Science.gov

Sample records for fungus cunninghamella elegans

  1. Biotransformation of Malachite Green by the Fungus Cunninghamella elegans

    PubMed Central

    Cha, Chang-Jun; Doerge, Daniel R.; Cerniglia, Carl E.

    2001-01-01

    The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized the triphenylmethane dye malachite green with a first-order rate constant of 0.029 μmol h−1 (mg of cells)−1. Malachite green was enzymatically reduced to leucomalachite green and also converted to N-demethylated and N-oxidized metabolites, including primary and secondary arylamines. Inhibition studies suggested that the cytochrome P450 system mediated both the reduction and the N-demethylation reactions. PMID:11526047

  2. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans

    SciTech Connect

    Cerniglia, C.E.; Yang, S.K.

    1984-01-01

    The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately transdihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes. 26 references.

  3. The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs).

    PubMed

    Rydevik, Axel; Thevis, Mario; Krug, Oliver; Bondesson, Ulf; Hedeland, Mikael

    2013-05-01

    1. Selective androgen receptor modulators (SARMs) are a group of substances that have potential to be used as doping agents in sports. Being a relatively new group not available on the open market means that no reference materials are commercially available for the main metabolites. In the presented study, the in vitro metabolism of SARMs by the fungus Cunninghamella elegans has been investigated with the purpose of finding out if it can produce relevant human and equine metabolites. 2. Three different SARMs, S1, S4 and S24, were incubated for 5 days with C. elegans. The samples were analysed both with and without sample pretreatment using ultra performance liquid chromatography coupled to high resolution mass spectrometry. 3. All the important phase I and some phase II metabolites from human and horse were formed by the fungus. They were formed through reactions such as hydroxylation, deacetylation, O-dephenylation, nitro-reduction, acetylation and sulfonation. 4. The study showed that the fungus produced relevant metabolites of the SARMs and thus can be used to mimic mammalian metabolism. Furthermore, it has the potential to be used for future production of reference material.

  4. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    PubMed

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. (19)F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  5. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans.

    PubMed

    Bernat, Przemysław; Gajewska, Ewa; Szewczyk, Rafał; Słaba, Mirosława; Długoński, Jerzy

    2014-03-01

    To investigate the response of the tributyltin-degrading fungal strain Cunninghamella elegans to the organotin, a comparative lipidomics strategy was employed using an LC/MS-MS technique. A total of 49 lipid species were identified. Individual phospholipids were then quantified using a multiple reaction monitoring method. Tributyltin (TBT) caused a decline in the amounts of many molecular species of phosphatidylethanolamine or phosphatidylserine and an increase in the levels of phosphatidic acid, phosphatidylinositol and phosphatidylcholine. In the presence of TBT, it was observed that overall unsaturation was lower than in the control. Lipidome data were analyzed using principal component analysis, which confirmed the compositional changes in membrane lipids in response to TBT. Additionally, treatment of fungal biomass with butyltin led to a significant increase in lipid peroxidation. It is suggested that modification of the phospholipids profile and lipids peroxidation may reflect damage to mycelium caused by TBT.

  6. Molecular cloning, expression and characterization of a novel class glutathione S-transferase from the fungus Cunninghamella elegans.

    PubMed Central

    Cha, Chang-Jun; Kim, Seong-Jae; Kim, Yong-Hak; Stingley, Robin; Cerniglia, Carl E

    2002-01-01

    The structural gene for glutathione S-transferase (CeGST1-1) in the fungus Cunninghamella elegans was cloned by screening a cDNA library using a degenerate oligonucleotide probe based on the N-terminal sequence of the purified protein. Open reading frame analysis indicated that the cegst1 gene encodes a protein of 210 amino acid residues. The deduced amino acid sequence showed 25% sequence identity with the sequence of the Pi-class GST from Danio rerio (zebrafish). Similarity was also shown with the Alpha-class GST from Fasciola hepatica (liver fluke; 23% identity), the Mu class from Mus musculus (22%) and the Sigma class from Ommastrephes sloani (squid; 21%). Further screening of a cDNA library with the cegst1 gene probe revealed the presence of another GST isoenzyme (CeGST2-2) in this fungus, which shows 84% sequence identity with CeGST1-1 at the amino acid level. Reverse transcription PCR revealed that cegst2 was also expressed at the mRNA level in the fungus C. elegans. Both cegst genes were overexpressed in Escherichia coli using the expression vector pQE51, displaying specific activities with 1-chloro-2,4-dinitrobenzene of 2.04 and 0.75 micromol/min per mg of protein respectively. Both enzymes exhibited a similar substrate specificity and inhibition profile, indicating that CeGST1-1 and CeGST2-2 belong to the same GST class. Mutagenesis analysis revealed that Tyr(10) in the N-terminal region is essential for catalysis of CeGST1-1. We propose from these results that the CeGSTs are novel Gamma-class GSTs and designated as GSTG1-1 and GSTG2-2 respectively. PMID:12196209

  7. Action of tributyltin (TBT) on the lipid content and potassium retention in the organotins degradating fungus Cunninghamella elegans.

    PubMed

    Bernat, Przemysław; Słaba, Mirosława; Długoński, Jerzy

    2009-09-01

    The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K(+) g dry weight(-1). The maximum concentration of K(+) was 15.06 mg g(-1) dry weight at 30 mg l(-1) of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5-30 mg l(-1) strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.

  8. A mass spectrometric study on meloxicam metabolism in horses and the fungus Cunninghamella elegans, and the relevance of this microbial system as a model of drug metabolism in the horse.

    PubMed

    Tevell Aberg, Annica; Olsson, Charlotte; Bondesson, Ulf; Hedeland, Mikael

    2009-07-01

    This paper describes a study where the metabolism of the non-steroidal anti-inflammatory drug meloxicam was investigated in six horses and in the filamentous fungus Cunninghamella elegans. The metabolites identified were compared between the species, and then the fungus was used to produce larger amounts of the metabolites for future use as reference material. C. elegans proved to be a good model of phase I meloxicam metabolism in horses since all four metabolites found were the same in both species. Apart from the two main metabolites, 5'-hydroxymethylmeloxicam and 5'-carboxymeloxicam, a second isomer of hydroxymeloxicam and dihydroxylated meloxicam were detected for the first time in horse urine and the microbial incubations. Phase II metabolites were not discovered in the C. elegans samples but hydroxymeloxicam glucuronide was detected intact in horse urine for the first time in this study. Urine from six horses was further analyzed in a semi-quantitative sense and 5'-hydroxymethylmeloxicam gave peaks with much higher intensity compared to the parent drug and the other metabolites, and was detected for at least 14 days after the last given dose in some of the horses. From the results presented in this article, we suggest that analytical methods developed for the detection of meloxicam in horse urine after prohibited use should focus on the 5'-hydroxymethyl metabolite and that C. elegans can be used to produce large amounts of this metabolite for potential future use as a reference compound. Copyright 2009 John Wiley & Sons, Ltd.

  9. Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans.

    PubMed Central

    Zhang, D; Freeman, J P; Sutherland, J B; Walker, A E; Yang, Y; Cerniglia, C E

    1996-01-01

    When tested as a microbial model for mammalian drug metabolism, the filamentous fungus Cunninghamella elegans metabolized chlorpromazine and methdilazine within 72 h. The metabolites were extracted by chloroform, separated by high-performance liquid chromatography, and characterized by proton nuclear magnetic resonance, mass, and UV spectroscopic analyses. The major metabolites of chlorpromazine were chlorpromazine sulfoxide (36%), N-desmethylchlorpromazine (11%), N-desmethyl-7-hydroxychlorpromazine (6%), 7-hydroxychlorpromazine sulfoxide (36%), N-hydroxychlorpromazine (11%), 7-hydroxychlorpromazine sulfoxide (5%), and chlorpromazine N-oxide (2%), all of which have been found in animal studies. The major metabolites of methdilazine were 3-hydroxymethdilazine (3%). (18)O(2) labeling experiments indicated that the oxygen atoms in methdilazine sulfoxide, methdilazine N-oxide, and 3-hydroxymethdilazine were all derived from molecular oxygen. The production of methdilazine sulfoxide and 3-hydroxymethdilazine was inhibited by the cytochrome P-450 inhibitors metyrapone and proadifen. An enzyme activity for the sulfoxidation of methdilazine was found in microsomal preparations of C. elegans. These experiments suggest that the sulfoxidation and hydroxylation of methdilazine and chlorpromazine by C. elegans are catalyzed by cytochrome P-450. PMID:8975609

  10. Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans.

    PubMed

    Zhang, D; Freeman, J P; Sutherland, J B; Walker, A E; Yang, Y; Cerniglia, C E

    1996-03-01

    When tested as a microbial model for mammalian drug metabolism, the filamentous fungus Cunninghamella elegans metabolized chlorpromazine and methdilazine within 72 h. The metabolites were extracted by chloroform, separated by high-performance liquid chromatography, and characterized by proton nuclear magnetic resonance, mass, and UV spectroscopic analyses. The major metabolites of chlorpromazine were chlorpromazine sulfoxide (36%), N-desmethylchlorpromazine (11%), N-desmethyl-7-hydroxychlorpromazine (6%), 7-hydroxychlorpromazine sulfoxide (36%), N-hydroxychlorpromazine (11%), 7-hydroxychlorpromazine sulfoxide (5%), and chlorpromazine N-oxide (2%), all of which have been found in animal studies. The major metabolites of methdilazine were 3-hydroxymethdilazine (3%). (18)O(2) labeling experiments indicated that the oxygen atoms in methdilazine sulfoxide, methdilazine N-oxide, and 3-hydroxymethdilazine were all derived from molecular oxygen. The production of methdilazine sulfoxide and 3-hydroxymethdilazine was inhibited by the cytochrome P-450 inhibitors metyrapone and proadifen. An enzyme activity for the sulfoxidation of methdilazine was found in microsomal preparations of C. elegans. These experiments suggest that the sulfoxidation and hydroxylation of methdilazine and chlorpromazine by C. elegans are catalyzed by cytochrome P-450.

  11. Transformation of jervine by Cunninghamella elegans ATCC 9245.

    PubMed

    El Sayed, K A; Halim, A F; Zaghloul, A M; Dunbar, D C; McChesney, J D

    2000-09-01

    Preparative-scale fermentation of the known C-nor-D-homosteroidal jerveratrum alkaloid jervine with Cunninghamella elegans (ATCC 9245) has resulted in the isolation of (-)-jervinone as the major metabolite. In addition, C. elegans ATCC 9245 was able to epimerize C-3 of jervine, producing 3-epi-jervine. This epimerization reaction was similar to that reported for tomatidine, the known spirosolane-type Solanum alkaloid. The structure elucidation of both metabolites was based primarily on 1D- and 2D-NMR analyses.

  12. Production of drug metabolites by immobilised Cunninghamella elegans: from screening to scale up.

    PubMed

    Quinn, Laura; Dempsey, Rita; Casey, Eoin; Kane, Ayla; Murphy, Cormac D

    2015-05-01

    Cunninghamella elegans is a fungus that has been used extensively as a microbial model of mammalian drug metabolism, whilst its potential as a biocatalyst for the preparative production of human drug metabolites has been often proposed, little effort has been made to enable this. Here, we describe a workflow for the application of C. elegans for the production of drug metabolites, starting from well-plate screening assays leading to the preparative production of drug metabolites using fungus immobilised either in alginate or as a biofilm. Using 12- and 96-well plates, the simultaneous screening of several drug biotransformations was achieved. To scale up the biotransformation, both modes of immobilisation enabled semi-continuous production of hydroxylated drug metabolites through repeated addition of drug and rejuvenation of the fungus. It was possible to improve the productivity in the biofilm culture for the production of 4'-hydroxydiclofenac from 1 mg/l h to over 4 mg/l h by reducing the incubation time for biotransformation and the number of rejuvenation steps.

  13. Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture.

    PubMed

    Bernat, Przemysław; Szewczyk, Rafał; Krupiński, Mariusz; Długoński, Jerzy

    2013-02-15

    Organotin compounds are ubiquitous in environment. However, biodegradation of tributyltin (TBT) and dibutyltin (DBT) to non toxic metabolites by fungi has been seldom observed. In this study we constructed a fungal co-culture with an efficient ability of TBT and its metabolites removal. The microscopic fungus strain Cunninghamella elegans degraded TBT via hydroxybutyldibutyltin (OHBuDBT) to its metabolites: DBT and monobutyltin (MBT), which were then transformed by Cochliobolus lunatus. The sequential biodegradation resulted in a 10-fold decrease in samples toxicity to Artemia franciscana larvae. With an initial TBT concentration of 5 mg l(-1), the co-culture of both fungi almost completely eliminated butyltins during 12 days of incubation in synthetic medium. To our knowledge, this is the first report that the mixed fungal co-culture could efficiently degrade TBT. This process was associated with glucose utilization, and a cometabolic nature of butyltins removal by selected strains has been suggested.

  14. Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans

    SciTech Connect

    Cerniglia, C.E.; Lambert, K.J.; Miller, D.W.; Freeman, J.P.

