbumin [OVA] sensitized and COPD: Scnn1b-transgenic [Tg]) and their respective healthy controls were exposed ex vivo first to 3-μm fungal spores of Calvatia excipuliformis and then to 20-nm gold (Au) NP. Electron microscopic imaging was performed and NP uptake was assessed by quantitative morphometry. Results Macrophages from diseased mice were significantly larger compared to controls in OVA-allergic versus sham controls and in Scnn1b-Tg versus wild type (WT) mice. The percentage of macrophages containing AuNP tended to be lower in Scnn1b-Tg than in WT mice. In all animal groups, fungal spores were localized in macrophage phagosomes, the membrane tightly surrounding the spore, whilst AuNP were found in vesicles largely exceeding NP size, co-localized in spore phagosomes and occasionally, in the cytoplasm. AuNP in vesicles were located close to the membrane. In BAL from OVA-allergic mice, 13.9 ± 8.3% of all eosinophils contained AuNP in vesicles exceeding NP size and close to the membrane. Conclusions Overall, AuNP uptake by BAL macrophages occurred mainly by co-uptake together with other material, including micrometer-sized ambient air particles like fungal spores. The lower percentage of NP containing macrophages in BAL from Scnn1b-Tg mice points to a change in the macrophage population from a highly to a less phagocytic phenotype. This likely contributes to inefficient macrophage clearance of NP in lung disease. Finally, the AuNP containing

  8. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  9. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium

    NASA Astrophysics Data System (ADS)

    Recio, Marta; del Mar Trigo, María; Docampo, Silvia; Melgar, Marta; García-Sánchez, José; Bootello, Lourdes; Cabezudo, Baltasar

    2012-11-01

    Alternaria and Cladosporium are two fungal taxa whose spores (conidia) are included frequently in aerobiological studies of outdoor environments. Both spore types are present in the atmosphere of Malaga (Spain) throughout almost the entire year, although they reach their highest concentrations during spring and autumn. To establish predicting variables for daily and weekly fluctuations, Spearman's correlations and stepwise multiple regressions between spore concentrations (measured using a volumetric 7-day recorder) and meteorological variables were made with results obtained for both spore types in 1996 and 1997. Correlations and regressions were also made between the different taxa and their concentrations in different years. Significant and positive correlation coefficients were always obtained between spore concentrations of both taxa, followed by temperature, their concentrations in different years, sunshine hours and relative humidity (this last in a negative sense). For the two spore types we obtained higher correlation and regression coefficients using weekly data. We showed different regression models using weekly values. From the results and a practical point of view, it was concluded that weekly values of the atmospheric concentration of Alternaria spores can be predicted from the maximum temperature expected and its concentrations in the years sampled. As regards the atmospheric concentration of Cladoposrium spores, the weekly values can be predicted based on the concentration of Alternaria spores, thus saving the time and effort that would otherwise be employed in counting them by optical microscopy.

  10. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium.

    PubMed

    Recio, Marta; Trigo, María del Mar; Docampo, Silvia; Melgar, Marta; García-Sánchez, José; Bootello, Lourdes; Cabezudo, Baltasar

    2012-11-01

    Alternaria and Cladosporium are two fungal taxa whose spores (conidia) are included frequently in aerobiological studies of outdoor environments. Both spore types are present in the atmosphere of Malaga (Spain) throughout almost the entire year, although they reach their highest concentrations during spring and autumn. To establish predicting variables for daily and weekly fluctuations, Spearman's correlations and stepwise multiple regressions between spore concentrations (measured using a volumetric 7-day recorder) and meteorological variables were made with results obtained for both spore types in 1996 and 1997. Correlations and regressions were also made between the different taxa and their concentrations in different years. Significant and positive correlation coefficients were always obtained between spore concentrations of both taxa, followed by temperature, their concentrations in different years, sunshine hours and relative humidity (this last in a negative sense). For the two spore types we obtained higher correlation and regression coefficients using weekly data. We showed different regression models using weekly values. From the results and a practical point of view, it was concluded that weekly values of the atmospheric concentration of Alternaria spores can be predicted from the maximum temperature expected and its concentrations in the years sampled. As regards the atmospheric concentration of Cladoposrium spores, the weekly values can be predicted based on the concentration of Alternaria spores, thus saving the time and effort that would otherwise be employed in counting them by optical microscopy.

  11. Inhibition of fungal spore adhesion by zosteric Acid as the basis for a novel, nontoxic crop protection technology.

    PubMed

    Stanley, Michele S; Callow, Maureen E; Perry, Ruth; Alberte, Randall S; Smith, Robert; Callow, James A

    2002-04-01

    ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells. Low concentrations of zosteric acid that are effective in inhibiting adhesion are not toxic to either fungus or to the host. The inhibition of spore adhesion in the rice blast pathogen is fully reversible. On plants, zosteric acid reduced (rice) or delayed (bean) lesion development. These results suggest that there is potential for novel and environmentally benign crop protection technologies based on manipulating adhesion.

  12. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  13. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Toprak, E.; Vogel, H.

    2014-04-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART regional atmospheric model, using and comparing three different emission parameterizations. Two literature-based emission rates derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization was adapted to field measurements of fluorescent biological aerosol particles (FBAP) from four locations across Northern Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies have suggested the majority of FBAP in several locations are dominated by fungal spores. Thus, we suggest that simulated fungal spore concentrations obtained from the emission parameterizations can be compared to the sum of total FBAP concentrations. A comparison reveals that parameterized estimates of fungal spore concentrations based on literature numbers underestimate measured FBAP concentrations. In agreement with measurement data, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Measured FBAP and simulated fungal spore concentrations also correlate similarly with simulated temperature and humidity. These meteorological variables, together with leaf area index, were chosen to drive the new emission parameterization discussed here. Using the new emission parameterization on a model domain covering Western Europe, fungal spores in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L-1. The results confirm that fungal spores and biological particles may account for a

  14. Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations

    NASA Astrophysics Data System (ADS)

    Gonçalves, Fábio Luiz Teixeira; Bauer, Heidi; Cardoso, Maria Regina Alves; Pukinskas, Sandra; Matos, Dulcilena; Melhem, Márcia; Puxbaum, Hans

    2010-07-01

    The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m-3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m-3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.

  15. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  16. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols

    NASA Astrophysics Data System (ADS)

    Fu, Pingqing; Zhuang, Guoshun; Sun, Yele; Wang, Qiongzhen; Chen, Jing; Ren, Lujie; Yang, Fan; Wang, Zifa; Pan, Xiaole; Li, Xiangdong; Kawamura, Kimitaka

    2016-04-01

    Biogenic primary organic aerosols (POA) and secondary organic aerosols (SOA) are important organic constituents of atmospheric particulate matter (PM). In order to better understand the atmospheric abundances, molecular compositions and sources of the desert aerosols, biomass-burning tracers (e.g. levoglucosan), primary saccharides including fungal spore tracers, and SOA tracers from the oxidation of biogenic volatile organic compounds (e.g. isoprene, monoterpenes and sesquiterpene) have been studied in ambient aerosols from the Taklimakan desert, using gas chromatography-mass spectrometry. Results showed that the total concentrations of biomass-burning tracers at Hetian (177-359 ng m-3, mean 233 ng m-3 in PM2.5) in the south rim of the desert were much higher than those at Tazhong (1.9-8.8 ng m-3 in PM2.5 and 5.9-32 ng m-3 in TSP) in the central Taklimakan desert. Molecular markers of fungal spores were also detected in all the desert aerosols, highlighting the importance of primary bioaerosols in the Asian dust particles. A specific pattern of the dominance of 2-methylglyceric acid over 2-methyltetrols and C5-alkene triols was found in the Taklimakan desert aerosols, especially during the dust storm events, which is different from the 2-methyltetrols-dominated pattern in other ambient aerosols. Our results provide direct evidence on the biogenic POA and SOA tracers in the Taklimakan desert region, which help to better understand their impact on the aerosol chemistry in the down-wind regions.

  17. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    PubMed Central

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes. PMID:26187959

  18. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    PubMed

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes. PMID:26187959

  19. Seasonal Variation of Fungal Spores in Size-fractionated Ambient Particulate Matter in Beijing, China, Based on Molecular Tracer Measurements

    NASA Astrophysics Data System (ADS)

    Liang, L.; Engling, G.; He, K.

    2015-12-01

    Fungal aerosols were found to be the dominant fraction of biological aerosol components in the coarse mode in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is rather uncertain and likely underestimated to a large extent by traditional Colony Forming Units (CFU) assays. Flow cytometry (FCM) was utilized in combination with fluorescent stains for the rapid counting of ambient fungal spores in this study. And, the sugar alcohols, mannitol and arabitol, proposed as molecular tracers for fungal aerosol were measured in PM2.5 and PM10 at an urban site in Beijing, China. The annual average concentrations of arabitol in PM2.5 and PM10 at the urban site were 7.4±9.4 ng m-3 and 21.0±20.4 ng m-3, and the respective mannitol concentrations were 10.3±9.5 ng m-3 and 31.9±26.9 ng m-3. Compared to PM2.5, the seasonal average concentrations of arabitol and mannitol in PM10 were varied more significantly. During summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles. Statistics analysis was further grouped into typical dry season (December 2010 to March 2011) and typical wet season (July 2011 to September 2011), revealed the different variation of fungal spores in different seasons. Moreover, the FCM results had significant positive correlation with the concentrations of the fungal tracers (R2 was 0.75 and 0.70 for arabitol and mannitol, respectively), supporting the utility of these sugar alcohols as effective fungal tracers.

  20. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis

    PubMed Central

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  1. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period

    NASA Astrophysics Data System (ADS)

    Yeo, Hwan-Goo; Kim, Jong-Ho

    The relationship between suspended particulate matter (SPM) and fungal spore was investigated in Seosan, a rural county along the west coast of Korea, in the spring of 2000. SPM concentrations in the air were 199.8 μg m -3 in the first Asian dust period (23-24 March), 249.4 μg m -3 in the second Asian dust period (7-9 April) and 98.9 μg m -3 in the non-Asian dust period (12-16 May), respectively. The majority of the total SPM were composed of coarse particles sized about 5 μm during the two Asian dust periods. Four molds genera grown from airborne fungal spores were identified in colonies grown from SPM samples taken during the Asian dust periods. All the genera found, Fusarium, Aspergillus, Penicillium and Basipetospora, are hyphomycetes in the division Deuteromycota. Morphologically, more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1 to 2.1 μm sized SPM than on the other sized samples gathered in the dust periods. On the other hand, no mold was observed on the sample of 1.1-2.1 μm sized SPM in the non-Asian dust period. From these results, it seems evident that several sorts of fine sized fungal spores were suspended in the atmospheric environment of this study area during Asian dust periods.

  2. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens

    PubMed Central

    Cruz, Andre Freire; Ishii, Takaaki

    2012-01-01

    Summary The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria ‘probable endobacteria’ (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200 μm). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores. PMID:23213368

  3. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  4. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls.

    PubMed

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  5. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  6. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2012-03-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  7. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the eastern mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2011-10-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rohovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  8. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    NASA Astrophysics Data System (ADS)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  9. Diverse supramolecular structures formed by self-assembling proteins of the Bacillus subtilis spore coat.

    PubMed

    Jiang, Shuo; Wan, Qiang; Krajcikova, Daniela; Tang, Jilin; Tzokov, Svetomir B; Barak, Imrich; Bullough, Per A

    2015-07-01

    Bacterial spores (endospores), such as those of the pathogens Clostridium difficile and Bacillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. Bacillus subtilis is the best studied spore-former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B. subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in Escherichia coli can arrange intracellularly into highly stable macro-structures through processes of self-assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one-dimensional fibres, two-dimensional sheets and three-dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross-linking. Assemblies of this kind could form exquisitely adapted building blocks for higher-order assembly across all spore-formers. These physically robust arrayed units could also have novel applications in nano-biotechnology processes.

  10. Recovery of Phakopsora pachyrhizi urediniospores from Passive Spore Trap Slides and Extraction of Their DNA for Quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enumeration of rust spores from passive spore traps utilizing white petrolatum-coated slides by traditional microscopic evaluation can represent a serious challenge. Many fungal spores look alike, and clear visualization on the adhesive can be obscured by particulate debris or nonuniformities within...

  11. Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.

    PubMed

    Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio

    2012-01-01

    The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission.

  12. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. PMID:27376781

  13. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores.

  14. Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum.

    PubMed

    Webster, Rachael Hanby; Sil, Anita

    2008-09-23

    The human fungal pathogen Histoplasma capsulatum grows in a sporulating filamentous form in the soil and, after inhalation of infectious spores, converts to a pathogenic yeast form inside host macrophages in response to temperature. Here we report the identification of two genes (RYP2 and RYP3) required for yeast-phase growth. Ryp2 and Ryp3 are homologous to each other and to the Velvet A family of regulatory proteins in Aspergillus species and other filamentous fungi. Wild-type H. capsulatum grows as filaments at room temperature and as yeast cells at 37 degrees C, but ryp2 and ryp3 mutants constitutively grow as filaments independent of temperature. RYP2 and RYP3 transcripts accumulate to higher levels at 37 degrees C than at room temperature. This differential expression is similar to the previously identified RYP1 transcript, which encodes a transcriptional regulator required for the yeast-phase expression program. Ryp1 associates with the upstream region of RYP2, and each of the three RYP genes is required for the differential expression of the others at 37 degrees C. In addition to responding to the elevated temperature of the mammalian host, RYP2 and RYP3 are essential for viable spore production and regulation of sporulation at room temperature. This regulatory function is strikingly similar to the role of the Aspergillus Velvet A protein family in spore development in response to light, with the notable distinction that the H. capsulatum circuit responds to temperature. PMID:18791067

  15. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  16. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  17. Intact cell/intact spore mass spectrometry (IC/ISMS) on polymer-based, nano-coated disposable targets.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2014-01-01

    Identification and differentiation of microorganisms has and still is a long arduous task, involving culturing of the organism in question on different growth media. This procedure, which is still commonly applied, is an established method, but takes a lot of time, up to several days or even longer. It has thus been a great achievement when other analytical tools like matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were introduced for faster analysis based on the surface protein pattern. Differentiation and identification of human pathogens as well as plant/animal pathogens is of increasing importance in medical care (e.g. infection, sepsis, and antibiotics resistance), biotechnology, food sciences and detection of biological warfare agents. A distinction between microorganisms on the species and strain level was made by comparing peptide/protein profiles to patterns already stored in databases. These profiles and patterns were obtained from the surface of vegetative forms of microorganisms or even their spores by MALDI MS. Thus, an unknown sample can be compared against a database of known pathogens or microorganisms of interest. To benefit from newly available, metal-based disposable microscope-slide format MALDI targets that promise a clean and even surface at a fraction of the cost from full metal targets or MTP (microtiter plate) format targets, IC/ISMS analysis was performed on these and the data evaluated. Various types of bacteria as well as fungal spores were identified unambiguously on this disposable new type of metal nano-coated targets. The method even allowed differentiation between strains of the same species. The results were compared with those gained from using full metal standard targets and found to be equal or even better in several aspects, making the use of disposable MALDI targets a viable option for use in IC/ISMS, especially e.g. for large sample throughput and highly pathogenic species.

  18. Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.

    PubMed

    Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio

    2012-01-01

    The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission. PMID:22375544

  19. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores.

    PubMed

    Dong, Xiuli; McCoy, Eric; Zhang, Mei; Yang, Liju

    2014-12-01

    Multi-walled carbon nanotube (MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm. The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.

  20. Diverse supramolecular structures formed by self‐assembling proteins of the B acillus subtilis spore coat

    PubMed Central

    Jiang, Shuo; Wan, Qiang; Krajcikova, Daniela; Tang, Jilin; Tzokov, Svetomir B.; Barak, Imrich

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange intracellularly into highly stable macro‐structures through processes of self‐assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one‐dimensional fibres, two‐dimensional sheets and three‐dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross‐linking. Assemblies of this kind could form exquisitely adapted building blocks for higher‐order assembly across all spore‐formers. These physically robust arrayed units could also have novel applications in nano‐biotechnology processes. PMID:25872412

  1. Role of SP65 in assembly of the Dictyostelium discoideum spore coat.

    PubMed

    Metcalf, Talibah; van der Wel, Hanke; Escalante, Ricardo; Sastre, Leandro; West, Christopher M

    2007-07-01

    Like the cyst walls of other protists, the spore coat of Dictyostelium discoideum is formed de novo to protect the enclosed dormant cell from stress. Spore coat assembly is initiated by exocytosis of protein and polysaccharide precursors at the cell surface, followed by the infusion of nascent cellulose fibrils, resulting in an asymmetrical trilaminar sandwich with cellulose filling the middle layer. A molecular complex consisting of cellulose and two proteins, SP85 and SP65, is associated with the inner and middle layers and is required for proper organization of distinct proteins in the outer layer. Here we show that, unlike SP85 and other protein precursors, which are stored in prespore vesicles, SP65 is, like cellulose, synthesized just in time. By tagging the SP65 locus with green fluorescent protein, we find that SP65 is delivered to the cell surface via largely distinct vesicles, suggesting that separate delivery of components of the cellulose-SP85-SP65 complex regulates its formation at the cell surface. In support of previous in vivo studies, recombinant SP65 and SP85 are shown to interact directly. In addition, truncation of SP65 causes a defect of the outer layer permeability barrier as seen previously for SP85 mutants. These observations suggest that assembly of the cellulose-SP85-SP65 triad at the cell surface is biosynthetically regulated both temporally and spatially and that the complex contributes an essential function to outer layer architecture and function.

  2. The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis

    PubMed Central

    Isticato, Rachele; Sirec, Teja; Vecchione, Stefano; Crispino, Anna; Saggese, Anella; Baccigalupi, Loredana; Notomista, Eugenio; Driks, Adam; Ricca, Ezio

    2015-01-01

    In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction. PMID:26484546

  3. Detection of viable fungal spores contaminant on documents and rapid control of the effectiveness of an ethylene oxide disinfection using ATP assay.

    PubMed

    Rakotonirainy, Malalanirina S; Héraud, Cécile; Lavédrine, Bertrand

    2003-01-01

    Filamentous fungi are able to damage and even destroy archival and library materials. Nowadays the conventional method for detecting such micro-organisms is to put them in cultures but such methods are laborious and time-consuming. ATP methodology has been widely applied in other domains and its success on bacteria and yeast has been demonstrated. Several commercial reagent kits are available but they did not give satisfactory results on spores mould. We have elaborated new extraction strategies specific to fungi. A comparison of 42 extraction protocols of ATP from fungal spores was carried out. Extraction at 100 degrees C with DMSO 90% in a Tris-acetate-EDTA buffer proved to be the best method. The viability of cells is estimated by the determination of adenylate energy charge (EC). We applied our method successfully on well-known species such as Aspergillus flavus, A. niger, A. fumigatus, A. versicolor, Neosartorya fischeri, Eurotium chevalieri, Penicillium chrysogenum, Chaetomium globosum and Ulocladium spp. The results suggest that the ATP bioluminescence assay provides a sensitive and time-saving method for detecting viable fungal spores. The validity of the procedure was also tested on spores killed by steam and on spores treated with ethylene oxide. We showed that EC determination could be used for a rapid control of the effectiveness of a disinfection process performed with ethylene oxide.

  4. Altered immunological response in mice subjected to stress and exposed to fungal spores

    NASA Technical Reports Server (NTRS)

    Kurup, Viswanath P.; Choi, Hongyung; Kumar, Anoopa; Murali, Pazhayannur S.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    Space flight and related factors such as stress appear to have an adverse effect on astronauts' immune systems. The presence of potentially pathogenic microbes including several genera of fungi reported from spacecraft environment may be a cause of concern in such situations. In order to study the role of such organisms in causing opportunistic or allergic diseases in crewmembers, we have tried to develop an animal model. BALB/c mice were suspended upside down for varying periods of time to induce stress, and their lymphocyte functions were evaluated. These studies indicate that the stress resulted in lowered mitogen induced lymphocyte stimulation as represented by 3H-thymidine uptake. We have also studied the ability of these animals to respond to Aspergillus fumigatus spores. The results of the study clearly demonstrate a definite down-regulation in T-cell proliferation and a higher incidence of infection with A. fumigatus.

  5. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores

    PubMed Central

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O.; Carlin, Frédéric

    2015-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. PMID:26497467

  6. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    PubMed

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2015-10-23

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.

  7. Mate Finding, Sexual Spore Production, and the Spread of Fungal Plant Parasites.

    PubMed

    Hamelin, Frédéric M; Castella, François; Doli, Valentin; Marçais, Benoît; Ravigné, Virginie; Lewis, Mark A

    2016-04-01

    Sexual reproduction and dispersal are often coupled in organisms mixing sexual and asexual reproduction, such as fungi. The aim of this study is to evaluate the impact of mate limitation on the spreading speed of fungal plant parasites. Starting from a simple model with two coupled partial differential equations, we take advantage of the fact that we are interested in the dynamics over large spatial and temporal scales to reduce the model to a single equation. We obtain a simple expression for speed of spread, accounting for both sexual and asexual reproduction. Taking Black Sigatoka disease of banana plants as a case study, the model prediction is in close agreement with the actual spreading speed (100 km per year), whereas a similar model without mate limitation predicts a wave speed one order of magnitude greater. We discuss the implications of these results to control parasites in which sexual reproduction and dispersal are intrinsically coupled. PMID:27066983

  8. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects. PMID:25442289

  9. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  10. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments. PMID:22691688

  11. Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH.

    PubMed

    Isticato, Rachele; Sirec, Teja; Giglio, Rosa; Baccigalupi, Loredana; Rusciano, Giulia; Pesce, Giuseppe; Zito, Gianluigi; Sasso, Antonio; De Felice, Maurilio; Ricca, Ezio

    2013-01-01

    Bacterial spores are surrounded by the coat, a multilayered shell that contributes in protecting the genome during stress conditions. In Bacillus subtilis, the model organism for spore formers, the coat is composed by about seventy different proteins, organized into four layers by the action of several regulatory proteins. A major component of this regulatory network, CotE, is needed to assemble the outer coat and develop spores fully resistant to lysozyme and able to germinate efficiently. Another regulator, CotH, is controlled by CotE and is present in low amounts both during sporulation and in mature spores. In spite of this CotH controls the assembly of at least nine outer coat proteins and cooperates with CotE in producing fully resistant and efficiently germinating spores. In order to improve our understanding of CotH role in spore formation, we over-produced CotH by placing its coding region under the control of a promoter stronger than its own promoter but with a similar timing of activity during sporulation. Over-production of CotH in an otherwise wild type strain did not cause any major effect, whereas in a cotE null background a partial recovery of the phenotypes associated to the cotE null mutation was observed. Western blot, fluorescence microscopy and Surface-Enhanced Raman Scattering spectroscopy data indicate that, in the absence of CotE, over-production of CotH allowed the formation of spores overall resembling wild type spores and carrying in their coat some CotE-/CotH-dependant proteins. Our results suggest that the B. subtilis spore differentiation programme is flexible, and that an increase in the amount of a regulatory protein can replace a missing partner and partially substitute its function in the assembly of the spore coat.

  12. Spore Resistance Properties.

    PubMed

    Setlow, Peter

    2014-10-01

    Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus.

  13. Aerodynamic characteristics and respiratory deposition of fungal fragments

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  14. Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain

    NASA Astrophysics Data System (ADS)

    Hollins, P. D.; Kettlewell, P. S.; Atkinson, M. D.; Stephenson, D. B.; Corden, J. M.; Millington, W. M.; Mullins, J.

    Cladosporium conidia have been shown to be important aeroallergens in many regions throughout the world, but annual spore concentrations vary considerably between years. Understanding these annual fluctuations may be of value in the clinical management of allergies. This study investigates the number of days in summer when spore concentration exceeds the allergenic threshold in relation to regional temperature and precipitation at two sites in England and Wales over 27 years. Results indicate that number of days in summer when the Cladosporium spores are above the allergenic concentration is positively correlated with regional temperature and negatively correlated with precipitation for both sites over the study period. Further analysis used a winter North Atlantic Oscillation index to explore the potential for long-range forecasting of the aeroallergen. For both spore measurement sites, a positive correlation exists between the winter North Atlantic Oscillation index and the number of days in summer above the allergenic threshold for Cladosporium spore concentration.

  15. Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables.

    PubMed

    Flores, María Elena Báez; Medina, Pável Gaxiola; Camacho, Sylvia Páz Díaz; de Jesús Uribe Beltrán, Magdalena; De la Cruz Otero, María del Carmen; Ramírez, Ignacio Osuna; Hernández, Martín Ernesto Tiznado

    2014-08-01

    The fungal spore concentration (FSC) in the air poses a risk for human health. This work studied the FSC in university libraries and how it is affected by environmental factors. A total of 347 samples were obtained using a Microbio MB2(®) Aerosol Sampler. The wind speed (WS), cross wind (CW), temperature (T), relative humidity (HR), barometric pressure (BP) and dew point (DP) were recorded using a Kestrel(®) 4500 weather station. The median indoor/outdoor FSC was 360/1230 CFU m(-3). FSC correlated inversely with BP, HR and DP; and positively with WS and CW; whereas T showed negative or positive correlation with FSC, depending on the region or sampling time. Eleven fungal genera were found and the dominant isolates were identified as Aspergillus niger, Aspergillus tamarii and Aspergillus oryzae. All fungi identified are known to be allergenic. It was concluded that environmental variables can influence the air FSC in different ways.

  16. ANALYSIS OF FUNGAL SPORE MYCOTOXIN AND THE RELATIONSHIP BETWEEN SPORE SURFACE AREA AND MYCOTOXIN CONTENT UTILIZING A PROTEIN TRANSLATION INHIBITION ASSAY

    EPA Science Inventory

    Due to mounting evidence suggesting that biological contamination in the built environment may cause a myriad of adverse health effects, research aimed at understanding the potential exposure to fungal organisms and their metabolites is of utmost importance. To this end we utiliz...

  17. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    PubMed

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles. PMID:15133724

  18. Exposure to varying concentration of fungal spores in grain storage godowns and its effect on the respiratory function status among the workers.

    PubMed

    Chattopadhyay, Bhaskar P; Das, Satadal; Adhikari, Atin; Alam, Jane

    2007-06-01

    Grain storage depot workers suffer from different respiratory problems after getting the exposure to storage grain dust. Which is a mixture of pesticides, fungi, silica, bacteria, spores, storage mites, animal hairs, pollens etc. The present study was undertaken to evaluate the fungal spore concentration in summer and winter season as well as the pulmonary function status of the workers; studies are limited in our country. In summer and winter seasons, air sampling was done to measure the airborne fungal spore concentration inside the godowns by Rotorod sampler, UK. Aspergilla, Alternaria, Drechslera, Epicoccum, Nigrospora, Periconia were very much common and found higher in winter compared to summer. The respiratory functional status was assessed in two groups of workers of the same storage grain depot (total n=316) in summer (n=136) and in winter (n=180). List of the workers was collected from the authority and randomly selected every alternate worker and divide them for the studies in summer and winter seasons. Slow Vital Capacity (SVC), Forced Vital Capacity (FVC), and Peak Expiratory Flow Rate (PEFR) were recorded and Forced Expiratory Volume in one second (FEV1), FEV1% and different flow rates were calculated. The Immunoglobulin- E (IgE) level in the blood serum was assessed on post shift pulmonary function tests (PFT) decreased workers. The age, height and weight of the same categories of workers of both studies are highly comparable. Mean PFT values in summer found higher than winter. A gradual decrement of values were found as age was increased but not with duration of exposure. Post-shift PFT was carried in 21.8% (69) workers of which 46.4% (32) workers showed the decrement of values. The serum IgE level of the post-shift PFT decreased subjects was found more than 250 IU/ml in 53.1% (17) workers. Restrictive, obstructive and combined types of respiratory impairments were noticed among the workers. Presence of different spores in varying concentration in

  19. Fifth international fungus spore conference

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  20. Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England

    NASA Astrophysics Data System (ADS)

    Sadyś, M.; Skjøth, C. A.; Kennedy, R.

    2014-02-01

    We propose here the hypothesis that all of United Kingdom (UK) is likely to be affected by Ganoderma sp. spores, an important plant pathogen. We suggest that the main sources of this pathogen, which acts as a bioaerosol, are the widely scattered woodlands in the country, although remote sources must not be neglected. The hypothesis is based on related studies on bioaerosols and supported by new observations from a non-forest site and model calculations to support our hypothesis.

  1. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  2. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  3. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Cordoba, Argentina) I. Seasonal variation of fungal spore diversity.

    PubMed

    Lugo, Mónica A; Cabello, Marta N

    2002-01-01

    Arbuscular mycorrhizal fungi (AMF) were studied in the rhizosphere of 3 Poaceae with metabolic pathway C(3) (Briza subaristata Lam., Deyeuxia hieronymi (Hack.) Türpe and Poa stuckertii (Hack.) Parodi), 2 Poaceae with C(4) metabolic type (Eragrostis lugens Nees and Sorghastrum pellitum (Hack.) Parodi.), and a Rosaceae (Alchemilla pinnata Ruíz & Pav.) from a natural mountain grassland in Central Argentina (South America). Host species, their metabolic type, seasonal changes, and grazing effects over AM fungal diversity were analyzed. Seventeen mycorrhizal fungi taxa were found, widespread in all families of Glomales. Density of endomycorrhizal fungi was found to be strongly influenced with seasons and host metabolic pathway, although biodiversity (H), richness (S) and evenness (E) did not change. In most cases grazing did not affect these variables.

  4. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  5. The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat

    PubMed Central

    Motomura, Kei; Matsuyama, Satoshi; Abdelhamid, Mohamed A. A.; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2015-01-01

    ABSTRACT Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a bicistronic operon with its paralog, cotB2, the product of which, however, lacks the C-terminal zwitterionic sequence. A ΔcotB1B2 mutant strain grew as fast and formed spores at the same rate as wild-type bacteria but did not show biosilicification. Complementation analysis showed that CotB1, but neither CotB2 nor C-terminally truncated mutants of CotB1, could restore the biosilicification activity in the ΔcotB1B2 mutant, suggesting that the C-terminal zwitterionic sequence of CotB1 is essential for the process. We found that the kinetics of CotB1 expression, as well as its localization, correlated well with the time course of biosilicification and the location of the deposited silica. To our knowledge, this is the first report of a protein directly involved in prokaryotic biosilicification. IMPORTANCE Biosilicification is the process by which organisms incorporate soluble silicate in the form of insoluble silica. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification was not studied until recently. We previously demonstrated that biosilicification occurs in Bacillus cereus and its close relatives, and that silica is deposited in and around a spore coat layer as a protective coating against acid

  6. Comparative Transcriptomics of Infectious Spores from the Fungal Pathogen Histoplasma capsulatum Reveals a Core Set of Transcripts That Specify Infectious and Pathogenic States

    PubMed Central

    Inglis, Diane O.; Voorhies, Mark; Hocking Murray, Davina R.