    1984-01-01

    Cunninghamella elegans metabolized 1- and 2-methylnaphthalene primarily at the methyl group to form 1- and 2-hydroxymethylnaphthalene, respectively. Other compounds isolated and identified were 1- and 2-naphthoic acids, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, and phenolic derivatives of 1- and 2-methylnaphthalene. The metabolites were isolated by thin-layer and reverse-phase high-presure liquid chromatography and characterized by the application of UV-visible absorption, /sup 1/H nuclear magnetic resonance, and mass spectral techniques. Experiments with (8-/sup 14/C)2-methylnaphthalene indicated that over a 72-h period, 9.8% of 2-methylnaphthalene was oxidized to metabolic products. The ratio of organic-soluble to water-soluble metabolites at 2 h was 92:8, and at 72 h it was 41:59. Enzymatic treatment of the 48-h aqueous phase with either ..beta..-glucuronidase or arylsufatase released 60% of the metabolites of 2-methylnaphthalene that were extractable with ethyl acetate. In both cases, the major conjugates released were 5-hydroxy-2-naphthoic acid and 6-hydroxy-2-naphthoic acid. The ratio of the water-soluble glucuronide conjugates to sulfate conjugates was 1:1. Incubation of C. elegans with 2-methylnaphthalene under an /sup 18/O/sub 2/ atmosphere and subsequent mass spectral analysis of 2-hydroxymethylnaphthalene indicated that hydroxylation of the methyl group is catalyzed by a monooxygenase. 23 references.

  15. Biotransformation of drospirenone, a contraceptive drug, with Cunninghamella elegans.

    PubMed

    Baydoun, Elias; Atia-Tul-Wahab; Iqbal, Sheeza; Smith, Colin; Choudhary, M Iqbal

    2017-10-01

    Biotransformation of an orally active contraceptive drug, drospirenone (1), by Cunninghamella elegans ATCC 36114 yielded four new metabolites, 6β,7β,15β,16β-dimethylene-3-oxo-14α-hydroxy-17α-pregn-4-ene-21,17-carbolactone (2), 6β,7β,15β,16β-dimethylene-3,11-dioxo-17α-pregn-4-ene-21,17-carbolactone (3), 6β,7β,15β,16β-dimethylene-3,12-dioxo-17α-pregn-4-ene-21,17-carbolactone (4), and 6β,7β,15β,16β-dimethylene-3-oxo-11β,14α-dihydroxy-17α-pregn-4-ene-21,17-carbolactone (5), along with a known metabolite, 6β,7β,15β,16β-dimethylene-3-oxo-11α-dihydroxy-17α-pregn-4-ene-21,17-carbolactone (6). This study provides not only new analogues of orally active contraceptive drug, drospirenone, but also help in understanding the metabolism of this important drug. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cadmium Tolerance and Removal from Cunninghamella elegans Related to the Polyphosphate Metabolism

    PubMed Central

    de Lima, Marcos A. B.; Franco, Luciana de O.; de Souza, Patrícia M.; do Nascimento, Aline E.; da Silva, Carlos A. A.; Maia, Rita de C. C.; Rolim, Hercília M. L.; Takaki, Galba M. C.

    2013-01-01

    The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109) growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compared to the control. Moreover, C. elegans removed 70%–81% of the cadmium added to the culture medium during its growth. The C. elegans mycelia showed a removal efficiency of 280 mg/g at a cadmium concentration of 22.10 mg/L, and the removal velocity of cadmium was 0.107 mg/h. Additionally, it was observed that cadmium induced vacuolization, the presence of electron dense deposits in vacuoles, cytoplasm and cell membranes, as well as the distinct behavior of polyphosphate fractions. The results obtained with C. elegans suggest that precipitation, vacuolization and polyphosphate fractions were associated to cadmium tolerance, and this species demonstrated a higher potential for bioremediation of heavy metals. PMID:23538844

  17. [Makeup of free intracellular amino acids in Cunninghamella elegans growing on media with hydrocarbons].

    PubMed

    Kazanskaia, T B; Lieh Ts'ui Lin; Bekhtereva, M N

    1975-01-01

    The rate of growth of Cunninghamella elegans (--) 1204 is higher on a mineral medium with glucose (6.56 g/litre) than on a mineral medium containing undecane, tridecane, and pentadecane (0.72--0.87 g/litre); all glutamic acid is consumed only from the medium with glucose. The cells contain 15--16 free amino acids and 1--2 amides, glutamic and aspartic acids and alanine prevailing. The culture grown on the medium with glucose contains asparagine, and the cells cultivated on the medium with alkanes contain histidine. Non-proteinogenous aminobutyric acids were found in the pool of the cells grown on all tested media with an exception of the medium containing undecane.

  18. Microbial biotransformation of cryptotanshinone by Cunninghamella elegans and its application for metabolite identification in rat bile.

    PubMed

    Sun, Jiang-Hao; Yang, Min; Ma, Xiao-Chi; Kang, Jie; Han, Jian; Guo, De-An

    2009-06-01

    Cryptotanshinone (1) is one of the major bioactive constituents in Salvia miltiorrhiza Bunge. Preparative-scale biotransformation of cryptotanshinone by Cunninghamella elegans (AS 3.2082) produced three new products, which were identified as (3R,15R)-3-hydroxycryptotanshinone (2), (3S,15R)-3-hydroxycryptotanshinone (3), and (4S,15R)-18-hydroxycryptotanshinone (4), respectively. The structural elucidation was based primarily on 1D and 2D NMR and HR-ESI-MS analyses. The absolute configuration of these three products was confirmed by comparison of their circular dichroism spectra with those of the known compounds. These biotransformed metabolites were used as for the comparison of in vivo metabolites in rat bile sample after intravenous administration and they are identical to three of the minor hydroxylated metabolites in vivo, which suggested that microbial biotransformation model was a useful and feasible approach for the preparation of mammalian metabolites in trace.

  19. Green conversion of agroindustrial wastes into chitin and chitosan by Rhizopus arrhizus and Cunninghamella elegans strains.

    PubMed

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Alcântara, Sergio Roberto Cabral; da Silva, Antonio Cardoso; da Silva, Adamares Marques; do Nascimento, Aline Elesbão; de Campos-Takaki, Galba Maria

    2014-05-21

    This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79-3.40 cP and low molecular weight of 5.08×10³ and 4.68×10³ g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria.

  20. Green Conversion of Agroindustrial Wastes into Chitin and Chitosan by Rhizopus arrhizus and Cunninghamella elegans Strains

    PubMed Central

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Alcântara, Sergio Roberto Cabral; da Silva, Antonio Cardoso; da Silva, Adamares Marques; do Nascimento, Aline Elesbão; de Campos-Takaki, Galba Maria

    2014-01-01

    This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79–3.40 cP and low molecular weight of 5.08 × 103 and 4.68 × 103 g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria. PMID:24853288

  1. Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach.

    PubMed

    Tigini, Valeria; Prigione, Valeria; Donelli, Ilaria; Anastasi, Antonella; Freddi, Giuliano; Giansanti, Pietro; Mangiavillano, Antonella; Varese, Giovanna Cristina

    2011-04-01

    The effect of pre-treatments on the composition of Cunninghamella elegans biomass and on its biosorption yields in the treatment of simulated textile wastewaters was investigated. The inactivated biomass was subjected to physical treatments, such as oven drying and lyophilisation, and chemical treatments using acid or alkali. The wastewater colour, COD and toxicity variations were evaluated. The lyophilisation sped up the biosorption process, whereas the chemical pre-treatment changed the affinity of biomass for different dyes. The alkali per-treated biomass achieved the highest COD reduction in the treatment of alkali wastewaters, probably because no release of alkali-soluble biomass components occurred under the alkaline pH conditions. Accordingly, only the acid pre-treated biomass decreased the COD of the acidic effluent. The ecotoxicity test showed significant toxicity reduction after biosorption treatments, indicating that decolourisation corresponds to an actual detoxification of the treated wastewaters. Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analyses of biomasses allowed highlighting their main chemical and physical properties and the changes induced by the different pre-treatments, as well as the effect of the chemical species adsorbed from wastewaters.

  2. Effects of chitosan from Cunninghamella elegans on virulence of post-harvest pathogenic fungi in table grapes (Vitis labrusca L.).

    PubMed

    de Oliveira, Carlos Eduardo Vasconcelos; Magnani, Marciane; de Sales, Camila Veríssimo; de Souza Pontes, Alline Lima; Campos-Takaki, Galba Maria; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite

    2014-02-03

    This study aimed to obtain chitosan (CHI) from Cunninghamella elegans cultivated in corn step liquid (CSL)-based medium under optimized conditions and to assess the efficacy of the obtained CHI in inhibiting Botrytis cinerea and Penicillium expansum in laboratory media and when applied as a coating on table grapes (Vitis labrusca L.). Moreover, the influence of CHI-based coatings on several physical, physicochemical and sensory characteristics of the fruits during storage was assessed. According to the surface response methodology, the best conditions for isolating CHI from C. elegans cultivated in CSL-medium yielded 8.8 g/100mL at pHs between 5.0 and 5.5 and at 180 rpm. CHI from C. elegans inhibited mycelial growth and spore germination and caused morphological changes in the spores of the tested fungal strains. The CHI coatings delayed the growth of the assayed fungal strains in artificially infected grapes. Applying a CHI coating preserved the quality of grapes, as measured by some physical, physicochemical and sensory attributes, throughout the assessed storage time. These results demonstrate the potential of CHI from C. elegans to control post-harvest pathogenic fungi in fruits, in particular, B. cinerea and P. expansum in table grapes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Enhanced Biotransformation of Fluoranthene by Intertidally Derived Cunninghamella elegans under Biofilm-Based and Niche-Mimicking Conditions

    PubMed Central

    Mitra, Sayani; Pramanik, Arnab; Banerjee, Srijoni; Haldar, Saubhik; Gachhui, Ratan

    2013-01-01

    The aims of the investigation were to ascertain if surface attachment of Cunninghamella elegans and niche intertidal conditions provided in a bioreactor influenced biotransformation of fluoranthene by C. elegans. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disc allowed comparison of fluoranthene biotransformation between CCFs with a hydrophobic surface (PMMA-CCF) and a hydrophilic glass surface (GS-CCF) and a 500-ml Erlenmeyer flask (EF). Fluoranthene biotransformation was higher by 22-fold, biofilm growth was higher by 3-fold, and cytochrome P450 gene expression was higher by 2.1-fold when C. elegans was cultivated with 2% inoculum as biofilm culture in PMMA-CCF compared to planktonic culture in EF. Biotransformation was enhanced by 7-fold with 10% inoculum. The temporal pattern of biofilm progression based on three-channel fluorescence detection by confocal laser scanning microscopy demonstrated well-developed, stable biofilm with greater colocalization of fluoranthene within extracellular polymeric substances and filaments of the biofilm grown on PMMA in contrast to a glass surface. A bioreactor with discs rotating at 2 revolutions per day affording 6-hourly emersion and immersion mimicked the niche intertidal habitat of C. elegans and supported biofilm formation and transformation of fluoranthene. The amount of transformed metabolite was 3.5-fold, biofilm growth was 3-fold, and cytochrome P450 gene expression was 1.9-fold higher in the process mimicking the intertidal conditions than in a submerged process without disc rotation. In the CCF and reactor, where biofilm formation was comparatively greater, higher concentration of exopolysaccharides allowed increased mobilization of fluoranthene within the biofilm with consequential higher gene expression leading to enhanced volumetric productivity. PMID:24038685

  4. Substrates enriched by the fungus Cunninghamella echinulata: an in vitro study of nutrient composition, sheep rumen fermentation and lipid metabolism.

    PubMed

    Wencelová, M; Váradyová, Z; Mihaliková, K; Guothová, L; Janštová, J; Certík, M; Homoľová, L; Pristaš, P; Jalč, D; Kišidayová, S

    2014-10-01

    Enrichment of wheat bran (WB), corn meal (CM) and barley flakes (BF) with the oleaginous fungus Cunninghamella echinulata (CE) might lead to effective use of these by-products in ruminant nutrition. We examined their effects on rumen fermentation and lipid metabolism. WB, CM and BF substrates without or with brewer's grains (WBG, CMG, BFG) and enriched with CE were incubated with meadow hay (MH, 500 : 500, w/w) in rumen fluid in vitro for 24 h. The dry matter of the CE-enriched substrates increased (by 2-4%); however, digestibility decreased (P < 0·01). Adverse effects of CE-enriched substrates on the rumen ciliate population were observed. Little effect on the rumen eubacterial population was detected by the 16S-polymerase chain reaction/denaturizing gradient gel electrophoresis method. The increase in γ-linolenic acid output in the MH + BFGCE diet (800 : 200, w/w) was accompanied by an increase in rumen biohydrogenation of polyunsaturated fatty acids. The diet substrates enriched with the fungus CE were less digestible than the untreated cereal substrates; no appreciable positive effect was observed on rumen fermentation patterns or the eubacterial and ciliate populations. The in vitro study showed that adding CE-enriched substrates to ruminant diets is not effective for improving rumen fermentation. © 2014 The Society for Applied Microbiology.

  5. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    USDA-ARS?s Scientific Manuscript database

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  6. Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves.

    PubMed

    Meepagala, Kumudini M; Johnson, Robert D; Techen, Natascha; Wedge, David E; Duke, Stephen O

    2015-07-01

    Zinnia elegans Jacq. plants are infected by a fungus that causes dark red spots with necrosis on leaves, particularly in late spring to the middle of summer in the Mid-South of the United States. This fungal disease causes the leaves to wilt and eventually kills the plant. The fungus was isolated, cultured in potato dextrose broth, and identified as Nigrospora sphaerica by molecular techniques. Two major lactone metabolites (phomalactone and catenioblin A) were isolated from liquid culture of N. sphaerica isolated from Z. elegans. When injected into leaves of Z. elegans, phomalactone caused lesions similar to those of the fungus. The lesion sizes were proportional to the concentration of the phomalactone. Phomalactone, but not catenioblin A, was phytotoxic to Z. elegans and other plant species by inhibition of seedling growth and by causing electrolyte leakage from photosynthetic tissues of both Z. elegans leaves and cucumber cotyledons. This latter effect may be related to the wilting caused by the fungus in mature Z. elegans plants. Phomalactone was moderately fungicidal to Coletotrichum fragariae and two Phomopsis species, indicating that the compound may keep certain other fungi from encroaching into plant tissue that N. sphaerica has infected. Production of large amounts of phomalactone by N. sphaerica contributes to the pathogenic behavior of this fungus, and may have other ecological functions in the interaction of N. sphaerica with other fungi. This is the first report of isolation of catenioblin A from a plant pathogenic fungus. The function of catenioblin A is unclear, as it was neither significantly phyto- nor fungitoxic.

  7. Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity.

    PubMed

    Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Oliveira Franco, Luciana; do Nascimento, Aline Elesbão; Cavalcante, Horacinna M de M; Macedo, Rui Oliveira; de Campos-Takaki, Galba Maria

    2014-02-28

    Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL) and cassava wastewater (CW) established using a 2² full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L) was obtained in trial 3 (5% CW, 8% CSL), the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL). Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 10³ Da). Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  8. Harnessing indigenous plant seed oil for the production of bio-fuel by an oleaginous fungus, Cunninghamella blakesleeana- JSK2, isolated from tropical soil.

    PubMed

    Sukrutha, S K; Janakiraman, Savitha

    2014-01-01

    Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15-18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.

  9. Carbazole hydroxylation by the filamentous fungi of the Cunninghamella species.

    PubMed

    Zawadzka, K; Bernat, P; Felczak, A; Lisowska, K

    2015-12-01

    Nitrogen heterocyclic compounds, especially carbazole, quinolone, and pyridine are common types of environmental pollutants. Carbazole has a toxic influence on living organisms, and the knowledge of its persistence and bioconversion in ecosystems is still not complete. There is an increasing interest in detoxification of hazardous xenobiotics by microorganisms. In this study, the ability of three filamentous fungi of the Cunninghamella species to eliminate carbazole was evaluated. The Cunninghamella elegans IM 1785/21Gp and Cunninghamella echinulata IM 2611 strains efficiently removed carbazole. The IM 1785/21Gp and IM 2611 strains converted 93 and 82 % of the initial concentration of the xenobiotic (200 mg L(-1)) after 120 h incubation. 2-Hydroxycarbazole was for the first time identified as a carbazole metabolite formed by the filamentous fungi of the Cunninghamella species. There was no increase in the toxicity of the postculture extracts toward Artemia franciscana. Moreover, we showed an influence of carbazole on the phospholipid composition of the cells of the tested filamentous fungi, which indicated its harmful effect on the fungal cell membrane. The most significant modification of phospholipid levels after the cultivation of filamentous fungi with the addition of carbazole was showed for IM 1785/21Gp strain.

  10. Central nervous system mucormycosis caused by Cunninghamella bertholletiae in a bottlenose dolphin (Tursiops truncatus).

    PubMed

    Isidoro-Ayza, Marcos; Pérez, Lola; Cabañes, F Javier; Castellà, Gemma; Andrés, Marina; Vidal, Enric; Domingo, Mariano

    2014-07-01

    In May 2012, an adult, male bottlenose dolphin (Tursiops truncatus) was found stranded and dead on the Spanish Mediterranean coast. At necropsy, several areas of malacia were macroscopically observed in the periventricular parenchyma of the cerebrum. Microscopically a severe, diffuse, pyogranulomatous, and necrotizing meningoencephalomyelitis was associated with numerous intralesional highly pleomorphic fungal structures. After culture, the fungus, Cunninghamella bertholletiae, was identified by culture and PCR. To our knowledge, this is the first reported case of central nervous system mucormycosis due to Cunninghamella bertholletiae in a cetacean.

  11. Onychomycosis due to Cunninghamella bertholletiae in an Immunocompetent Male from Central India

    PubMed Central

    Tadepalli, Karuna; Gupta, Pradeep Kumar; Asati, Dinesh P.; Biswas, Debasis

    2015-01-01

    Onychomycosis is a fungal infection of nails seen frequently in immune competent and immune compromised patients due to dermatophytes, Candida spp., Fusarium spp., Scopulariopsis brevicaulis, Penicillium spp., and Aspergillus spp. We report a case of onychomycosis in a young immunocompetent male who presented onycholysis of a solitary nail without inflammation. The etiological agent was diagnosed to be Cunninghamella bertholletiae, a fungus pertaining to the order Mucorales (subdivision Mucoromycotina) and known for some of the invasive lesions among immunocompromised patients. This case demonstrates the association of onychomycosis with Cunninghamella bertholletiae in an immune competent individual, not reported so far. PMID:26640729

  12. Propranolol metabolism by Cunninghamella bainieri.

    PubMed

    Foster, B C; Buttar, H S; Qureshi, S A; McGilveray, I J

    1989-05-01

    1. Incubations of racemic propranolol alone or in the presence of either quinidine or sparteine were performed with Cunninghamella bainieri. 2. Five mammalian metabolites of propranolol (4-hydroxypropranolol, desisopropyl-propranolol, 1-naphthoxylactic acid, propranolol glycol and 1-naphthoxyacetic acid) were present in unhydrolysed extracts of the incubation medium according to h.p.l.c. and g.l.c. analyses. The relative proportion of 4-hydroxypropranolol increased after enzymic treatment. 3. Propranolol not only had a fungistatic effect, but also caused morphological changes in the organism, which were accompanied by decomposition of 4-hydroxypropranolol and formation of a greenish-brown colour in the incubation medium. 4. Drug interaction experiments yielded results which paralleled those reported in mammals. 5. The findings indicate that C. bainieri may be a useful microbial model for drug disposition and interaction studies.

  13. Paralysis of nematodes: shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans.

    PubMed

    Fekete, Csaba; Tholander, Margareta; Rajashekar, Balaji; Ahrén, Dag; Friman, Eva; Johansson, Tomas; Tunlid, Anders

    2008-02-01

    The transcriptional response in the parasitic fungus Monacrosporium haptotylum and its nematode host Caenorhabditis elegans were analysed during infection using cDNA microarrays. The array contained 2684 fungal and 372 worm gene reporters. Dramatic shifts occurred in the transcriptome of M. haptotylum during the different stages of the infection. An initial transcriptional response was recorded after 1 h of infection when the traps adhered to the cuticle, but before immobilization of the captured nematodes. Among the differentially expressed genes were two serine protease genes (spr1 and spr2), and several homologues to genes known to be regulated in other pathogenic fungi. After 4 h, when approximately 40% of the nematodes were paralysed, we identified an upregulated cluster of 372 fungal genes which were not regulated during the other phases of the infection. This cohort contained a large proportion (79%) of genes that appear to be specific for M. haptotylum and closely related species. These genes were of two different classes: those translating into presumably functional peptides and those with no apparent protein coding potential (non-coding RNAs). Among the infection-induced C. elegans genes were those encoding antimicrobial peptides, protease inhibitors and lectins.

  14. Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae).

    PubMed

    Rhoden, S A; Garcia, A; Rubin Filho, C J; Azevedo, J L; Pamphile, J A

    2012-08-16

    Various types of organisms, mainly fungi and bacteria, live within vegetal organs and tissues, without causing damage to the plant. These microorganisms, which are called endophytes, can be useful for biological control and plant growth promotion; bioactive compounds from these organisms may have medical and pharmaceutical applications. Trichilia elegans (Meliaceae) is a native tree that grows abundantly in several regions of Brazil. Preparations using the leaves, seeds, bark, and roots of many species of the Meliaceae family have been widely used in traditional medicine, and some members of the Trichilia genus are used in Brazilian popular medicine. We assessed the diversity of endophytic fungi from two wild specimens of T. elegans, collected from a forest remnant, by sequencing ITS1-5.8S-ITS2 of rDNA of the isolates. The fungi were isolated and purified; 97 endophytic fungi were found; they were separated into 17 morpho-groups. Of the 97 endophytic fungi, four genera (Phomopsis, Diaporthe, Dothideomycete, and Cordyceps) with 11 morpho-groups were identified. Phomopsis was the most frequent genus among the identified endophytes. Phylogenetic analysis showed two major clades: Sordariomycetes, which includes three genera, Phomopsis, Diaporthe, and Cordyceps, and the clade Dothideomycetes, which was represented by the order Pleosporales.

  15. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata.

    PubMed

    Fakas, S; Papanikolaou, S; Galiotou-Panayotou, M; Komaitis, M; Aggelis, G

    2008-10-01

    To investigate the effect of organic nitrogen on lipogenesis during growth of Cunninghamella echinulata on tomato waste hydrolysate (TWH) media. Cunninghamella echinulata grown on a TWH medium rapidly took up glucose and produced large amounts of lipids. However, when some quantities of the organic nitrogen were removed from TWH (by acid followed by alkaline precipitation of proteins) the uptake of glucose was dramatically reduced and large quantities of fungal biomass having low lipid content were produced. Nevertheless, when glycerol was used as carbon source instead of glucose, the uptake rate as well as the biomass production and the lipid accumulation processes were unaffected by the TWH organic nitrogen removal. Finally, when the fungus was grown on a glucose supplemented TWH medium that contained no assimilable organic nitrogen (after further precipitation of proteins with methanol), the produced biomass contained non-negligible quantities of lipids, although glucose uptake remained low. Lipid analysis showed that the produced lipids comprised mainly of neutral lipids, which were preferentially consumed during lipid turnover. Lipid production on the original TWH medium having glucose as carbon source was 0.48 g of lipid per gram of dry biomass, corresponding to 8.7 g of lipid per litre of growth medium. The produced lipids contained 11.7%gamma-linolenic acid (GLA), hence the GLA yield was more than 1 g l(-1). Organic nitrogen compounds found in TWH favour glucose (but not glycerol) uptake and lipid accumulation in C. echinulata. Agro-industrial wastes containing organic nitrogen, such as tomato waste, are produced in vast amounts causing severe environmental problems. These wastes could be used as fermentation feedstock to produce microbial lipids.

  16. Production of human metabolites of the anti-cancer drug flutamide via biotransformation in Cunninghamella species.

    PubMed

    Amadio, Jessica; Murphy, Cormac D

    2011-02-01

    Fungi belonging to the genus Cunninghamella have enzymes similar to those employed by mammals for the detoxification of xenobiotics, thus they are useful as models of mammalian drug metabolism, and as a source for drug metabolites. We report the transformation of the anti-cancer drug flutamide in Cunninghamella sp. The most predominant phase I metabolites present in the plasma of humans, 2-hydroxyflutamide and 4-nitro-3-(trifluoromethyl)aniline, were also produced in Cunninghamella cultures. Other phase I and phase II metabolites were also detected using a combination of HPLC, GC-MS and (19)F-NMR.

  17. Fatal Actinomucor elegans var. kuwaitiensis Infection following Combat Trauma▿

    PubMed Central

    Tully, Charla C.; Romanelli, Anna M.; Sutton, Deanna A.; Wickes, Brian L.; Hospenthal, Duane R.

    2009-01-01

    We report the first case of invasive mucormycosis secondary to Actinomucor elegans infection. A severely injured soldier with a fatal A. elegans var. kuwaitiensis infection is described. The identification of this fungus was performed by classical and molecular methods, and this report documents the pathogenicity of the recently described variety Actinomucor elegans var. kuwaitiensis. PMID:19675213

  18. Microbial models of mammalian metabolism: fungal metabolism of the diterpene sclareol by Cunninghamella species.

    PubMed

    Kouzi, S A; McChesney, J D

    1991-01-01

    Microbial metabolism of the diterpene sclareol was studied. Screening studies have shown a number of microorganisms capable of metabolizing sclareol. Preparative scale fermentation with Cunninghamella species NRRL 5695 has resulted in the production of two fungal metabolites that have been characterized as 3 beta-hydroxysclareol and 18-hydroxy-sclareol with the use of 2D nmr techniques. The yield of the two metabolites was improved by utilizing resting-cell suspensions of Cunninghamella species NRRL 5695.