    2013-01-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  7. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states.

    PubMed

    Inglis, Diane O; Voorhies, Mark; Hocking Murray, Davina R; Sil, Anita

    2013-06-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  8. [Effect of the spatial and seasonal soil heterogeneity over arbuscular mycorrhizal fungal spore abundance in the semi-arid valley of Tehuacán-Cuicatlán, Mexico].

    PubMed

    Camargo-Ricalde, Sara Lucía; Esperón-Rodríguez, Manuel

    2005-01-01

    Recent studies have shown that some species of Mimosa (Leguminosae-Mimosoideae) create resource islands (RI), rich in soil organic matter and nutrients, as well as in arbuscular mycorrhyzal fungal (AMF) spores, in the semi-arid Valley of Tehuacán-Cuicatlán. The relevance of this fact is that arid and semi-arid regions are characterized by low fertility soils and scarce precipitation, limiting plant species growth and development; this explains why the presence of AM fungi may be advantageous for mycorrhizal desert plants. Fluctuations in AMF spore numbers could be related to environmental, seasonal and soil factors which affect AMF sporulation, in addition to the life history of the host plant. The aim of this study was to asses the impact of spatial (resource islands vs open areas, OA) and seasonal (wet season vs start of dry season vs dry season) soil heterogeneity in the distribution and abundance of AMF spores in four different study sites within the Valley. We registered AMF spores in the 120 soil samples examined. Significant differences in the number of AMF spores were reported in the soil below the canopy of Mimosa species (RI) comparing with OA (RI > OA), and between Mimosa RI themselves when comparing along a soil gradient within the RI (soil near the trunk > soil below the middle of the canopy > soil in the margin of the canopy > OA); however, there were no significant differences between the soil closest to the trunk vs middle, and margin 's OA. Finally, more spores were reported in the soil collected during the wet season than during the dry season (wet > start of dry > dry). Therefore, the distribution of AMF spores is affected by spatial and seasonal soil heterogeneity. This study points out the relevance of Mimosa RI as AMF spore reservoirs and the potential importance of AM fungi for plant species survivorship and establishment in semi-arid regions. AM fungi have recently been recognized as an important factor determining plant species diversity

  9. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection.

    PubMed

    Nugaeva, Natalia; Gfeller, Karin Y; Backmann, Natalija; Lang, Hans Peter; Düggelin, Marcel; Hegner, Martin

    2005-12-15

    We demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays. We exploited the specific biomolecular interactions of surface grafted proteins with the molecular structures on the fungal cell surface. It was found that these proteins have different affinities and efficiencies to bind the spores. Maximum spore immobilization, germination and mycelium growth was observed on the immunoglobulin G functionalized cantilever surfaces. We show that spore immobilization and germination of the mycelial fungus A. niger and yeast S. cerevisiae led to shifts in resonance frequency within a few hours as measured by dynamically operated cantilever arrays, whereas conventional techniques would require several days. The biosensor could detect the target fungi in a range of 10(3) - 10(6) CFUml(-1). The measured shift is proportional to the mass of single fungal spores and can be used to evaluate spore contamination levels. Applications lie in the field of medical and agricultural diagnostics, food- and water-quality monitoring.

  10. Sampling and quantitative analysis of clean B. subtilis spores at sub-monolayer coverage by reflectance fourier transform infrared microscopy using gold-coated filter substrates.

    PubMed

    Brooke, Heather; Perkins, David L; Setlow, Barbara; Setlow, Peter; Bronk, Burt V; Myrick, Michael L

    2008-08-01

    A study was conducted to determine the concentration dependency of the mid-infrared (MIR) absorbance of bacterial spores. A range of concentrations of Bacillus subtilis endospores filtered across gold-coated filter membranes were analyzed by Fourier transform infrared (FT-IR) reflectance microscopy. Calibration curves were derived from the peak absorbances associated with Amide A, Amide I, and Amide II vibrational frequencies by automatic baseline fitting to remove most of the scattering contribution. Linear relationships (R2 >or= 0.99) were observed between the concentrations of spores and the baseline-corrected peak absorbance for each frequency studied. Detection limits for our sampled area of 100 x100 microm2 were determined to be 79, 39, and 184 spores (or 7.92 x 10(5), 3.92 x 10(5), and 1.84 x 10(6) spores/cm2) for the Amide A, Amide I, and Amide II peaks, respectively. Absorbance increased linearly above the scattering baseline with particle surface concentration up to 0.9 monolayer (ML) coverage, with the monolayer density calculated to be approximately 1.17 x 10(8) spores/cm2. Scattering as a function of surface concentration, as estimated from extinction values at wavelengths exhibiting low absorbance, becomes nonlinear at a much lower surface concentration. The apparent scattering cross-section per spore decreased monotonically as concentrations increased toward 1.2 ML, while the absolute scattering decreased between 0.9 ML and 1.2 ML coverage. Calculations suggest that transverse spatial coherence effects are the origin of this nonlinearity, while the onset of nonlinearity in the baseline-corrected absorption is probably due to multiple scattering effects, which appear at a high surface concentration. Absorption cross-sections at peaks of the three bands were measured to be (2.15 +/- 0.05) x 10(-9), (1.48 +/- 0.03) x 10(-9), and (0.805 +/- 0.023) x 10(-9) cm2, respectively. These values are smaller by a factor of 2-4 than expected from the literature

  11. Fungal allergens.

    PubMed Central

    Horner, W E; Helbling, A; Salvaggio, J E; Lehrer, S B

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immunotherapy of allergy to fungi require well-characterized or standardized extracts that contain the relevant allergen(s) of the appropriate fungus. Production of standardized extracts is difficult since fungal extracts are complex mixtures and a variety of fungi are allergenic. Thus, the currently available extracts are largely nonstandardized, even uncharacterized, crude extracts. Recent significant progress in isolating and characterizing relevant fungal allergens is summarized in the present review. Particularly, some allergens from the genera Alternaria, Aspergillus, and Cladosporium are now thoroughly characterized, and allergens from several other genera, including some basidiomycetes, have also been purified. The availability of these extracts will facilitate definitive studies of fungal allergy prevalence and immunotherapy efficacy as well as enhance both the diagnosis and therapy of fungal allergy. PMID:7621398

  12. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  13. The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species.

    PubMed

    Varela-Cervero, Sara; Vasar, Martti; Davison, John; Barea, José Miguel; Öpik, Maarja; Azcón-Aguilar, Concepción

    2015-08-01

    Arbuscular mycorrhizal fungi (AMF) are essential constituents of most terrestrial ecosystems. AMF species differ in terms of propagation strategies and the major propagules they form. This study compared the AMF community composition of different propagule fractions - colonized roots, spores and extraradical mycelium (ERM) - associated with five Mediterranean plant species in Sierra de Baza Natural Park (Granada, Spain). AMF were identified using 454 pyrosequencing of the SSU rRNA gene. A total of 96 AMF phylogroups [virtual taxa (VT)] were detected in the study site, including 31 novel VT. After per-sample sequencing depth standardization, 71 VT were recorded from plant roots, and 47 from each of the spore and ERM fractions. AMF communities differed significantly among the propagule fractions, and the root-colonizing fraction differed among host plant species. Indicator VT were detected for the root (13 Glomus VT), spore (Paraglomus VT281, VT336, Pacispora VT284) and ERM (Diversispora VT62) fractions. This study provides detailed evidence from a natural system that AMF taxa are differentially allocated among soil mycelium, soil spores and colonized root propagules. This has important implications for interpreting AMF diversity surveys and designing applications of AMF in vegetation restoration.

  14. N-trimethylchitosan/Alginate Layer-by-Layer Self Assembly Coatings Act as “Fungal Repellents” to Prevent Biofilm Formation on Healthcare Materials

    PubMed Central

    Jiang, Fuguang; Yeh, Chih-Ko; Wen, Jianchuan

    2015-01-01

    Fungal biofilm formation on healthcare materials is a significant clinical concern, often leading to medical device related infections, which are difficult to treat. A novel fungal repellent strategy is developed to control fungal biofilm formation. Methylacrylic acid (MAA) is grated onto poly methyl methacrylate (PMMA)-based biomaterials via plasma initiated grafting polymerization. A cationic polymer, trimethylchitosan (TMC), is synthesized by reacting chitosan with methyl iodide. Sodium alginate (SA) is used as an anionic polymer. TMC/SA multilayers are coated onto the MAA-grafted PMMA via layer-by-layer self-assembly. The TMC/SA multilayer coatings significantly reduce fungal initial adhesion, and effectively prevent fungal biofilm formation. It is concluded that the anti-adhesive property of the surface is due to its hydrophilicity, and that the biofilm-inhibiting action is attributed to the antifungal activity of TMC as well as the chelating function of TMC and SA, which may have acted as fungal repellents. Phosphate buffered saline (PBS)-immersion tests show that the biofilm-modulating effect of the multilayer coatings is stable for more than 4 weeks. Furthermore, the presence of TMC/SA multilayer coatings improve the biocompatibility of the original PMMA, offering a simple, yet effective, strategy for controlling fungal biofilm-formation. PMID:25295485

  15. Forecasting spore concentrations: A time series approach

    NASA Astrophysics Data System (ADS)

    Stephen, Elaine; Raffery, Adrian E.; Dowding, Paul

    1990-06-01

    Fungal basidiospores and Cladosporium spores are the two most numerous spore types in the air of Dublin and its surroundings. They are known to have allergenic components, and the aim of the study described here is to develop a predictive model for these spores. A very simple model, which combines an estimated diurnal rhythm with a simple, one-parameter time series model, provided golld short-term forecasts. The one-step prediction error variance was reduced by 88% for Cladosporium spores and by 98% for basidiospores.

  16. Fifth international fungus spore conference. [Abstracts]: Final technical report

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  17. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  18. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.

    PubMed

    Rozema, J; Blokker, P; Mayoral Fuertes, M A; Broekman, R

    2009-09-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole (1974-present day), but also on the development and variation of the stratospheric ozone layer and solar surface UV during the evolution of life on Earth. Sporopollenin and cutin are highly resistant biopolymers, preserving well in the geological record and contain the phenolic acids p-coumaric (pCA) and ferulic acid (FA). pCA and FA represent a good perspective for a plant-based proxy for past surface UV radiation since they are induced by solar UV-B via the phenylpropanoid pathway (PPP). UV-B absorption by these monomers in the wall of pollen and spores and in cuticles may prevent damage to the cellular metabolism. Increased pCA and FA in pollen of Vicia faba exposed to enhanced UV-B was found in greenhouse experiments. Further correlative evidence comes from UV-absorbing compounds in spores from 1960-2000 comparing exposure of land plants (Lycopodium species) to solar UV before and during ozone depletion and comparing plants from Antarctica (severe ozone depletion), Arctic, and other latitudes with less or negligible ozone depletion. Wood-derived compounds guaiacyl (G), syringyl (S), and p-hydroxyphenyl (P) are produced via the PPP. The proportions of P, G, and S in the lignin differ between various plant groups (e.g. dicotyledons/monocotyledons, gymnosperms/angiosperms). It is hypothesized that this lignin composition and derived physiological and physical properties of lignin (such as tree-ring wood density) has potential as a proxy for palaeo-UV climate. However validation by exposure of trees to enhanced UV is lacking. pCA and FA also form part of cutin polymers and are found in extant and fossil Ginkgo leaf cuticles as shown by thermally-assisted hydrolysis and

  19. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.

    PubMed

    Rozema, J; Blokker, P; Mayoral Fuertes, M A; Broekman, R

    2009-09-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole (1974-present day), but also on the development and variation of the stratospheric ozone layer and solar surface UV during the evolution of life on Earth. Sporopollenin and cutin are highly resistant biopolymers, preserving well in the geological record and contain the phenolic acids p-coumaric (pCA) and ferulic acid (FA). pCA and FA represent a good perspective for a plant-based proxy for past surface UV radiation since they are induced by solar UV-B via the phenylpropanoid pathway (PPP). UV-B absorption by these monomers in the wall of pollen and spores and in cuticles may prevent damage to the cellular metabolism. Increased pCA and FA in pollen of Vicia faba exposed to enhanced UV-B was found in greenhouse experiments. Further correlative evidence comes from UV-absorbing compounds in spores from 1960-2000 comparing exposure of land plants (Lycopodium species) to solar UV before and during ozone depletion and comparing plants from Antarctica (severe ozone depletion), Arctic, and other latitudes with less or negligible ozone depletion. Wood-derived compounds guaiacyl (G), syringyl (S), and p-hydroxyphenyl (P) are produced via the PPP. The proportions of P, G, and S in the lignin differ between various plant groups (e.g. dicotyledons/monocotyledons, gymnosperms/angiosperms). It is hypothesized that this lignin composition and derived physiological and physical properties of lignin (such as tree-ring wood density) has potential as a proxy for palaeo-UV climate. However validation by exposure of trees to enhanced UV is lacking. pCA and FA also form part of cutin polymers and are found in extant and fossil Ginkgo leaf cuticles as shown by thermally-assisted hydrolysis and

  20. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions.

    PubMed

    Moeller, Ralf; Schuerger, Andrew C; Reitz, Günther; Nicholson, Wayne L

    2012-12-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  1. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    PubMed Central

    Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants. PMID:23064347

  2. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions.

    PubMed

    Moeller, Ralf; Schuerger, Andrew C; Reitz, Günther; Nicholson, Wayne L

    2012-12-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants. PMID:23064347

  3. Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cladosporium cucumerinum spore germination in vitro depended on spore suspension density. Different fungal isolates displayed maximum germination at different spore concentrations. For one isolate, maximum spore density was observed at both 18 and 25 °C, although germination percentage increased sli...

  4. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  5. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.

  6. Protection of Bacillus pumilus Spores by Catalases

    PubMed Central

    Checinska, Aleksandra; Burbank, Malcolm

    2012-01-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  7. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  8. Revival of biocide-treated spores of Bacillus subtilis.

    PubMed

    Williams, N D; Russell, A D

    1993-07-01

    Spores of Bacillus subtilis NCTC 8236 were treated with biocides and then subjected to various revival procedures. Sodium hydroxide (optimum concentration 25 mmol l-1) revived a small portion of glutaraldehyde-treated spores but not of spores exposed to formaldehyde, polyvinylpyrrolidone-iodine (PVP-I), Lugol's iodine, sodium hypochlorite or sodium dichloroisocyanurate (NaDCC). Post-treatment heat shock (at 70 degrees or 80 degrees C) increased the numbers of colony-forming units (cfu) of formaldehyde-injured spores. Coat-extraction procedures had the greatest effect on iodine-pretreated spores. The uptake of iodine and chlorine was more rapid and occurred to a greater extent with outgrowing, germinating and especially coat-deficient spores than with mature, resting spores. PMID:7690020

  9. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  10. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  11. Proteins involved in formation of the outermost layer of Bacillus subtilis spores.

    PubMed

    Imamura, Daisuke; Kuwana, Ritsuko; Takamatsu, Hiromu; Watabe, Kazuhito

    2011-08-01

    To investigate the outermost structure of the Bacillus subtilis spore, we analyzed the accessibility of antibodies to proteins on spores of B. subtilis. Anti-green fluorescent protein (GFP) antibodies efficiently accessed GFP fused to CgeA or CotZ, which were previously assigned to the outermost layer termed the spore crust. However, anti-GFP antibodies did not bind to spores of strains expressing GFP fused to 14 outer coat, inner coat, or cortex proteins. Anti-CgeA antibodies bound to spores of wild-type and CgeA-GFP strains but not cgeA mutant spores. These results suggest that the spore crust covers the spore coat and is the externally exposed, outermost layer of the B. subtilis spore. We found that CotZ was essential for the spore crust to surround the spore but not for spore coat formation, indicating that CotZ plays a critical role in spore crust formation. In addition, we found that CotY-GFP was exposed on the surface of the spore, suggesting that CotY is an additional component of the spore crust. Moreover, the localization of CotY-GFP around the spore depended on CotZ, and CotY and CotZ depended on each other for spore assembly. Furthermore, a disruption of cotW affected the assembly of CotV-GFP, and a disruption of cotX affected the assembly of both CotV-GFP and CgeA-GFP. These results suggest that cgeA and genes in the cotVWXYZ cluster are involved in spore crust formation.

  12. Intervention study of airborne fungal spora in homes with portable HEPA filtration units.

    PubMed

    Cheong, C D; Neumeister-Kemp, H G; Dingle, P W; Hardy, G St J

    2004-11-01

    The concentrations and composition of airborne fungal spores in homes fitted with portable HEPA filtration units were examined to provide information to evaluate the importance of varying levels of fungal spores in residential environments in Perth, Australia. A novel method for simulating activity/impaction on carpeted environments was also investigated. Reductions in fungal (35%) and particulate (38%) levels were achieved in the air filter homes. Penicillium, Cladosporium and yeasts were the most common and widespread fungi recovered indoors and outdoors. Fungal range decreased over the study period but this could be due to an overall reduced dissemination of spores (less spores in the air). PMID:15536499

  13. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, Beauveria bassiana.

    PubMed

    Fan, Yanhua; Ortiz-Urquiza, Almudena; Garrett, Timothy; Pei, Yan; Keyhani, Nemat O

    2015-11-01

    Eukaryotic cells store lipids in membrane-encased droplets. The entomopathogenic fungus, Beauveria bassiana, initiates infection via attachment of its spores to the epicuticle or waxy layer of target insects, degrading and assimilating host surface hydrocarbons, carbohydrates and proteins. Caleosins are components of the proteinaceous coat of lipid droplets and a single B. bassiana caleosin homologue, Bbcal1, was identified and characterized. The BbCal1 sequence contained an EF-hand Ca(2+) binding domain and potential hydrophobic stretches similar to those found in plant caleosins, along with a proline knot motif defined by only two proline residues. Targeted gene inactivation of Bbcal1 did not appear to affect spore germination, growth on lipid substrates or stress response, but changes in lipid, vacuole and endoplasmic reticulum/multilamellar vesicle-like structures, and altered cellular lipid profiles were seen in conidia grown on a variety of substrates including potato dextrose agar, olive oil, glyceride trioleate, oleic acid and the alkane, C16 . The ΔBbcal1 mutant produced more compact assemblages of conidia, displayed a reduced and delayed spore dispersal phenotype, and showed decreased virulence in insect bioassays using the greater wax moth, Galleria mellonella. Our data indicate novel functions for caleosins in fungal virulence, spore development and the trafficking and/or turnover of lipid-related structures. PMID:26235819

  14. Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores

    PubMed Central

    Cermak, Nathan; Feijó Delgado, Francisco; Setlow, Barbara; Setlow, Peter

    2015-01-01

    ABSTRACT We use a suspended microchannel resonator to characterize the water and small-molecule permeability of Bacillus subtilis spores based on spores' buoyant mass in different solutions. Consistent with previous results, we found that the spore coat is not a significant barrier to small molecules, and the extent to which small molecules may enter the spore is size dependent. We have developed a method to directly observe the exchange kinetics of intraspore water with deuterium oxide, and we applied this method to wild-type spores and a panel of congenic mutants with deficiencies in the assembly or structure of the coat. Compared to wild-type spores, which exchange in approximately 1 s, several coat mutant spores were found to have relatively high water permeability with exchange times below the ∼200-ms temporal resolution of our assay. In addition, we found that the water permeability of the spore correlates with the ability of spores to germinate with dodecylamine and with the ability of TbCl3 to inhibit germination with l-valine. These results suggest that the structure of the coat may be necessary for maintaining low water permeability. IMPORTANCE Spores of Bacillus species cause food spoilage and disease and are extremely resistant to standard decontamination methods. This hardiness is partly due to spores' extremely low permeability to chemicals, including water. We present a method to directly monitor the uptake of molecules into B. subtilis spores by weighing spores in fluid. The results demonstrate the exchange of core water with subsecond resolution and show a correlation between water permeability and the rate at which small molecules can initiate or inhibit germination in coat-damaged spores. The ability to directly measure the uptake of molecules in the context of spores with known structural or genetic deficiencies is expected to provide insight into the determinants of spores' extreme resistance. PMID:26483518

  15. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  16. Effect of Lysozyme on Resting Spores of Bacillus Megaterium

    PubMed Central

    Suzuki, Yahiko; Rode, L. J.

    1969-01-01

    Resting spores of Bacillus megaterium ATCC 9885 were found to be markedly affected by lysozyme. Exposure to as little as 1.5 μg of lysozyme per ml caused the spores to lose refractility, the darkened spores to shed their coat structures, and the spore central bodies to lyse. The spores of seven other strains of B. megaterium and seven other Bacillus species were not similarly affected by lysozyme. Proteolytic enzymes such as pronase, trypsin, pepsin, and subtilisin did not induce the change. The action of lysozyme differed in certain important respects from that of common “physiological” germinants. Its action was considered to be direct via its enzymatic attack on exposed sites directly accessible in the resting spores of B. megaterium ATCC 9885. Images PMID:4977688

  17. In vitro high-resolution structural dynamics of single germinating bacterial spores

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2006-11-14

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  18. In vitro high-resolution structural dynamics of single germinating bacterial spores

    SciTech Connect

    Lawrence Livermore National Laboratory

    2006-12-11

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  19. Efficient binding of nickel ions to recombinant Bacillus subtilis spores.

    PubMed

    Hinc, Krzysztof; Ghandili, Soheila; Karbalaee, Gholamreza; Shali, Abbas; Noghabi, Kambiz Akbari; Ricca, Ezio; Ahmadian, Gholamreza

    2010-11-01

    We report the use of recombinant spores of Bacillus subtilis as a potential bioremediation tool for adsorption of nickel ions. The spore surface protein CotB, previously used for the display of heterologous antigens, was engineered to express eighteen histidine residues within the spore coat. Wild type and recombinant spores were then analyzed to assess their efficiency in adsorbing nickel ions, and the latter proved to be significantly more efficient than wild type spores in metal-binding. The quantities of spores used in the adsorption reaction significantly affected nickel binding, while other factors such as pH and temperature did not show relevant effects. In addition, simple washing procedures were used to partially release spore-bound nickel ions by wild type and recombinant spores. The efficiency of nickel binding, together with the simple purification procedure, the high robustness and safety of B. subtilis spores and the possibility of recovering bound nickel, makes the recombinant spore a new and potentially powerful tool for the treatment of contaminated ecosystems.

  20. High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM.

    PubMed

    Kaminskyj, Susan G W; Dahms, Tanya E S

    2008-06-01

    We review the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and force spectroscopy (FS) for probing the ultrastructure, chemistry, physical characteristics and motion of fungal cells. When first developed, SEM was used to image fixed/dehydrated/gold coated specimens, but here we describe more recent SEM developments as they apply to fungal cells. CryoSEM offers high resolution for frozen fungal samples, whereas environmental SEM allows the analysis of robust samples (e.g. spores) under ambient conditions. Dual beam SEM, the most recently developed, adds manipulation capabilities along with element detection. AFM has similar lateral and better depth resolution compared to SEM, and can image live cells including growing fungal hyphae. FS can analyze cell wall chemistry, elasticity and dynamic cell characteristics. The integration of AFM with optical microscopy will allow examination of individual molecules or cellular structures in the context of fungal cell architecture. SEM and AFM are complementary techniques that are clarifying our understanding of fungal biology. PMID:18068995

  1. Cryopreservation of fern spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  2. [Identification and characterization of the outermost layer of Bacillus subtilis spores].

    PubMed

    Imamura, Daisuke

    2012-01-01

    The Gram-positive bacterium Bacillus subtilis forms spores when conditions are unsuitable for growth. The spores are encased in a multilayered shell that includes a cortex and a spore coat, and remain viable for long periods in the harsh environment. In the present article, recent progress in our understanding of the outer structure of B. subtilis spores is reviewed in the Japanese language. Although spore coat assembly involves the deposition of at least 70 distinct protein species, the positions of most of such proteins have not been experimentally determined. To this end, the diameters of the protein layers and spores were measured using fluorescence microscopy and then the positions of proteins in the spore coat of B. subtilis spores were estimated. The locations of 16 proteins were determined using this method. One protein was assigned to the cortex, nine to the inner coat, and four to the outer coat. Further, two proteins, CgeA and CotZ, were assigned to a previously unidentified outermost layer. McKenney et al. have also identified the outermost layer using a similar method; the layer was termed the "crust". Immunofluorescence microscopy revealed that the crust is indeed the most external layer of B. subtilis spores. Mutational analysis indicated that all genes in the cotVWXYZ cluster were involved in spore crust synthesis and that CotY and CotZ played critical roles in crust formation. PMID:22864350

  3. [Identification and characterization of the outermost layer of Bacillus subtilis spores].

    PubMed

    Imamura, Daisuke

    2012-01-01

    The Gram-positive bacterium Bacillus subtilis forms spores when conditions are unsuitable for growth. The spores are encased in a multilayered shell that includes a cortex and a spore coat, and remain viable for long periods in the harsh environment. In the present article, recent progress in our understanding of the outer structure of B. subtilis spores is reviewed in the Japanese language. Although spore coat assembly involves the deposition of at least 70 distinct protein species, the positions of most of such proteins have not been experimentally determined. To this end, the diameters of the protein layers and spores were measured using fluorescence microscopy and then the positions of proteins in the spore coat of B. subtilis spores were estimated. The locations of 16 proteins were determined using this method. One protein was assigned to the cortex, nine to the inner coat, and four to the outer coat. Further, two proteins, CgeA and CotZ, were assigned to a previously unidentified outermost layer. McKenney et al. have also identified the outermost layer using a similar method; the layer was termed the "crust". Immunofluorescence microscopy revealed that the crust is indeed the most external layer of B. subtilis spores. Mutational analysis indicated that all genes in the cotVWXYZ cluster were involved in spore crust synthesis and that CotY and CotZ played critical roles in crust formation.

  4. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops.

    PubMed

    Hassett, Maribeth O; Fischer, Mark W F; Money, Nicholas P

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  5. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops.

    PubMed

    Hassett, Maribeth O; Fischer, Mark W F; Money, Nicholas P

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation.

  6. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops

    PubMed Central

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  7. Non-Seasonal Variation of Airborne Aspergillus Spore Concentration in a Hospital Building

    PubMed Central

    Oberle, Michael; Reichmuth, Markus; Laffer, Reto; Ottiger, Cornelia; Fankhauser, Hans; Bregenzer, Thomas

    2015-01-01

    Nosocomial fungal infections are gaining increased attention from infectiologists. An adequate investigation into the levels of airborne Aspergillus and other fungal spores in hospital settings, under normal conditions, is largely unknown. We monitored airborne spore contamination in a Swiss hospital building in order to establish a seasonally-dependent base-line level. Air was sampled using an impaction technique, twice weekly, at six different locations over one year. Specimens were seeded in duplicate on Sabouraud agar plates. Grown colonies were identified to genus levels. The airborne Aspergillus spore concentration was constantly low throughout the whole year, at a median level of 2 spores/m3 (inter-quartile range = IQR 1–4), and displayed no seasonal dependency. The median concentration of other fungal spores was higher and showed a distinct seasonal variability with the ambient temperature change during the different seasons: 82 spores/m3 (IQR 26–126) in summer and 9 spores/m3 (IQR 6–15) in winter. The spore concentration varied considerably between the six sampling sites in the building (10 to 26 spores/m3). This variability may explain the variability of study results in the literature. PMID:26516890

  8. Lipids stimulate spore germination in the entomopathogenic ascomycete Ascosphaera aggregata.

    PubMed

    James, R R; Buckner, J S

    2004-10-01

    The alfalfa leafcutting bee (Megachile rotundata) is solitary and managed on a large scale for pollination of alfalfa seed crops. The bees nest in holes drilled in wood or polystyrene blocks, and their larvae are highly prone to a fungal disease called chalkbrood. The most prevalent form of chalkbrood is caused by Ascosphaera aggregata, but this ascomycete is difficult to culture. Hyphae will grow on standard fungal media, but spore germination is difficult to achieve and highly variable. We found that germination can be enhanced with oils. Lipids derived from plants and bee larvae increased germination from 50% (without oil) to 75-85% (with oil). Percent germination was significantly greater in the presence of lipids but germination was not significantly different when different oils, including mineral oil, were used. A. aggregata spores oriented along the oil-aqueous interface in the broth in a polar fashion, with swelling and germ tube formation always occurring into the aqueous portion of the broth. The other half of the spore tended to attach to a lipid droplet, where it remained, without swelling, during germ tube formation. The physical attachment of spores to the oil-aqueous interface is what most probably stimulates spore germination, as opposed to some nutritional stimulation. However, further research is needed to determine if and where the spores encounter such an interface when germinating in the host gut, where germination normally occurs. PMID:15645171

  9. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood.

    PubMed

    Flores, J M; Spivak, M; Gutiérrez, I

    2005-06-15

    Chalkbrood disease in honeybees (Apis mellifera L.) is caused by an infection with Ascosphaera apis. Disease expression requires the consumption of fungal spores and a predisposing condition in the susceptible brood. A. apis spores within sheets of wax foundation could be a source of inoculum leading to chalkbrood, but it is also possible that these spores remain confined in the wax and do not contribute to disease. We have resolved this topic by chilling susceptible brood within wax combs built on contaminated foundation (using treatments of spores from 1 mummy and spores from 10 mummies) versus uncontaminated foundation. We found significantly higher levels of chalkbrood in brood exposed to the higher dosage. Our results demonstrate that foundation wax contaminated with spores of A. apis spores may be a source of chalkbrood in honeybee colonies.