  19. Rapid Extracellular Biosynthesis of Silver Nanoparticles by Cunninghamella phaeospora Culture Supernatant

    PubMed Central

    Ghareib, Mohamed; Tahon, Medhat Abu; Saif, Mona Mostafa; El-Sayed Abdallah, Wafaa

    2016-01-01

    The development of green approaches for the biosynthesis of silver nanoparticles (AgNPs) is of prime significance in the field of nanotechnology research. A fast and eco-friendly protocol for the biosynthesis of extracellular AgNPs using culture supernatant (CS) from the fungus Cunninghamella phaeospora was studied in this work. This CS was proved as a potential new source for the extracellular biosynthesis of AgNPs. The AgNPs were formed at 100 oC and pH 9 within four min of contact between CS and 1mM silver nitrate (AgNO3) solution. Nitrate reductase (NR) was confirmed to play a pivotal role in the biosynthesis of AgNPs. The enzyme expressed its highest activity at 80 oC and pH 9. At 100 oC the enzyme retained 70% of its original activity for one hour. The half-life (T1/2) of the enzyme activity was calculated to be 1.55 h confirming its thermostability. The produced AgNPs were characterized by UV-Vis spectroscopy, high resolution-transmission electron microscope (HR-TEM) and x-ray diffraction (XRD). These NPs showed an absorption peak at 415 nm in UV-Vis spectrum corresponding to the plasmon resonance of AgNPs. Transmission electron micrographs revealed the production of monodispersed spherical NPs with average particle size 14 nm. XRD spectrum of the NPs confirmed the formation of metallic crystalline silver. It was also suggested that the aromatic amino acids play a role in the biosynthesis process. The current research provided an insight on the green biosynthesis of AgNPs including some mechanistic aspects using a new mycogenic source. PMID:28243290

  20. Microbial transformation of oxandrolone with Macrophomina phaseolina and Cunninghamella blakesleeana.

    PubMed

    Smith, Colin; Wahab, Atia-Tul-; Khan, Mahwish Shafi Ahmed; Ahmad, Malik Shoaib; Farran, Dina; Iqbal Choudhary, M; Baydoun, Elias

    2015-10-01

    Microbial transformation of oxandrolone (1) was carried out by using Cunninghamella blakesleeana and Macrophomina phaseolina. Biotransformation of 1 with M. phaseolina yielded four new metabolites, 11β,17β-dihydroxy-17α-(hydroxymethyl)-2-oxa-5α-androstan-3-one (2), 5α,11β,17β-trihydroxy-17α-methyl-2-oxa-androstan-3-one (3), 17β-hydroxy-17α-methyl-2-oxa-5α-androstan-3,11-dione (4), and 11β,17β-dihydroxy-17α-methyl-2-oxa-5α-androstan-3-one (5). Whereas a new metabolite, 12β,17β-dihydroxy-17α-methyl-2-oxa-5α-androstan-3-one (6), was obtained through the microbial transformation of oxandrolone (1) with C. blakesleeana. The structures of isolated metabolites were characterized on the basis of MS and NMR spectroscopic data. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from Caatinga soil in the northeast of Brazil.

    PubMed

    Andrade Silva, Nadielly R; Luna, Marcos A C; Santiago, André L C M A; Franco, Luciana O; Silva, Grayce K B; de Souza, Patrícia M; Okada, Kaoru; Albuquerque, Clarissa D C; da Silva, Carlos A Alves; Campos-Takaki, Galba M

    2014-09-01

    A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW) and corn steep liquor (CSL) as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E₂₄) of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w), carbohydrates (35.2% w/w) and protein (20.3% w/w). In addition, the biosurfactant solution (1%) demonstrated its ability for an oil displacement area (ODA) of 37.36 cm², which is quite similar to that for Triton X-100 (38.46 cm²). The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%-6% w/v). The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes.

  2. Biosurfactant-and-Bioemulsifier Produced by a Promising Cunninghamella echinulata Isolated from Caatinga Soil in the Northeast of Brazil

    PubMed Central

    Silva, Nadielly R. Andrade; Luna, Marcos A. C.; Santiago, André L. C. M. A.; Franco, Luciana O.; Silva, Grayce K. B.; de Souza, Patrícia M.; Okada, Kaoru; Albuquerque, Clarissa D. C.; da Silva, Carlos A. Alves; Campos-Takaki, Galba M.

    2014-01-01

    A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW) and corn steep liquor (CSL) as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E24) of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w), carbohydrates (35.2% w/w) and protein (20.3% w/w). In addition, the biosurfactant solution (1%) demonstrated its ability for an oil displacement area (ODA) of 37.36 cm2, which is quite similar to that for Triton X-100 (38.46 cm2). The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%–6% w/v). The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes. PMID:25257520

  3. Optimization of aeration and agitation rate for lipid and gamma linolenic acid production by Cunninghamella bainieri 2A1 in submerged fermentation using response surface methodology.

    PubMed

    Saad, Normah; Abdeshahian, Peyman; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul

    2014-01-01

    The locally isolated filamentous fungus Cunninghamella bainieri 2A1 was cultivated in a 5 L bioreactor to produce lipid and gamma-linolenic acid (GLA). The optimization was carried out using response surface methodology based on a central composite design. A statistical model, second-order polynomial model, was adjusted to the experimental data to evaluate the effect of key operating variables, including aeration rate and agitation speed on lipid production. Process analysis showed that linear and quadratic effect of agitation intensity significantly influenced lipid production process (P < 0.01). The quadratic model also indicated that the interaction between aeration rate and agitation speed had a highly significant effect on lipid production (P < 0.01). Experimental results showed that a lipid content of 38.71% was produced in optimum conditions using an airflow rate and agitation speed of 0.32 vvm and 599 rpm, respectively. Similar results revealed that 0.058(g/g) gamma-linolenic acid was produced in optimum conditions where 1.0 vvm aeration rate and 441.45 rpm agitation rate were used. The regression model confirmed that aeration and agitation were of prime importance for optimum production of lipid in the bioreactor.

  4. Characterization and phylogenetic analysis of a Cunninghamella bertholletiae isolate from a bottlenose dolphin (Tursiops truncatus).

    PubMed

    Bragulat, M Rosa; Castellá, Gemma; Isidoro-Ayza, Marcos; Domingo, Mariano; Cabañes, F Javier

    2017-07-18

    Cunninghamella is a genus of the order Mucorales which includes saprophytic species, rarely causing mycoses. The most frequently reported in human mycoses is the thermophilic species Cunninghamella bertholletiae. However, this species does not appear to cause mucormycosis in animals, so there is scarce information about C. bertholletiae isolates from animals. In this paper we describe the phenotypic and genotypic characterization, and the phylogenetic analysis, of an isolate of C. bertholletiae involved in a central nervous system mucormycosis in a dolphin. The isolate studied in this publication was characterized using the current morphological and physiological identification system for Cunninghamella species. DNA sequencing and analysis of the D1/D2 regions of the 26S rRNA gene and the ITS-5.8S rRNA gene sequences were also performed. Colonies were fast-growing, white at first, although they became tannish-gray, covering the whole plate after 7 days of incubation at 30 and 40°C. Limited growth was observed after 7 days at 45°C. The micromorphology showed characteristic erect sporangiophores. The identification of the isolate was confirmed by DNA sequencing of the D1/D2 regions of the 26S and the ITS-5.8S (ITS) rRNA gene sequencing. In the phylogenetic study, the isolate clustered in the same clade as C. bertholletiae neotype strain although some differences were observed in the ITS sequences. In the cetacean cases, the possible sources of infection are unclear. The reasons why this pathogen has been found only in cetaceans and not in other domestic or wild animals are at the moment unknown and need further study. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Microbial transformation of hederagenin by Cunninghamella echinulate, Mucor subtilissimus, and Pseudomonas oleovorans.

    PubMed

    Liu, Zhen; Lu, Yan-Hua; Feng, Xu; Zou, Ying-Xin; Diao, Zhuo; Chu, Zhi-Yong

    2017-07-01

    The pentacyclic triterpenoid hederagenin (1) was subjected to biotransformation by Cunninghamella echinulate CGMCC 3.2000, Mucor subtilissimus CGMCC 3.2454 and Pseudomonas oleovorans CGMCC 1.1641. Three metabolites were obtained. On the basis of nuclear magnetic resonance and high-resolution mass spectral analyses, their structures were characterized as 3β, 23-dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester (2), 3β, 15α, 23-trihydroxyolean-12-en-28-oic acid (3), 1β, 3β, 23-trihydroxyolean-12-en-28-oic acid (4), and metabolite (3) was a new compound. This was the first report on the biotransformation of hederagenin.

  6. A novel one-step microbial transformation of betulin to betulinic acid catalysed by Cunninghamella blakesleeana.

    PubMed

    Feng, Yu; Li, Min; Liu, Jing; Xu, Teng-Yang; Fang, Ruo-Si; Chen, Qi-He; He, Guo-Qing

    2013-01-01

    Betulinic acid and its derivatives are potential bioactive compounds present in nature. This study investigated the biotransformation of betulin to betulinic acid by Cunninghamella blakesleeana cells. LC-MS analysis demonstrated that betulin could be transformed into at least five products from cultured C. blakesleeana cells, among which betulinic acid was the most important. The presented method provides an attractive alternative approach to chemical synthesis, because is less time-consuming and more environmentally friendly. C. blakesleeana can transform betulin into potent derivatives with high pharmacological activities.

  7. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  8. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  9. Pulmonary mucormycosis (Cunninghamella bertholletiae) with cavitation diagnosed using ultra-thin fibre-optic bronchoscopy.

    PubMed

    Yagi, Shin-Ichi; Miyashita, Naoyuki; Fukuda, Minoru; Obase, Yasushi; Yoshida, Koichiro; Miyauchi, Ayaka; Kawasaki, Kouzou; Soda, Hiroshi; Oka, Mikio

    2008-03-01

    Recently, ultra-thin bronchoscopy has made it possible to observe smaller bronchi not visualized using standard techniques. We describe a case of pulmonary mucormycosis with cavitation, diagnosed using an ultra-thin bronchoscope. A 15-year-old girl with acute myeloid leukaemia had taken oral prednisolone, 60 mg/day, for graft versus host disease after haematopoietic stem cell transplantation. She was admitted to our hospital with fever and a large cavitary lesion in the right hilum. Using an ultra-thin bronchoscope, the interior of the cavity in the superior segment of the right lower lobe was observed. The bronchoscopic findings revealed debris adhering to the cavity wall with a small volume of effusion. Cunninghamella bertholletiae was isolated from the effusion specimen obtained using the bronchoscope. Pulmonary mucormycosis (C. bertholletiae) complicating an immunocompromised state was diagnosed. Ultra-thin bronchoscopy is useful to diagnose complex pulmonary infections and more research is needed to verify its clinical indications and utility.

  10. Cunninghamella bertholletiae exhibits increased resistance to human neutrophils with or without antifungal agents as compared to Rhizopus spp.

    PubMed

    Simitsopoulou, Maria; Georgiadou, Elpiniki; Walsh, Thomas J; Roilides, Emmanuel

    2010-08-01

    Among Zygomycetes, Cunninghamella bertholletiae occurs less frequently as the etiologic agent of human disease but causes more aggressive, refractory, and fatal infections despite antifungal therapy. Little is known about the differential innate host response against Cunninghamella and other Zygomycetes in the presence of antifungal agents. We therefore studied the activity of human neutrophils (PMNs) alone or in combination with caspofungin, posaconazole (PSC), and voriconazole (VRC) against hyphae of Rhizopus oryzae, Rhizopus microsporus and C. bertholletiae. Hyphal damage was measured by XTT metabolic assay and release of IL-6, IL-8 and TNF-alpha from PMNs by ELISA. Cunninghamella bertholletiae was more resistant to PMN-induced hyphal damage than either Rhizopus spp. at effector:target (E:T) ratios of 1:1, 5:1 and 10:1 (P < 0.05). The hyphal damage caused by caspofungin at 0.1 microg/ml or PSC and VRC at 0.5 microg/ml with C. bertholletiae and R. oryzae and by caspofungin against R. microsporus ranged from 18-29%. The PMN-induced hyphal damage was not modulated by combination with antifungal agents. Cunninghamella bertholletiae induced significantly decreased IL-8 (P < 0.05), but increased TNF-alpha release from PMNs compared to both Rhizopus spp. (P < 0.01). No IL-6 was released from PMNs exposed to the three Zygomycetes. In comparison to R. oryzae and R. microsporus, C. bertholletiae is more resistant to PMN-induced hyphal damage with or without antifungal therapy and is more capable of suppressing release of IL-8.

  11. Biotransformation of androgenic steroid mesterolone with Cunninghamella blakesleeana and Macrophomina phaseolina.

    PubMed

    Ahmad, Malik Shoaib; Zafar, Salman; Bibi, Marium; Bano, Saira; Atia-Tul-Wahab; Atta-Ur-Rahman; Iqbal Choudhary, M

    2014-04-01

    Fermentation of mesterolone (1) with Cunninghamella blakesleeana yielded four new metabolites, 1α-methyl-1β,11β,17β-trihydroxy-5α-androstan-3-one (2), 1α-methyl-7α,11β,17β-trihydroxy-5α-androstan-3-one (3), 1α-methyl-1β,6α,17β-trihydroxy-5α-androstan-3-one (4) and 1α-methyl-1β,11α,17β-trihydroxy-5α-androstan-3-one (5), along with three known metabolites, 1α-methyl-11α,17β-dihydroxy-5α-androstan-3-one (6), 1α-methyl-6α,17β-dihydroxy-5α-androstan-3-one (7) and 1α-methyl-7α,17β-dihydroxy-5α-androstan-3-one (8). Biotransformation of 1 with Macrophomina phaseolina also yielded a new metabolite, 1α-methyl, 17β-hydroxy-5α-androstan-3,6-dione (9). The isolated metabolites were subjected to various in vitro biological assays, such as anti-cancer, inhibition of α-glucosidase, and phosphodiesterase-5 enzymes and oxidative brust. However, no significant results were observed. This is the first report of biotransformation of 1 with C. blakesleeana and M. phaseolina. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Pulmonary zygomycosis with Cunninghamella bertholletiae in a killer whale (Orcinus orca).