  10. Heat killing of bacterial spores analyzed by differential scanning calorimetry.

    PubMed Central

    Belliveau, B H; Beaman, T C; Pankratz, H S; Gerhardt, P

    1992-01-01

    Thermograms of the exosporium-lacking dormant spores of Bacillus megaterium ATCC 33729, obtained by differential scanning calorimetry, showed three major irreversible endothermic transitions with peaks at 56, 100, and 114 degrees C and a major irreversible exothermic transition with a peak at 119 degrees C. The 114 degrees C transition was identified with coat proteins, and the 56 degrees C transition was identified with heat inactivation. Thermograms of the germinated spores and vegetative cells were much alike, including an endothermic transition attributable to DNA. The ascending part of the main endothermic 100 degrees C transition in the dormant-spore thermograms corresponded to a first-order reaction and was correlated with spore death; i.e., greater than 99.9% of the spores were killed when the transition peak was reached. The maximum death rate of the dormant spores during calorimetry, calculated from separately measured D and z values, occurred at temperatures above the 73 degrees C onset of thermal denaturation and was equivalent to the maximum inactivation rate calculated for the critical target. Most of the spore killing occurred before the release of most of the dipicolinic acid and other intraprotoplast materials. The exothermic 119 degrees C transition was a consequence of the endothermic 100 degrees C transition and probably represented the aggregation of intraprotoplast spore components. Taken together with prior evidence, the results suggest that a crucial protein is the rate-limiting primary target in the heat killing of dormant bacterial spores. Images PMID:1624439

  11. Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage.

    PubMed

    de Oliveira, Carlos Eduardo Vasconcelos; Magnani, Marciane; de Sales, Camila Veríssimo; Pontes, Alline Lima de Souza; Campos-Takaki, Galba Maria; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite

    2014-12-01

    The aim of this study was to extract chitosan (CHI) from Mucor circinelloides UCP 050 grown in a corn steep liquor (CSL)-based medium under optimized conditions and to assess the efficacy of the obtained CHI to inhibit the post-harvest pathogenic fungi Aspergillus niger URM 5162 and Rhizopus stolonifer URM 3482 in laboratory media and as a coating on table grapes (Vitis labrusca L.). The effect of CHI coating on some physical, physicochemical and sensory characteristics of the fruits during storage was assessed. The greatest amount of CHI was extracted from M. circinelloides UCP 050 grown in medium containing 7 g of CSL per 100 mL at pH 5.5 with rotation at 180 rpm. CHI from M. circinelloides UCP 050 caused morphological changes in the spores of the fungal strains tested and inhibited mycelial growth and spore germination. CHI coating delayed the growth of the assayed fungal strains in artificially infected grapes, as well as autochthonous mycoflora during storage. CHI coating preserved the quality of grapes during storage, as measured by their physical, physicochemical and sensory attributes. These results demonstrate that edible coatings derived from M. circinelloides CHI could be a useful alternative for controlling pathogenic fungi and maintaining the post-harvest quality of table grapes. PMID:25084665

  12. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  13. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  14. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  15. Air-spore in Cartagena, Spain: viable and non-viable sampling methods.

    PubMed

    Elvira-Rendueles, Belen; Moreno, Jose; Garcia-Sanchez, Antonio; Vergara, Nuria; Martinez-Garcia, Maria Jose; Moreno-Grau, Stella

    2013-01-01

    In the presented study the airborne fungal spores of the semiarid city of Cartagena, Spain, are identified and quantified by means of viable or non-viable sampling methods. Airborne fungal samples were collected simultaneously using a filtration method and a pollen and particle sampler based on the Hirst methodology. This information is very useful for elucidating geographical patterns of hay fever and asthma. The qualitative results showed that when the non-viable methodology was employed, Cladosporium, Ustilago, and Alternaria were the most abundant spores identified in the atmosphere of Cartagena, while the viable methodology showed that the most abundant taxa were: Cladosporium, Penicillium, Aspergillus and Alternaria. The quantitative results of airborne fungal spores identified by the Hirst-type air sampler (non-viable method), showed that Deuteromycetes represented 74% of total annual spore counts, Cladosporium being the major component of the fungal spectrum (62.2%), followed by Alternaria (5.3%), and Stemphylium (1.3%). The Basidiomycetes group represented 18.9% of total annual spore counts, Ustilago (7.1%) being the most representative taxon of this group and the second most abundant spore type. Ascomycetes accounted for 6.9%, Nectria (2.3%) being the principal taxon. Oomycetes (0.2%) and Zygomycestes and Myxomycestes (0.06%) were scarce. The prevailing species define our bioaerosol as typical of dry air. The viable methodology was better at identifying small hyaline spores and allowed for the discrimination of the genus of some spore types. However, non-viable methods revealed the richness of fungal types present in the bioaerosol. Thus, the use of both methodologies provides a more comprehensive characterization of the spore profile.

  16. [Sporogenesis, sporoderm and mature spore ornamentation in Lycopodiaceae].

    PubMed

    Rincon Baron, Edgar Javier; Rolleri, Cristina Hilda; Passarelli, Lilian M; Espinosa Matías, Silvia; Torres, Alba Marina

    2014-09-01

    Studies on reproductive aspects, spore morphology and ultrastructure of Lycopodiaceae are not very common in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. In order to complete existing information, adding new and broader contributions on these topics, a comparative analysis of the sporogenesis ultrastructure, with emphasis on cytological aspects of the sporocyte coat development, tapetum, monoplastidic and polyplastidic meiosis, sporoderm ontogeny and ornamentation of the mature spores, was carried out in 43 taxa of eight genera of the Lycopodiaceae: Austrolycopodium, Diphasium, Diphasiastrum, Huperzia (including Phlegmariurus), Lycopodium, Lycopodiella, Palhinhaea and Pseudolycopodiella growing in the Andes of Colombia and the Neotropics. For this study, the transmission elec- tron microscopy (TEM) samples were collected in Cauca and Valle del Cauca Departments, while most of the spores for scanning electron microscopy (SEM) analysis were obtained from herbarium samples. We followed standard preparation procedures for spore observation by TEM and SEM. Results showed that the sporocyte coat is largely composed by primary wall components; the sporocyte develop much of their metabolic activity in the production of their coat, which is retained until the spores release; protective functions for the diploid cells undergoing meiosis is postulated here for this layer. The abundance of dictyosomes in the sporocyte cytoplasm was related to the formation and development of the sporocyte coat. Besides microtubule activity, the membrane of sporocyte folds, associated with electrodense material, and would early determine the final patterns of spore ornamentation. Monoplastidic condition is common in Lycopodium s.l., whereas polyplastidic condition was observed in species of Huperzia and Lycopodiella s. l. In monoplastidic species, the tapetum presents abun- dant multivesicular bodies, while in

  17. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces. PMID:12573965

  18. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus.

    PubMed

    Huang, Mingwei; Hebert, Alexander S; Coon, Joshua J; Hull, Christina M

    2015-08-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.

  19. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus

    PubMed Central

    Huang, Mingwei; Hebert, Alexander S.; Coon, Joshua J.; Hull, Christina M.

    2015-01-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote. PMID:26313153

  20. Spores of most common airborne fungi reveal no ice nucleation activity

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  1. Inhibition of Bacillus anthracis Spore Outgrowth by Nisin▿

    PubMed Central

    Gut, Ian M.; Prouty, Angela M.; Ballard, Jimmy D.; van der Donk, Wilfred A.; Blanke, Steven R.

    2008-01-01

    The lantibiotic nisin has previously been reported to inhibit the outgrowth of spores from several Bacillus species. However, the mode of action of nisin responsible for outgrowth inhibition is poorly understood. By using B. anthracis Sterne 7702 as a model, nisin acted against spores with a 50% inhibitory concentration (IC50) and an IC90 of 0.57 μM and 0.90 μM, respectively. Viable B. anthracis organisms were not recoverable from cultures containing concentrations of nisin greater than the IC90. These studies demonstrated that spores lose heat resistance and become hydrated in the presence of nisin, thereby ruling out a possible mechanism of inhibition in which nisin acts to block germination initiation. Rather, germination initiation is requisite for the action of nisin. This study also revealed that nisin rapidly and irreversibly inhibits growth by preventing the establishment of oxidative metabolism and the membrane potential in germinating spores. On the other hand, nisin had no detectable effects on the typical changes associated with the dissolution of the outer spore structures (e.g., the spore coats, cortex, and exosporium). Thus, the action of nisin results in the uncoupling of two critical sequences of events necessary for the outgrowth of spores: the establishment of metabolism and the shedding of the external spore structures. PMID:18809941

  2. Fungal Tests

    MedlinePlus

    ... effectiveness of treatment. For many superficial skin and yeast infections, a clinical examination of the affected person ... the chemical solution dissolves non-fungal elements; reveals yeast cells and fungal hyphae (branching filaments) on a ...

  3. Fungal arthritis

    MedlinePlus

    Mycotic arthritis; Infectious arthritis - fungal ... Marquez J, Espinoza LR. Infectious arthritis II: mycobacterial, brucellar, fungal, and parasitic arthritis. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH, eds. Rheumatology . ...

  4. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  5. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  6. Antibacterial polymer coatings.

    SciTech Connect

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  7. Atmospheric transport of mold spores in clouds of desert dust

    USGS Publications Warehouse

    Shinn, E.A.; Griffin, Dale W.; Seba, D.B.

    2003-01-01

    Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.

  8. Atmospheric transport of mold spores in clouds of desert dust.

    PubMed

    Shinn, Eugene A; Griffin, Dale W; Seba, Douglas B

    2003-08-01

    Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.

  9. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  10. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2009-11-01

    A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004-2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.

  11. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland).

    PubMed

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2009-11-01

    A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004-2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.

  12. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2011-03-01

    Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004-2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.

  13. Immunogenicity of recombinant Bacillus subtilis spores expressing Clonorchis sinensis tegumental protein.

    PubMed

    Zhou, Zhenwen; Xia, Huimin; Hu, Xuchu; Huang, Yan; Ma, Changling; Chen, Xiaoxiang; Hu, Fengyu; Xu, Jin; Lu, Fangli; Wu, Zhongdao; Yu, Xinbing

    2008-01-01

    Clonorchis sinensis, which causes clonorchiasis, is of major socioeconomic importance in China. In this study, we report the use of CotC, a major component of the Bacillus subtilis spore coat, as a fusion partner for the expression of C. sinensis TP20.8 (Tegumental Protein 20.8 kDa) on the spore coat. Western blotting was used to identify TP20.8 surface expression on spores. Recombinant spores displaying the TP20.8 antigen were used for oral immunization and were shown to generate mucosal response in rats. TP20.8-specific secretory IgA in feces reached significant levels 2 weeks after oral dosing. This report shows that surface display of recombinant C. sinensis TP20.8 on B. subtilis spores was immunogenic and B. subtilis spores can be used as a mucosal immunization vehicle for parasite prevention and control.

  14. Anthrax surrogate spores are destroyed by PDT mediated by phenothiazinium dyes

    NASA Astrophysics Data System (ADS)

    Demidova, Tatiana N.; Hamblin, Michael R.

    2005-04-01

    Some Gram-positive bacteria (including the causative agent of anthrax - Bacillus anthracis) survive conditions of stress and starvation by producing dormant stage spores. The spore"s multilayered capsule consists of inner and outer membranes, cortex, proteinaceous spore coat, and in some species an exosporium. These outer layers enclose dehydrated and condensed DNA, saturated with small, acid-soluble proteins. These protective structures make spores highly resistant to damage by heat, radiation, and commonly employed anti-bacterial agents. Previously Bacillus spores have been shown to be resistant to photodynamic inactivation (PDI) using dyes and light that easily destroy the corresponding vegetative bacteria, but recently we have discovered that they are susceptible to PDI. Photoinactivation, however, is only possible if phenothiazinium dyes are used. Dimethylmethylene blue, methylene blue, new methylene blue and toluidine blue O are all effective photosensitizers. Alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin and benzoporphyrin derivative are ineffective against spores even though they can easily kill vegetative cells. Spores of B. cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, while B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores and for which conventional sporicides would have unacceptable tissue toxicity.

  15. Air sampling of mold spores by slit impactors: yield comparison.

    PubMed

    Pityn, Peter J; Anderson, James

    2013-01-01

    The performance of simple slit impactors for air sampling of mold contamination was compared under field conditions. Samples were collected side-by-side, outdoors in quadruplicates with Burkhard (ambient sampler) and Allergenco MK3 spore traps and with two identical Allergenco slit cassettes operated at diverse flow rates of 5 and 15 L/min, respectively. The number and types of mold spores in each sample were quantified by microscopy. Results showed all four single-stage slit impactors produced similar spore yields. Moreover, paired slit cassettes produced similar outcomes despite a three-fold difference in their sampling rate. No measurable difference in the amount or mix of mold spores per m(3)of air was detected. The implications for assessment of human exposures and interpretation of indoor/outdoor fungal burden are discussed. These findings demonstrate that slit cassettes capture most small spores, effectively and without bias, when operated at a range of flow rates including the lower flow rates used for personal sampling. Our findings indicate sampling data for mold spores correlate for different single stage impactor collection methodologies and that data quality is not deteriorated by operating conditions deviating from manufacturers' norms allowing such sampling results to be used for scientific, legal, investigative, or property insurance purposes. The same conclusion may not be applied to other particle sampling instruments and mulit-stage impactors used for ambient particulate sampling, which represent an entirely different scenario. This knowledge may help facilitate comparison between scientific studies where methodological differences exist.

  16. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    PubMed

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  17. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    PubMed Central

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  18. Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2008-11-01

    Alternaria is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we constructed predictive models for the fungal spore circulation in Szczecin, Poland. Monthly forecasting models were developed for the airborne spore concentrations of Alternaria, which is one of the most abundant fungal taxa in the area. Aerobiological sampling was conducted over 2004-2007, using a Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation; maximum and average wind speed; relative humidity; and maximum, minimum, average, and dew point temperature. The original factors as well as with lags (up to 3 days) were used as the explaining variables. Due to non-linearity and non-normality of the data set, the modelling technique applied was the artificial neural network (ANN) method. The final model was a split model with classification (spore presence or absence) followed by regression for spore seasons and log(x+1) transformed Alternaria spore concentration. All variables except maximum wind speed and precipitation were important factors in the overall classification model. In the regression model for spore seasons, close relationships were noted between Alternaria spore concentration and average and maximum temperature (on the same day and 3 days previously), humidity (with lag 1) and maximum wind speed 2 days previously. The most important variable was humidity recorded on the same day. Our study illustrates a novel approach to modelling of time series with short spore seasons, and indicates that the ANN method provides the possibility of forecasting Alternaria spore concentration with high accuracy.

  19. Fungal Infections

    MedlinePlus

    ... fungus. A fungus is a primitive organism. Mushrooms, mold and mildew are examples. Fungi live in air, in soil, on plants and ... body. Only about half of all types of fungi are harmful. Some fungi reproduce through tiny spores ...

  20. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy

    PubMed Central

    Wang, Shiwei; Shen, Aimee; Setlow, Peter

    2015-01-01

    ABSTRACT The Gram-positive spore-forming anaerobe Clostridium difficile is a leading cause of nosocomial diarrhea. Spores of C. difficile initiate infection when triggered to germinate by bile salts in the gastrointestinal tract. We analyzed germination kinetics of individual C. difficile spores using Raman spectroscopy and differential interference contrast (DIC) microscopy. Similar to Bacillus spores, individual C. difficile spores germinating with taurocholate plus glycine began slow leakage of a ∼15% concentration of a chelate of Ca2+ and dipicolinic acid (CaDPA) at a heterogeneous time T1, rapidly released CaDPA at Tlag, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlysis. T1 and Tlag values for individual spores were heterogeneous, but ΔTrelease periods (Trelease − Tlag) were relatively constant. In contrast to Bacillus spores, heat treatment did not stimulate spore germination in the two C. difficile strains tested. C. difficile spores did not germinate with taurocholate or glycine alone, and different bile salts differentially promoted spore germination, with taurocholate and taurodeoxycholate being best. Transient exposure of spores to taurocholate plus glycine was sufficient to commit individual spores to germinate. C. difficile spores did not germinate with CaDPA, in contrast to B. subtilis and C. perfringens spores. However, the detergent dodecylamine induced C. difficile spore germination, and rates were increased by spore coat removal although cortex hydrolysis did not follow Trelease, in contrast with B. subtilis. C. difficile spores lacking the cortex-lytic enzyme, SleC, germinated extremely poorly, and cortex hydrolysis was not observed in the few sleC spores that partially germinated. Overall, these findings indicate that C. difficile and B. subtilis spore germination exhibit key differences. IMPORTANCE Spores of the Gram-positive anaerobe Clostridium difficile are responsible for initiating infection

  1. Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects.

    PubMed

    Chen, Gao; Zhang, Rui-Rui; Liu, Yang; Sun, Wei-Bang

    2014-08-01

    The ecological roles and biological mechanisms of zoochory in plants have long been foci in studies of co-evolutionary processes between plants and animals. However, the dispersal of fungal spores by animals has received comparatively little attention. In this study, the dispersal of spores of a selected fetid fungus, Lysurus mokusin, via feces of mycophagous insects was explored by: collecting volatiles emitted by the fungus using dynamic headspace extraction and analyzing them by GC-MS; testing the capacity of mycophagous insects to disperse its spores by counting spores in their feces; comparing the germinability of L. mokusin spores extracted from feces of nocturnal earwigs and natural gleba of the fungus; and assessing the ability of L. mokusin volatiles to attract insects in bioassays with synthetic scent mixtures. Numerous spores were detected in insects' feces, the bioassays indicated that L. mokusin odor (similar to that of decaying substances) attracts diverse generalist mycophagous insects, and passage through the gut of Anisolabis maritima earwigs significantly enhanced the germination rate of L. mokusin spores. Therefore, nocturnal earwigs and diurnal flies probably play important roles in dispersal of L. mokusin spores, and dispersal via feces may be an important common dispersal mechanism for fungal reproductive tissue.

  2. Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects.

    PubMed

    Chen, Gao; Zhang, Rui-Rui; Liu, Yang; Sun, Wei-Bang

    2014-08-01

    The ecological roles and biological mechanisms of zoochory in plants have long been foci in studies of co-evolutionary processes between plants and animals. However, the dispersal of fungal spores by animals has received comparatively little attention. In this study, the dispersal of spores of a selected fetid fungus, Lysurus mokusin, via feces of mycophagous insects was explored by: collecting volatiles emitted by the fungus using dynamic headspace extraction and analyzing them by GC-MS; testing the capacity of mycophagous insects to disperse its spores by counting spores in their feces; comparing the germinability of L. mokusin spores extracted from feces of nocturnal earwigs and natural gleba of the fungus; and assessing the ability of L. mokusin volatiles to attract insects in bioassays with synthetic scent mixtures. Numerous spores were detected in insects' feces, the bioassays indicated that L. mokusin odor (similar to that of decaying substances) attracts diverse generalist mycophagous insects, and passage through the gut of Anisolabis maritima earwigs significantly enhanced the germination rate of L. mokusin spores. Therefore, nocturnal earwigs and diurnal flies probably play important roles in dispersal of L. mokusin spores, and dispersal via feces may be an important common dispersal mechanism for fungal reproductive tissue. PMID:25064696

  3. Changes in concentration of Alternaria and Cladosporium spores during summer storms.

    PubMed

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms. PMID:23161270

  4. Changes in concentration of Alternaria and Cladosporium spores during summer storms.

    PubMed

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.

  5. Changes in concentration of Alternaria and Cladosporium spores during summer storms

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.

  6. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  7. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. PMID:23088412

  8. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior.

  9. Indirect Immunodetection of Fungal Fragments by Field Emission Scanning Electron Microscopy

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Nayak, Ajay P.; Skaar, Ida; Hjeljord, Linda; Tronsmo, Arne; Green, Brett James

    2015-01-01

    Submicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample. PMID:26092450

  10. Synthesis and Assembly of a Novel Glycan Layer in Myxococcus xanthus Spores*

    PubMed Central

    Holkenbrink, Carina; Hoiczyk, Egbert; Kahnt, Jörg; Higgs, Penelope I.

    2014-01-01

    Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1–4- and 1–3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1–4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA–H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix. PMID:25271164

  11. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  12. Fungal Endocarditis

    PubMed Central

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis. PMID:27737409

  13. Fungal Sinusitis.

    PubMed

    Raz, Eytan; Win, William; Hagiwara, Mari; Lui, Yvonne W; Cohen, Benjamin; Fatterpekar, Girish M

    2015-11-01

    Fungal sinusitis is characterized into invasive and noninvasive forms. The invasive variety is further classified into acute, chronic and granulomatous forms; and the noninvasive variety into fungus ball and allergic fungal sinusitis. Each of these different forms has a unique radiologic appearance. The clinicopathologic and corresponding radiologic spectrum and differences in treatment strategies of fungal sinusitis make it an important diagnosis for clinicians and radiologists to always consider. This is particularly true of invasive fungal sinusitis, which typically affects immuno compromised patients and is associated with significant morbidity and mortality. Early diagnosis allows initiation of appropriate treatment strategies resulting in favorable outcome.

  14. Thermal Spore Exposure Vessels

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry

    2006-01-01

    Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.

  15. New Rapid Spore Assay

    NASA Astrophysics Data System (ADS)

    Kminek, Gerhard; Conley, Catharine

    2012-07-01

    The presentation will detail approved Planetary Protection specifications for the Rapid Spore Assay for spacecraft components and subsystems. Outlined will be the research and studies on which the specifications were based. The research, funded by ESA and NASA/JPL, was conducted over a period of two years and was followed by limited cleanroom studies to assess the feasibility of this assay during spacecraft assembly.

  16. Aspergillosis in the common sea fan Gorgonia ventalina: isolation of waterborne hyphae and spores.

    PubMed

    Troeger, Victoria J; Sammarco, Paul W; Caruso, John H

    2014-07-01

    The octocoral disease aspergillosis is caused by the terrestrial fungus Aspergillus sydowii. The possibility of secondary (horizontal) transmission of aspergillosis among common sea fans Gorgonia ventalina would require waterborne transmission of hyphae and/or spores. A laboratory filtration experiment confirmed that fungal hyphae and spores were shed into the water by infected fans. This suggests that secondary infection might be possible in this species. It remains to be determined whether healthy fans actually develop aspergillosis after contact with hyphae-laden water.

  17. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl; Warren, Barbara Panessa

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  18. Fungal endophytes characterization from four species of Diplazium Swartz

    NASA Astrophysics Data System (ADS)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  19. Clostridium difficile Spore-Macrophage Interactions: Spore Survival

    PubMed Central

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2012-01-01

    Background Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. Methodology/Principal Findings In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. Conclusions/Significance These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells. PMID:22952726

  20. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma

    NASA Astrophysics Data System (ADS)

    Troutt, C.; Levetin, E.

    Different spore types are abundant in the atmosphere depending on the weather conditions. Ascospores generally follow precipitation, while spore types such as Alternaria and Cladosporium are abundant in dry conditions. This project attempted to correlate fungal spore concentrations with meteorological data from Tulsa, Oklahoma during May 1998 and May 1999. Air samples were collected and analyzed by the 12-traverse method. The spore types included were Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, and other spores. Weather variables included precipitation levels, temperature, dew point, air pressure, wind speed, wind direction and wind gusts. There were over 242.57 mm of rainfall in May 1999 and only 64.01 mm in May 1998. The most abundant spore types during May 1998 and May 1999 were Cladosporium, ascospores, and basidiospores. Results showed that there were significant differences in the dry-air spora between May 1998 and May 1999. There were twice as many Cladosporium in May 1998 as in May 1999; both ascospores and basidiospores showed little change. Multiple regression analysis was used to determine which meteorological variables influenced spore concentrations. Results showed that there was no single model for all spore types. Different combinations of factors were predictors of concentration for the various fungi examined; however, temperature and dew point seemed to be the most important meteorological factors.

  1. Heat Resistance of Xerophilic Fungi Based on Microscopical Assessment of Spore Survival

    PubMed Central

    Pitt, J. I.; Christian, J. H. B.

    1970-01-01

    An improved viable counting technique was developed to facilitate study of the heat resistance of fungal spores. Spores were heated and subsequently incubated in the same medium. After germination, hyphae and germ tubes were stained with lactofuchsin, and the germinated spores were counted with the aid of a microscope. A number of xerophilic strains were examined, mostly isolates from spoiled highmoisture prunes. Of these, ascospores of Aspergillus chevalieri, A. mangini, and Xeromyces bisporus were the most heat-resistant. A decimal reduction curve obtained for A. chevalieri was specified by a z value of 23 F and an F180 of 2.2 min. PMID:5485080

  2. Detection of presumptive mycoparasites associated with Entomophaga maimaiga resting spores in forest soils.

    PubMed

    Castrillo, Louela A; Hajek, Ann E

    2015-01-01

    The fungal pathogen Entomophaga maimaiga can provide high levels of control of the gypsy moth, Lymantria dispar, an important forest defoliator. This fungus persists in the soil as resting spores and occurs naturally throughout many areas where gypsy moth is established. Studies on the spatial dynamics of gypsy moth population have shown high variability in infection levels, and one possible biological factor could be the variable persistence of E. maimaiga resting spores in the soil due to attacks by mycoparasites. We surveyed presumptive mycoparasites associated with parasitized E. maimaiga resting spores using baiting and molecular techniques and identified an ascomycete (Pochonia sp.) and oomycetes (Pythium spp.). PMID:25433313

  3. Interaction of Bacillus subtilis spores with sodium hypochlorite, sodium dichloroisocyanurate and chloramine-T.

    PubMed

    Bloomfield, S F; Arthur, M

    1992-02-01

    Solutions of chlorine-releasing agents (CRAs) show varying activity against Bacillus subtilis spores; sodium hypochlorite (NaOCl) shows higher activity than sodium dichloroisocyanurate (NaDCC) which is more active than chloramine-T. Investigations with coat- and cortex-extracted spores indicate that resistance to CRAs depends not only on the spore coat but also the cortex. Whereas extraction of alkali-soluble coat protein increased sensitivity to NaOCl and NaDCC, degradation of coat and cortex material was required to achieve significant activity with chloramine-T. NaOCl (in the presence and absence of NaOH) and NaDCC (in the presence of NaOH only) produced degradation of spore coat and cortex material which may be related to their rapid sporicidal action at low concentrations under these conditions. By contrast, chloramine-T produced no degradation of cortex peptidoglycan and was only effective against normal and alkali-treated spores at high concentrations, requiring extraction of peptidoglycan with urea/dithiothreitol/sodium lauryl sulphate (UDS) or UDS/lysozyme to achieve significant activity at low concentrations. Results suggest that the sporicidal action of CRAs is associated with spore coat and cortex degradation causing rehydration of the protoplast allowing diffusion to the site of action on the underlying protoplast. PMID:1556040

  4. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium.

    PubMed

    Venir, Elena; Del Torre, Manuela; Cunsolo, Vincenzo; Saletti, Rosaria; Musetti, Rita; Stecchini, Mara Lucia

    2014-02-01

    The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.

  5. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation.

    PubMed

    Butterfield, Cristina N; Lee, Sung-Woo; Tebo, Bradley M

    2016-04-01

    Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents.

  6. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    PubMed

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.

  7. [Fungal contamination of dwelling and public buildings: hygienic aspects].

    PubMed

    Gubernskiĭ, Iu D; Nel'nikova, A I; Kalinina, N V; Chuprina, O V

    2010-01-01

    Dwelling and public buildings underwent comprehensive hygienic studies for fungal contamination. Human allergization associated with fungal contamination within the building envelopes and with the viable fungal spores in the air of enclosed spaces was found to be prevalent. The leading factors determining the extent to which the internal environment of premises was exposed to fungal contamination: their increased air humidity due to leakages and inlets, the affected area of building envelopes, and a temperature factor were revealed. The criteria showing it necessary to undertake specific measures to optimize the living conditions of the population were defined.

  8. Characterizations of atmospheric fungal aerosol in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu

    2013-04-01

    Fungal aerosols constitute the most abundant fraction of biological aerosols in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is still poorly understood and quantified. PM10 and PM2.5 samples were collected by high volume samplers simultaneously at a rural site (MY) and an urban site (THU) in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the THU site were 7.4±9.4 ng/m3 and 10.3±9.5 ng/m3, and the respective mannitol concentrations were 21.0±20.4 ng/m3 and 31.9±26.9 ng/m3. Compared to PM10, the monthly average concentrations of arabitol and mannitol in PM2.5 did not vary significantly and were present at nearly consistent levels in the different seasons. Moreover, during summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry period (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces, (e.g., soil resuspension, transported dust, etc.) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Mannitol and arabitol correlated well with each other, both in PM10 (R2 = 0.71) and PM2.5 (R2 = 0.81). Although fungal spore levels at rural sites were consistently higher than those at urban sites in other studies, the findings in our study were

  9. Prevalence and airborne spore levels of Stachybotrys spp. in 200 houses with water incursions in Houston, Texas.

    PubMed

    Kuhn, Ryan C; Trimble, Mingyi W; Hofer, Vasanthi; Lee, Michael; Nassof, Russell S

    2005-01-01

    Two hundred homes with a history of water incursion were sampled for fungi to determine the prevalence and airborne spore levels of Stachybotrys spp. Sampling methods included room air, surface, and wall cavity air sampling. Stachybotrys spp. were detected with at least one of the methods in 58.5% of the houses tested, but only 9.6% of the room air samples contained Stachybotrys spores. Aerosolization of Stachybotrys spores was correlated with both wall cavity and surface contamination. However, after adjustment for the surface effect, Stachybotrys spores detected in wall cavities were not a significant factor contributing to spores detected in room air samples. We conclude that Stachybotrys spp. are commonly found on water-damaged building materials. In addition, the observations made in this study suggest that the impact on the living space air is low if the fungal spores are contained within a wall cavity.

  10. Molecular dissection of Neurospora Spore killer meiotic drive elements

    PubMed Central

    Hammond, Thomas M.; Rehard, David G.; Xiao, Hua; Shiu, Patrick K. T.

    2012-01-01

    Meiotic drive is a non-Mendelian inheritance phenomenon in which certain selfish genetic elements skew sexual transmission in their own favor. In some cases, progeny or gametes carrying a meiotic drive element can survive preferentially because it causes the death or malfunctioning of those that do not carry it. In Neurospora, meiotic drive can be observed in fungal spore killing. In a cross of Spore killer (Sk) × WT (Sk-sensitive), the ascospores containing the Spore killer allele survive, whereas the ones with the sensitive allele degenerate. Sk-2 and Sk-3 are the most studied meiotic drive elements in Neurospora, and they each theoretically contain two essential components: a killer element and a resistance gene. Here we report the identification and characterization of the Sk resistance gene, rsk (resistant to Spore killer). rsk seems to be a fungal-specific gene, and its deletion in a killer strain leads to self-killing. Sk-2, Sk-3, and naturally resistant isolates all use rsk for resistance. In each killer system, rsk sequences from an Sk strain and a resistant isolate are highly similar, suggesting that they share the same origin. Sk-2, Sk-3, and sensitive rsk alleles differ from each other by their unique indel patterns. Contrary to long-held belief, the killer targets not only late but also early ascospore development. The WT RSK protein is dispensable for ascospore production and is not a target of the spore-killing mechanism. Rather, a resistant version of RSK likely neutralizes the killer element and prevents it from interfering with ascospore development. PMID:22753473

  11. Spore-displayed streptavidin: A live diagnostic tool in biotechnology

    SciTech Connect

    Kim, June-Hyung; Lee, Chang-Soo; Kim, Byung-Gee . E-mail: byungkim@snu.ac.kr

    2005-05-27

    Streptavidin, which is one of the most widely used proteins in biotechnological application field and is active only in tetrameric form, was surface expressed on the surface of Bacillus subtilis spore. Spore coat protein of B. subtilis, CotG, was used as an anchoring motif to display streptavidin. FACS using anti-streptavidin antibody was used for the verification of surface localization of expressed CotG-streptavidin fusion protein. FACS and dot-blot were used for the verification of biological activity of displayed streptavidin with FITC-labeled biotin.

  12. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air

    NASA Astrophysics Data System (ADS)

    O'Gorman, Céline M.; Fuller, Hubert T.

    2008-06-01

    Temporal and spatial variations in airborne spore concentrations of selected allergenic and pathogenic fungi were examined in Dublin, Ireland, in 2005. Air samples were taken at four outdoor locations in the city every 2 weeks, coupled with measurements of meteorological conditions. Total culturable airborne fungal spore concentrations in Dublin ranged from 30-6800 colony forming units per cubic metre of air (CFU m-3) over the 12-month period. Cladosporium, Penicillium, Aspergillus and Alternaria spores were constantly present in the Dublin atmosphere, representing >20% of the total culturable spore count. Concentrations of Cladosporium increased significantly in summer and reached allergenic threshold levels, peaking at over 3200 CFU m-3 in August. Penicillium spore concentrations never reached allergenic threshold levels, with average concentrations of <150 CFU m-3. Alternaria conidia formed only 0.3% of the total culturable fungal spore count and concentrations never exceeded 50 CFU m-3, attributable to the coastal position of Dublin and its low levels of arable production. The opportunistic human pathogen Aspergillus fumigatus was present throughout the year in nominal concentrations (<10 CFU m-3), but sporadic high counts were also recorded (300-400 CFU m-3), the potential health implications of which give cause for concern. Spores of neither Cryptococcus neoformans nor Stachybotrys chartarum were detected, but airborne basidiospores of Schizophyllum commune were evidenced by the dikaryotization of monokaryon tester strains following exposure to the air. The relationships between airborne fungal spore concentrations and meteorological factors were analysed by redundancy analysis and revealed positive correlations between temperature and Cladosporium and relative humidity and Penicillium and Aspergillus.

  13. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  14. Review of fungal outbreaks and infection prevention in healthcare settings during construction and renovation.

    PubMed

    Kanamori, Hajime; Rutala, William A; Sickbert-Bennett, Emily E; Weber, David J

    2015-08-01

    Hospital construction and renovation activities are an ever-constant phenomenon in healthcare facilities, causing dust contamination and possible dispersal of fungal spores. We reviewed fungal outbreaks that occurred during construction and renovation over the last 4 decades as well as current infection prevention strategies and control measures. Fungal outbreaks still occur in healthcare settings, especially among patients with hematological malignancies and those who are immunocompromised. The causative pathogens of these outbreaks were usually Aspergillus species, but Zygomycetes and other fungi were occasionally reported. Aspergillus most commonly caused pulmonary infection. The overall mortality of construction/renovation-associated fungal infection was approximately 50%. The minimal concentration of fungal spores by air sampling for acquisition of fungal infections remains to be determined. Performing infection control risk assessments and implementing the recommended control measures is essential to prevent healthcare-associated fungal outbreaks during construction and renovation.

  15. Crop harvest in Central Europe causes episodes of high airborne Alternaria spore concentrations in Copenhagen

    NASA Astrophysics Data System (ADS)

    Skjøth, C. A.; Sommer, J.; Frederiksen, L.; Gosewinkel Karlson, U.

    2012-06-01

    This study tests the hypothesis that Danish agricultural areas are the main source to airborne Alternaria spores in Copenhagen, Denmark. We suggest that the source to the overall load is mainly local, but with intermittent Long Distance Transport (LDT) from more remote agricultural areas. This hypothesis is supported by investigating a 10 yr bi-hourly record of Alternaria spores in the air from Copenhagen. This record shows 232 clinically relevant episodes with a distinct daily profile. The data analysis also revealed potential LDT episodes almost every year. A source map and analysis of atmospheric transport suggest that LDT always originates from the main agricultural areas in Central Europe. A dedicated emission study in cereal crops under harvest during 2010 also supports our hypothesis. The emission study showed that although the fields had been treated against fungal infections, harvesting still produced large amounts of airborne fungal spores. It is likely that such harvesting periods can cause clinically relevant levels of fungal spores in the atmosphere. Our findings suggest that crop harvest in Central Europe causes episodes of high airborne Alternaria spore concentrations in Copenhagen as well as other urban areas in this region. It is likely that such episodes could be simulated using atmospheric transport models.

  16. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  17. Monitoring and assessment of airborne Cladosporium Link and Alternaria Nées spores in Sivrihisar (Eskisehir), Turkey.

    PubMed

    Erkara, Ismuhan Potoglu; Ilhan, Semra; Oner, Setenay

    2009-01-01

    The spores of Cladosporium spp. and Alternaria spp., commonly described as the most allergenic spores, were collected by means of Durham gravimetric sampler from the Sivrihisar (Eskisehir) atmosphere throughout 2005 to 2006. The weekly variations in spores/cm(2) of Cladosporium and Alternaria were recorded. During this period, a total of 6,198 spores belonging to Cladosporium spp. and Alternaria spp. were recorded. Of these spores, 2,969 were identified in 2005 and 3,229 in 2006. While 69.55% of the total spores were those of Cladosporium spp., 30.45% were Alternaria spp. Relationships between airborne fungal spore presence and weather conditions were examined statistically. A Shapiro-Wilk test revealed that the airborne spores of Cladosporium spp. and Alternaria spp. had a normal distribution. Following this, Chi-square test, t test and Pearson correlation analysis were performed. The effects of temperature and relative humidity on the spore numbers of Cladosporium spp. and Alternaria spp. were significant according to the month in which they were collected (p < 0.01). The spore concentrations of each species reached to their highest levels in June 2006.

  18. Raman spectroscopic study of Lactarius spores (Russulales, Fungi)

    NASA Astrophysics Data System (ADS)

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products.

  19. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    SciTech Connect

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  20. Fungal nail infection

    MedlinePlus

    Nails - fungal infection; Onychomycosis; Infection - fungal - nails; Tinea unguium ... hair, nails, and outer skin layers. Common fungal infections include: Athlete's foot Jock itch Ringworm on the ...

  1. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  2. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  3. The Synergistic Effect of High Pressure CO2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions

    PubMed Central

    Rao, Lei; Wang, Yongtao; Chen, Fang; Liao, Xiaojun

    2016-01-01

    The inactivation effects of high pressure CO2 + nisin (simultaneous treatment of HPCD and nisin, HPCD + nisin), HPCD→nisin (HPCD was followed by nisin), and nisin→HPCD (nisin was followed by HPCD) treatments on Bacillus subtilis spores in aqueous solutions were compared. The spores were treated by HPCD at 6.5 or 20 MPa, 84–86°C and 0–30 min, and the concentration of nisin was 0.02%. Treated spores were examined for the viability, the permeability of inner membrane (IM) using flow cytometry method and pyridine-2, 6-dicarboxylic acid (DPA) release, and structural damage by transmission electron microscopy. A synergistic effect of HPCD + nisin treatment on inactivation of the spores was found, and the inactivation efficiency of the spores was HPCD + nisin > HPCD→nisin or nisin→HPCD. Moreover, HPCD + nisin caused higher IM permeability and DPA release of the spores than HPCD. A possible action mode of nisin-enhanced inactivation of the spores was suggested as that HPCD firstly damaged the coat and cortex of spores, and nisin penetrated into and acted on the IM of spores, which increased the damage to the IM of spores, and resulted in higher inactivation of the spores. PMID:27708639

  4. Investigation of the effect of VUV radiation on the viability of microfungi spores

    NASA Astrophysics Data System (ADS)

    Zvereva, G.; Kirtsideli, I.; Benken, K.; Saifitdinova, A.; Galkina, S.; Parfenov, V.

    2015-12-01

    Irradiation of various types of microfungi spores by vacuum ultraviolet radiation (VUV) (λ = 172 nm, 2 mW/cm2 ) was carried out in this work. It was found, that the VUV radiation leads to inactivation of spores in the dose range 10-240 mJ/cm2 , depending on the fungal species. Shadowing effect of overlapping layers of spores was observed. Protective property of melanin at λ = 172 nm has been proven experimentally. Presence of melanin in the cell structure led to an increase of the inactivation dose of VUV radiation in more than one order. Fluorescence microscopy have revealed differences in the structure of the membrane of control and irradiated spore. VUV irradiation of DNA samples (200 ng) at λ=172 nm showed almost complete absence of double-stranded DNA parts at doses of more than 240 mJ/cm2 .

  5. Fungal Infections

    MedlinePlus

    ... it, you'll be saying bye-bye to fungi (say: FUN-guy). What Is a Fungal Infection? Fungi , the word for more than one fungus, can ... but of course, they're not!). Because the fungi that cause tinea (ringworm) live on different parts ...

  6. NASA Facts: SporeSat

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    SporeSat is an autonomous, free-flying three-unit (3U) spacecraft that will be used to conduct scientific experiments to gain a deeper knowledge of the mechanisms of plant cell gravity sensing. SporeSat is being developed through a partnership between NASAs Ames Research Center and the Department of Agricultural and Biological Engineering at Purdue University. Amani Salim and Jenna L. Rickus are the Purdue University Principal Investigators. The SporeSat mission will be flown using a 3U nanosatellite weighing approximately 12 pounds and measuring 14 inches long by 4 inches wide by 4 inches tall. SporeSat will utilize flight-proven spacecraft technologies demonstrated on prior Ames nanosatellite missions such as PharmaSat and OrganismOrganic Exposure to Orbital Stresses (OOREOS) as well as upgrades that increase the hardware integration capabilities with SporeSat science instrumentation. In addition, the SporeSat science payload will serve as a technology platform to evaluate new microsensor technologies for enabling future fundamental biology missions.

  7. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  8. Peptide Ligands That Bind Selectively to Spores of Bacillus subtilis and Closely Related Species

    PubMed Central

    Knurr, Jordan; Benedek, Orsolya; Heslop, Jennifer; Vinson, Robert B.; Boydston, Jeremy A.; McAndrew, Joanne; Kearney, John F.; Turnbough, Charles L.

    2003-01-01

    As part of an effort to develop detectors for selected species of bacterial spores, we screened phage display peptide libraries for 7- and 12-mer peptides that bind tightly to spores of Bacillus subtilis. All of the peptides isolated contained the sequence Asn-His-Phe-Leu at the amino terminus and exhibited clear preferences for other amino acids, especially Pro, at positions 5 to 7. We demonstrated that the sequence Asn-His-Phe-Leu-Pro (but not Asn-His-Phe-Leu) was sufficient for tight spore binding. We observed equal 7-mer peptide binding to spores of B. subtilis and its most closely related species, Bacillus amyloliquefaciens, and slightly weaker binding to spores of the closely related species Bacillus globigii. These three species comprise one branch on the Bacillus phylogenetic tree. We did not detect peptide binding to spores of several Bacillus species located on adjacent and nearby branches of the phylogenetic tree nor to vegetative cells of B. subtilis. The sequence Asn-His-Phe-Leu-Pro was used to identify B. subtilis proteins that may employ this peptide for docking to the outer surface of the forespore during spore coat assembly and/or maturation. One such protein, SpsC, appears to be involved in the synthesis of polysaccharide on the spore coat. SpsC contains the Asn-His-Phe-Leu-Pro sequence at positions 6 to 10, and the first five residues of SpsC apparently must be removed to allow spore binding. Finally, we discuss the use of peptide ligands for bacterial detection and the use of short peptide sequences for targeting proteins during spore formation. PMID:14602648

  9. Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen

    NASA Astrophysics Data System (ADS)

    Skjøth, C. A.; Sommer, J.; Frederiksen, L.; Gosewinkel Karlson, U.

    2012-11-01

    This study examines the hypothesis that Danish agricultural areas are the main source of airborne Alternaria spores in Copenhagen, Denmark. We suggest that the contribution to the overall load is mainly local or regional, but with intermittent long distance transport (LDT) from more remote agricultural areas. This hypothesis is supported by investigating a 10 yr bi-hourly record of Alternaria spores in the air from Copenhagen. This record shows 232 clinically relevant episodes (daily average spore concentration above 100 m-3) with a distinct daily profile. The data analysis also revealed potential LDT episodes almost every year. A source map and analysis of atmospheric transport suggest that LDT always originates from the main agricultural areas in Central Europe. A dedicated emission study in cereal crops under harvest during 2010 also supports our hypothesis. The emission study showed that although the fields had been treated against fungal infections, harvesting still produced large amounts of airborne fungal spores. It is likely that such harvesting periods can cause clinically relevant levels of fungal spores in the atmosphere. Our findings suggest that crop harvest in Central Europe causes episodes of high airborne Alternaria spore concentrations in Copenhagen as well as other urban areas in this region. It is likely that such episodes could be simulated using atmospheric transport models.

  10. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    PubMed Central

    2012-01-01

    Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust) were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure. Although the molecular details of

  11. New detection targets for amyloid-reactive probes: spectroscopic recognition of bacterial spores

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Landsman, Pavel

    2005-05-01

    We report characteristic changes in fluorescence of amyloid-binding dyes Thioflavin T (TfT), pinacyanol (PIN) and related dyes, caused by their interaction with suspended Bacillus spore cultures (B. subtilis, B thuringiensis). The gain in TfT emission in the presence of spores allowed their immediate detection in aqueous suspensions, with a sensitivity limit of < 105 spores per ml. The spectroscopic signatures are consistent with a large number of binding sites for the two dyes on spore coats. The possible structural relationship of these dye binding loci with characteristic motifs (β-stacks) of amyloid deposits and other misfolded protein formations suggests new designs for probing biocontamination and also for clinical studies of non-microbial human pathogens (e.g., amyloid-related protein aggregates in prion-related transmissible encephalopathies or in Alzheimer's disease). Also reported is a special screening technique that was designed and used herein for calibration of new detection probes and assays for spore detection. It employed spectroscopic interactions between the candidate amyloid stains and poly(vinylpyrrolidone)-coated colloid silica (Percoll) nanoparticles that also display remarkable parallelism with the corresponding dye-amyloid and dye-spore reactivities. Percoll may thus find new applications as a convenient non-biological structural model mimicking the putative probe-targeted motifs in both classes of bioanalytes. These findings are important in the design of new probes and assays for important human pathogens (i.e. bacterial spores and amyloidogenic protein aggregates).

  12. Fungal keratitis

    PubMed Central

    Tuli, Sonal S

    2011-01-01

    Clinical question: What is the most appropriate management of fungal keratitis? Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea. Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary. PMID:21468333

  13. Fungal Diagnostics

    PubMed Central

    Kozel, Thomas R.; Wickes, Brian

    2014-01-01

    Early diagnosis of fungal infection is critical to effective treatment. There are many impediments to diagnosis such as a diminishing number of clinical mycologists, cost, time to result, and requirements for sensitivity and specificity. In addition, fungal diagnostics must meet the contrasting needs presented by the increasing diversity of fungi found in association with the use of immunosuppressive agents in countries with high levels of medical care and the need for diagnostics in resource-limited countries where large numbers of opportunistic infections occur in patients with AIDS. Traditional approaches to diagnosis include direct microscopic examination of clinical samples, histopathology, culture, and serology. Emerging technologies include molecular diagnostics and antigen detection in clinical samples. Innovative new technologies that use molecular and immunoassay platforms have the potential to meet the needs of both resource-rich and resource-limited clinical environments. PMID:24692193

  14. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity

    PubMed Central

    Westphal, Andrew J.; Price, P. Buford; Leighton, Terrance J.; Wheeler, Katherine E.

    2003-01-01

    Using an automated scanning microscope, we report the surprising result that individual dormant spores of Bacillus thuringiensis grow and shrink in response to increasing and decreasing relative humidity. We simultaneously monitored the size of inorganic calibration particles. We found that the spores consistently swell in response to increased relative humidity, and shrink to near their original size on reexposure to dry air. Although the dispersion of swelling amplitudes within an ensemble of spores is wide (≈30% of the average amplitude), amplitudes for individual spores are highly correlated between different swelling episodes, suggesting that individual spores respond consistently to changes in humidity. We find evidence for two distinct time scales for swelling: one with a time scale of no more than ≈50 s, and another with a time scale of ≈8 min. We speculate that these two mechanisms may be due to rapid diffusion of water into the spore coat + cortex, followed by slower diffusion of water into the spore core, respectively. Humidity-dependent swelling may account for the greater kill effectiveness of spores by gas-phase chlorine dioxide, formaldehyde, and ethylene oxide at very high relative humidity. PMID:12584363

  15. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  16. Biochemical properties of Clostridium bifermentans spores.

    PubMed Central

    Hausenbauer, J M; Waites, W M; Setlow, P

    1977-01-01

    As previously found for spores of Bacillus species, dormant spores of Clostridium bifermentans contained essentially no adenosine triphosphate, a high level of adenosine monophosphate, a high level of 3-phosphoglyceric acid, and much transfer ribonucleic acid lacking a 3'-terminal adenosine monophosphate residue. As in spores of Bacillus species, germination of C. bifermentans spores was accompanied by utilization of the 3-phosphoglyceric acid, a large increase in the adenosine triphosphate level, and the disappearance of defective transfer ribonucleic acid. In contrast to spores of Bacillus species, dormant spores of C. bifermentans contained little free amino acid. PMID:402349

  17. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  18. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates.

    PubMed

    Damialis, Athanasios; Mohammad, Aqilah B; Halley, John M; Gange, Alan C

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate (E. purpurascens) and with the highest competition capacity (A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential. PMID:25414142

  19. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates.

    PubMed

    Damialis, Athanasios; Mohammad, Aqilah B; Halley, John M; Gange, Alan C

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate (E. purpurascens) and with the highest competition capacity (A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  20. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores

    PubMed Central

    2010-01-01

    Background The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. Results We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 × 103 recombinant molecules per spore), whereas when fused to CotC, although most efficiently expressed (7-15 × 103 recombinant molecules per spore) and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. Conclusion UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface. PMID:20082702

  1. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores.

    PubMed

    Zhou, Zhenwen; Gong, Sitang; Li, Xiu-Min; Yang, Yiyu; Guan, Ruili; Zhou, Shuai; Yao, Shuwen; Xie, Yongqiang; Ou, Zhiying; Zhao, Junhong; Liu, Zhigang

    2015-01-01

    Helicobacter pylori infection is a major risk factor for chronic gastritis, digestive ulcers, gastric adenocarcinoma and lymphoma. Due to the decreasing efficacy of anti-H. pylori antibiotic therapy in clinical practice, there is renewed interest in the development of anti-H. pylori vaccines. Bacillus subtilis is non-pathogenic and can produce endospores, which can survive under extreme conditions. These features make the B. subtilis spore an ideal vehicle for delivery of heterologous antigens to extreme environments such as the gastrointestinal tract. In this study, we displayed H. pylori urease B protein on the B. subtilis spore coat using the spore coat protein CotC as a fusion partner. Western blot analyses were used to verify urease B surface expression on spores. Recombinant spores displaying the urease B antigen were used for oral immunization and were shown to generate humoral response in mice. Urease B-specific secretory IgA in faeces and IgG in serum reached significant levels 2 weeks after oral dosing. In addition, oral immunization of recombinant urease B spores induced a significant reduction (84 %) in the stomach bacterial load (0.25±0.13×10(6) c.f.u.) compared to that in the non-recombinant spores treated group (1.56±0.3×10(6) c.f.u.; P<0.01). This report shows that urease B expressed on B. subtilis spores was immunogenic, and oral administration of urease B spores can provide protection against H. pylori infection.

  2. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores

    PubMed Central

    Park, Hee-Soo; Man Yu, Yeong; Lee, Mi-Kyung; Jae Maeng, Pil; Chang Kim, Sun; Yu, Jae-Hyuk

    2015-01-01

    Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores. PMID:25960370

  3. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    SciTech Connect

    Chung, Eunhyea; Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida; Joy, David Charles; Palumbo, Anthony Vito; Tsouris, Costas

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  4. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi.

    PubMed

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-08-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at -25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges. PMID:26380666

  5. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi

    PubMed Central

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-01-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at −25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges. PMID:26380666

  6. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols

    PubMed Central

    Han, T.; Nazarenko, Y.; Lioy, P. J.; Mainelis, G.

    2014-01-01

    We recently developed an electrostatic precipitator with superhydrophobic surface (EPSS), which collects particles into a 10- to 40-μl water droplet allowing achievement of very high concentration rates (defined as the ratio of particle concentration in the collection liquid vs. the airborne particle concentration per time unit) when sampling airborne bacteria. Here, we analyzed the performance of this sampler when collecting three commonly found fungal spores – Cladosporium cladosporioides, Penicillium melinii, and Aspergillus versicolor – under different operating conditions. We also adapted adenosine triphosphate (ATP)-based bioluminescence for the analysis of collection efficiency and the concentration rates. The collection efficiency ranged from 10 to 36% at a sampling flow rate of 10 l/min when the airborne fungal spore concentration was approximately 105–106 spores/m3 resulting in concentration rates in the range of 1 × 105–3 × 105/min for a 10-μl droplet. The collection efficiency was inversely proportional to the airborne spore concentration and it increased to above 60% for common ambient spore concentrations, e.g., 104–105 spores/m3. The spore concentrations determined by the ATP-based method were not statistically different from those determined by microscopy and allowed us to analyze spore concentrations that were too low to be reliably detected by microscopy. PMID:21204982

  7. The Gonzo Scientist. Flunking Spore.

    PubMed

    Bohannon, John

    2008-10-24

    The blockbuster video game Spore is being marketed as a science-based adventure that brings evolution, cell biology, and even astrophysics to the masses. But after grading the game's science with a team of researchers, the Gonzo Scientist has some bad news. PMID:18948523

  8. NanoSIMS analysis of Bacillus spores for forensics

    SciTech Connect

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  9. Remediating office environments of spore-forming bacteria.

    PubMed

    Johnson, Luke; Smith, Myron L; Begin, Melissa; Fraser, Bruce; Miller, J David

    2010-10-01

    This study examines decontamination processes that were developed on an emergency basis to eliminate Bacillus anthracis spores from deliberately contaminated buildings. The recommended steps include a survey with sampling, the removal of sensitive items, and HEPA vacuuming of all readily available surfaces, followed by biocide treatment and subsequent analyses for viable cells. There are several analytical challenges posed by this approach. These include the ability to discriminate the added strain from naturally occurring resident microbes, determining detection limits for anthrax spores in settled dusts, and detecting viable but nonculturable spores. There are also logistical issues relating to the various skill sets required from investigation to reconstruction. In the present study, a model office was constructed, and a strain of Bacillus pumilus was isolated from the carpet and reintroduced to the office in excess. The abundance of the B. pumilus strain was monitored in settled dust using a strain-specific, quantitative polymerase chain reaction (QPCR)-based detection method following repeated HEPA vacuum cleanings. The QPCR method had a limit of detection corresponding to < or = 10(2) colony forming units per gram of settled dust. QPCR results were compared with measures of dust recoveries and fungal glucan and endotoxin levels in the dust samples. The largest fraction (ca. 81%) of added spores was recovered during the first HEPA cleaning. Subsequent cleanings resulted in incrementally lower recoveries, with removal of 93% of the initial inoculum by the third HEPA vacuuming. HEPA vacuuming prior to removal of items such as office contents and furnishings would result in much less resuspension of dust and limiting the extent of contamination. This approach also ensures that residual contaminants are as low as can be reasonably achieved.

  10. Absorption edge imaging of sporocide-treated and non-treated bacterial spores

    SciTech Connect

    Panessa-Warren, B.J.; Tortora, G.T.; Warren, J.B.

    1987-01-01

    When deprived of nutrients, spore forming bacilli produce endospores which are remarkably resistant to chemical sterilization. Little is known about the morphology and response fo these spores following exposure to sporocidal agents. Light microscopy does not provide sufficient resolution for studying the rupture of the spore coat and fate of intracellular material. Transmission and scanning electron microscopy offer superior resolution but require specimen preparation methods that induce physiologic as well as morphologic changes in the spores, thereby making accurate interpretation of micrographs difficult. To eliminate the possible artifacts induced by chemical fixation, dehydration, embeddment, staining and sectioning, treated and non-sporocide-treated endospores of B. thuringiensis and B. subtilis were imaged by x-ray contact microscopy using monochromatic x-rays. 6 refs., 2 figs.

  11. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.

    PubMed

    Makky, Essam A; Park, Gui-Su; Choi, Ik-Won; Cho, Sung-Il; Kim, Hyunook

    2011-05-01

    The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (C¯T) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with C¯T of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores.

  12. Relationship between Secondary Metabolism and Fungal Development

    PubMed Central

    Calvo, Ana M.; Wilson, Richard A.; Bok, Jin Woo; Keller, Nancy P.

    2002-01-01

    Filamentous fungi are unique organisms—rivaled only by actinomycetes and plants—in producing a wide range of natural products called secondary metabolites. These compounds are very diverse in structure and perform functions that are not always known. However, most secondary metabolites are produced after the fungus has completed its initial growth phase and is beginning a stage of development represented by the formation of spores. In this review, we describe secondary metabolites produced by fungi that act as sporogenic factors to influence fungal development, are required for spore viability, or are produced at a time in the life cycle that coincides with development. We describe environmental and genetic factors that can influence the production of secondary metabolites. In the case of the filamentous fungus Aspergillus nidulans, we review the only described work that genetically links the sporulation of this fungus to the production of the mycotoxin sterigmatocystin through a shared G-protein signaling pathway. PMID:12208999

  13. Fungicide resistance assays for fungal plant pathogens.

    PubMed

    Secor, Gary A; Rivera, Viviana V

    2012-01-01

    Fungicide resistance assays are useful to determine if a fungal pathogen has developed resistance to a fungicide used to manage the disease it causes. Laboratory assays are used to determine loss of sensitivity, or resistance, to a fungicide and can explain fungicide failures and for developing successful fungicide recommendations in the field. Laboratory assays for fungicide resistance are conducted by measuring reductions in growth or spore germination of fungi in the presence of fungicide, or by molecular procedures. This chapter describes two techniques for measuring fungicide resistance, using the sugarbeet leaf spot fungus Cercospora beticola as a model for the protocol. Two procedures are described for fungicides from two different classes; growth reduction for triazole (sterol demethylation inhibitor; DMI) fungicides, and inhibition of spore germination for quinone outside inhibitor (QoI) fungicides.

  14. Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity.

    PubMed

    Harrold, Zoë R; Hertel, Mikaela R; Gorman-Lewis, Drew

    2011-12-01

    Investigating the biochemistry, resilience and environmental interactions of bacterial endospores often requires a pure endospore biomass free of vegetative cells. Numerous endospore isolation methods, however, neglect to quantify the purity of the final endospore biomass. To ensure low vegetative cell contamination we developed a quality control technique that enables rapid quantification of endospore harvest purity. This method quantifies spore purity using bright-field and fluorescence microscopy imaging in conjunction with automated cell counting software. We applied this method to Bacillus subtilis endospore harvests isolated using a two-phase separation method that utilizes mild chemicals. The average spore purity of twenty-two harvests was 88±11% (error is 1σ) with a median value of 93%. A spearman coefficient of 0.97 correlating automated and manual bacterial counts confirms the accuracy of software generated data. PMID:21989299

  15. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  16. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations.

    PubMed

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m(-3)), moderate (50-99 s m(-3)), high (100-149 s m(-3)) and very high (150 < n s m(-3)), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  17. Isolating and Purifying Clostridium difficile Spores.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2016-01-01

    The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  18. Ultraviolet-Resistant Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  19. Species Differentiation of a Diverse Suite of Bacillus Spores by Mass Spectrometry-Based Protein Profiling

    PubMed Central

    Dickinson, Danielle N.; La Duc, Myron T.; Haskins, William E.; Gornushkin, Igor; Winefordner, James D.; Powell, David H.; Venkateswaran, Kasthuri

    2004-01-01

    In this study, we demonstrate the versatility of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOFMS) protein profiling for the species differentiation of a diverse suite of Bacillus spores. MALDI-TOFMS protein profiles of 11 different strains of Bacillus spores, encompassing nine different species, were evaluated. Bacillus species selected for MALDI-TOFMS analysis represented the spore-forming bacterial diversity of typical class 100K clean room spacecraft assembly facilities. A one-step sample treatment and MALDI-TOFMS preparation were used to minimize the sample preparation time. A library of MALDI-TOFMS spectra was created from these nine Bacillus species, the most diverse protein profiling study of the genus reported to date. Linear correlation analysis was used to successfully differentiate the MALDI-TOFMS protein profiles from all strains evaluated in this study. The MALDI-TOFMS protein profiles were compared with 16S rDNA sequences for their bacterial systematics and molecular phylogenetic affiliations. The MALDI-TOFMS profiles were found to be complementary to the 16S rDNA analysis. Proteomic studies of Bacillus subtilis 168 were pursued to identify proteins represented by the biomarker peaks in the MALDI-TOFMS spectrum. Four small, acid-soluble proteins (A, B, C, and D), one DNA binding protein, hypothetical protein ymf J, and four proteins associated with the spore coat and spore coat formation (coat JB, coat F, coat T, and spoIVA) were identified. The ability to visualize higher-molecular-mass coat proteins (10 to 25 kDa) as well as smaller proteins (<10 kDa) with MALDI-TOFMS profiling is critical for the complete and effective species differentiation of the Bacillus genus. PMID:14711677

  20. Assessment of Bacterial Spores in Solid Materials: Curriculum Improvements Partnership Award for the Integration of Research (CIPAIR)

    NASA Technical Reports Server (NTRS)

    Lavallee, Richard J.

    2012-01-01

    This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.