    PubMed

    Abdo, W; Kakizoe, Y; Ryono, M; Dover, S R; Fukushi, H; Okuda, H; Kano, R; Shibahara, T; Okada, E; Sakai, H; Yanai, T

    2012-07-01

    An adult female killer whale (Orcinus orca) was transported to the Port of Nagoya public aquarium in June 2010. While the animal was being maintained in the aquarium there was a gradual decrease in body weight. On October 1st, 2010 the whale exhibited signs of gastrointestinal disease and died on January 14th, 2011. At necropsy examination the gastric compartments were filled with a large number of variably-sized rocks (total weight 81.4 kg) and there was marked ulceration in the third compartment. There were multifocal tubercle-like nodules within the lungs and on sectioning there were numerous abscesses and pulmonary cavities. Microscopically, there was severe suppurative pneumonia associated with fungal hyphae that were infrequently septate and often branched. Numerous bacterial colonies were also present. The hyphae demonstrated immunohistochemical cross-reactivity with Rhizomucor spp. and Cunninghamella bertholletiae was cultured. Bacteriological culture revealed the presence of Proteus mirabilis, Pseudomonas aeruginosa and Pseudomonas oryzihabitans. This case represents the first documentation of zygomycosis associated with C. bertholletiae in a marine mammal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Disseminated Cunninghamella bertholletiae infection with spinal epidural abscess in a kidney transplant patient: case report and literature review.

    PubMed

    Navanukroh, O; Jitmuang, A; Chayakulkeeree, M; Ngamskulrungroj, P

    2014-08-01

    Cunninghamella bertholletiae is a rare cause of invasive mucormycosis. We report the case of a 42-year-old Thai woman who suffered from disseminated C. bertholletiae infection. The patient developed dry cough, sharp shooting pain in the left buttock referred to the left leg, and fever 1 month after undergoing deceased-donor kidney transplantation. Radiographic studies exhibited multiple pulmonary cavities, osteomyelitis of the sacral spine, epidural abscess along the lumbrosacral spine, and paravertebral soft tissue involvement. Surgical debridement of the epidural abscess concurrent with prolonged intravenous administration of amphotericin B resulted in a good outcome.

  14. Microbial conversion of milbemycins: hydroxylation of milbemycin A4 and related compounds by Cunninghamella echinulata ATCC 9244.

    PubMed

    Nakagawa, K; Miyakoshi, S; Torikata, A; Sato, K; Tsukamoto, Y

    1991-02-01

    Many strains of zygomycetes and actinomycetes were found to convert milbemycin A4 (1a) to 13 beta-hydroxymilbemycin A4 (1b). Among these strains, Cunninghamella echinulata ATCC 9244 had the most efficient 13 beta-hydroxylation ability on milbemycins. In the conversion of milbemycin A3 (2a), 29-hydroxymilbemycin A4 (4a), and 30-hydroxymilbemycin A4 (5a) with this strain, only 13 beta-hydroxylated products were obtained. On the other hand, starting from milbemycin A4 (1a) and 5-ketomilbemycin A4 5-oxime (6a), 13 beta,24- and 13 beta,30-dihydroxy derivatives were also isolated along with 13 beta-hydroxylated products. Similarly, conversion of milbemycin D (3a) and LL-F28249 alpha (8a) gave 13 beta- and 28-hydroxy derivatives (8b and 8c).

  15. Transposons in C. elegans.

    PubMed

    Bessereau, Jean-Louis

    2006-01-18

    Transposons are discrete segments of DNA capable of moving through the genome of their host via an RNA intermediate in the case of class I retrotransposon or via a "cut-and-paste" mechanism for class II DNA transposons. Since transposons take advantage of their host's cellular machinery to proliferate in the genome and enter new hosts, transposable elements can be viewed as parasitic or "selfish DNA". However, transposons may have been beneficial for their hosts as genome evolution drivers, thus providing an example of molecular mutualism. Interactions between transposon and C. elegans research were undoubtedly mutualistic, leading to the advent of needed genomic tools to drive C. elegans research while providing insights into the transposition field. Tc1, the first C. elegans transposon to be identified, turned out to be the founding member of a widespread family of mobile elements: the Tc1/mariner superfamily. The investigation into transposition regulation in C. elegans has uncovered an unforeseen link between transposition, genome surveillance and RNA interference. Conversely, transposons were utilized soon after their identification to inactivate and clone genes, providing some of the first molecular identities of C. elegans genes. Recent results suggest that transposons might provide a means to engineer site-directed mutations into the C. elegans genome. This article describes the different transposons present in the C. elegans genome with a specific emphasis on the ones that proved to be mobile under laboratory conditions. Mechanisms and control of transposition are discussed briefly. Some tools based on the use of transposons for C. elegans research are presented at the end of this review.

  16. Fungus Infections: Tinea

    MedlinePlus

    ... cat, or from exposure to fungus in the soil. Itchy red scaly patches come up anywhere the ... Truth 12/19/2013 Osteopathic Training Statement Online Surveys About AOCD The AOCD was recognized in 1958 ...

  17. Survival assays using Caenorhabditis elegans

    PubMed Central

    Park, Hae-Eun H.; Jung, Yoonji; Lee, Seung-Jae V.

    2017-01-01

    Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans. PMID:28241407

  18. [Necrotizing fasciitis in an immunocompetent patient caused by Apophysomyces elegans].

    PubMed

    Ruiz, Carmen Elena; Arango, Myrtha; Correa, Ana Lucía; López, Luz Saider; Restrepo, Angela

    2004-09-01

    A case study is presented of a 7-year-old boy, seriously injured in a car accident, who developed a fatal infection due to Aphophysomyces elegans--a mold of the Mucoracea family. Fungal invasion was initially manifested by a spotted wound in the left lumbar region which developed into a necrotizing fasciitis. Later this progressed to the right lumbar area, including the gluteus and the corresponding flank. Antimycotic treatment proved ineffective, and the child died 8 weeks after the accident. Other cases due to this fungus are reviewed.

  19. Globins in Caenorhabditis elegans.

    PubMed

    Tilleman, Lesley; Germani, Francesca; De Henau, Sasha; Geuens, Eva; Hoogewijs, David; Braeckman, Bart P; Vanfleteren, Jacques R; Moens, Luc; Dewilde, Sylvia

    2011-03-01

    Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell-specific expression patterns and fixation into the genome. To date, four globins (GLB-1, GLB-5, GLB-6, and GLB-26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB-1 and GLB-6) was solved. In this article, a three-dimensional model was designed for the other two globins (GLB-5 and GLB-26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three-dimensional structure have major implications on their ligand-binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions. Copyright © 2011 Wiley Periodicals, Inc.

  20. Laser Microsurgery in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Gabel, Christopher V.; Samuel, Aravinthan D. T.; Bargmann, Cornelia I.; Avery, Leon

    2013-01-01

    Laser killing of cell nuclei has long been a powerful means of examining the roles of individual cells in C. elegans. Advances in genetics, laser technology, and imaging have further expanded the capabilities and usefulness of laser surgery. Here, we review the implementation and application of currently used methods for target edoptical disruption in C. elegans. PMID:22226524

  1. Batch culture and repeated-batch culture of Cunninghamella bainieri 2A1 for lipid production as a comparative study.

    PubMed

    Dashti, Marjan Ganjali; Abdeshahian, Peyman

    2016-03-01

    This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10(-2) mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume.

  2. Abutilon theophrasti's defense against the allelochemical benzoxazolin-2(3H)-one: support by Actinomucor elegans.

    PubMed

    Kia, Sevda Haghi; Schulz, Margot; Ayah, Emmanuel; Schouten, Alexander; Müllenborn, Carmen; Paetz, Christian; Schneider, Bernd; Hofmann, Diana; Disko, Ulrich; Tabaglio, Vincenzo; Marocco, Adriano

    2014-12-01

    Abutilon theophrasti Medik., previously found to be rather insensitive to benzoxazinoid containing rye mulch and the allelochemical benzoxazolin-2(3H)-one (BOA), can be associated with the zygomycete Actinomucor elegans, whereby the fungus colonizes the root relatively superficially and mainly in the maturation zone. The fungus mitigates necrosis of the cotyledons when seedlings are incubated with 2 mM BOA, in contrast to those that lack the fungus. In liquid cultures of the fungus, tryptophan was identified. The accumulation of tryptophan is increased in presence of BOA. This amino acid seems to be important in protecting Abutilon against BOA and its derivatives since it suppressed the accumulation of BOA derived, highly toxic 2-aminophen-oxazin-3-one (APO) in the medium and on the root surface during BOA incubations of Abutilon seedlings. Although A. elegans is insensitive to BOA and APO, the fungus is not able to protect the plant against harmful effects of APO, when seedlings are treated with the compound. Abutilon can detoxify BOA via BOA-6-OH glucosylation probably by a cell wall associated glucosyltransferase, but only low amounts of the product accumulate. Low tryptophan concentrations can contribute to a degradation of the toxic intermediate BOA-6-OH by Fenton reactions, whereby the amino acid is oxidized. One of the oxidation products was identified as 4(1H)-quinolinone, which is the core substructure of the quorum sensing molecule 2-heptyl-3-hydroxy-4-quinolone. The mutualistic association of Abutilon theophrasti with Actinomucor elegans is considered as opportunistic and facultative. Such plant-fungus associations depend rather likely on environmental conditions, such as the mode of fertilization.

  3. Fungus Resistant XM205 Nonmetallic Cartridge Case,

    DTIC Science & Technology

    CARTRIDGE CASES, *FUNGICIDES, FUNGUS PROOFING, FUNGUS DETERIORATION, RESISTANCE, NITROCELLULOSE, POLYMERS, FIBERS, SYNTHETIC FIBERS, MATERIALS, ZINC COMPOUNDS, ORGANIC COMPOUNDS, ORGANIC SULFUR COMPOUNDS.

  4. Toxicity testing using Caenorhabditis elegans

    SciTech Connect

    Middendorf, P.J.; Dusenbery, D.B.; Williams, P.L.

    1995-12-31

    Caenorhabditis elegans is a small free-living nematode that is representative of what may be the most abundant animal group. It has been promoted as a possible model organism for toxicity testing in the laboratory and in field evaluations in part because more is known about its biology than any other animal, Toxicity tests using C. elegans have been developed with lethality, reproduction, and behavior as end points. The tests have also been developed to varying degrees using standard laboratory media, water, and soil. The results of the tests when exposing C. elegans to a variety of metals, inorganic, and organic compounds indicate it is typically at least as sensitive as other species currently used, such as Daphnia and earthworms, and is generally much easier to maintain in the laboratory. The advantages and disadvantages of C. elegans and the state of development of the tests will be discussed.

  5. Neuropeptide GPCRs in C. elegans

    PubMed Central

    Frooninckx, Lotte; Van Rompay, Liesbeth; Temmerman, Liesbet; Van Sinay, Elien; Beets, Isabel; Janssen, Tom; Husson, Steven J.; Schoofs, Liliane

    2012-01-01

    Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm’s complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans. PMID:23267347

  6. When Is It Nail Fungus?

    MedlinePlus

    ... medlineplus.gov/news/fullstory_167455.html When Is It Nail Fungus? Dermatologist says only an expert can ... but you shouldn't be embarrassed to discuss it with a board-certified dermatologist, who can help ...

  7. Investigation of the metabolites of the HIF stabilizer FG-4592 (roxadustat) in five different in vitro models and in a human doping control sample using high resolution mass spectrometry.

    PubMed

    Hansson, Annelie; Thevis, Mario; Cox, Holly; Miller, Geoff; Eichner, Daniel; Bondesson, Ulf; Hedeland, Mikael

    2017-02-05

    FG-4592 is a hypoxia-inducible factor (HIF) stabilizer, which can increase the number of red blood cells in the body. It has not been approved by regulatory authorities, but is available for purchase on the Internet. Due to its ability to improve the oxygen transportation mechanism in the body, FG-4592 is of interest for doping control laboratories, but prior to this study, little information about its metabolism was available. In this study, the metabolism of FG-4592 was investigated in a human doping control sample and in five in vitro models: human hepatocytes and liver microsomes, equine liver microsomes and S9 fraction and the fungus Cunninghamella elegans. By using liquid chromatography coupled to a Q-TOF mass spectrometer operated in MS(E) and MSMS modes, twelve different metabolites were observed for FG-4592. One monohydroxylated metabolite was detected in both the human and equine liver microsome incubations. For the fungus Cunninghamella elegans eleven different metabolites were observed of which the identical monohydroxylated metabolite had the highest response. This rich metabolic profile and the higher levels of metabolites produced by Cunninghamella elegans demonstrates its usefulness as a metabolite producing medium. In the doping control urine sample, one metabolite, which was the result of a direct glucuronidation, was observed. No metabolites were detected in neither the human hepatocyte nor in the equine liver S9 fraction incubates.