  1. The walk and jump of Equisetum spores.

    PubMed

    Marmottant, Philippe; Ponomarenko, Alexandre; Bienaimé, Diane

    2013-11-01

    Equisetum plants (horsetails) reproduce by producing tiny spherical spores that are typically 50 µm in diameter. The spores have four elaters, which are flexible ribbon-like appendages that are initially wrapped around the main spore body and that deploy upon drying or fold back in humid air. If elaters are believed to help dispersal, the exact mechanism for spore motion remains unclear in the literature. In this manuscript, we present observations of the 'walks' and 'jumps' of Equisetum spores, which are novel types of spore locomotion mechanisms compared to the ones of other spores. Walks are driven by humidity cycles, each cycle inducing a small step in a random direction. The dispersal range from the walk is limited, but the walk provides key steps to either exit the sporangium or to reorient and refold. Jumps occur when the spores suddenly thrust themselves after being tightly folded. They result in a very efficient dispersal: even spores jumping from the ground can catch the wind again, whereas non-jumping spores stay on the ground. The understanding of these movements, which are solely driven by humidity variations, conveys biomimetic inspiration for a new class of self-propelled objects. PMID:24026816

  2. The walk and jump of Equisetum spores

    PubMed Central

    Marmottant, Philippe; Ponomarenko, Alexandre; Bienaimé, Diane

    2013-01-01

    Equisetum plants (horsetails) reproduce by producing tiny spherical spores that are typically 50 µm in diameter. The spores have four elaters, which are flexible ribbon-like appendages that are initially wrapped around the main spore body and that deploy upon drying or fold back in humid air. If elaters are believed to help dispersal, the exact mechanism for spore motion remains unclear in the literature. In this manuscript, we present observations of the ‘walks’ and ‘jumps’ of Equisetum spores, which are novel types of spore locomotion mechanisms compared to the ones of other spores. Walks are driven by humidity cycles, each cycle inducing a small step in a random direction. The dispersal range from the walk is limited, but the walk provides key steps to either exit the sporangium or to reorient and refold. Jumps occur when the spores suddenly thrust themselves after being tightly folded. They result in a very efficient dispersal: even spores jumping from the ground can catch the wind again, whereas non-jumping spores stay on the ground. The understanding of these movements, which are solely driven by humidity variations, conveys biomimetic inspiration for a new class of self-propelled objects. PMID:24026816

  3. Effect of air-conditioner on fungal contamination

    NASA Astrophysics Data System (ADS)

    Hamada, Nobuo; Fujita, Tadao

    Air-conditioners (AC) produce much dew and wet conditions inside their apparatus, when in operation. We studied the fungal contamination in AC and found that the average fungal contamination of AC filters was about 5-fold greater than that of a carpet, and Cladosporium and Penicillium were predominant in AC filters. The fungal contamination inside AC, which were used everyday, increased more markedly than those not used daily, e.g. a few days per week or rarely. Moreover, the airborne fungal contamination in rooms during air-conditioning was about 2-fold greater than one in rooms without AC, and was highest when air-conditioning started and decreased gradually with time. We recognized that the airborne fungal contamination was controlled by the environmental condition of the rooms, in which AC were used. It is suggested that AC might promote mold allergies in users via airborne fungal spores derived from the AC. On the other hand, AC was estimated to remove moisture in the room atmosphere and carpets, and reduce the relative humidity in rooms. It was found that the average fungal contamination in the house dust of carpets with AC was suppressed by two-third of that in rooms without AC. The use of AC for suppressing fungal hazards was discussed.

  4. Influence of urban climate upon distribution of airborne Deuteromycete spore concentrations in Mexico City

    NASA Astrophysics Data System (ADS)

    Calderón, C.; Lacey, J.; McCartney, A.; Rosas, I.

    The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October-December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = -0.35 central, r = -0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200-0400, 1400 and 2000-2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2-4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The

  5. ASSESSING ALLERGENICITY OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing Allergenicity of Indoor Air Fungal Contaminants
    M D W Ward1, M E Viana2, N Haykal-Coates1, L B Copeland1, S H Gavett1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA.
    Rationale: The indoor environment has increased in impor...

  6. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine. PMID:10919516

  7. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes.

  8. Isolation and Characterization of a Galactosamine Wall from Spores and Spherules of Physarum polycephalum

    PubMed Central

    McCormick, J. Justin; Blomquist, Judith C.; Rusch, Harold P.

    1970-01-01

    The myxomycete, Physarum polycephalum, can be induced under laboratory conditions to form two different hard-walled forms, spores and spherules. Characterization of both types of walls revealed only a single sugar, galactosamine. It was identified after acid hydrolysis of the isolated walls by chromatography in three solvent systems, by its positive reaction with ammoniacal silver nitrate, ninhydrin, Galactostat, and the Elson-Morgan test, and by ninhydrin degradation to lyxose. Galactosamine was present as a polymer with solubility characteristics the same as the β1-4–linked glucosamine polymer (chitosan). The walls were also found to contain about 2% protein. Spherule walls revealed a single glycoprotein on gel electrophoresis. Spore walls contained a similar protein component. The phosphate content of isolated spherule walls was 9.8%, and that of spore walls was 1.4%. Spore walls also contained about 15% melanin which was shown to be similar to fungal melanin. A novel method was used to measure the rate of mature spherule formation based on the loss of extractability of P. polycephalum natural pigment. The presence of a rare galactosamine polymer in P. polycephalum spore and spherule walls as the only carbohydrate suggests that the myxomycetes are not closely related to the fungi or the protozoa. PMID:16559084

  9. Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors.

    PubMed

    Favero-Longo, S E; Sandrone, S; Matteucci, E; Appolonia, L; Piervittori, R

    2014-01-01

    Fungal particulates are a dominant component of the bioaerosol, but aerobiological studies traditionally focused on a limited set of fungi having relevance as allergens or plant pathogens. This study first analyzes the occurrence of lichen meiospores in the mycoaerosol, quantitatively evaluating in the atmosphere of an alpine environment the occurrence of polar diblastic spores, unequivocally attributable to the lichen family Teloschistaceae. The analysis of air-samples collected one week per month for one year with a Hirst-type sampler displayed a low percentage occurrence of polar-diblastic spores (<0.1%) with respect to the whole mycoaerosol, dominated by Cladosporium. Spearman's correlation tests on aerobiological and climatic data highlighted a strong relationship between the detection of Teloschistaceae spores and rainfall events, excluding seasonal patterns or daily rhythms of dispersion. The fact that all the air-sampled spores were attributable to the species of Teloschistaceae occurring in the site, together with laboratory observations of predominant short range dispersal patterns for polar diblastic and other lichen spores, indicated that sexual reproduction is mostly involved in the local expansion of colonization, dispersal from a long distance appearing a less probable phenomenon. These findings indicated that responses of lichen communities to climate factors, usually related to physiological processes, also depend on their influence on meiospore dispersal dynamics. Spatial limitations in dispersal, however, have to be taken into account in evaluating lichen distributional shifts as indicators of environmental changes.

  10. The high-resolution architecture and structural dynamics of Bacillus spores

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Malkin, A J

    2004-05-06

    The capability to image single microbial cell surfaces at nanometer scale under native conditions would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, environmental resistance and biotransformation. We report here that advances in atomic force microscopy (AFM) have allowed us to directly visualize high-resolution native structures of bacterial endospores, including the exosporium and spore coats of four Bacillus species in air and water environments. The dimensions of individual Bacillus atrophaeus spores were found to decrease reversibly by 12% in response to a change in the environment from aqueous to aerial phase. Intraspecies spore size distribution analyses revealed that spore length could vary by a factor of 2 while the absolute deviation is 7 - 13% in length and 4 - 6 % in width. AFM analysis also demonstrated that the mechanisms of spore coat self-assembly are similar to those described for inorganic and macromolecular crystallization. These results establish AFM as a powerful new tool for the analysis of molecular architecture and variability as a function of spatial, temporal and developmental organizational scales.

  11. Inducing and Quantifying Clostridium difficile Spore Formation.

    PubMed

    Shen, Aimee; Fimlaid, Kelly A; Pishdadian, Keyan

    2016-01-01

    The Gram-positive nosocomial pathogen Clostridium difficile induces sporulation during growth in the gastrointestinal tract. Sporulation is necessary for this obligate anaerobe to form metabolically dormant spores that can resist antibiotic treatment, survive exit from the mammalian host, and transmit C. difficile infections. In this chapter, we describe a method for inducing C. difficile sporulation in vitro. This method can be used to study sporulation and maximize spore purification yields for a number of C. difficile strain backgrounds. We also describe procedures for visualizing spore formation using phase-contrast microscopy and for quantifying the efficiency of sporulation using heat resistance as a measure of functional spore formation. PMID:27507338

  12. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores.

    PubMed

    Gupta, Nirupama; Farinas, Edgardo T

    2010-08-01

    Directed evolution is an effective strategy to engineer and optimize protein properties, and microbial cell-surface display is a successful method to screen protein libraries. Protein surface display on Bacillus subtilis spores is demonstrated as a tool for screening protein libraries for the first time. Spore display offers advantages over more commonly utilized microbe cell-surface display systems, which include gram-negative bacteria, phage and yeast. For instance, protein-folding problems associated with the expressed recombinant polypeptide crossing membranes are avoided. Hence, a different region of protein space can be explored that previously was not accessible. In addition, spores tolerate many physical/chemical extremes; hence, the displayed proteins are "preimmobilized" on the inherently inert spore surface. Immobilized proteins have several advantages when used in industrial processes. The protein stability is increased and separations are simplified. Finally, immobilized proteins can be used in a wide array of simple device applications and configurations. The substrate specificity of the enzyme CotA is narrowed. CotA is a laccase and it occurs naturally on the outer coat of B. subtilis spores. A library of CotA genes were expressed in the spore coat, and it was screened for activity toward ABTS [diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)] over SGZ (4-hydroxy-3,5-dimethoxy-benzaldehyde azine). A mutant CotA was found to be 120-fold more specific for ABTS. This research demonstrates that B. subtilis spores can be a useful platform for screen protein libraries.

  13. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination.

    PubMed

    Cote, Christopher K; Welkos, Susan L

    2015-08-17

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  14. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  15. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    PubMed Central

    Cote, Christopher K.; Welkos, Susan L.

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions. PMID:26287244

  16. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    PubMed

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  17. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence

    PubMed Central

    Gu, Chunfang; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A.; Xu, Yi

    2016-01-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  18. Fungal Skin Infections

    MedlinePlus

    ... Fungal Skin Infections Overview of Fungal Skin Infections Candidiasis Overview of Dermatophytoses (Ringworm, Tinea) Athlete's Foot Jock ... are caused by yeasts (such as Candida —see Candidiasis ) or dermatophytes, such as Epidermophyton, Microsporum, and Trichophyton ( ...

  19. Submicronic Fungal Bioaerosols: High-Resolution Microscopic Characterization and Quantification

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Nilsen, Terje; Synnes, Ole; Skaar, Ida; Hjeljord, Linda; Tronsmo, Arne; Green, Brett James

    2014-01-01

    Submicronic particles released from fungal cultures have been suggested to be additional sources of personal exposure in mold-contaminated buildings. In vitro generation of these particles has been studied with particle counters, eventually supplemented by autofluorescence, that recognize fragments by size and discriminate biotic from abiotic particles. However, the fungal origin of submicronic particles remains unclear. In this study, submicronic fungal particles derived from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum cultures grown on agar and gypsum board were aerosolized and enumerated using field emission scanning electron microscopy (FESEM). A novel bioaerosol generator and a fungal spores source strength tester were compared at 12 and 20 liters min−1 airflow. The overall median numbers of aerosolized submicronic particles were 2 × 105 cm−2, 2.6 × 103 cm−2, and 0.9 × 103 cm−2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. A. fumigatus released significantly (P < 0.001) more particles than A. versicolor and P. chrysogenum. The ratios of submicronic fragments to larger particles, regardless of media type, were 1:3, 5:1, and 1:2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Spore fragments identified by the presence of rodlets amounted to 13%, 2%, and 0% of the submicronic particles released from A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Submicronic particles with and without rodlets were also aerosolized from cultures grown on cellophane-covered media, indirectly confirming their fungal origin. Both hyphae and conidia could fragment into submicronic particles and aerosolize in vitro. These findings further highlight the potential contribution of fungal fragments to personal fungal exposure. PMID:25217010

  20. Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy.

    PubMed

    Wang, Shiwei; Yu, Jing; Suvira, Milomir; Setlow, Peter; Li, Yong-qing

    2015-01-01

    Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).

  1. Sphagnum moss disperses spores with vortex rings.

    PubMed

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  2. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model. PMID:15692863

  3. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model.

  4. Fungal stealth technology.

    PubMed

    Rappleye, Chad A; Goldman, William E

    2008-01-01

    Medically important fungi range from commensal organisms that cause opportunistic infections to primary fungal pathogens that can cause disease in immunocompetent hosts. Host phagocyte-expressed pattern-recognition receptors represent one obstacle to infection, and the extent to which fungal cells can evade detection by host receptors helps shape their pathogenic potential. This review highlights recently defined mechanisms employed by successful fungal pathogens to conceal their immunostimulatory molecular signatures from leukocyte receptors or to disrupt host response signals. Continued improvements in our understanding of these fungal stealth mechanisms should provide new options for future therapeutics to expose these fungal pathogens and limit their virulence capacity.

  5. Taxonomic revision transferring species in Kuklospora to Acaulospora (Glomeromycota) and a description of Acaulospora colliculosa sp. nov. from field collected spores.

    PubMed

    Kaonongbua, W; Morton, J B; Bever, J D

    2010-01-01

    In a phylogenetic study of arbuscular mycorrhizal fungal species in Acaulospora (Acaulosporaceae, Glomeromycota) we discovered that species classified in genus Kuklospora, a supposed sister clade of Acaulospora, did not partition as a monophyletic clade. Species in these two genera can be distinguished only by the position of the spore relative to a precursor structure, the sporiferous saccule, as either within (entrophosporoid) or laterally (acaulosporoid) on the saccule subtending hypha. Subsequent spore differentiation follows identical patterns and organization. Molecular phylogeny reconstructed from nrLSU gene sequences, together with developmental data, support the hypothesis that the entrophosporoid mode of spore formation evolved many times and thus represents a convergent trait of little phylogenetic significance. Therefore genus Kuklospora is rejected as a valid monophyletic group and it is integrated taxonomically into genus Acaulospora. Thus Acaulospora colombiana and Acaulospora kentinensis are erected as new combinations (formerly Kuklospora colombiana and Kuklospora kentinensis). Mode of spore formation is demoted from a genus-specific character to one that is included with other traits to define Acaulospora species. In addition we describe a new AM fungal species, Acaulospora colliculosa (Acaulosporaceae), that originated from a tallgrass prairie in North America. Field-collected spores of A. colliculosa are small (<100 μm diam), hyaline or subhyaline to pale yellow and form via entrophosporoid development based on structure and organization of cicatrices and attached hyphae. Each spore consists of a bilayered spore wall and two bilayered inner walls. A germination orb likely forms after the completion of spore development to initiate germination, but this structure was not observed. A character distinguishing A. colliculosa from other Acaulospora species is hyaline to subhyaline hemispherical protuberances on the surface of the outer spore wall

  6. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates.

    PubMed

    Calkins, Shelby; Elledge, Nicole C; Hanafy, Radwa A; Elshahed, Mostafa S; Youssef, Noha

    2016-08-01

    Anaerobic gut fungi (AGF) represent a basal fungal lineage (phylum Neocallimastigomycota) that resides in the rumen and alimentary tracts of herbivores. The AGF reproduce asexually, with a life cycle that involves flagellated zoospores released from zoosporangia followed by encystment, germination and the subsequent development of rhizomycelia. A fast and reliable approach for AGF spore collection is critical not only for developmental biology studies, but also for molecular biological (e.g. AMT-transformation and RNAi) approaches. Here, we developed and optimized a simple and reliable procedure for the collection of viable, competent, and developmentally synchronized AGF spores under strict anaerobic conditions. The approach involves growing AGF on agar medium in serum bottles under anaerobic conditions, and flooding the observed aerial growth to promote spore release from sporangia into the flooding suspension. The released spores are gently collected using a wide bore sterile needle. Process optimization resulted in the recovery of up to 7×10(9) spores per serum bottle. Further, the released spores exhibited synchronized development from flagellated spores to encysted spores and finally to germinating spores within 90min from the onset of flooding. At the germinating spore stage, the obtained spores were competent, and readily uptook small interfering RNA (siRNA) oligonucleotides. Finally, using multiple monocentric and polycentric AGF isolates, we demonstrate that AGF grown on agar surface could retain viability for up to 16weeks at 39°C, and hence this solid surface growth procedure represents a simple, cryopreservative- and freezing temperature-free approach for AGF storage.

  7. A combination of a SEM technique and X-ray microanalysis for studying the spore germination process of Clostridium tyrobutyricum.

    PubMed

    Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro

    2009-06-01

    Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.

  8. [On the question of occurrence and the problem of hygiene rating of fungal air pollution of the environment of residential and public buildings].

    PubMed

    Gubernskiĭ, Iu D; Beliaeva, N N; Kalinina, N V; Mel'nikova, A I; Chuprina, O V

    2013-01-01

    Comprehensive sanitary examinations of fungal pollution of the environment of residential and public buildings were performed. There is established the occurrence of sensitization of the population associated with the fungal contamination of the wallings of buildings and presence of viable mold spores in the indoor air environment. Major factors determining the degree of fungal contamination of indoor environments: increasing humidity of indoor air due to leaks and bays, the area of enclosure structures and the temperature factor have been identified.

  9. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    PubMed Central

    de Souza, Evandro L.; Sales, Camila V.; de Oliveira, Carlos E. V.; Lopes, Laênia A. A.; da Conceição, Maria L.; Berger, Lúcia R. R.; Stamford, Thayza C. M.

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage. PMID:26257717

  10. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits.

    PubMed

    de Souza, Evandro L; Sales, Camila V; de Oliveira, Carlos E V; Lopes, Laênia A A; da Conceição, Maria L; Berger, Lúcia R R; Stamford, Thayza C M

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage. PMID:26257717

  11. Relations between phenotypic changes of spores and biofilm production by Bacillus atrophaeus ATCC 9372 growing in solid-state fermentation.

    PubMed

    Sella, Sandra Regina B R; Guizelini, Belquis P; Gouvea, Patricia Milla; Figueiredo, Luis Felipe M; Ribeiro, Ciro A O; Vandenberghe, Luciana P S; Minozzo, João Carlos; Soccol, Carlos Ricardo

    2012-10-01

    Bacillus spp. spores are usually obtained from strains cultivated in artificial media. However, in natural habitats, spores are predominantly formed from bacteria present in highly surface-associated communities of cells. Solid-state fermentation (SSF) is the culture method that best mimetizes the natural environment of many microorganisms that grow attached to the surface of solid particles. This study aims to confirm that sporulation through SSF of Bacillus atrophaeus occurs by biofilm formation and that this model of fermentation promotes important phenotypic changes in the spores. Sporulation on standard agar and by SSF with sand and sugarcane bagasse as support was followed by a comparative study of the formed spores. Growth characteristics, metabolic and enzymatic profiles confirmed that sporulation through SSF occurs by biofilm formation promoting important phenotypic changes. It was possible to demonstrate that spores coat had different structure and the presence of ridges only on SSF spores' surface. The sporulation conditions did not affect the dry-heat spore resistance. The type of support evaluated also influenced in the phenotypic alterations; however, the used substrates did not cause interference. This work provides novel information about B. atrophaeus response when submitted to different sporulation conditions and proposes a new concept about bacterial biofilm formation by SSF.

  12. Analysis of Bacillus globigii spores by CE.

    PubMed

    Chichester, Kimberly D; Silcott, David B; Colyer, Christa L

    2008-02-01

    It is imperative in today's world that harmful airborne or solution-based microbes can be detected quickly and efficiently. Bacillus globigii (Bg) spores are used as a simulant for Bacillus anthracis (Ba) due to their similar shape, size, and cellular makeup. The utility of CE to separate and detect low levels of Bg spore concentrations will be evaluated. To differentiate spores from background particulates, several dyes, including fluorescamine, C-10, NN-127, Red-1c, and indocyanine green (ICG), were utilized as noncovalent labels for proteins on the Bg spore surface, as well as for HSA and homoserine standards. On-column labeling, with dye present in the running buffer, was utilized to obtain greater sensitivity and better separation. CE with LIF detection enables interactions between the dye and spore surface proteins to be observed, with enhanced fluorescence occurring upon binding of the dye to surface protein. Resulting electropherograms showed unique fingerprints for each dye with Bg spores. Migration times were under 10 min for all dye-spore complexes, with net mobilities ranging from 3.5x10(-4) to 6.9x10(-4) cm(2) V(-1) s(-1), and calibration curves yielded correlation coefficients of 0.98 or better for four of the dyes studied. PMID:18203249

  13. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    SciTech Connect

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  14. Nanomechanical analysis of Clostridium tyrobutyricum spores.

    PubMed

    Andreeva, N; Bassi, D; Cappa, F; Cocconcelli, P S; Parmigiani, F; Ferrini, G

    2010-12-01

    In this work we report on the measurement of the Young modulus of the external surface of Clostridium tyrobutyricum spores in air with an atomic force microscope. The Young modulus can be reliably measured despite the strong tip-spore adhesion forces and the need to immobilize the spores due to their slipping on most substrates. Moreover, we investigate the disturbing factors and consider some practical aspects that influence the measurements of elastic properties of biological objects with the atomic force microscopy indentation techniques.

  15. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  16. Detection of a novel bacterium associated with spores of the arbuscular mycorrhizal fungus Gigaspora margarita.

    PubMed

    Long, Liangkun; Yao, Qing; Ai, Yuncan; Deng, Mingrong; Zhu, Honghui

    2009-06-01

    With PCR-denaturing gradient gel electrophoresis analysis, two bacterial 16S rRNA gene V3 region sequences, 7A and 7B, were detected in association with the crushed spores of the arbuscular mycorrhizal fungus Gigaspora margarita W.N. Becker & I.R. Hall 1976 MAFF520054. DNA sequencing and phylogenetic analysis revealed that 7B was mostly related to the documented cytoplasm endosymbiotic bacterium Candidatus Glomeribacter gigasporarum of G. margarita, but 7A could not be confidently assigned to a known taxon. Further characterization of 7A was conducted by obtaining its almost complete 16S rRNA gene sequence via PCR amplification and sequencing. BLAST search indicates that the 16S rRNA gene sequence did not match any identified species sequences in the GenBank database. Further detection revealed that 7A was also associated with the clean G. margarita MAFF520054 spores that were obtained by the surface-sterilized method or dual culture with Ri T-DNA transformed carrot roots. Many ellipse-shaped or egg-shaped bacterium-like organisms were clustered in layer 3 of the fungal spore wall by transmission electron microscopy observation. Our results indicate that 7A represents a novel bacterial population associated with G. margarita MAFF520054 spores, and its doubtless location (wall or cytoplasm) remains unclear based on the present data.

  17. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  18. Atopic cough and fungal allergy.

    PubMed

    Ogawa, Haruhiko; Fujimura, Masaki; Ohkura, Noriyuki; Makimura, Koichi

    2014-10-01

    We have shown that some patients presenting with chronic bronchodilator-resistant non-productive cough have a global atopic tendency and cough hypersensitivity without nonspecific bronchial hyperresponsiveness, abbreviated as atopic cough (AC). The cough can be treated successfully with histamine H1 antagonists and/or glucocorticoids. Eosinophilic tracheobronchitis and cough hypersensitivity are pathological and physiological characteristics of AC. Fungus-associated chronic cough (FACC) is defined as chronic cough associated with basidiomycetous (BM) fungi found in induced sputum, and recognition of FACC has provided the possibility of using antifungal drugs as new treatment strategies. Bjerkandera adusta is a wood decay BM fungus, which has attracted attention because of its potential role in enhancing the severity of cough symptoms in FACC patients by sensitization to this fungus. Before making a diagnosis of "idiopathic cough" in cases of chronic refractory cough, remaining intractable cough-related laryngeal sensations, such as "a sensation of mucus in the throat (SMIT)," which is correlated with fungal colonization, should be evaluated and treated appropriately in each patient. The new findings, i.e., the detection of environmental mushroom spores that should not be present in the human airways in addition to the good clinical response of patients to antifungal drugs, may lead to the development of novel strategies for treatment of chronic cough. PMID:25383202

  19. Atopic cough and fungal allergy

    PubMed Central

    Fujimura, Masaki; Ohkura, Noriyuki; Makimura, Koichi

    2014-01-01

    We have shown that some patients presenting with chronic bronchodilator-resistant non-productive cough have a global atopic tendency and cough hypersensitivity without nonspecific bronchial hyperresponsiveness, abbreviated as atopic cough (AC). The cough can be treated successfully with histamine H1 antagonists and/or glucocorticoids. Eosinophilic tracheobronchitis and cough hypersensitivity are pathological and physiological characteristics of AC. Fungus-associated chronic cough (FACC) is defined as chronic cough associated with basidiomycetous (BM) fungi found in induced sputum, and recognition of FACC has provided the possibility of using antifungal drugs as new treatment strategies. Bjerkandera adusta is a wood decay BM fungus, which has attracted attention because of its potential role in enhancing the severity of cough symptoms in FACC patients by sensitization to this fungus. Before making a diagnosis of “idiopathic cough” in cases of chronic refractory cough, remaining intractable cough-related laryngeal sensations, such as “a sensation of mucus in the throat (SMIT),” which is correlated with fungal colonization, should be evaluated and treated appropriately in each patient. The new findings, i.e., the detection of environmental mushroom spores that should not be present in the human airways in addition to the good clinical response of patients to antifungal drugs, may lead to the development of novel strategies for treatment of chronic cough. PMID:25383202

  20. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.

    2016-06-01

    The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus ( A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.

  1. CotH3 mediates fungal invasion of host cells during mucormycosis

    PubMed Central

    Gebremariam, Teclegiorgis; Liu, Mingfu; Luo, Guanpingsheng; Bruno, Vincent; Phan, Quynh T.; Waring, Alan J.; Edwards, John E.; Filler, Scott G.; Yeaman, Michael R.; Ibrahim, Ashraf S.

    2013-01-01

    Angioinvasion is a hallmark of mucormycosis. Previously, we identified endothelial cell glucose-regulated protein 78 (GRP78) as a receptor for Mucorales that mediates host cell invasion. Here we determined that spore coat protein homologs (CotH) of Mucorales act as fungal ligands for GRP78. CotH proteins were widely present in Mucorales and absent from noninvasive pathogens. Heterologous expression of CotH3 and CotH2 in Saccharomyces cerevisiae conferred the ability to invade host cells via binding to GRP78. Homology modeling and computational docking studies indicated structurally compatible interactions between GRP78 and both CotH3 and CotH2. A mutant of Rhizopus oryzae, the most common cause of mucormycosis, with reduced CotH expression was impaired for invading and damaging endothelial cells and CHO cells overexpressing GRP78. This strain also exhibited reduced virulence in a diabetic ketoacidotic (DKA) mouse model of mucormycosis. Treatment with anti-CotH Abs abolished the ability of R. oryzae to invade host cells and protected DKA mice from mucormycosis. The presence of CotH in Mucorales explained the specific susceptibility of DKA patients, who have increased GRP78 levels, to mucormycosis. Together, these data indicate that CotH3 and CotH2 function as invasins that interact with host cell GRP78 to mediate pathogenic host-cell interactions and identify CotH as a promising therapeutic target for mucormycosis. PMID:24355926

  2. Quantification and Single-Spore Detection of Phakopsora pachyrhizi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microscopic identification and quantification of Phakopsora pachyrhizi spores from environmental samples, spore traps, and laboratory specimens can represent a challenge. Such reports, especially from passive spore traps, commonly describe the number of “rust-like” spores; for other forensic sa...

  3. Bacterial spores survive electrospray charging and desolvation.

    PubMed

    Pratt, Sara N; Austin, Daniel E

    2014-05-01

    The survivability of Bacillus subtilis spores and vegetative Escherichia coli cells after electrospray from aqueous suspension was tested using mobility experiments at atmospheric pressure. E. coli did not survive electrospray charging and desolvation, but B. subtilis did. Experimental conditions ensured that any surviving bacteria were de-agglomerated, desolvated, and electrically charged. Based on mobility measurements, B. subtilis spores survived even with 2,000-20,000 positive charges. B. subtilis was also found to survive introduction into vacuum after either positive or negative electrospray. Attempts to measure the charge distribution of viable B. subtilis spores using electrostatic deflection in vacuum were inconclusive; however, viable spores with low charge states (less than 42 positive or less than 26 negative charges) were observed.

  4. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation.

    PubMed

    Taylor-Edmonds, Lizbeth; Lichi, Tovit; Rotstein-Mayer, Adi; Mamane, Hadas

    2015-01-01

    The use of Aspergillus niger (A. niger) fungal spores as challenge organism for UV reactor validation studies is attractive due to their high UV-resistance and non-pathogenic nature. However A. niger spores UV dose-response was dependent upon sporulation conditions and did not follow the Bunsen-Roscoe Principle of time-dose reciprocity. Exposure to 8 h of natural sunlight for 10 consecutive days increased UV resistance when compared to spores grown solely in dark conditions. Application of 250 mJ cm(-2) at high irradiance (0.11 mW cm(-2)) resulted in a 2-log inactivation; however, at low irradiance (0.022 mW cm(-2)) a 1-log inactivation was achieved. In addition, surface electron microscopy (SEM) images revealed morphological changes between the control and UV exposed spores in contrast to other well accepted UV calibrated test organisms, which show no morphological difference with UV exposure.

  5. Comparison of four commercial DNA extraction kits for the recovery of Bacillus spp. spore DNA from spiked powder samples.