  8. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Meiotic Development in Caenorhabditis elegans

    PubMed Central

    Lui, Doris Y.

    2013-01-01

    Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans. PMID:22872477

  10. The C. elegans eggshell

    PubMed Central

    Stein, Kathryn K.; Golden, Andy

    2017-01-01

    In all animals, oocytes are surrounded by an extracellular matrix upon fertilization. This matrix serves similar purposes in each animal. It functions to mediate sperm binding, to prevent polyspermy, to control the chemical environment of the embryo, and to provide physical protection to the embryo as it developes. The synthesis of the C. elegans matrix, or eggshell, begins when the oocyte enters the spermatheca and is fertilized by a single sperm. The process of eggshell synthesis is thought to take place during the completion of the maternal meiotic divisions such that the multi-layered eggshell is completed by anaphase II. The synthesis of the eggshell occurs in a hierarchical pattern such that the outermost layers are synthesized first in order to capture and retain the innermost layers as they form. Recent studies have revealed that the lipid-rich permeability barrier is distinct from the outer trilaminar eggshell. These new findings alter our previous understanding of the eggshell. This chapter aims to define each of the eggshell layers and the molecules that are known to play significant roles in their formation. PMID:26715360

  11. Transducing touch in Caenorhabditis elegans.

    PubMed

    Goodman, Miriam B; Schwarz, Erich M

    2003-01-01

    Mechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. Members of two extensive membrane protein families have emerged as candidate sensory mechanotransduction channels: mec-4 and mec-10, which encode amiloride-sensitive channels (ASCs or DEG/ENaCs), and osm-9, which encodes a TRP ion channel. There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction.

  12. Proteomic analysis of Caenorhabditis elegans

    USDA-ARS?s Scientific Manuscript database

    Proteomic studies of the free-living nematode Caenorhabditis elegans have recently received great attention because this animal is a useful model platform for the in vivo study of various biological problems relevant to human disease. In general, proteomic analysis is performed in order to address a...

  13. Electrophysiological Methods for C. elegans Neurobiology

    PubMed Central

    Goodman, Miriam B.; Lindsay, Theodore H.; Lockery, Shawn R.; Richmond, Janet E.

    2014-01-01

    Patch-clamp electrophysiology is the technique of choice for the biophysical analysis of the function of nerve, muscle, and synapse in C. elegans nematodes. Considerable technical progress has been made in C. elegans electrophysiology in the decade since the initial publication of this technique. Today, most, if not all electrophysiological studies that can be done in larger animal preparations can also be done in C. elegans. This chapter has two main goals. The first is to present to a broad audience the many techniques available for patch-clamp analysis of neurons, muscles, and synapses in C. elegans. The second is to provide a methodological introduction to the techniques for patch-clamping C. elegans neurons and body-wall muscles in vivo, including emerging methods for optogenetic stimulation coupled with post-synaptic recording. We also present samples of the cell-intrinsic and post-synaptic ionic currents that can be measured in C. elegans nerve and muscle. PMID:22226532

  14. Electrophysiological methods for Caenorhabditis elegans neurobiology.

    PubMed

    Goodman, Miriam B; Lindsay, Theodore H; Lockery, Shawn R; Richmond, Janet E

    2012-01-01

    Patch-clamp electrophysiology is a technique of choice for the biophysical analysis of the function of nerve, muscle, and synapse in Caenorhabditis elegans nematodes. Considerable technical progress has been made in C. elegans electrophysiology in the decade since the initial publication of this technique. Today, most, if not all, electrophysiological studies that can be done in larger animal preparations can also be done in C. elegans. This chapter has two main goals. The first is to present to a broad audience the many techniques available for patch-clamp analysis of neurons, muscles, and synapses in C. elegans. The second is to provide a methodological introduction to the techniques for patch clamping C. elegans neurons and body-wall muscles in vivo, including emerging methods for optogenetic stimulation coupled with postsynaptic recording. We also present samples of the cell-intrinsic and postsynaptic ionic currents that can be measured in C. elegans nerves and muscles.

  15. Strategic Feeding of Ammonium and Metal Ions for Enhanced GLA-Rich Lipid Accumulation in Cunninghamella bainieri 2A1

    PubMed Central

    Wan Nawi, Wan Nazatul Naziah; Taha, Ekhlass M.; Omar, Othman; Abdul Kader, Abdul Jalil; Kalil, Mohd Sahaid; Abdul Hamid, Aidil

    2014-01-01

    Strategic feeding of ammonium and metal ions (Mg2+, Mn2+, Fe3+, Cu2+, Ca2+, Co2+, and Zn2+) for enhanced GLA-rich lipid accumulation in C. bainieri 2A1 was established. When cultivated in nitrogen-limited medium, the fungus produced up to 30% lipid (g/g biomass) with 12.9% (g/g lipid) GLA. However, the accumulation of lipid stopped at 48 hours of cultivation although glucose was abundant. This event occurred in parallel to the diminishing activity of malic enzyme (ME), fatty acid synthase (FAS), and ATP citrate lyase (ACL) as well as the depletion of metal ions in the medium. Reinstatement of the enzymes activities was achieved by feeding of ammonium tartrate, but no increment in the lipid content was observed. However, increment in lipid content from 32% to 50% (g/g biomass) with 13.2% GLA was achieved when simultaneous feeding of ammonium, glucose, and metal ions was carried out. This showed that the cessation of lipid accumulation was caused by diminishing activities of the enzymes as well as depletion of the metal ions in the medium. Therefore, strategic feeding of ammonium and metal ions successfully reinstated enzymes activities and enhanced GLA-rich lipid accumulation in C. bainieri 2A1. PMID:24991637

  16. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey

    PubMed Central

    Hsueh, Yen-Ping; Gronquist, Matthew R; Schwarz, Erich M; Nath, Ravi David; Lee, Ching-Han; Gharib, Shalha; Schroeder, Frank C; Sternberg, Paul W

    2017-01-01

    To study the molecular basis for predator-prey coevolution, we investigated how Caenorhabditis elegans responds to the predatory fungus Arthrobotrys oligospora. C. elegans and other nematodes were attracted to volatile compounds produced by A. oligospora. Gas-chromatographic mass-spectral analyses of A. oligospora-derived volatile metabolites identified several odors mimicking food cues attractive to nematodes. One compound, methyl 3-methyl-2-butenoate (MMB) additionally triggered strong sex- and stage-specific attraction in several Caenorhabditis species. Furthermore, when MMB is present, it interferes with nematode mating, suggesting that MMB might mimic sex pheromone in Caenorhabditis species. Forward genetic screening suggests that multiple receptors are involved in sensing MMB. Response to fungal odors involves the olfactory neuron AWCs. Single-cell RNA-seq revealed the GPCRs expressed in AWC. We propose that A. oligospora likely evolved the means to use olfactory mimicry to attract its nematode prey through the olfactory neurons in C. elegans and related species. DOI: http://dx.doi.org/10.7554/eLife.20023.001 PMID:28098555

  17. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  18. The C. elegans model in toxicity testing

    PubMed Central

    2016-01-01

    Abstract Caenorhabditis elegans is a small nematode that can be maintained at low cost and handled using standard in vitro techniques. Unlike toxicity testing using cell cultures, C. elegans toxicity assays provide data from a whole animal with intact and metabolically active digestive, reproductive, endocrine, sensory and neuromuscular systems. Toxicity ranking screens in C. elegans have repeatedly been shown to be as predictive of rat LD50 ranking as mouse LD50 ranking. Additionally, many instances of conservation of mode of toxic action have been noted between C. elegans and mammals. These consistent correlations make the case for inclusion of C. elegans assays in early safety testing and as one component in tiered or integrated toxicity testing strategies, but do not indicate that nematodes alone can replace data from mammals for hazard evaluation. As with cell cultures, good C. elegans culture practice (GCeCP) is essential for reliable results. This article reviews C. elegans use in various toxicity assays, the C. elegans model's strengths and limitations for use in predictive toxicology, and GCeCP. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons Ltd. PMID:27443595

  19. Biotransformation of anabolic compound methasterone with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini, and TNF-α inhibitory effect of transformed products.

    PubMed

    Ahmad, Malik Shoaib; SammerYousuf; Atia-Tul-Wahab; Jabeen, Almas; Atta-Ur-Rahman; Choudhary, M Iqbal

    2017-04-09

    Microbial transformation of methasterone (1) was investigated with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini. Biotransformation of 1 with M. phaseolina yielded metabolite 2, while metabolites 3-7 were obtained from the incubation of 1 with C. blakesleeana. Metabolites 8-13 were obtained through biotransformation with F. lini. All metabolites, except 13, were found to be new. Methasterone (1) and its metabolites 2-6, 9, 10, and 13 were then evaluated for their immunomodulatory effects against TNF-α, NO , and ROS production. Among all tested compounds, metabolite 6 showed a potent inhibition of proinflammatory cytokine TNF-α (IC50 = 8.1 ± 0.9 µg/mL), as compared to pentoxifylline used as a standard (IC50 = 94.8± 2.1 µg/mL). All metabolites were also evaluated for the inhibition of NO production at concentration of 25 µg/mL. Metabolites 6 (86.7 ± 2.3%) and 13 (62.5 ± 1.5%) were found to be the most potent inhibitors of NO as compared to the standard N(G)-monomethyl-L-arginine acetate (65.6 ± 1.1%). All metabolites were found to be non-toxic against PC3, HeLa, and 3T3 cell lines. Observed inhibitory potential of metabolites 6 and 13 against pro-inflammatory cytokine TNF-α, as well as NO production makes them interesting leads for further studies. Copyright © 2017. Published by Elsevier Inc.

  20. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells.

    PubMed

    Lu, Xi-Lin; Yao, Xiao-Li; Liu, Zhiyong; Zhang, Heng; Li, Wei; Li, Zhenxing; Wang, Guan-Lei; Pang, Jiyan; Lin, Yongcheng; Xu, Zhongliang; Chen, Ling; Pei, Zhong; Zeng, Jinsheng

    2010-05-21

    Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting 2% of the population over age 65years. Mitochondrial defect and oxidative stress actively participate in the dopaminergic (DA) neuron degeneration in PD. Xyloketal B is a novel marine compound with unique chemical structure isolated from mangrove fungus Xylaria sp. (no. 2508). Recently, we have demonstrated that Xyloketal B can directly scavenge DPPH free radicals and protects mitochondria against oxidative insult. In the present study, we investigate the neuroprotective action of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. The viability and DA neurodegeneration was assessed in C. elegans selectively expressing green fluorescent protein (GFP) in DA neurons. PC12 cell damage was measured using MTT and nuclear morphology. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential and total GSH were assessed. Xyloketal B dose-dependently protected against MPP+-induced loss of viability and DA neurodegeneration in C. elegans. Similar neuroprotection was replicated in MPP+ PC12 cell model. In addition, xyloketal B attenuated MPP+-induced intracellular ROS accumulation, loss of mitochondrial membrane potential and restored total GSH level in PC12 cells. All together, the present study demonstrates that xyloketal B protects against MPP+-induced neurotoxicity in C. elegans and PC12 cells mainly through its antioxidant property and restoration of total GSH level. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Using C. elegans for aging research.

    PubMed

    Tissenbaum, Heidi A

    2015-01-30

    Over a century ago, the zoologist Emile Maupas first identified the nematode, Rhabditis elegans, in the soil in Algiers. Subsequent work and phylogenic studies renamed the species Caenorhabditis elegans or more commonly referred to as C. elegans; (Caeno meaning recent; rhabditis meaning rod; elegans meaning nice). However, it was not until 1963, when Sydney Brenner, already successful from his work on DNA, RNA, and the genetic code, suggested the future of biological research lay in model organisms. Brenner believed that biological research required a model system that could grow in vast quantities in the lab, were cheap to maintain and had a simple body plan, and he chose the nematode C. elegans to fulfill such a role. Since that time, C. elegans has emerged as one of the premiere model systems for aging research. This paper reviews some initial identification of mutants with altered lifespan with a focus on genetics and then discusses advantages and disadvantages for using C. elegans as a model system to understand human aging. This review focuses on molecular genetics aspects of this model organism.

  2. The Neuroethology of C. elegans Escape

    PubMed Central

    Pirri, Jennifer K.; Alkema, Mark J.

    2012-01-01

    Escape behaviors are crucial to survive predator encounters. Touch to the head of C. elegans induces an escape response where the animal rapidly backs away from the stimulus and suppresses foraging head movements. The coordination of head and body movements facilitates escape from predacious fungi that cohabitate with nematodes in organic debris. An appreciation of the natural habitat of laboratory organisms, like C. elegans, enables a comprehensive neuroethological analysis of behavior. In this review we discuss the neuronal mechanisms and the ecological significance of the C. elegans touch response. PMID:22226513

  3. The sensory cilia of Caenorhabditis elegans.

    PubMed

    Inglis, Peter N; Ou, Guangshuo; Leroux, Michel R; Scholey, Jonathan M

    2007-03-08

    The non-motile cilium, once believed to be a vestigial cellular structure, is now increasingly associated with the ability of a wide variety of cells and organisms to sense their chemical and physical environments. With its limited number of sensory cilia and diverse behavioral repertoire, C. elegans has emerged as a powerful experimental system for studying how cilia are formed, function, and ultimately modulate complex behaviors. Here, we discuss the biogenesis, distribution, structures, composition and general functions of C. elegans cilia. We also briefly highlight how C. elegans is being used to provide molecular insights into various human ciliopathies, including Polycystic Kidney Disease and Bardet-Biedl Syndrome.