    PubMed

    Mölsä, Markos; Kalin-Mänttäri, Laura; Tonteri, Elina; Hemmilä, Heidi; Nikkari, Simo

    2016-09-01

    Bacillus spp. include human pathogens such as Bacillus anthracis, the causative agent of anthrax and a biothreat agent. Bacillus spp. form spores that are physically highly resistant and may remain active over sample handling. We tested four commercial DNA extraction kits (QIAamp DNA Mini Kit, RTP Pathogen Kit, ZR Fungal/Bacterial DNA MiniPrep, and genesig Easy DNA/RNA Extraction kit) for sample inactivation and DNA recovery from two powders (icing sugar and potato flour) spiked with Bacillus thuringiensis spores. The DNA was analysed using a B. thuringiensis-specific real-time PCR assay. The detection limit was 3×10(1)CFU of spiked B. thuringiensis spores with the QIAamp DNA Mini, RTP Pathogen, and genesig Easy DNA/RNA Extraction kits, and 3×10(3)CFU with the ZR Fungal/Bacterial DNA MiniPrep kit. The results showed that manual extraction kits are effective and safe for fast and easy DNA extraction from powder samples even in field conditions. Adding a DNA filtration step to the extraction protocol ensures the removal of Bacillus spp. spores from DNA samples without affecting sensitivity. PMID:27435532

  6. Rapid onsite assessment of spore viability.

    SciTech Connect

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  7. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin; Bundela, Pushpendra Singh; Wong, Jonathan W C; Selvam, Ammaiyappan

    2014-09-01

    Influence of fungal consortium and different turning frequency on composting of organic fraction of municipal solid waste (OFMSW) was investigated to produce compost with higher agronomic value. Four piles of OFMSW were prepared: three piles were inoculated with fungal consortium containing 5l each spore suspensions of Trichoderma viride, Aspergillus niger and Aspergillus flavus and with a turning frequency of weekly (Pile 1), twice a week (Pile 2) and daily (Pile 3), while Pile 4 with weekly turning and without fungal inoculation served as control. The fungal consortium with weekly (Pile 1) turning frequency significantly affected temperature, pH, TOC, TKN, C/N ratio and germination index. High degradation of organic matter and early maturity was observed in Pile 1. Results indicate that fungal consortium with weekly turning frequency of open windrows were more cost-effective in comparison with other technologies for efficient composting and yield safe end products. PMID:24507579

  8. Bacterial spores in silage and raw milk.

    PubMed

    te Giffel, M C; Wagendorp, A; Herrewegh, A; Driehuis, F

    2002-08-01

    Spore-forming bacteria can survive food-processing treatments. In the dairy industry, Bacillus and Clostridium species determine the shelf-life of a variety of heat-treated milk products, mainly if the level of post-process contamination is low. In order to minimize problems caused by bacterial spores in foods and food production processes a chain management approach, from raw materials, ingredients and environmental sources to final product storage conditions, is most effective. Silage is considered to be a significant source of contamination of raw milk with spores. PCR-RAPD fingerprinting and heat resistance studies of populations of aerobic spore-formers isolated from grass and maize silage and from raw milk confirmed this assumption. Prevention of outgrowth of aerobic spores in silage will contribute to reduction of the total spore load of raw milk. Therefore, it is important that the silage fermentation process is controlled. Application of cultures of lactic acid bacteria or chemical additives can aid silage fermentation and improve aerobic stability. PMID:12448758

  9. Comparison of different methods for the recovery of DNA from spores of mycotoxin-producing moulds in spiked food samples.

    PubMed

    Grube, S; Schönling, J; Prange, A

    2015-06-01

    Several food samples were spiked with fungal conidia to test the efficiency of different cell disruption methods and DNA extraction kits for subsequent molecular detection. For disrupting the firm cell walls of the spores, two different pretreatment methods, namely sonication and bead beating, were tested against no pretreatment. The subsequent DNA extraction and purification was performed using three different DNA extraction methods, which are based on a diverse combination of extraction principles, such as precipitation, thermic-enzymatic lysis, pH-enhancement and bonding with a silica membrane. The aim of the study was to find out the suitable pretreatment and DNA extraction method for the recovery of detectable amounts of fungal DNA from different food matrices. Significance and impact of the study: The choice of 'ready-to-use' commercial kits and methods has been of great importance regarding the recovery of extracted DNA. However, these commercially available kits are neither effective nor time-efficient when extracting DNA from fungal spores embedded in complex food matrices. Different extraction principles were compared and their effectiveness tested using real-time PCR. The combination of different principles for the extraction and purification of DNA was found as the most efficient method (quantity and purity) to obtain DNA from moulds and their spores from food samples.

  10. Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004-2006 and relation to some meteorological factors

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Rapiejko, Piotr

    2009-08-01

    The concentration of airborne spores of Cladosporium spp. and Alternaria spp. has been investigated at three monitoring stations situated along the west-north and central-east transect in Poland (Szczecin, Olsztyn, Warszawa,) i.e. from a height of 100 m to 149 m above sea level. The aerobiological monitoring of fungal spores was performed by means of three Lanzoni volumetric spore traps. Cladosporium spp. spores were dominant at all the stations. The highest Cladosporium spp. and Alternaria spp. numbers of spores were observed at all the cities in July and August. Statistically significant correlations have been found between the Cladosporium spp. and Alternaria spp. concentration in the air and the mean air temperature, amount of precipitation, air pressure and relative air humidity. The spore count of Cladosporium spp. and Alternaria spp. is determined by the diversity of local flora and weather conditions, especially by the air temperature. The identification of factors, which influence and shape spore concentrations, may significantly improve the current methods of allergy prevention.

  11. Spore germination of Trichoderma atroviride is inhibited by its LysM protein TAL6.

    PubMed

    Seidl-Seiboth, Verena; Zach, Simone; Frischmann, Alexa; Spadiut, Oliver; Dietzsch, Christian; Herwig, Christoph; Ruth, Claudia; Rodler, Agnes; Jungbauer, Alois; Kubicek, Christian P

    2013-03-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They have general N-acetylglucosamine binding properties and therefore bind to chitin and related carbohydrates. In plants, plasma-membrane-bound proteins containing LysM motifs are involved in plant defence responses, but also in symbiotic interactions between plants and microorganisms. Filamentous fungi secrete LysM proteins that contain several LysM motifs but no enzymatic modules. In plant pathogenic fungi, for LysM proteins roles in dampening of plant defence responses and protection from plant chitinases were shown. In this study, the carbohydrate-binding specificities and biological function of the LysM protein TAL6 from the plant-beneficial fungus Trichoderma atroviride were investigated. TAL6 contains seven LysM motifs and the sequences of its LysM motifs are very different from other fungal LysM proteins investigated so far. The results showed that TAL6 bound to some forms of polymeric chitin, but not to chito-oligosaccharides. Further, no binding to fungal cell wall preparations was detected. Despite these rather weak carbohydrate-binding properties, a strong inhibitory effect of TAL6 on spore germination was found. TAL6 was shown to specifically inhibit germination of Trichoderma spp., but interestingly not of other fungi. Thus, this protein is involved in self-signalling processes during fungal growth rather than fungal-plant interactions. These data expand the functional repertoire of fungal LysM proteins beyond effectors in plant defence responses and show that fungal LysM proteins are also involved in the self-regulation of fungal growth and development.

  12. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots.

    PubMed Central

    Yuan, W M; Crawford, D L

    1995-01-01

    The actinomycete Streptomyces lydicus WYEC108 showed strong in vitro antagonism against various fungal plant pathogens in plate assays by producing extracellular antifungal metabolites. When Pythium ultimum or Rhizoctonia solani was grown in liquid medium with S. lydicus WYEC108, inhibition of growth of the fungi was observed. When WYEC108 spores or mycelia were used to coat pea seeds, the seeds were protected from invasion by P. ultimum in an oospore-enriched soil. While 100% of uncoated control seeds were infected by P. ultimum within 48 h after planting, less than 40% of coated seeds were infected. When the coated seeds were planted in soil 24 h prior to introduction of the pathogen, 96 h later, less than 30% of the germinating seeds were infected. Plant growth chamber studies were also carried out to test for plant growth effects and for suppression by S. lydicus WYEC108 of Pythium seed rot and root rot. When WYEC108 was applied as a spore-peat moss-sand formulation (10(8) CFU/g) to P. ultimum-infested sterile or nonsterile soil planted with pea and cotton seeds, significant increases in average plant stand, plant length, and plant weight were observed in both cases compared with untreated control plants grown in similar soils. WYEC108 hyphae colonized and were able to migrate downward with the root as it elongated. Over a period of 30 days, the population of WYEC108 colonized emerging roots of germinating seeds and remained stable (10(5) CFU/g) in the rhizosphere, whereas the nonrhizosphere population of WYEC108 declined at least 100-fold (from 10(5) to 10(3) or fewer CFU/g). The stability of the WYEC108 population incubated at 25 degrees C in the formulation, in sterile soil, and in nonsterile soil was also evaluated. In all three environments, the population of WYEC108 maintained its size for 90 days or more. When pea, cotton, and sweet corn seeds were placed into sterile and nonsterile soils containing 10(6) or more CFU of WYEC108 per g, it colonized the

  13. Pulmonary defense mechanisms against opportunistic fungal pathogens.

    PubMed

    Waldorf, A R

    1989-01-01

    Though of critical importance, nonimmune host defense mechanisms against aspergillosis and mucormycosis are not completely understood. Prevention of these infections presumably requires control of either spore germination and/or hyphal growth by the host. The data suggest that the host provides an important barrier to infection by control of spore or conidia germination, the critical step involving conversion of the fungus to its tissue-invasive form. The mechanisms of host defense against A. fumigatus are not strictly dependent on inhibition of conidia germination. Rather, pulmonary defense against Aspergillus appears to depend to a greater degree on early killing of fungal conidia by alveolar macrophages. In contrast, prevention of mucormycosis appears to require inhibition of fungal spore germination by the bronchoalveolar macrophage, thereby preventing conversion of the fungus to its hyphal form, although resident bronchoalveolar macrophages are unable to kill R. oryzae spores. Thus, host pulmonary defenses to Rhizopus and Aspergillus vary, even in normal animals. The tissue-invasive hyphal forms of the fungi which cause aspergillosis and mucormycosis are too large to be ingested by phagocytic cells. Although macrophages and monocytes can damage hyphae, the bulk of this role appears to fall upon the neutrophil. However, antihyphal mechanisms of neutrophils may not necessarily be identical for all types of hyphae. Moreover, interactions of several potential oxidative and nonoxidative antihyphal mechanisms may define the host's ability to limit fungal infections. In individuals where concentrations of oxidative or nonoxidative substances are limiting or suboptimal, interactions of mechanisms may be required for antihyphal activity, and studies of these interactions are important to gain better knowledge of the defense mechanisms against opportunistic mycoses in the intact host. In summary, at least two distinct lines of defense against Aspergillus and Rhizopus

  14. [Fungal flora in houses (author's transl)].

    PubMed

    Mallea, M; Renard, M; Charpin, J

    1982-01-01

    In certain cases, allergic respiratory phenomena appear to be connected with a particular dwelling place. This observations, if it is not explained by a specific allergen (eg. an animal), raises the possible contribution of domestic moulds. The author shows the results of a study on domestic moulds in 65 houses in the Bouches-du-Rhône by culture on Petri dishes. The species most often detected were Cladosporium, Penicillium, Aspergillus, Alternaria. In some houses identical fungi were found to those in the atmosphere, in others greater numbers were found inside than outside. The study of fungal spores is of great interest; it gives an idea of their numerical importance which can be considerable; in addition besides those fungi which are present in the routine battery of tests, it may show other species that should perhaps be considered in the diagnostic aetiology.

  15. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  16. MALDI-based intact spore mass spectrometry of downy and powdery mildews.

    PubMed

    Chalupová, Jana; Sedlářová, Michaela; Helmel, Michaela; Rehulka, Pavel; Marchetti-Deschmann, Martina; Allmaier, Günter; Sebela, Marek

    2012-08-01

    Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI-TOF MS-based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer-based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5 × 10(9) spores per ml. The best peptide/protein profiles (in terms of signal-to-noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves. PMID:22899506

  17. Calnexin induces expansion of antigen-specific CD4+ T cells that confer immunity to fungal ascomycetes via conserved epitopes

    PubMed Central

    Wüthrich, Marcel; Brandhorst, Tristan T.; Sullivan, Thomas D.; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S.; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A.; Jenkins, Marc K.; Klein, Bruce

    2015-01-01

    Fungal infections remain a threat due to the lack of broad spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown, but conserved antigen. Using transgenic CD4+ T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats induces expansion of calnexin-specific CD4+ T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4+ T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogeneticity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  18. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    PubMed

    Wüthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  19. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth. PMID:9830122

  20. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem.

    PubMed

    Kim, Yong-Chan; Gao, Cheng; Zheng, Yong; He, Xin-Hua; Yang, Wei; Chen, Liang; Wan, Shi-Qiang; Guo, Liang-Dong

    2015-05-01

    Understanding the response of arbuscular mycorrhizal (AM) fungi to warming and nitrogen (N) fertilization is critical to assess the impact of anthropogenic disturbance on ecosystem functioning under global climate change scenarios. In this study, AM fungal communities were examined in a full factorial design with warming and N addition in a semiarid steppe in northern China. Warming significantly increased AM fungal spore density, regardless of N addition, whilst N addition significantly decreased AM fungal extraradical hyphal density, regardless of warming. A total of 79 operational taxonomic units (OTUs) of AM fungi were recovered by 454 pyrosequencing of SSU rDNA. Warming, but not N addition, had a significant positive effect on AM fungal OTU richness, while warming and N addition significantly increased AM fungal Shannon diversity index. N addition, but not warming, significantly altered the AM fungal community composition. Furthermore, the changes in AM fungal community composition were associated with shifts in plant community composition indirectly caused by N addition. These findings highlight the different effects of warming and N addition on AM fungal communities and contribute to understanding AM fungal community responses to global environmental change scenarios in semiarid steppe ecosystems.

  1. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores.

    PubMed

    Negri, Alessandro; Potocki, Wojciech; Iwanicki, Adam; Obuchowski, Michal; Hinc, Krzysztof

    2013-09-01

    The endospores of Bacillus subtilis can serve as a tool for surface presentation of heterologous proteins. The unique properties of the spore protective layers make them perfect vehicles for orally administered vaccines. In this study, we successfully displayed a fragment of Clostridium difficile FliD protein on the surface of B. subtilis spores using the CotB, CotC, CotG and CotZ spore coat proteins. The presence of the fusion proteins in the spore coat was verified by Western blotting and immunofluorescence microscopy. The amount of recombinant proteins was assessed by a dot-blot technique. C. difficile is one of the most common infectious agents in nosocomial infections and is especially associated with antibiotic therapies. FliD is a flagellar cap protein of C. difficile and is known to be one of the immunogenic surface antigens of this bacterium. Therefore, its use in vaccine formulations gives a good perspective for successful immunization with a FliD-based vaccine. The recombinant spores presented here may be good candidates for C. difficile oral vaccines.

  2. Immunoassay for B. globigii spores as a model for detecting B. anthracis spores in finished water.

    PubMed

    Farrell, Svetlana; Halsall, H Brian; Heineman, William R

    2005-04-01

    The 2001 anthrax alarm in the US raised concerns about the Nation's preparedness to the threat of bioterrorism, and the demand for early warning systems that might be used in the case of a biological attack continues to grow. Here we develop an ultra-sensitive rapid detection method for B. globigii(BG) spores, the simulant of B. anthracis(BA) spores. BG spores were detected by a bead-based sandwich immunoassay with fluorescence detection. Paramagnetic Dynal beads were used as a solid support, primary antibody was attached to the beads by streptavidin-biotin coupling and the secondary antibody had an alkaline phosphatase (AP) enzyme label. Enzymatic conversion of fluorescein diphosphate (FDP) to fluorescein by AP was measured in real time with lambda(ex)= 490 nm and lambda(em)= 520 nm. The assay was linear from 2.6 x 10(3)-5.6 x 10(5) BG spores mL(-1), and the detection limit was 2.6 x 10(3) spores mL(-1) or 78 spores. All reagent concentrations and incubation times were optimized. The assay time from the moment the spores were introduced to the system was 30 min, and real-time fluorescence detection was done in less than 1 min. Formation of the BG spores-capture beads complex was confirmed by environmental scanning electron microscopy (ESEM). BG spores were detected successfully when doped into Cincinnati tap water to demonstrate the applicability of the developed method to detect the spores in non-buffered media. PMID:15776158

  3. Early quantitative method for measuring germination in non-green spores of Dryopteris paleacea using an epifluorescence-microscope technique

    NASA Technical Reports Server (NTRS)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1988-01-01

    A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.

  4. Fungal communities in the soils of early medieval settlements in the taiga zone

    NASA Astrophysics Data System (ADS)

    Marfenina, O. E.; Ivanova, A. E.; Kislova, E. E.; Zazovskaya, E. P.; Chernov, I. Yu.

    2008-07-01

    The difference between the mycobiota in anthropogenically transformed soils of the settlements of the 9th 14th centuries and in the background zonal Podzols and umbric Albeluvisols of the middle and southern taiga subzones in the European part of Russia is demonstrated. The mycological specificity of anthropogenically transformed soils with a cultural layer (CL) in comparison with the background soils is similar for all the studied objects. Its characteristic features are as follows: (1) the redistribution of the fungal biomass in the profile of anthropogenically transformed soils in comparison with zonal soils, (2) the lower amount of fungal mycelium in the CL with the accumulation of fungal spores in this layer, (3) the increased species diversity of fungal communities in the CL manifested by the greater morphological diversity of the spore pool and by the greater diversity of the fungi grown on nutrient media, (4) the change in the composition and species structure of fungal communities in the CL, (5) the replacement of dominant species typical of the zonal soils by eurytopic species, and (6) the significant difference between the fungal communities in the CL and in the above-and lower-lying horizons and buried soils of the same age. Most of the mycological properties of the soils of ancient settlements are also typical of modern urban soils. Thus, the mycological properties of soils can be considered informative carriers of soil memory about ancient anthropogenic impacts.

  5. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    PubMed

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.

  6. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  7. The Composition and Attributes of Colletotrichum truncatum Spores Are Altered by the Nutritional Environment

    PubMed Central

    Jackson, Mark A.; Schisler, David A.

    1992-01-01

    Previous sporulation studies with Colletotrichum truncatum NRRL 13737, a fungal pathogen of the noxious weed Sesbania exaltata, showed that the carbon-to-nitrogen (CN) ratio of the conidiation medium influenced spore yield, morphology, and efficacy in inciting disease in S. exaltata. Spores produced in a medium with a CN ratio of 10:1 were more effective than were spores produced in a 30:1 or 80:1 ratio in causing disease in S. exaltata. With a basal salts medium supplemented with glucose and Casamino Acids, substrate utilization, spore production, biomass accumulation, and biomass and spore composition were compared in submerged cultures of C. truncatum grown in media with CN ratios of 80:1, 30:1, and 10:1. All cultures were sporulating by day 2, and spore concentrations in 5-day-old cultures were significantly different: 30:1 > 10:1 > 80:1. Amino acid and glucose utilization was balanced in cultures grown in media with a CN ratio of 10:1, whereas cultures grown in media with a CN ratio of 30:1 or 80:1 depleted amino acids prior to glucose. Conidia produced in media with a CN ratio of 10:1 contained significantly more protein (32% of dry weight) and less lipid (17% of dry weight) than conidia produced in media with a CN ratio of either 30:1 (15% protein, 33% lipid) or 80:1 (12% protein, 37% lipid). The higher lipid content of spores produced in media with a CN ratio of 30:1 or 80:1 was associated with the presence of increased numbers of lipid droplets. Optimization studies on conidia produced in media with CN ratios between 30:1 and 10:1 which compared yield, attributes, and efficacy in inciting disease in S. exaltata suggest that media with a CN ratio of 15:1 to 20:1 may be optimal for conidium production. Images PMID:16348737

  8. Fungal Vaccines and Immunotherapeutics

    PubMed Central

    Santos, Evelyn; Levitz, Stuart M.

    2014-01-01

    Concomitant with the increased prevalence of immunocompromised persons, invasive fungal infections have become considerably more frequent in the last 50 years. High mortality rates caused by invasive mycoses and high morbidity because of intractable mucosal infections have created an unmet need for innovative prophylactic and therapeutic strategies against fungal pathogens. Several immunotherapeutics and vaccines are in development to address this need, although one has yet to reach the clinic. This review focuses on past and current immunotherapeutic and vaccine strategies being tested to either prevent or treat fungal infections, as well as the challenges associated with their development. PMID:25368016

  9. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation.

    PubMed

    Sun, Xue-Guang; Bonfante, Paola; Tang, Ming

    2015-12-01

    Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L. japonicus mutant Ljcastor (which lacks the symbiotic cation channel CASTOR, which is required for inducing nuclear calcium spiking, which is necessary for symbiotic partner recognition), or Arabidopsis thaliana, separated by cellophane membranes (fungal exudates experiment), or on different media but with a shared head space (fungal volatiles experiment). Root development was monitored over time. Both germinating spore exudates (GSEs) and geminated-spore-emitted volatile organic compounds (GVCs) significantly promoted lateral root formation (LRF) in WT L. japonicus. LRF in Ljcastor was significantly enhanced in the presence of GVCs. GVCs stimulated LRF in A. thaliana, whereas GSEs showed an inhibitory effect. The expression profile of the genes involved in mycorrhizal establishment and root development were investigated using quantitative reverse transcription-PCR analysis. Only the expression of the LjCCD7 gene, an important component of the strigolactone synthesis pathway, was differentially expressed following exposure to GVCs. We conclude that volatile organic compounds released by the germinating AM fungal spores may stimulate LRF in a symbiosis signaling pathway (SYM)- and host-independent way, whereas GSEs stimulate LRF in a SYM- and host-dependent way.

  10. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation.

    PubMed

    Sun, Xue-Guang; Bonfante, Paola; Tang, Ming

    2015-12-01

    Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L. japonicus mutant Ljcastor (which lacks the symbiotic cation channel CASTOR, which is required for inducing nuclear calcium spiking, which is necessary for symbiotic partner recognition), or Arabidopsis thaliana, separated by cellophane membranes (fungal exudates experiment), or on different media but with a shared head space (fungal volatiles experiment). Root development was monitored over time. Both germinating spore exudates (GSEs) and geminated-spore-emitted volatile organic compounds (GVCs) significantly promoted lateral root formation (LRF) in WT L. japonicus. LRF in Ljcastor was significantly enhanced in the presence of GVCs. GVCs stimulated LRF in A. thaliana, whereas GSEs showed an inhibitory effect. The expression profile of the genes involved in mycorrhizal establishment and root development were investigated using quantitative reverse transcription-PCR analysis. Only the expression of the LjCCD7 gene, an important component of the strigolactone synthesis pathway, was differentially expressed following exposure to GVCs. We conclude that volatile organic compounds released by the germinating AM fungal spores may stimulate LRF in a symbiosis signaling pathway (SYM)- and host-independent way, whereas GSEs stimulate LRF in a SYM- and host-dependent way. PMID:26397199

  11. Photocontrol of the Germination of Onoclea Spores

    PubMed Central

    Towill, Leslie R.; Ikuma, Hiroshi

    1975-01-01

    The changes in levels of metabolites during photoinduced germination of Onoclea sensibilis L. spores are described. Proteins and lipids, which constitute 25 and 20%, respectively, of the unimbibed spores on a dry weight basis, are hydrolyzed at the time of differentiation and elongation of the germling cells and may be utilized for these processes. Sucrose degradation, starch synthesis, and active respiration occur during dark imbibition, but these processes are accelerated by red or far red irradiation. Endogenous sucrose is the probable source of the carbon skeleton for starch synthesis. PMID:16659327

  12. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated. PMID:19826917

  13. Bacterial spores and chemical sporicidal agents.

    PubMed Central

    Russell, A D

    1990-01-01

    Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described. Images PMID:2187595

  14. The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra; Moeller, Ralf; Cadet, Jean; Douki, Thierry

    2015-01-01

    The experiment SPORES `Spores in artificial meteorites' was part of European Space Agency's EXPOSE-R mission, which exposed chemical and biological samples for nearly 2 years (March 10, 2009 to February 21, 2011) to outer space, when attached to the outside of the Russian Zvezda module of the International Space Station. The overall objective of the SPORES experiment was to address the question whether the meteorite material offers enough protection against the harsh environment of space for spores to survive a long-term journey in space by experimentally mimicking the hypothetical scenario of Lithopanspermia, which assumes interplanetary transfer of life via impact-ejected rocks. For this purpose, spores of Bacillus subtilis 168 were exposed to selected parameters of outer space (solar ultraviolet (UV) radiation at λ>110 or >200 nm, space vacuum, galactic cosmic radiation and temperature fluctuations) either as a pure spore monolayer or mixed with different concentrations of artificial meteorite powder. Total fluence of solar UV radiation (100-400 nm) during the mission was 859 MJ m-2. After retrieval the viability of the samples was analysed. A Mission Ground Reference program was performed in parallel to the flight experiment. The results of SPORES demonstrate the high inactivating potential of extraterrestrial UV radiation as one of the most harmful factors of space, especially UV at λ>110 nm. The UV-induced inactivation is mainly caused by photodamaging of the DNA, as documented by the identification of the spore photoproduct 5,6-dihydro-5(α-thyminyl)thymine. The data disclose the limits of Lithopanspermia for spores located in the upper layers of impact-ejected rocks due to access of harmful extraterrestrial solar UV radiation.

  15. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Lau, Arthur P. S.; Lee, Alex K. Y.; Chan, Chak K.; Fang, Ming

    The prevailing warm and humid climate in subtropical cities favors fungal growth in the ambient environment. Fungal growth has implications for public health because fungal cells, spores and their metabolites are allergenic and potential health hazards. In this regard, better and quicker alternatives than the available sampling and species identification methods are needed for quantifying fungal communities in atmospheric aerosols. In this study, the fungal membrane ergosterol was used as a biomarker for assessing the abundance and mass loading of fungi in atmospheric aerosols. Gas chromatography-mass spectrometry (GC-MS) was utilized for quantification of this biomarker in fine (PM 2.5) and coarse (PM 2.5-10) particulates collected by high volume samplers simultaneously at a rural site and an urban site in Hong Kong. The geometric means of the total ergosterol concentrations at the rural and urban sites were 120.2 and 93.9 pg m -3 in the PM 10 (calculated as the sum of PM 2.5 and PM 2.5-10) particulates. The significantly higher ergosterol loading at the rural site was related to the vegetation coverage around the sampling site. Ergosterol loading was higher in the autumn at both sites, which correlated with seasonal drops in the relative humidity below 70%. Approximately 65-66% of the ergosterol in PM 10 is associated with fine particulates, indicating that atmospheric fungi likely lead to chronic respiratory symptoms. The mass loading of the fungal spores on the dry mass was on the order of 10-10 2 ng m -3. The geometric mean concentration of the fungal spores was estimated as 46 and 36 spores m -3, which was one-sixth of the measured viable samplings of 292 and 247 CFU m -3 at the rural and urban sites, respectively. This underestimation leads to the need for establishing proper conversion factors from conditions identical to or simulating the study system of interest when markers are quantified and estimated for microbial mass loading in ambient aerosols. This

  16. Experimental observations on fungal diagenesis of carbonate substrates

    NASA Astrophysics Data System (ADS)

    Kolo, Kamal; Keppens, Eddy; PréAt, Alain; Claeys, Philippe

    2007-03-01

    Carbonate substrates (dolomites and limestones) are susceptible to fungal attack that results in significant microbial diagenesis of these substrates. In a 15-day experimental study, fungi growing in Petri dishes from airborne spores attacked petrographic thin sections and chips prepared from the dolomites of Terwagne Formation (Viséan, Bocahut quarry at Avesnes-sur-Helpe, northern France) and limestones of the Morrone di Pacentro Formation (Lower Cretaceous, Italy). The analyses of the fungal material (samples of mycelia), thin sections and chips under optical microscopy, scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy and stable isotopes (C and O) revealed an extensive fungally induced diagenesis. The results indicate strong diagenesis and biomineral neomorphism: neo-dolomite, glushinskite, weddellite, whewellite and possibly struvite, as well as intense substrate "de-micritization" and "micritization" with oxalates, grain bridging and cementation, open space filling, formation of intergranular and intragranular porosity, and permeability enhancement. Advanced stages of diagenesis were characterized by dissolution and replacement of original minerals by new substrates produced by fungal biomineralization. The formation of new substrates on the original attacked surfaces produced microscale stratification. Stable isotope analysis of fungal biomineralized material and of attacked and unattacked chip surfaces revealed marked differences in their isotopic signatures. The C and O isotopes of biomineralized material within the fungal mass were fractionated differently as compared to the signature measured in the original and unattacked surfaces. In sedimentary cycles, such microbially modified isotopic signature of carbonate substrates may be used to define microbial events, and consequently whether certain types of diagenesis were produced by microbial interaction. The finding of neo-dolomite formed

  17. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  18. Fungal Biofilm Resistance

    PubMed Central

    Ramage, Gordon; Rajendran, Ranjith; Sherry, Leighann; Williams, Craig

    2012-01-01

    Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field. PMID:22518145

  19. Systemic opportunistic fungal infections.

    PubMed Central

    Vanbreuseghem, R.; Vroey, C. D.

    1979-01-01

    The clinical manifestations of "opportunistic" fungal infections in compromised hosts, asthenomycoses, differ from those caused by the same fungus in otherwise normal people. Examples are given on the field of dermatophytoses, aspergillosis, candidiasis and cryptococcosis. PMID:523345

  20. Fungal Nail Infection (Onychomycosis)

    MedlinePlus

    ... vinegar, vitamin E oil, Vicks® VapoRub®, or tea tree oil. When to Seek Medical Care Fungal nail ... Trusted Links Related diseases: Psoriasis View all diseases Community: Discussion Forum Skinmatters Blog About Us | Terms of ...

  1. Fungal Eye Infections

    MedlinePlus

    ... Zoonotic Infectious Disease Division of Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Fungal Eye Infections Recommend on ... Zoonotic Infectious Disease Division of Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch File Formats Help: How do ...

  2. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment.

    PubMed

    Shaw, M W; Harwood, T D; Wilkinson, M J; Elliott, L

    2006-07-01

    Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).

  3. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment.

    PubMed

    Shaw, M W; Harwood, T D; Wilkinson, M J; Elliott, L

    2006-07-01

    Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK). PMID:16769644

  4. Airborne fungal and bacterial components in PM1 dust from biofuel plants.

    PubMed

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-10-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 microm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (d(ae)) of 2-8 microm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D(50) of 1 microm (called PM(1) dust). PM(1) was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample 'total dust'. The PM(1) particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-beta-D-glucosaminidase (NAGase), and (1 --> 3)-beta-D-glucans. In the 29 PM(1) samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 --> 3)-beta-D-glucans, which are mainly associated with fungi, were present in all PM(1) samples. Thermophilic actinomycetes were present in 23 of the 29 PM(1) samples [average = 739 colony-forming units (CFU) m(-3)]. Cultivable and 'total bacteria' were found in average concentrations of, respectively, 249 CFU m(-3) and 1.8 x 10(5) m(-3). DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5-1.5 microm and only few particles >1.5 microm. The number of cultivable fungi and beta-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 microm, with DNA/RNA-containing particles >1.5 microm, and with other

  5. Fungal diagnostics in pneumonia.

    PubMed

    Lease, Erika D; Alexander, Barbara D

    2011-12-01

    Fungal pneumonia is increasingly common, particularly in highly immunosuppressed patients, such as solid organ or hematopoietic stem cell transplant recipients, and the diagnosis is evolving. Although standard techniques such as microscopy and culture remain the mainstays of diagnosis, relatively recent advances in serological and molecular testing are important additions to the field. This article reviews the laboratory tools used to diagnose fungal respiratory disease. PMID:22167394

  6. Fungal Diagnostics in Pneumonia

    PubMed Central

    Lease, Erika D.; Alexander, Barbara D.