  4. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  5. Untwisting the Caenorhabditis elegans embryo

    PubMed Central

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  6. Characterization and transcriptional regulation of Stachybotrys elegans mitogen-activated-protein kinase gene smkA following mycoparasitism and starvation conditions.

    PubMed

    Chamoun, Rony; Aliferis, Konstantinos A; Jabaji, Suha H

    2013-05-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in the development and conidiation of fungal pathogens on their hosts and the sensing of host-derived cues. Mycoparasitism is a fungus-fungus interaction comprising host-pathogen cross talk. Until now, only little information is available on the role of the MAPK signaling pathway during this interaction. Here, we report on the differential expression of a MAPK/ERK gene in the mycoparasite Stachybotrys elegans in response to direct parasitism of different vegetative structures of the plant pathogen Rhizoctonia solani (i.e., carbon-rich condition) and to nutrient starvation (i.e., carbon-poor condition). Western blot analysis against ERK1/2 highlighted an increase in their phosphorylated forms when S. elegans was grown under starvation condition compared to that detected in response to mycoparasitism. A higher abundance of phosphorylated ERK1/2 at the third day of interaction compared to that estimated under starvation condition was detected applying LC-MS/MS. At the transcriptional level, smkA, a YERK1 class member, was significantly induced in response to hyphal parasitism compared to parasitized sclerotia at 3, 4, and 5 days of interaction. However, under starvation condition, smkA levels were significantly induced after 7 days of growth. Southern blot analysis revealed that smkA is member of a small gene family. Collectively, these results suggest that smkA could be implicated in the mycoparasitic process in S. elegans as well as in stress-activated pathways. These results may be of wider significance in other fungus-fungus interactions.

  7. C. elegans outside the Petri dish

    PubMed Central

    Frézal, Lise; Félix, Marie-Anne

    2015-01-01

    The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology. DOI: http://dx.doi.org/10.7554/eLife.05849.001 PMID:25822066

  8. Analysis of aging in Caenorhabditis elegans.

    PubMed

    Wilkinson, Deepti S; Taylor, Rebecca C; Dillin, Andrew

    2012-01-01

    This chapter is dedicated to the study of aging in Caenorhabditis elegans (C. elegans). The assays are divided into two sections. In the first section, we describe detailed protocols for performing life span analysis in solid and liquid medium. In the second section, we describe various assays for measuring age-related changes. Our laboratory has been involved in several fruitful collaborations with non-C. elegans researchers keen on testing a role for their favorite gene in modulating aging (Carrano et al., 2009; Dong et al., 2007; Raices et al., 2008; Wolff et al., 2006). But even with the guidance of trained worm biologists, this undertaking can be daunting. We hope that this chapter will serve as a worthy compendium for those researchers who may or may not have immediate access to laboratories studying C. elegans.

  9. Biomechanical Profiling of Caenorhabditis elegans Motility

    PubMed Central

    Krajacic, Predrag; Shen, Xiaoning; Purohit, Prashant K.; Arratia, Paulo; Lamitina, Todd

    2012-01-01

    Caenorhabditis elegans locomotion is a stereotyped behavior that is ideal for genetic analysis. We integrated video microscopy, image analysis algorithms, and fluid mechanics principles to describe the C. elegans swim gait. Quantification of body shapes and external hydrodynamics and model-based estimates of biomechanics reveal that mutants affecting similar biological processes exhibit related patterns of biomechanical differences. Therefore, biomechanical profiling could be useful for predicting the function of previously unstudied motility genes. PMID:22554893

  10. Cancer models in Caenorhabditis elegans.

    PubMed

    Kirienko, Natalia V; Mani, Kumaran; Fay, David S

    2010-05-01

    Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis. Copyright (c) 2010 Wiley-Liss, Inc.

  11. Cancer models in C. elegans

    PubMed Central

    Kirienko, Natalia V.; Mani, Kumaran; Fay, David S.

    2013-01-01

    Although now dogma, the idea that non-vertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis. PMID:20175192

  12. The C. elegans Lifespan Machine

    PubMed Central

    Stroustrup, Nicholas; Ulmschneider, Bryne E.; Nash, Zachary M.; López Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2013-01-01

    The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The action of molecular mechanisms on lifespan is therefore visible only through their statistical effects on populations. Survival assays in C. elegans provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8 μm resolution. The method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with the manual method for several mutants in both standard and stressful environments. Our approach allows rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging. PMID:23666410

  13. Entomology: A Bee Farming a Fungus.

    PubMed

    Oldroyd, Benjamin P; Aanen, Duur K

    2015-11-16

    Farming is done not only by humans, but also by some ant, beetle and termite species. With the discovery of a stingless bee farming a fungus that provides benefits to its larvae, bees can be added to this list.

  14. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites.

    PubMed

    Siddiqui, Mahwish; Ahmad, Malik Shoaib; Wahab, Atia-Tul-; Yousuf, Sammer; Fatima, Narjis; Naveed Shaikh, Nimra; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2017-01-01

    Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2-4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2.7

  15. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites

    PubMed Central

    Siddiqui, Mahwish; Ahmad, Malik Shoaib; Wahab, Atia-tul-; Yousuf, Sammer; Fatima, Narjis; Naveed Shaikh, Nimra; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2017-01-01

    Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2–4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2

  16. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-08-02

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  17. Cell Biology of the Caenorhabditis elegans Nucleus.

    PubMed

    Cohen-Fix, Orna; Askjaer, Peter

    2017-01-01

    Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology. Copyright © 2017 by the Genetics Society of America.

  18. Proteomic analysis of mitochondria from Caenorhabditis elegans.

    PubMed

    Li, Jing; Cai, Tanxi; Wu, Peng; Cui, Ziyou; Chen, Xiulan; Hou, Junjie; Xie, Zhensheng; Xue, Peng; Shi, Linan; Liu, Pingsheng; Yates, John R; Yang, Fuquan

    2009-10-01

    Mitochondria play essential roles in cell physiological processes including energy production, metabolism, ion homeostasis, cell growth, aging and apoptosis. Proteomic strategies have been applied to the study of mitochondria since 1998; these studies have yielded decisive information about the diverse physiological functions of the organelle. As an ideal model biological system, the nematode Caenorhabditis elegans has been widely used in the study of several diseases, such as metabolic diseases and cancer. However, the mitochondrial proteome of C. elegans remains elusive. In this study, we purified mitochondria from C. elegans and performed a comprehensive proteomic analysis using the shotgun proteomic approach. A total of 1117 proteins have been identified with at least two unique peptides. Their physicochemical and functional characteristics, subcellular locations, related biological processes, and associations with human diseases, especially Parkinson's disease, are discussed. An orthology comparison was also performed between C. elegans and four other model organisms for a general depiction of the conservation of mitochondrial proteins during evolution. This study will provide new clues for understanding the role of mitochondria in the physiological and pathological processes of C. elegans.

  19. Chemically defined medium and Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  20. Chemically defined medium and Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  1. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities

    PubMed Central

    Lou, Jingfeng; Yu, Ruiting; Wang, Xiaohan; Mao, Ziling; Fu, Linyun; Liu, Yang; Zhou, Ligang

    2016-01-01

    One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75 μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27 μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18 μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17 μg/mL and 74.62 μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms. PMID:26887231

  2. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities.

    PubMed

    Lou, Jingfeng; Yu, Ruiting; Wang, Xiaohan; Mao, Ziling; Fu, Linyun; Liu, Yang; Zhou, Ligang

    2016-01-01

    One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17μg/mL and 74.62μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms.

  3. Detection of Autophagy in Caenorhabditis elegans.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-02-01

    Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeasts and mammals have orthologs in the nematode Caenorhabditis elegans. In recent years, gene inactivation by RNA interference (RNAi) and chromosomal mutations has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown to contribute to multiple processes, such as the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregation-prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here, we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of the ubiquitin-like modifier LGG-1 by western blot, and how to inactivate autophagy genes by RNAi.

  4. Regulation of Body Fat in C. elegans

    PubMed Central

    Srinivasan, Supriya

    2016-01-01

    Studies conducted in C. elegans over the last decade highlight the ancient and complex origins of body fat regulation. In this critical review, I introduce the major functional approaches used to study energy balance and body fat, the lipid composition of C. elegans, the regulation of cellular fat metabolism and its transcriptional control. Next I describe the influence of the sensory nervous system on body fat and the major regulatory mechanisms that couple food perception in the nervous system with the production of energy via fat metabolism. The final section describes the opportunities for the discovery of neuroendocrine factors that control communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans. PMID:25340962

  5. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  6. C. elegans network biology: a beginning.

    PubMed Central

    Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc

    2006-01-01

    The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437

  7. Detection of Autophagy in Caenorhabditis elegans

    PubMed Central

    Palmisano, Nicholas J.; Meléndez, Alicia

    2017-01-01

    Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeast and mammals have orthologs in C. elegans. In recent years, gene inactivation, by RNAi and/or chromosomal mutations, has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown in multiple processes such as, the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregate prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of LGG-1 by western blot, and how to inactivate autophagy genes by RNAi. PMID:26729905

  8. A sleep state during C. elegans development

    PubMed Central

    Nelson, Matthew D.; Raizen, David M.

    2013-01-01

    Caenorhabditis elegans is the simplest animal shown to sleep. It sleeps during lethargus, a larval transition stage. Behavior during lethargus has the sleep properties of a specific quiescent posture and elevated arousal threshold that are reversible to strong stimulation and of increased sleep drive following sleep deprivation. Genetic similarities between sleep regulation during C. elegans lethargus and sleep regulation in other animals point to a sleep state that was an evolutionarily ancestor to sleep both in C. elegans and other animals. Recent publications have shed light on key questions in sleep biology: (1) How is sleep regulated? (2) How is sensory information gated during sleep? (3) How is sleep homeostasis mediated? (4) What is the core function of sleep? PMID:23562486

  9. C. elegans survivors without telomerase

    PubMed Central

    Lackner, Daniel H.; Karlseder, Jan

    2013-01-01

    In most eukaryotic organisms with a linear genome, the telomerase complex is essential for telomere maintenance and, thus, for genomic integrity. Proper telomerase function in stem and germ cell populations counteracts replication-dependent telomere shortening. On the other hand, repression of telomerase expression in most somatic tissues limits the proliferative potential of these cells through the induction of a permanent cell cycle arrest termed senescence upon critical telomere erosion. Thus, senescence, induced by telomere shortening and subsequent DNA damage signaling, is an essential tumor suppressive mechanism, emphasized by the fact that repression of telomerase is lost in about 90% of cancers, endowing them with unlimited proliferative potential. In 10% of cancers telomeres are maintained using the recombination-based alternative mechanism of telomere lengthening (ALT). To date, ALT and ALT-like mechanisms have only been described in the context of individual cells such as cancer cells and yeast. Now, several “survivor” strains of the nematode Caenorhabditis elegans have been generated that can propagate despite mutations of the telomerase gene. These nematode strains represent the first multi-cellular organism with canonical telomerase that can survive in the absence of a functional telomerase pathway. PMID:24058854

  10. Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon 1-nitropyrene.

    PubMed Central

    Cerniglia, C E; Freeman, J P; White, G L; Heflich, R H; Miller, D W

    1985-01-01

    Nitropolycyclic aromatic hydrocarbons are ubiquitous environmental pollutants, many of which are potent mutagens in bacterial and mammalian cells and carcinogenic to rodents. In this study, we investigated the fungal metabolism of 1-nitropyrene and determined the mutagenic activity of the metabolites toward Salmonella typhimurium TA98, TA98NR, and TA100. Cunninghamella elegans metabolized 1-nitropyrene to form glucoside conjugates of 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene. The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by application of UV absorption, 1H-nuclear magnetic resonance, and mass spectroscopy. Mutagenicity assays performed on samples extracted from incubations of C. elegans with 1-nitropyrene indicated that mutagenic activity decreased with time. Consistent with the loss in mutagenic activity, the glucoside conjugates of 6- and 8-hydroxy-1-nitropyrene were nonmutagenic in the Salmonella reversion assay. The results indicate that the fungus C. elegans metabolizes 1-nitropyrene to detoxified products. PMID:3907498

  11. Exploring fungus-plant N transfer in a tripartite ant-plant-fungus mutualism.

    PubMed

    Leroy, Céline; Jauneau, Alain; Martinez, Yves; Cabin-Flaman, Armelle; Gibouin, David; Orivel, Jérôme; Séjalon-Delmas, Nathalie

    2017-09-01

    The plant Hirtella physophora, the ant Allomerus decemarticulatus and a fungus, Trimmatostroma sp., form a tripartite association. The ants manipulate both the plant trichomes and the fungus to build galleries under the stems of their host plant used to capture prey. In addition to its structural role, the fungus also improves nutrient uptake by the host plant. But it still remains unclear whether the fungus plays an indirect or a direct role in transferring nutrients to the plant. This study aimed to trace the transfer of N from the fungus to the plant's stem tissue. Optical microscopy and transmission electron microscopy (TEM) were used to investigate the presence of fungal hyphae in the stem tissues. Then, a 15N-labelling experiment was combined with a nanoscale secondary-ion mass spectrometry (NanoSIMS 50) isotopic imaging approach to trace the movement of added 15N from the fungus to plant tissues. The TEM images clearly showed hyphae inside the stem tissue in the cellular compartment. Also, fungal hyphae were seen perforating the wall of the parenchyma cell. The 15N provisioning of the fungus in the galleries resulted in significant enrichment of the 15N signature of the plant's leaves 1 d after the 15N-labelling solution was deposited on the fungus-bearing trap. Finally, NanoSIMS imaging proved that nitrogen was transferred biotrophically from the fungus to the stem tissue. This study provides evidence that the fungi are connected endophytically to an ant-plant system and actively transfer nitrogen from 15N-labelling solution to the plant's stem tissues. Overall, this study underlines how complex the trophic structure of ant-plant interactions is due to the presence of the fungus and provides insight into the possibly important nutritional aspects and tradeoffs involved in myrmecophyte-ant mutualisms.

  12. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods.

  13. Ascaroside signaling in C. elegans.

    PubMed

    Ludewig, Andreas H; Schroeder, Frank C

    2013-01-18

    Over the past 10 years, the relevance of small-molecule signaling for many aspects of C. elegans development and behavior has become apparent. One prominent group of small-molecule signals are the ascarosides, which control dauer entry and exit as well as a variety of sex-specific and social behaviors, including male attraction, hermaphrodite repulsion, olfactory plasticity, and aggregation. This wide range of biological functions is facilitated by a great diversity of ascaroside chemical structures. These are based on the sugar ascarylose, which is linked to fatty acid-like side chains of varying lengths and often decorated further with building blocks derived from amino acids, folate, and other primary metabolites. Different ascarosides or combinations of ascarosides mediate different phenotypes, and even small differences in chemical structures are often associated with strongly altered activity profiles. Additional complexity arises from concentration-dependent effects and synergism between different ascarosides. The ascarosides are sensed by several types of chemosensory head neurons, including the ASK, ASI, and ADL neurons as well as the male-specific CEM neurons. Ascaroside perception is mediated by diverse families of G-protein coupled membrane receptors that act upstream of conserved signal transduction pathways, including insulin/IGF-1 signaling and transforming growth factor beta (TGF-β) signaling. Biosynthesis of the ascarosides appears to integrate input from several primary metabolic pathways, including peroxisomal β-oxidation of long-chain fatty acids and amino acid catabolism. Life stage, sex, as well as food availability and other environmental factors affect ascaroside biosynthesis, suggesting that ascaroside signaling communicates detailed information about life history and metabolic state.

  14. Ascaroside signaling in C. elegans.

    PubMed Central

    Ludewig, Andreas H; Schroeder, Frank C

    2013-01-01

    Over the past 10 years, the relevance of small-molecule signaling for many aspects of C. elegans development and behavior has become apparent. One prominent group of small-molecule signals are the ascarosides, which control dauer entry and exit as well as a variety of sex-specific and social behaviors, including male attraction, hermaphrodite repulsion, olfactory plasticity, and aggregation. This wide range of biological functions is facilitated by a great diversity of ascaroside chemical structures. These are based on the sugar ascarylose, which is linked to fatty acid-like side chains of varying lengths and often decorated further with building blocks derived from amino acids, folate, and other primary metabolites. Different ascarosides or combinations of ascarosides mediate different phenotypes, and even small differences in chemical structures are often associated with strongly altered activity profiles. Additional complexity arises from concentration-dependent effects and synergism between different ascarosides. The ascarosides are sensed by several types of chemosensory head neurons, including the ASK, ASI, and ADL neurons as well as the male-specific CEM neurons. Ascaroside perception is mediated by diverse families of G-protein coupled membrane receptors that act upstream of conserved signal transduction pathways, including insulin/IGF-1 signaling and transforming growth factor beta (TGF-β) signaling. Biosynthesis of the ascarosides appears to integrate input from several primary metabolic pathways, including peroxisomal β-oxidation of long-chain fatty acids and amino acid catabolism. Life stage, sex, as well as food availability and other environmental factors affect ascaroside biosynthesis, suggesting that ascaroside signaling communicates detailed information about life history and metabolic state. PMID:23355522

  15. Cytological Analysis of Meiosis in Caenorhabditis elegans

    PubMed Central

    Phillips, Carolyn M.; McDonald, Kent L.; Dernburg, Abby F.

    2011-01-01

    The nematode Caenorhabditis elegans has emerged as an informative experimental system for analysis of meiosis, in large part because of the advantageous physical organization of meiotic nuclei as a gradient of stages within the germline. Here we provide tools for detailed observational studies of cells within the worm gonad, including techniques for light and electron microscopy. PMID:19685325

  16. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate.

    PubMed

    Patananan, Alexander N; Budenholzer, Lauren M; Pedraza, Maria E; Torres, Eric R; Adler, Lital N; Clarke, Steven G

    2015-03-01

    l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.

  17. Tissue enrichment analysis for C. elegans genomics.

    PubMed

    Angeles-Albores, David; N Lee, Raymond Y; Chan, Juancarlos; Sternberg, Paul W

    2016-09-13

    Over the last ten years, there has been explosive development in methods for measuring gene expression. These methods can identify thousands of genes altered between conditions, but understanding these datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not include anatomical information. We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude. We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated due to pathogen infection in C. elegans. Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using Python's standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and provides users with a text and graphic representation of the results.

  18. Guidelines for monitoring autophagy in Caenorhabditis elegans

    PubMed Central

    Zhang, Hong; Chang, Jessica T; Guo, Bin; Hansen, Malene; Jia, Kailiang; Kovács, Attila L; Kumsta, Caroline; Lapierre, Louis R; Legouis, Renaud; Lin, Long; Lu, Qun; Meléndez, Alicia; O'Rourke, Eyleen J; Sato, Ken; Sato, Miyuki; Wang, Xiaochen; Wu, Fan

    2015-01-01

    The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood. PMID:25569839

  19. Hormetic effect of methylmercury on Caenorhabditis elegans

    SciTech Connect

    Helmcke, Kirsten J. Aschner, Michael

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.

  20. TRPM channel function in Caenorhabditis elegans.

    PubMed

    Baylis, H A; Goyal, K

    2007-02-01

    The nematode Caenorhabditis elegans contains over 20 genes for TRP (transient receptor potential) channels which include members of all of the subclasses identified in mammalian cells. These proteins include three members of the TRPM (TRP melastatin) family: gon-2 (abnormal gonad development), gtl-1 (gon-2-like 1) and gtl-2. Although studies of these genes are at an early stage, we are beginning to understand their functions in the life of C. elegans. Mutations in gon-2 have defective gonad formation because of failures in the cell division of the somatic gonad precursor cells. gon-2 and gtl-1 are both expressed in the intestine of the animal. Experiments on gon-2,gtl-1 double mutants show that they have a severe growth defect that is ameliorated by the addition of high levels of Mg(2+) to the growth medium. gon-2,gtl-1 double mutants have defective magnesium homoeostasis and also have altered sensitivity to toxic levels of Ni(2+). Furthermore gon-2 mutants have reduced levels of I(ORCa) (outwardly rectifying calcium current) in the intestinal cells. Thus these two channels appear to play an important role in cation homoeostasis in C. elegans. In addition, perturbing the function of gon-2 and gtl-1 disrupts the ultradian defecation rhythm in C. elegans, suggesting that these channels play an important role in regulating this calcium-dependent rhythmic process. The tractability of C. elegans as an experimental animal and its amenability to techniques such as RNAi (RNA interference) and in vivo imaging make it an excellent system for an integrative analysis of TRPM function.

  1. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis.

    PubMed

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R; Clardy, Jon

    2009-06-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found that the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the associated parasitic fungus (Escovopsis sp.).

  2. White-Nose Syndrome Fungus (Geomyces destructans) in Bat, France

    PubMed Central

    Puechmaille, Sébastien J.; Verdeyroux, Pascal; Fuller, Hubert; Gouilh, Meriadeg Ar; Bekaert, Michaël

    2010-01-01

    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding. PMID:20113562

  3. White-nose syndrome fungus (Geomyces destructans) in bat, France.

    PubMed

    Puechmaille, Sebastien J; Verdeyroux, Pascal; Fuller, Hubert; Gouilh, Meriadeg Ar; Bekaert, Michael; Teeling, Emma C

    2010-02-01

    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding.

  4. Contamination of Pine Seeds by the Pitch Canker Fungus

    Treesearch

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  5. Chemical detoxification of small molecules by Caenorhabditis elegans.

    PubMed

    Stupp, Gregory S; von Reuss, Stephan H; Izrayelit, Yevgeniy; Ajredini, Ramadan; Schroeder, Frank C; Edison, Arthur S

    2013-02-15

    Caenorhabditis elegans lives in compost and decaying fruit, eats bacteria and is exposed to pathogenic microbes. We show that C. elegans is able to modify diverse microbial small-molecule toxins via both O- and N-glucosylation as well as unusual 3'-O-phosphorylation of the resulting glucosides. The resulting glucosylated derivatives have significantly reduced toxicity to C. elegans, suggesting that these chemical modifications represent a general mechanism for worms to detoxify their environments.

  6. Global distribution of the pitch canker fungus

    Treesearch

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, causes diseases of pines in the United States, Haiti, Japan, Mexico, Spain, and South Africa. Pitch canker was first reported in Virginia pine in North Carolina in 1946. Although the disease was reported in Haitian pine in 1953, pitch canker was generally considered a...

  7. Solanapyrone analogues from a Hawaiian fungicolous fungus

    USDA-ARS?s Scientific Manuscript database

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  8. Why are there males in the hermaphroditic species Caenorhabditis elegans?

    PubMed Central

    Chasnov, J R; Chow, King L

    2002-01-01

    The free-living nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, yet males are maintained in wild-type populations at low frequency. To determine the role of males in C. elegans, we develop a mathematical model for the genetic system of hermaphrodites that can either self-fertilize or be fertilized by males and we perform laboratory observations and experiments on both C. elegans and a related dioecious species C. remanei. We show that the mating efficiency of C. elegans is poor compared to a dioecious species and that C. elegans males are more attracted to C. remanei females than they are to their conspecific hermaphrodites. We postulate that a genetic mutation occurred during the evolution of C. elegans hermaphrodites, resulting in the loss of an attracting sex pheromone present in the ancestor of both C. elegans and C. remanei. Our findings suggest that males are maintained in C. elegans because of the particular genetic system inherited from its dioecious ancestor and because of nonadaptive spontaneous nondisjunction of sex chromosomes, which occurs during meiosis in the hermaphrodite. A theoretical argument shows that the low frequency of male mating observed in C. elegans can support male-specific genes against mutational degeneration. This results in the continuing presence of functional males in a 99.9% hermaphroditic species in which outcrossing is disadvantageous to hermaphrodites. PMID:11901116

  9. Proteome of the Caenorhabditis elegans oocyte.

    PubMed

    Chik, John K; Schriemer, David C; Childs, Sarah J; McGhee, James D

    2011-05-06

    Oocytes were purified from the temperature-sensitive fertilization-defective fer-1(b232ts) mutant of the nematode Caenorhabditis elegans and used for comprehensive mass spectrometric analysis. Using stringent criteria, 1165 C. elegans proteins were identified; at lower stringency, an additional 288 proteins were identified. We validate the high degree of sample purity and evaluate several possible sources of bias in the proteomic data. We compare the classes of proteins identified in the current oocyte proteome with protein classes identified in our previously determined oocyte transcriptome. The oocyte proteome appears enriched in proteins likely to be needed immediately upon fertilization, whereas the transcriptome appears enriched in molecules and processes needed later in embryogenesis. The current study provides fundamental background information for future more detailed studies of oocyte biology.

  10. RNASeq in C. elegans following manganese exposure

    PubMed Central

    Parmalee, Nancy L.; Maqbool, Shahina B.; Ye, Bin; Calder, Brent; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings, such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions, and a ranked list of differentially expressed genes for further study. PMID:26250396

  11. Caenorhabditis elegans pheromones regulate multiple complex behaviors.

    PubMed

    Edison, Arthur S

    2009-08-01

    A family of small molecules called ascarosides act as pheromones to control multiple behaviors in the nematode Caenorhabditis elegans. At picomolar concentrations, a synergistic mixture of at least three ascarosides produced by hermaphrodites causes male-specific attraction. At higher concentrations, the same ascarosides, perhaps in a different mixture, induce the developmentally arrested stage known as dauer. The production of ascarosides is strongly dependent on environmental conditions, although relatively little is known about the major variables and mechanisms of their regulation. Thus, male mating and dauer formation are linked through a common set of small molecules whose expression is sensitive to a given microenvironment, suggesting a model by which ascarosides regulate the overall life cycle of C. elegans.

  12. Dietary choice behavior in Caenorhabditis elegans

    PubMed Central

    Shtonda, Boris Borisovich; Avery, Leon

    2005-01-01

    Animals have evolved diverse behaviors that serve the purpose of finding food in the environment. We investigated the food seeking strategy of the soil bacteria-eating nematode Caenorhabditis