    2014-01-01

    Fungal pneumonia is increasingly common, particularly in highly immunosuppressed patients, such as solid organ or hematopoietic stem cell transplant recipients, and the diagnosis is evolving. While standard techniques such as microscopy and culture remain the mainstay of diagnosis, relatively recent advances in serologic and molecular testing are important additions to the field. This chapter will review the laboratory tools used to diagnose fungal respiratory disease. PMID:22167394

  7. [Pathogenesis of invasive fungal infections].

    PubMed

    Garcia-Vidal, Carolina; Carratalà, Jordi

    2012-03-01

    Invasive fungal infections remain a life-threatening disease. The development of invasive fungal disease is dependent on multiple factors, such us colonization and efficient host immune response. We aimed to review the pathogenesis of invasive fungal infections, in particular, those caused by Candida and Aspergillus. For this we propose, to describe the fungal characteristics, to detail the host defence mechanisms against fungus and to analyse the host risk factors for invasive fungal infection.

  8. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy

    PubMed Central

    Burggraf, Larry W.; Xing, Yun

    2016-01-01

    ABSTRACT The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nanosurgical sectioning method in which a stiff diamond AFM tip was used to cut an individual spore, exposing its internal structure, and a soft AFM tip was used to image and characterize the spore interior on the nanometer scale. We observed that the elastic modulus and adhesion force, including their thermal responses at elevated temperatures, varied significantly in different regions of the spore section. Our AFM images indicated that the peptidoglycan (PG) cortex of Bacillus anthracis spores consisted of rod-like nanometer-sized structures that are oriented in the direction perpendicular to the spore surface. Our findings may shed light on the spore architecture and properties. IMPORTANCE A nanosurgical AFM method was developed that can be used to probe the structure and properties of the spore interior. The previously unknown ultrastructure of the PG cortex of Bacillus anthracis spores was observed to consist of nanometer-sized rod-like structures that are oriented in the direction perpendicular to the spore surface. The variations in the nanomechanical properties of the spore section were largely correlated with its chemical composition. Different components of the spore materials showed different thermal responses at elevated temperatures. PMID:26969703

  9. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  10. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  11. Relationship between airborne fungal allergens and meteorological factors in Manisa City, Turkey.

    PubMed

    Kalyoncu, Fatih

    2010-06-01

    In this study, the effect of relative humidity, temperature, and wind on airborne fungal allergens in the 11 different districts of Manisa City was investigated from January 2004 to December 2005. The aim of this study was to conduct a survey to get to know the relation between wind, temperature, and relative humidity and population of allergenic fungal spores in the atmosphere. A total of 792 samples were observed by using the Merck MAS100 air sampler and 12,988 fungal colonies were counted. Fourteen fungal genera could be determined; Cladosporium that was generally found as the predominant genus followed by Penicillium, Aspergillus, and Alternaria. During the entire study, seasonal variation was found to be related to atmospheric conditions especially. The optimal conditions of meteorological factors for the fungi growth resulted in the increased number of mycoflora, qualitatively and quantitatively.

  12. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  13. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  14. Requirements for In Vitro Germination of Paenibacillus larvae Spores

    PubMed Central

    Alvarado, Israel; Phui, Andy; Elekonich, Michelle M.

    2013-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a disease affecting honey bee larvae. First- and second-instar larvae become infected when they ingest food contaminated with P. larvae spores. The spores then germinate into vegetative cells that proliferate in the midgut of the honey bee. Although AFB affects honey bees only in the larval stage, P. larvae spores can be distributed throughout the hive. Because spore germination is critical for AFB establishment, we analyzed the requirements for P. larvae spore germination in vitro. We found that P. larvae spores germinated only in response to l-tyrosine plus uric acid under physiologic pH and temperature conditions. This suggests that the simultaneous presence of these signals is necessary for spore germination in vivo. Furthermore, the germination profiles of environmentally derived spores were identical to those of spores from a biochemically typed strain. Because l-tyrosine and uric acid are the only required germinants in vitro, we screened amino acid and purine analogs for their ability to act as antagonists of P. larvae spore germination. Indole and phenol, the side chains of tyrosine and tryptophan, strongly inhibited P. larvae spore germination. Methylation of the N-1 (but not the C-3) position of indole eliminated its ability to inhibit germination. Identification of the activators and inhibitors of P. larvae spore germination provides a basis for developing new tools to control AFB. PMID:23264573

  15. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  16. Assessment of allergenicity to fungal allergens of Rohtak city, Haryana, India

    PubMed Central

    Kochar, Sanjeeta; Ahlawat, Manisha; Chaudhary, Dhruva

    2014-01-01

    Fungal spores are known as one of the important bioparticles causing allergic manifestation in human beings. Hence, knowledge of season and prevalence of the airborne allergens to which the patients are exposed is a prerequisite for proper diagnosis and treatment of allergic disorders in hypersensitive individuals. Keeping this in view, aerial survey was performed in the atmosphere of Rohtak city for 2 consecutive years (March 2008–February 2010), using a volumetric petri plate sampler. A total of 45 fungal spore types were recorded during the survey period. In the present study, February–April and July–November were identified as the peak seasons for Rohtak city. Cladosporium was the main contributor to the total fungal load with 25.14% followed by Alternaria (18.05%), Aspergillus niger (7.66%), Curvularia (5.31%), and Epicoccum (5.29%). Fifteen dominant viable fungal spore types were represented in the form of a fungal calendar. An attempt has also been made to assess the allergenicity of some of the fungal types recorded from the atmosphere of Rohtak city. The magnitude of variations observed in markedly positive skin reactions (2+ and above) varied from 17.3 to 2.3%. Penicillium oxalicum showed a markedly positive reaction in maximum number of patients (26; 17.3%) followed by Rhizopus nigricans (23; 15.3%). ELISA was performed with the sera of patients showing markedly positive skin reactions and the sera were classified into four groups based on percent binding. The majority of the sera showed 0–15% binding to different antigenic extracts, while sera showing >60% binding were least in number. Greater than 30% binding was observed against antigens of Rhizopus nigricans, Epicoccum purpurascens, Penicillium oxalicum, Curvularia lunata, Aspergillus flavus, Candida albicans and Neurospora sitophila. The concordance between positive skin reaction and serum-specific IgE antibodies ranged from 16.7 to 69.2%. PMID:24988378

  17. ASSESSING THE ALLERGIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing the Allergic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yonjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, S...

  18. THE ALLERGENIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory


    The Allergenic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yongjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, SPH,...

  19. Genome Diversity of Spore-Forming Firmicutes

    PubMed Central

    Galperin, Michael Y.

    2015-01-01

    Summary Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes: Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in nutrient-rich environment. It argues that systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework. Later the Bacillus filaments begin to prepare for spore formation. In their homogenous contents strongly refracting bodies appear. From each of these bodies develops an oblong or shortly cylindrical, strongly refracting, dark-rimmed spore. Ferdinand Cohn. 1876. Untersuchungen über Bacterien. IV. Beiträge zur Biologie der Bacillen. Beiträge zur Biologie der Pflanzen, vol. 2, pp. 249–276. (Studies on the biology of the bacilli. In: Milestones in Microbiology: 1546 to 1940. Translated and edited by Thomas D. Brock. Prentice-Hall, Englewood Cliffs, NJ, 1961, pp. 49–56). PMID:26184964

  20. Fungal endocarditis: current challenges.

    PubMed

    Tattevin, Pierre; Revest, Matthieu; Lefort, Agnès; Michelet, Christian; Lortholary, Olivier

    2014-10-01

    Whilst it used to affect mostly intravenous drug users and patients who underwent valvular surgery with suboptimal infection control procedures, fungal endocarditis is now mostly observed in patients with severe immunodeficiency (onco-haematology), in association with chronic central venous access and broad-spectrum antibiotic use. The incidence of fungal endocarditis has probably decreased in most developed countries with access to harm-reduction policies (i.e. needle exchange programmes) and with improved infection control procedures during cardiac surgery. Use of specific blood culture bottles for diagnosis of fungal endocarditis has decreased due to optimisation of media and automated culture systems. Meanwhile, the advent of rapid techniques, including fungal antigen detection (galactomannan, mannan/anti-mannan antibodies and β-1,3-d-glucans) and PCR (e.g. universal fungal PCR targeting 18S rRNA genes), shall improve sensitivity and reduce diagnostics delays, although limited data are available on their use for the diagnosis of fungal endocarditis. New antifungal agents available since the early 2000s may represent dramatic improvement for fungal endocarditis: (i) a new class, the echinocandins, has the potential to improve the management of Candida endocarditis owing to its fungicidal effect on yeasts as well as tolerability of increased dosages; and (ii) improved survival in patients with invasive aspergillosis with voriconazole compared with amphotericin B, and this may apply to Aspergillus sp. endocarditis as well, although its prognosis remains dismal. These achievements may allow selected patients to be cured with prolonged medical treatment alone when surgery is considered too risky.

  1. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth*

    PubMed Central

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-01-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. PMID:26091698

  2. Distribution and mycotoxin-producing ability of some fungal isolates from the air

    NASA Astrophysics Data System (ADS)

    Cvetnić, Zdenka; Pepeljnjak, S.

    Research was carried out on presence and prevalence of common fungal air spores at locations in Croatia. The sampling method employed in the study was by exposure 350 of Petri agar plates to the air for 10 min. Approximately 3400 colonies were found and mould spores belonging to 22 fungal genera were identified. Cladosporium (44.7%), Penicillium (34.4%), Alternaria (26.3%), Aspergillus (21.6%) and Absidia (12.2%) were the most prevalent fungi encountered. Investigation of toxigenic potential of airborne fungi isolates of genera Aspergillus, Fusarium and Trichoderma showed 16.9% mycotoxin-producing strains. The production of aflatoxin B 1 by A. flavus sterigmatocystin by A. versicolor zearalenon and T-2 toxin by F. graminearum and diacetoscirpenol by strains of T. viride were obtained.

  3. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  4. Effects of Ionizing Radiation on Postharvest Fungal Pathogens.

    PubMed

    Jeong, Rae-Dong; Shin, Eun-Jung; Chu, Eun-Hee; Park, Hae-Jun

    2015-06-01

    Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3-4 kGy for B. cinerea and 1-2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation. PMID:26060436

  5. Fungal volatiles as indicators of food and feeds spoilage.

    PubMed

    Schnürer, J; Olsson, J; Börjesson, T

    1999-01-01

    Fungal growth leads to spoilage of food and animal feeds and to formation of mycotoxins and potentially allergenic spores. Fungi produce volatile compounds, during both primary and secondary metabolism, which can be used for detection and identification. Fungal volatiles from mainly Aspergillus, Fusarium, and Penicillium have been characterized with gas chromatography, mass spectrometry, and sensory analysis. Common volatiles are 2-methyl-1-propanol, 3-methyl-1-butanol, 1-octen-3-ol, 3-octanone, 3-methylfuran, ethyl acetate, and the malodorous 2-methyl-isoborneol and geosmin. Volatile sesquiterpenes can be used for taxonomic classification and species identification in Penicillium, as well as to indicate mycotoxin formation in Fusarium and Aspergillus. Developments in sensor technology have led to the construction of "electronic noses" (volatile compound mappers). Exposure of different nonspecific sensors to volatile compounds produces characteristic electrical signals. These are collected by a computer and processed by multivariate statistical methods or in an artificial neural network (ANN). Such systems can grade cereal grain with regard to presence of molds as efficiently as sensory panels evaluating grain odor. Volatile compound mapping can also be used to predict levels of ergosterol and fungal colony-forming units in grain. Further developments should make it possible to detect individual fungal species as well as the degree of mycotoxin contamination of food and animal feeds.

  6. Effects of Ionizing Radiation on Postharvest Fungal Pathogens

    PubMed Central

    Jeong, Rae-Dong; Shin, Eun-Jung; Chu, Eun-Hee; Park, Hae-Jun

    2015-01-01

    Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3–4 kGy for B. cinerea and 1–2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation. PMID:26060436

  7. Assessing total fungal concentrations on commercial passenger aircraft using mixed-effects modeling.

    PubMed

    McKernan, Lauralynn Taylor; Hein, Misty J; Wallingford, Kenneth M; Burge, Harriet; Herrick, Robert

    2008-01-01

    The primary objective of this study was to compare airborne fungal concentrations onboard commercial passenger aircraft at various in-flight times with concentrations measured inside and outside airport terminals. A secondary objective was to investigate the use of mixed-effects modeling of repeat measures from multiple sampling intervals and locations. Sequential triplicate culturable and total spore samples were collected on wide-body commercial passenger aircraft (n = 12) in the front and rear of coach class during six sampling intervals: boarding, midclimb, early cruise, midcruise, late cruise, and deplaning. Comparison samples were collected inside and outside airport terminals at the origin and destination cities. The MIXED procedure in SAS was used to model the mean and the covariance matrix of the natural log transformed fungal concentrations. Five covariance structures were tested to determine the appropriate models for analysis. Fixed effects considered included the sampling interval and, for samples obtained onboard the aircraft, location (front/rear of coach section), occupancy rate, and carbon dioxide concentrations. Overall, both total culturable and total spore fungal concentrations were low while the aircraft were in flight. No statistical difference was observed between measurements made in the front and rear sections of the coach cabin for either culturable or total spore concentrations. Both culturable and total spore concentrations were significantly higher outside the airport terminal compared with inside the airport terminal (p-value < 0.0001) and inside the aircraft (p-value < 0.0001). On the aircraft, the majority of total fungal exposure occurred during the boarding and deplaning processes, when the aircraft utilized ancillary ventilation and passenger activity was at its peak.

  8. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR

    PubMed Central

    Bai, Yubin; Wang, Yanfei; Goulian, Mark; Driks, Adam

    2014-01-01

    Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures. PMID:25089181

  9. Discrimination of fungal infections on grape berries via spectral signatures

    NASA Astrophysics Data System (ADS)

    Molitor, Daniel; Griesser, Michaela; Schütz, Erich; Khuen, Marie-Therese; Schefbeck, Christa; Ronellenfitsch, Franz Kai; Schlerf, Martin; Beyer, Marco; Schoedl-Hummel, Katharina; Anhalt, Ulrike; Forneck, Astrid

    2016-04-01

    The fungal pathogens Botrytis cinerea and Penicillium expansum are causing economic damages on grapevine worldwide. Especially the simultaneous occurrence of both often results in off-flavours highly threatening wine quality. For the classification of grape quality as well as for the determination of targeted enological treatments, the knowledge of the level of fungal attack is of highest interest. However, visual assessment and pathogen discrimination are cost-intensive. Consequently, a pilot laboratory study aimed at (i) detecting differences in spectral signatures between grape berry lots with different levels of infected berries (B. cinerea and/or P. expansum) and (ii) detecting links between spectral signatures and biochemical as well as quantitative molecular markers for fungal attack. To this end, defined percentages (infection levels) of table grape berries were inoculated with fungal spore suspensions. Spectral measurements were taken using a FieldSpec 3 Max spectroradiometer (ASD Inc., Boulder/Colorado, USA) in regular intervals after inoculation. In addition, fungal attack was determined enzymatically) and quantitatively (real-time PCR). In addition, gluconic acid concentrations (as a potential markers for fungal attack) were determined photometrically. Results indicate that based on spectral signatures, a discrimination of P. expansum and B. cinerea infections as well as of different B. cinerea infection levels is possible. Real-time PCR analyses, detecting DNA levels of both fungi, showed yet a low detection level. Whereas the gluconic acid concentrations turned out to be specific for the two fungi tested (B. cinerea vs. P. expansum) and thus may serve as a differentiating biochemical marker. Correlation analyses between spectral measurements and biological data (gluconic acid concentrations, fungi DNA) as well as further common field and laboratory trials are targeted.

  10. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.

    PubMed

    Reynolds, A M

    2012-11-01

    ABSTRACT The turbulent dispersal of fungal spores within plant canopies is very different from that within atmospheric boundary-layers and closely analogous to dispersal within turbulent mixing-layers. The process is dominated by the presence of large coherent flow structures, high-velocity downdrafts (sweeps) and updrafts (ejections), that punctuate otherwise quiescent flow. Turbulent dispersion within plant canopies is best predicted by Lagrangian stochastic (particle-tracking) models because other approaches (e.g., diffusion models and similarity theory) are either inappropriate or invalid. Nonetheless, attempts to construct such models have not been wholly successful. Accounting for sweeps and ejections has substantially worsened rather than improved model agreement with experimental dispersion data. Here we show how this long-standing difficulty with the formulation of Lagrangian stochastic models can be overcome. The new model is shown to be in good agreement with data from a carefully controlled, well-documented wind-tunnel study of scalar dispersion within plant canopy turbulence. Equally good agreement with this data is obtained using Thomson's (1987) Gaussian model. This bolsters confidence in the application of this simple model to the prediction of spore dispersal within plant canopy turbulence. Contact distributions-the probability distribution function for the distance of viable fungal spore movement until deposition-are predicted to have "heavy" inverse power-law tails. It is known that heavy-tailed contact distributions also characterize the dispersal of spores which pass through the canopy turbulence and enter into the overlying atmospheric boundary-layer. Plant disease epidemics due to the airborne dispersal of fungal spores are therefore predicted to develop as accelerating waves over a vast range of scales-from the within field scale to intercontinental scales. This prediction is consistent with recent analyses of field and historical data for

  11. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.

    PubMed

    Reynolds, A M

    2012-11-01

    ABSTRACT The turbulent dispersal of fungal spores within plant canopies is very different from that within atmospheric boundary-layers and closely analogous to dispersal within turbulent mixing-layers. The process is dominated by the presence of large coherent flow structures, high-velocity downdrafts (sweeps) and updrafts (ejections), that punctuate otherwise quiescent flow. Turbulent dispersion within plant canopies is best predicted by Lagrangian stochastic (particle-tracking) models because other approaches (e.g., diffusion models and similarity theory) are either inappropriate or invalid. Nonetheless, attempts to construct such models have not been wholly successful. Accounting for sweeps and ejections has substantially worsened rather than improved model agreement with experimental dispersion data. Here we show how this long-standing difficulty with the formulation of Lagrangian stochastic models can be overcome. The new model is shown to be in good agreement with data from a carefully controlled, well-documented wind-tunnel study of scalar dispersion within plant canopy turbulence. Equally good agreement with this data is obtained using Thomson's (1987) Gaussian model. This bolsters confidence in the application of this simple model to the prediction of spore dispersal within plant canopy turbulence. Contact distributions-the probability distribution function for the distance of viable fungal spore movement until deposition-are predicted to have "heavy" inverse power-law tails. It is known that heavy-tailed contact distributions also characterize the dispersal of spores which pass through the canopy turbulence and enter into the overlying atmospheric boundary-layer. Plant disease epidemics due to the airborne dispersal of fungal spores are therefore predicted to develop as accelerating waves over a vast range of scales-from the within field scale to intercontinental scales. This prediction is consistent with recent analyses of field and historical data for

  12. Allergic Fungal Rhinosinusitis.

    PubMed

    Hoyt, Alice E W; Borish, Larry; Gurrola, José; Payne, Spencer

    2016-01-01

    This article reviews the history of allergic fungal rhinosinusitis and the clinical, pathologic, and radiographic criteria necessary to establish its diagnosis and differentiate this disease from other types of chronic rhinosinusitis. Allergic fungal rhinosinusitis is a noninvasive fungal form of sinus inflammation characterized by an often times unilateral, expansile process in which the typical allergic "peanut-butter-like" mucin contributes to the formation of nasal polyps, hyposmia/anosmia, and structural changes of the face. IgE sensitization to fungi is a necessary, but not sufficient, pathophysiologic component of the disease process that is also defined by microscopic visualization of mucin-containing fungus and characteristic radiological imaging. This article expounds on these details and others including the key clinical and scientific distinctions of this diagnosis, the pathophysiologic mechanisms beyond IgE-mediated hypersensitivity that must be at play, and areas of current and future research. PMID:27393774

  13. Fern spore longevity in saline water: can sea bottom sediments maintain a viable spore bank?

    PubMed

    de Groot, G Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation's diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and--in sea bottoms--salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal.

  14. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  15. Australian dust storm associated with extensive Aspergillus sydowii fungal "bloom" in coastal waters.

    PubMed

    Hallegraeff, Gustaaf; Coman, Frank; Davies, Claire; Hayashi, Aiko; McLeod, David; Slotwinski, Anita; Whittock, Lucy; Richardson, Anthony J

    2014-06-01

    A massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m(3)) and hyphae in coastal waters between Brisbane (27°S) and Sydney (34°S). These spores were successfully germinated from formalin-preserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS[, and beta-tubulin gene), they were conclusively identified as Aspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility of Alexandrium or Chattonella algal cultures but had their greatest impacts on Symbiodinium dinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non- or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains. PMID:24657868

  16. Australian Dust Storm Associated with Extensive Aspergillus sydowii Fungal “Bloom” in Coastal Waters

    PubMed Central

    Coman, Frank; Davies, Claire; Hayashi, Aiko; McLeod, David; Slotwinski, Anita; Whittock, Lucy; Richardson, Anthony J.

    2014-01-01

    A massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m3) and hyphae in coastal waters between Brisbane (27°S) and Sydney (34°S). These spores were successfully germinated from formalin-preserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS[, and beta-tubulin gene), they were conclusively identified as Aspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility of Alexandrium or Chattonella algal cultures but had their greatest impacts on Symbiodinium dinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non- or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains. PMID:24657868

  17. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Taylor, P. E.; Andreae, M. O.; Pöschl, U.

    2007-09-01

    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7-2.3 μg m-3). For the particle diameter range of 1-10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10-68 ng m-3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7-49 ng m-3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17-43 ng m-3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air

  18. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  19. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures. PMID:26502561

  20. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  1. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production

    PubMed Central

    Crowther, Grace S.; Ashwin, Helen; Longshaw, Chris M.; Wilcox, Mark H.

    2016-01-01

    Background We have previously shown that fidaxomicin instillation prevents spore recovery in an in-vitro gut model, whereas vancomycin does not. The reasons for this are unclear. Here, we have investigated persistence of fidaxomicin and vancomycin on C. difficile spores, and examined post-antibiotic exposure spore recovery, outgrowth and toxin production. Methods Prevalent UK C. difficile ribotypes (n = 10) were incubated with 200mg/L fidaxomicin, vancomycin or a non-antimicrobial containing control for 1 h in faecal filtrate or Phosphate Buffered Saline. Spores were washed three times with faecal filtrate or phosphate buffered saline, and residual spore-associated antimicrobial activity was determined by bioassay. For three ribotypes (027, 078, 015), antimicrobial-exposed, faecal filtrate-washed spores and controls were inoculated into broth. Viable vegetative and spore counts were enumerated on CCEYL agar. Percentage phase bright spores, phase dark spores and vegetative cells were enumerated by phase contrast microscopy at 0, 3, 6, 24 and 48 h post-inoculation. Toxin levels (24 and 48h) were determined by cell cytotoxicity assay. Results Fidaxomicin, but not vancomycin persisted on spores of all ribotypes following washing in saline (mean = 10.1mg/L; range = 4.0-14mg/L) and faecal filtrate (mean = 17.4mg/L; 8.4–22.1mg/L). Outgrowth and proliferation rates of vancomycin-exposed spores were similar to controls, whereas fidaxomicin-exposed spores showed no vegetative cell growth after 24 and 48 h. At 48h, toxin levels averaged 3.7 and 3.3 relative units (RU) in control and vancomycin-exposed samples, respectively, but were undetectable in fidaxomicin-exposed samples. Conclusion Fidaxomicin persists on C. difficile spores, whereas vancomycin does not. This persistence prevents subsequent growth and toxin production in vitro. This may have implications on spore viability, thereby impacting CDI recurrence and transmission rates. PMID:27556739

  2. The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (progress and Russkaya Stations)

    NASA Astrophysics Data System (ADS)

    Marfenina, O. E.; Nikitin, D. A.; Ivanova, A. E.

    2016-08-01

    The distribution of the fungal biomass and diversity of cultivated microscopic fungi in the profiles of some soils from East (Progress Station, valleys of the Larsemann Hills oasis) and West (Russkaya Station, the Marie Byrd Land) Antarctica regions were studied. The structure of the biomass (spore/mycelium and live cells/dead cells) was analyzed by fluorescence microscopy with staining using a set of coloring agents: calcofluor white, ethidium bromide, and fluorescein diacetate. The species composition of the cultivated microscopic fungi was determined on Czapek's medium. The fungal biomass in the soils studied is not high (on the average, 0.3 mg/g of soil); the greatest biomass (0.6 mg/g) was found in the soil samples with plant residues. The fungal biomass is mainly (to 70%) represented by small (to 2.5 μm) spores. About half of the fungal biomass is composed of living cells. There are differences in the distribution of the fungal biomass within the profiles of different primitive soils. In the soil samples taken under mosses and lichens, the maximal biomass was registered in the top soil horizons. In the soils with the peat horizon under stone pavements, the greatest fungal biomass was registered in the subsurface horizons. Thirty-eight species of cultivated microscopic fungi were isolated from the soils studied. Species of the genus Penicillium and Phoma herbarum predominated.

  3. Who Gets Fungal Infections?

    MedlinePlus

    ... infections can also happen in people without weak immune systems Fungal infections that are not life-threatening, such ... likely to cause an infection. People with weak immune systems Infections that happen because a person’s immune system ...

  4. Overview of fungal rhinosinusitis.

    PubMed

    Chakrabarti, Arunaloke; Das, Ashim; Panda, Naresh K

    2004-10-01

    The incidence of fungal rhinosinusitis has increased to such extent in recent years that fungal infection should be considered in all patients with chronic rhino sinusitis. In India though the disease was reported earlier only from northern regions of this country, nowadays the disease is increasingly diagnosed from other parts as well. The disease has been categorized with possible five types: acute necrothing (fulminant), chronic invasive, chronic granulomatous invasive, fungal hall (sinus mycetoma), allergic. The first three types are tissue-invasive and the last two are non-invasive fungal rhinosinusitis. However, the categorization is still controversial and open to discussion. Chronic fungal rhinosinusitis can occur in otherwise healthy host and Aspergillus flavus is the common etiological agent in Indian scenario. The pathophys iologic mechanism of the disease remains unclear. It may represent an allergic IgE response, a cell-mediated reaction, or a combination of two. Early diagnosis may prevent multiple surgical procedures and lead to effective treatment. Histopathology and radio-imaging techniques help to distinguish different types and delineate extension of disease process. Culture helps to identify the responsible etiological agent. The presence or absence oj precipitating antibody correlates well with disease progression or recovery. The most immediate need regarding management is to establish the respective roles of surgery and antifungal therapy. Non-invasive disease requires surgical debridement and sinus ventilation only, though, additional oral or local corticosterold therapy may be beneficial in allergie type. For invasive disease, the adjuvant medical therapy is recommended to prevent recurrence and further extension. Itraconazole has been found as an effective drug in such situation. Patients with acute neerotizing type require radical surgery and amphotericin B therapy.

  5. [Emerging invasive fungal infections].

    PubMed

    Alvez, F; Figueras, C; Roselló, E

    2010-07-01

    The frequency and diversity of invasive fungal infections has changed over the last 25 years. The emergence of less common, but medically important fungi has increased, and the children at risk has expanded, with the inclusion of medical conditions such as cancer, mainly haematological malignancy or stem cell transplant, immunosuppressive therapy, prolonged neutropenia, and T-cell immunodeficiency. Among mould infections, fusariosis and phaeohyphomycosis (Dematiaceous fungi) have been increasingly reported in this group of patients. To successfully manage these challenging infections, it is imperative that paediatricians and sub-specialists remain aware of the optimal and timely diagnosis and therapeutic options. Unlike other common mycoses that cause human disease, there no simple antigen or serological tests available to detect these pathogens in tissue or blood. The outcome for these disseminate, and often refractory fungal infections in neutropenic patients and transplant recipients remains extremely poor, requiring early and aggressive therapy. Unfortunately there are no guidelines outlining the choices for optimal therapy in the treatment of paediatric invasive fungal infections do not exist, and on the other hand are limited paediatric data available comparing antifungal agents in children with proven, probable or suspected invasive fungal infection. The options for treatment rest mainly on some adult guidelines that comment on the treatment of these emerging and uncommon important fungi in children. Despite the sparse clinical trials available on treatment and its poor outcome, options for treatment of invasive fungal infections have increased with the advance of new antifungal agents, with improved tolerability and increased range of activity. The epidemiology, clinical manifestations, diagnosis and treatment of fusariosis and phaeohyphomycosis are discussed in this article.

  6. Large-spored Alternaria pathogens in section Porri disentangled.

    PubMed

    Woudenberg, J H C; Truter, M; Groenewald, J Z; Crous, P W

    2014-09-01

    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia. PMID:25492985

  7. Large-spored Alternaria pathogens in section Porri disentangled

    PubMed Central

    Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W.

    2014-01-01

    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia. PMID:25492985

  8. Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.).

    PubMed

    dos Santos, Nereide Serafim Timóteo; Athayde Aguiar, Ana Júlia Alves; de Oliveira, Carlos Eduardo Vasconcelos; Veríssimo de Sales, Camila; de Melo E Silva, Silvanda; Sousa da Silva, Rosana; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite

    2012-12-01

    This study evaluated the efficacy of the combined application of chitosan (CHI) and Origanum vulgare L. essential oil (OV) in the inhibition of Rhizopus stolonifer URM 3728 and Aspergillus niger URM 5842 on laboratory media and on grapes (Vitis labrusca L.) and its influence on the physical, physicochemical and sensory characteristics of the fruits during storage (25 °C, 12 days and 12 °C, 24 days). The application of mixtures of different CHI and OV concentrations (Minimum Inhibitory Concentration - MIC, 1/2 MIC and 1/4 MIC) inhibited the mycelial growth of the test fungi. The application of CHI and OV at sub-inhibitory concentrations (CHI 1/2 MIC + OV 1/4 MIC; CHI 1/2 MIC + OV 1/2 MIC) inhibited spore germination and caused morphological changes in fungal spores and mycelia, in addition to inhibiting the growth of the assayed fungi strains in artificially infected grapes as well as the autochthonous mycoflora of grapes stored at both room and cold temperature. In general, the application of a coating composed of CHI and OV at sub-inhibitory concentrations preserved the quality of grapes as measured by their physical and physicochemical attributes, while some of their sensory attributes improved throughout the assessed storage time. These results demonstrate the potential of the combination of CHI and OV at sub-inhibitory concentrations to control post-harvest pathogenic fungi in fruits, in particular, R. stolonifer and A. niger in grapes. PMID:22986200

  9. Evaluating fungal populations by genera/species on wide body commercial passenger aircraft and in airport terminals.

    PubMed

    McKernan, Lauralynn Taylor; Burge, Harriet; Wallingford, Kenneth M; Hein, Misty J; Herrick, Robert

    2007-04-01

    Given the potential health effects of fungi and the amount of time aircrew and passengers spend inside aircraft, it is important to study fungal populations in the aircraft environment. Research objectives included documenting the genera/species of airborne culturable fungal concentrations and total spore concentrations on a twin-aisle wide body commercial passenger aircraft. Twelve flights between 4.5 and 6.5 h in duration on Boeing 767 (B-767) aircraft were evaluated. Two air cooling packs and 50% recirculation rate (i.e. 50:50 mix of outside air and filtered inside air) were utilized during flight operations. Passenger occupancy rates varied from 67 to 100%. N-6 impactors and total spore traps were used to collect sequential, triplicate air samples in the front and rear of coach class during six sampling intervals throughout each flight: boarding, mid-climb, early cruise, mid-cruise, late cruise and deplaning. Comparison air samples were also collected inside and outside the airport terminals at the origin and destination cities resulting in a total of 522 culturable and 517 total spore samples. A total of 45 surface wipe samples were collected using swabs onboard the aircraft and inside the airport terminals. A variety of taxa were observed in the culturable and total spore samples. A frequency analysis of the fungal data indicated that Cladosporium, Aspergillus and Penicillium were predominant genera in the culturable samples whereas Cladosporium, Basidiospores and Penicillium/Aspergillus were predominant in the total spore samples. Fungal populations observed inside the aircraft were comprised of similar genera, detected significantly less frequently and with lower mean concentrations than those observed in typical office buildings. Although sources internal to the aircraft could not be ruled out, our data demonstrate the importance of passenger activity as the source of the fungi observed on aircraft. Isolated fungal peak events occurred occasionally when

  10. Assay for Spore Wall Integrity Using a Yeast Predator.

    PubMed

    Okada, Hiroki; Neiman, Aaron M; Ohya, Yoshikazu

    2016-01-01

    During the budding yeast life cycle, a starved diploid cell undergoes meiosis followed by production of four haploid spores, each surrounded by a spore wall. The wall allows the spores to survive in harsh environments until conditions improve. Spores are also more resistant than vegetative cells to treatments such as ether vapor, glucanases, heat shock, high salt concentrations, and exposure to high or low pH, but the relevance of these treatments to natural environmental stresses remains unclear. This protocol describes a method for assaying the yeast spore wall under natural environmental conditions by quantifying the survival of yeast spores that have passed through the digestive system of a yeast predator, the fruit fly. PMID:27480715

  11. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  12. The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms.

    PubMed

    Cheeke, Tanya E; Pace, Brian A; Rosenstiel, Todd N; Cruzan, Mitchell B

    2011-02-01

    Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level.

  13. Identification of fungal microorganisms by MALDI-TOF mass spectrometry.

    PubMed

    Chalupová, Jana; Raus, Martin; Sedlářová, Michaela; Sebela, Marek

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000-20000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions.

  14. Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi

    SciTech Connect

    Woloshuk, C.P.; Kolattukudy, P.E.

    1986-03-01

    Spores of the phytopathogenic fungus Fusarium solani f. sp. pisi were shown to produce the extracellular enzyme, cutinase, only when cutin or cutin hydrolysate was added to the spore suspension. Dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid, which are unique cutin monomers, showed the greatest cutinase-inducing activity. Experiments with several compounds structurally related to these fatty acids suggested that both a omega-hydroxyl and a midchain hydroxyl are required for cutinase-inducing activity. Cutinase appeared in the medium 30-45 min after the addition of the inducers to the spore suspension, and the activity level increased for 6 hr. Addition of cycloheximide (5 ..mu..g/ml) completely inhibited cutinase production, suggesting that protein synthesis was involved in the increase of cutinase activity. Immunoblot analysis with rabbit antibodies prepared against cutinase showed that cutinase protein increased in parallel with the increase in enzyme activity. Measurement of cutinase-specific RNA levels by dot-blot hybridization with /sup 32/P-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. Addition of exogenous cutinase greatly enhanced the level of cutinase gene transcripts induced by cutin. These results strongly suggest that the fungal spore senses that it is in contact with the plant by the production of small amounts of cutin monomers catalyzed by the low level of cutinase carried by the spore and that these monomers induce the synthesis of cutinase needed for penetration of the fungus into the plant.

  15. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.

    PubMed

    Cho, Min; Kim, Jae-Hong; Yoon, Jeyong

    2006-08-01

    The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes.

  16. Coated Solid Substrate Microbe Formulations: Pseudomonas spp. and Zeolite.

    PubMed

    Bunt, Craig R; Price, Sally; Hampton, John; Stelting, Scott

    2016-01-01

    Formulation provides a means to stabilize for storage and delivery biocontrol and bioremediation agents based on microbes such as bacteria and fungi. Typically it is difficult to both stabilize and deliver fragile non-spore-forming bacteria. Fungal spores might intuitively appear to be easy to stabilize; however, their tendency to germinate in low moisture environments presents challenges for the formulation scientist. Here we present a light background regarding issues with formulating microbes and strategies to help overcome instability and delivery issues. PMID:27565491

  17. Semiochemicals from ex situ abiotically stressed cactus tissue: a contributing role of fungal spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiochemicals play a central role in communication between plants and insects, such as signaling the location of a suitable host. Fungi on host plants can also play an influential role in communicating certain plant vulnerabilities to an insect. The spiroketal conophthorin is an important semiochem...

  18. Fungal types and concentrations from settled dust in normal residences.

    PubMed

    Hicks, Jeffrey B; Lu, Elizabeth T; De Guzman, Rachel; Weingart, Michal

    2005-10-01

    Analysis of settled dust collected from carpeting and furnishings is occasionally used by investigators to determine whether an environment contains unusual fungi. Little information is available concerning the types and concentrations of culturable fungi present on textile surfaces in normal residential settings not affected by unusual mold reservoirs, such as from fungal growth sites within the built environment. This study presents the results of the collection and analysis of surface dust from 26 residential environments that were prescreened by interview, physical inspection, and air sampling to limit the surface dust collection to structures in which there was no history of water intrusion, flooding, plumbing leaks, signs of mold growth, or evidence of unusual airborne fungal spore types or concentrations. In those structures found to have no history or indications of water events or unusual fungi, surface dust was vacuumed from prescribed horizontal areas on carpet and textile-covered furnishings. These samples were then subjected to fungal culture, from which viable colonies were enumerated and identified. Based on the study results, it does not appear reasonable that the frequently quoted total fungi concentration exceeding 10(5) CFU/g is definitive evidence that a residential surface is contaminated with unusual amounts of culturable fungi. Collocated samples collected from eight side-by-side carpets sections revealed poor reproducibility. While settled dust sampling may be appropriate for determining the fungal status of a localized area, or as a gross screening tool, using settled dust results alone to establish the presence of unusual fungal types or concentrations within a structure appears to be inappropriate, and using settled dust results with other investigative methods, such as visual observations and air sampling, requires cautious interpretation.

  19. Physiological responses of Bacillus amyloliquefaciens spores to high pressure.

    PubMed

    Ahn, Juhee; Balasubramaniam, V M

    2007-03-01

    Pressure inactivation behavior of Bacillus amyloliquefaciens spores was investigated in deionized water. The spores of B. amyloliquefaciens were subjected to 105 degrees C and 700 MPa. The magnitude of the decrease in viability after pressure treatment was similar to that after pressure treatment followed by heat shock. The increase of dipicolinic acid (DPA) release was correlated with the spore inactivation, and the hydrophobicity did not significantly change during the pressure-assisted thermal processing (PATP). Lag phase duration increased with increasing pressure process time. The mechanisms of spore germination and inactivation during the PATP were related to a complex physiological process.

  20. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    PubMed

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  1. Applied usage of yeast spores as chitosan beads.

    PubMed

    Zhang, Haini; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    In this study, we present a nonhazardous biological method of producing chitosan beads using the budding yeast Saccharomyces cerevisiae. Yeast cells cultured under conditions of nutritional starvation cease vegetative growth and instead form spores. The spore wall has a multilaminar structure with the chitosan layer as the second outermost layer. Thus, removal of the outermost dityrosine layer by disruption of the DIT1 gene, which is required for dityrosine synthesis, leads to exposure of the chitosan layer at the spore surface. In this way, spores can be made to resemble chitosan beads. Chitosan has adsorptive features and can be used to remove heavy metals and negatively charged molecules from solution. Consistent with this practical application, we find that spores are capable of adsorbing heavy metals such as Cu(2+), Cr(3+), and Cd(2+), and removal of the dityrosine layer further improves the adsorption. Removal of the chitosan layer decreases the adsorption, indicating that chitosan works as an adsorbent in the spores. Besides heavy metals, spores can also adsorb a negatively charged cholesterol derivative, taurocholic acid. Furthermore, chitosan is amenable to chemical modifications, and, consistent with this property, dit1Δ spores can serve as a carrier for immobilization of enzymes. Given that yeast spores are a natural product, our results demonstrate that they, and especially dit1Δ mutants, can be used as chitosan beads and used for multiple purposes. PMID:24907339

  2. Bacterial Spores in Food: Survival, Emergence, and Outgrowth.

    PubMed

    Wells-Bennik, Marjon H J; Eijlander, Robyn T; den Besten, Heidy M W; Berendsen, Erwin M; Warda, Alicja K; Krawczyk, Antonina O; Nierop Groot, Masja N; Xiao, Yinghua; Zwietering, Marcel H; Kuipers, Oscar P; Abee, Tjakko

    2016-01-01

    Spore-forming bacteria are ubiquitous in nature. The resistance properties of bacterial spores lie at the heart of their widespread occurrence in food ingredients and foods. The efficacy of inactivation by food-processing conditions is largely determined by the characteristics of the different types of spores, whereas food composition and storage conditions determine the eventual germination and outgrowth of surviving spores. Here, we review the current knowledge on variation in spore resistance, in germination, and in the outgrowth capacity of spores relevant to foods. This includes novel findings on key parameters in spore survival and outgrowth obtained by gene-trait matching approaches using genome-sequenced Bacillus spp. food isolates, which represent notorious food spoilage and pathogenic species. Additionally, the impact of strain diversity on heat inactivation of spores and the variability therein is discussed. Knowledge and quantification of factors that influence variability can be applied to improve predictive models, ultimately supporting effective control of spore-forming bacteria in foods. PMID:26934174

  3. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine.

    PubMed

    Zhao, Guangyu; Miao, Yu; Guo, Yan; Qiu, Hongjie; Sun, Shihui; Kou, Zhihua; Yu, Hong; Li, Junfeng; Chen, Yue; Jiang, Shibo; Du, Lanying; Zhou, Yusen

    2014-01-01

    Highly conserved ectodomain of influenza virus M2 protein (M2e) is an important target for the development of universal influenza vaccines. Today, the use of chemical or genetic fusion constructs have been undertaken to overcome the low immunogenicity of M2e in vaccine formulation. However, current M2e vaccines are neither orally delivered nor heat-stable. In this study, we evaluated the immune efficacy of an orally delivered recombinant M2e vaccine containing 3 molcules of M2e consensus sequence of influenza A viruses, termed RSM2e3. To accomplish this, CotB, a spore coat of Bacillus subtilis (B. subtilis), was used as a fusion partner, and heat-stable nonpathogenic B. subtilis spores were used as the carrier. Our results showed that CotB-M2e3 fusion had no effect on spore structure or function in the resultant recombinant RSM2e3 strain and that heterologous influenza virus M2e protein was successfully displayed on the surface of the recombinant RSM2e3 spore. Importantly, recombinant RSM2e3 spores elicited strong and long-term M2e-specific systemic and mucosal immune responses, completely protecting immunized mice from lethal challenge of A/PR/8/34(H1N1) influenza virus. Taken together, our study forms a solid basis for the development of a novel orally delivered and heat-stable influenza vaccine based on B. subtilis spore surface display.

  4. Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry.

    PubMed

    Zahavy, E; Fisher, M; Bromberg, A; Olshevsky, U

    2003-04-01

    Development of an ultrasensitive biosensor for biological hazards in the environment is a major need for pollutant control and for the detection of biological warfare. Fluorescence methods combined with immunodiagnostic methods are the most common. To minimize background noise, arising from the unspecific adsorption effect, we have adapted the FRET (frequency resonance energy transfer) effect to the immunofluorescence method. FRET will increase the selectivity of the diagnosis process by introducing a requirement for two different reporter molecules that have to label the antigen surface at a distance that will enable FRET. Utilizing the multiparameter capability of flow cytometry analysis to analyze the double-labeling/FRET immunostaining will lead to a highly selective and sensitive diagnostic method. This work examined the FRET interaction of fluorescence-labeled avidin molecules on biotin-coated microspheres as a model system. As target system, we have used labeled polyclonal antibodies on Bacillus anthracis spores. The antibodies used were purified immunoglobulin G (IgG) molecules raised in rabbits against B. anthracis exosoporium components. The antibodies were fluorescence labeled by a donor-acceptor chromophore pair, alexa488 as a donor and alexa594 as an acceptor. On labeling the spores with alexa488-IgG as a donor and alexa594-IgG as an acceptor, excitation at 488 nm results in quenching of the alexa-488 fluorescence (E(q) = 35%) and appearance of the alexa594 fluorescence (E(s) = 22%), as detected by flow cytometry analysis. The FRET effect leads to a further isolated gate (FL1/FL3) for the target spores compared to competitive spores such as B. thuringiensis subsp. israelensis and B. subtilis. This new approach, combining FRET labeling and flow cytometry analysis, improved the selectivity of the B. anthracis spores by a factor of 10 with respect to B. thuringiensis subsp. israelensis and a factor of 100 with respect to B. subtilis as control spores

  5. Fungal diseases of horses.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Otranto, Domenico

    2013-11-29

    Among diseases of horses caused by fungi (=mycoses), dermatophytosis, cryptococcosis and aspergillosis are of particular concern, due their worldwide diffusion and, for some of them, zoonotic potential. Conversely, other mycoses such as subcutaneous (i.e., pythiosis and mycetoma) or deep mycoses (i.e., blastomycosis and coccidioidomycosis) are rare, and/or limited to restricted geographical areas. Generally, subcutaneous and deep mycoses are chronic and progressive diseases; clinical signs include extensive, painful lesions (not pathognomonic), which resemble to other microbial infections. In all cases, early diagnosis is crucial in order to achieve a favorable prognosis. Knowledge of the epidemiology, clinical signs, and diagnosis of fungal diseases is essential for the establishment of effective therapeutic strategies. This article reviews the clinical manifestations, diagnosis and therapeutic protocols of equine fungal infections as a support to early diagnosis and application of targeted therapeutic and control strategies. PMID:23428378

  6. Fungal echinocandin resistance

    PubMed Central

    Walker, Louise A.; Gow, Neil A.R.; Munro, Carol A.

    2010-01-01

    The echinocandins are the newest class of antifungal agents in the clinical armory. These secondary metabolites are non-competitive inhibitors of the synthesis of β-(1,3)-glucan, a major structural component of the fungal cell wall. Recent work has shown that spontaneous mutations can arise in two hot spot regions of Fks1 the target protein of echinocandins that reduce the enzyme’s sensitivity to the drug. However, other strains have been isolated in which the sequence of FKS1 is unaltered yet the fungus has decreased sensitivity to echinocandins. In addition it has been shown that echinocandin-treatment can induce cell wall salvage mechanisms that result in the compensatory upregulation of chitin synthesis in the cell wall. This salvage mechanism strengthens cell walls damaged by exposure to echinocandins. Therefore, fungal resistance to echinocandins can arise due to the selection of either stable mutational or reversible physiological alterations that decrease susceptibility to these antifungal agents. PMID:19770064

  7. Fungal Sex and Pathogenesis

    PubMed Central

    Butler, Geraldine

    2010-01-01

    Summary: Human fungal pathogens are associated with diseases ranging from dandruff and skin colonization to invasive bloodstream infections. The major human pathogens belong to the Candida, Aspergillus, and Cryptococcus clades, and infections have high and increasing morbidity and mortality. Many human fungal pathogens were originally assumed to be asexual. However, recent advances in genome sequencing, which revealed that many species have retained the genes required for the sexual machinery, have dramatically influenced our understanding of the biology of these organisms. Predictions of a rare or cryptic sexual cycle have been supported experimentally for some species. Here, I examine the evidence that human pathogens reproduce sexually. The evolution of the mating-type locus in ascomycetes (including Candida and Aspergillus species) and basidiomycetes (Malassezia and Cryptococcus) is discussed. I provide an overview of how sex is suppressed in different species and discuss the potential associations with pathogenesis. PMID:20065328

  8. Fungal sex and pathogenesis.

    PubMed

    Butler, Geraldine

    2010-01-01

    Human fungal pathogens are associated with diseases ranging from dandruff and skin colonization to invasive bloodstream infections. The major human pathogens belong to the Candida, Aspergillus, and Cryptococcus clades, and infections have high and increasing morbidity and mortality. Many human fungal pathogens were originally assumed to be asexual. However, recent advances in genome sequencing, which revealed that many species have retained the genes required for the sexual machinery, have dramatically influenced our understanding of the biology of these organisms. Predictions of a rare or cryptic sexual cycle have been supported experimentally for some species. Here, I examine the evidence that human pathogens reproduce sexually. The evolution of the mating-type locus in ascomycetes (including Candida and Aspergillus species) and basidiomycetes (Malassezia and Cryptococcus) is discussed. I provide an overview of how sex is suppressed in different species and discuss the potential associations with pathogenesis. PMID:20065328

  9. Spore-Forming Bacteria that Resist Sterilization

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  10. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient.

    PubMed

    Çetinkaya, Erdoğan; Çörtük, Mustafa; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved. PMID:27418930

  11. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient

    PubMed Central

    Çetinkaya, Erdoğan; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H. Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved. PMID:27418930

  12. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient.

    PubMed

    Çetinkaya, Erdoğan; Çörtük, Mustafa; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved.

  13. Small intestinal fungal overgrowth.

    PubMed

    Erdogan, Askin; Rao, Satish S C

    2015-04-01

    Small intestinal fungal overgrowth (SIFO) is characterized by the presence of excessive number of fungal organisms in the small intestine associated with gastrointestinal (GI) symptoms. Candidiasis is known to cause GI symptoms particularly in immunocompromised patients or those receiving steroids or antibiotics. However, only recently, there is emerging literature that an overgrowth of fungus in the small intestine of non-immunocompromised subjects may cause unexplained GI symptoms. Two recent studies showed that 26 % (24/94) and 25.3 % (38/150) of a series of patients with unexplained GI symptoms had SIFO. The most common symptoms observed in these patients were belching, bloating, indigestion, nausea, diarrhea, and gas. The underlying mechanism(s) that predisposes to SIFO is unclear but small intestinal dysmotility and use of proton pump inhibitors has been implicated. However, further studies are needed; both to confirm these observations and to examine the clinical relevance of fungal overgrowth, both in healthy subjects and in patients with otherwise unexplained GI symptoms. Importantly, whether eradication or its treatment leads to resolution of symptoms remains unclear; at present, a 2-3-week course of antifungal therapy is recommended and may be effective in improving symptoms, but evidence for eradication is lacking. PMID:25786900

  14. Developments in Fungal Taxonomy

    PubMed Central

    Guarro, Josep; Gené, Josepa; Stchigel, Alberto M.

    1999-01-01

    Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales). PMID:10398676

  15. Fungal toenail infections

    PubMed Central

    2014-01-01

    Introduction Fungal infections are reported to cause 23% of foot diseases and 50% of nail conditions in people seen by dermatologists, but are less common in the general population, affecting 3% to 12% of people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of oral treatments for fungal toenail infections in adults? What are the effects of topical treatments for fungal toenail infections in adults? We searched: Medline, Embase, The Cochrane Library, and other important databases up to October 2013 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 13 studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: amorolfine, butenafine, ciclopirox, fluconazole, itraconazole, terbinafine, tioconazole, and topical ketoconazole. PMID:24625577

  16. Fungal toenail infections

    PubMed Central

    2011-01-01

    Introduction Fungal infections are reported to cause 23% of foot diseases and 50% of nail conditions in people seen by dermatologists, but are less common in the general population, affecting 3% to 5% of people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of oral treatments for fungal toenail infections? What are the effects of topical treatments for fungal toenail infections? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 12 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: amorolfine, butenafine, ciclopirox, fluconazole, griseofulvin, itraconazole, ketoconazole, mechanical debridement, terbinafine, and tioconazole. PMID:21846413

  17. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    PubMed

    Vannini, Candida; Carpentieri, Andrea; Salvioli, Alessandra; Novero, Mara; Marsoni, Milena; Testa, Lorenzo; de Pinto, Maria Concetta; Amoresano, Angela; Ortolani, Francesca; Bracale, Marcella; Bonfante, Paola

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions. PMID:26914272

  18. The fungal colonisation of rock-art caves: experimental evidence

    NASA Astrophysics Data System (ADS)

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France—both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity.

  19. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations

    PubMed Central

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when

  20. Snow in the city as a spore bank of potentially pathogenic fungi.

    PubMed

    Ejdys, Elżbieta; Biedunkiewicz, Anna; Dynowska, Maria; Sucharzewska, Ewa

    2014-02-01

    This study evaluates the role of snow as a specific ecological niche and a vector in fungal spreading with particular emphasis on potential pathogens in seasonally and daily changing conditions. The experimental material was fungi isolated from the atmospheric air, snow cover, and fragments of ice and soil from underneath the snow cover. The total count of microfungi in the air before snowfall, i.e. in the autumn, reached 1756.1 CFU/m(3) on average. After the first snowfalls, it dropped to 85.2 CFU/m(3). The analyzed samples of snow cover contained from 101.6 to 8500.0 CFU/m(3) of fungi. Furthermore, 26 species of yeast and yeast-like fungi were isolated from the experimental material. Amongst the analyzed species, 13 were potential anthropopathogens. Though another three species were isolated from organ ontocenoses, i.e. Candida intermedia, Saccharomyces bayanus and Zygosaccharomyces rouxii, their pathogenic potential has not yet been explicitly confirmed. The results of the presented study may be applied in predicting concentrations of fungal spores responsible for mycoses. The first snowfalls significantly reduced the number of colony-forming units of fungi in the air. Under conditions of temperate climate, snow becomes a temporary bank of yeast-like fungi spores and while it melts cells of deposited microfungi migrate to the atmosphere. Hence, individuals with impaired immunity or in the course of immunosuppression or recovery should avoid long walks during periods of snow melting. The count of fungi in urban bioaerosol during the melt may be reduced through systematic removal of snow cover, which is a significant reservoir of potential pathogens. In addition, it should be noted that even a typical psychrophilic strain, capable of surviving at a temperature of 37°C, may bear a significant pathogenic potential.

  1. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    PubMed

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-01

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products.

  2. Contamination of healthcare workers' hands with bacterial spores.

    PubMed

    Sasahara, Teppei; Ae, Ryusuke; Watanabe, Michiyo; Kimura, Yumiko; Yonekawa, Chikara; Hayashi, Shunji; Morisawa, Yuji

    2016-08-01

    Clostridium species and Bacillus spp. are spore-forming bacteria that cause hospital infections. The spores from these bacteria are transmitted from patient to patient via healthcare workers' hands. Although alcohol-based hand rubbing is an important hand hygiene practice, it is ineffective against bacterial spores. Therefore, healthcare workers should wash their hands with soap when they are contaminated with spores. However, the extent of health care worker hand contamination remains unclear. The aim of this study is to determine the level of bacterial spore contamination on healthcare workers' hands. The hands of 71 healthcare workers were evaluated for bacterial spore contamination. Spores attached to subject's hands were quantitatively examined after 9 working hours. The relationship between bacterial spore contamination and hand hygiene behaviors was also analyzed. Bacterial spores were detected on the hands of 54 subjects (76.1%). The mean number of spores detected was 468.3 CFU/hand (maximum: 3300 CFU/hand). Thirty-seven (52.1%) and 36 (50.7%) subjects were contaminated with Bacillus subtilis and Bacillus cereus, respectively. Nineteen subjects (26.8%) were contaminated with both Bacillus species. Clostridium difficile was detected on only one subject's hands. There was a significant negative correlation between the hand contamination level and the frequency of handwashing (r = -0.44, P < 0.01) and a significant positive correlation between the hand contamination level and the elapsed time since last handwashing (r = 0.34, P < 0.01). Healthcare workers' hands may be frequently contaminated with bacterial spores due to insufficient handwashing during daily patient care.

  3. Contamination of healthcare workers' hands with bacterial spores.

    PubMed

    Sasahara, Teppei; Ae, Ryusuke; Watanabe, Michiyo; Kimura, Yumiko; Yonekawa, Chikara; Hayashi, Shunji; Morisawa, Yuji

    2016-08-01

    Clostridium species and Bacillus spp. are spore-forming bacteria that cause hospital infections. The spores from these bacteria are transmitted from patient to patient via healthcare workers' hands. Although alcohol-based hand rubbing is an important hand hygiene practice, it is ineffective against bacterial spores. Therefore, healthcare workers should wash their hands with soap when they are contaminated with spores. However, the extent of health care worker hand contamination remains unclear. The aim of this study is to determine the level of bacterial spore contamination on healthcare workers' hands. The hands of 71 healthcare workers were evaluated for bacterial spore contamination. Spores attached to subject's hands were quantitatively examined after 9 working hours. The relationship between bacterial spore contamination and hand hygiene behaviors was also analyzed. Bacterial spores were detected on the hands of 54 subjects (76.1%). The mean number of spores detected was 468.3 CFU/hand (maximum: 3300 CFU/hand). Thirty-seven (52.1%) and 36 (50.7%) subjects were contaminated with Bacillus subtilis and Bacillus cereus, respectively. Nineteen subjects (26.8%) were contaminated with both Bacillus species. Clostridium difficile was detected on only one subject's hands. There was a significant negative correlation between the hand contamination level and the frequency of handwashing (r = -0.44, P < 0.01) and a significant positive correlation between the hand contamination level and the elapsed time since last handwashing (r = 0.34, P < 0.01). Healthcare workers' hands may be frequently contaminated with bacterial spores due to insufficient handwashing during daily patient care. PMID:27236515

  4. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  5. Fungal osteomyelitis and septic arthritis.

    PubMed

    Bariteau, Jason T; Waryasz, Gregory R; McDonnell, Matthew; Fischer, Staci A; Hayda, Roman A; Born, Christopher T

    2014-06-01

    Management of fungal osteomyelitis and fungal septic arthritis is challenging, especially in the setting of immunodeficiency and conditions that require immunosuppression. Because fungal osteomyelitis and fungal septic arthritis are rare conditions, study of their pathophysiology and treatment has been limited. In the literature, evidence-based treatment is lacking and, historically, outcomes have been poor. The most common offending organisms are Candida and Aspergillus, which are widely distributed in humans and soil. However, some fungal pathogens, such as Histoplasma, Blastomyces, Coccidioides, Cryptococcus, and Sporothrix, have more focal areas of endemicity. Fungal bone and joint infections result from direct inoculation, contiguous infection spread, or hematogenous seeding of organisms. These infections may be difficult to diagnose and eradicate, especially in the setting of total joint arthroplasty. Although there is no clear consensus on treatment, guidelines are available for management of many of these pathogens.

  6. The dynamics of the fungal aerospores Alternaria sp. and Cladosporium sp. in Parisian atmospheric air, in France

    NASA Astrophysics Data System (ADS)

    Brezoczki, V. M.

    2016-08-01

    The bioallergens occurring naturally in the atmospheric air are microorganisms, pollen grains, plant seeds, leaf and stem scrap, or their protein molecules. The presence of various airborne fungal spores determines a high allergenic potential for public health. This effect is due to the high number of produced spores, which under favourable meteorological conditions (dry weather and wind) reach the surrounding air. This paper traces the dynamics of two types of fungi, Alternaria sp and Cladosporium sp, fungi which can be found outdoors, in the surrounding air, as well as indoors, inside houses (especially the conidia of Cladosporium sp). The effects of these fungal spores on human health are varies, ranging from seasonal allergies (hay fever, rhinitis, sinusitis etc.) to sever afflictions of the respiratory system, onset of asthma, disfunctionalities of the nervous systems, of the immune system, zymoses etc. The monitoring of the dynamics of the aerospores Alternaria sp and Cladosporium sp was carried out between 2010 and 2013, over a period of 42 weeks during one calendar year, from February to the end of September, in the surrounding air in the French capital, Paris. The regional and global climate and meteorological conditions are directly involved in the occurrence and development of fungi colonies, the transportation and dispersion of fungal spores in the atmospheric air, as well as in the creation of the environment required for the interaction of chemical and biological components in the air. Knowledge of the dynamics of the studied fungal aerospores, coupled with climate and meteorological changes, offers a series of information on the magnitude of the allergenic potential these airborne spores can determine. Legal regulations in this domain set the allergen risk threshold for the Alternaria sp aerospores at 3500 ÷ 7000 spores/m3 air/week, and for the Cladosporium sp aerospores at 56,000 spores/m3 air/week. Besides these regulations there exist a series of

  7. Fungal mastoiditis in immunocompromised children.

    PubMed

    Slack, C L; Watson, D W; Abzug, M J; Shaw, C; Chan, K H

    1999-01-01

    The immunocompromised host is subject to a variety of opportunistic infections. Mycotic infections, including invasive fungal sinusitis, are a dreaded complication in immune deficient children. Fungal mastoiditis has rarely been described in this population. Our experience with 2 cases of fungal mastoiditis in immunocompromised children is reviewed. Case histories describing aggressive medical management with and without surgical intervention and a review of the literature are presented. PMID:9932592

  8. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

    2008-09-30

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  9. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Schadt, Christopher Warren; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael E

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

  10. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Schadt, Christopher Warren; Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Rizvi, L; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  11. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation

    NASA Astrophysics Data System (ADS)

    Chen, Juanni; Peng, Hui; Wang, Xiuping; Shao, Feng; Yuan, Zhaodong; Han, Heyou

    2014-01-01

    To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range

  12. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  13. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxi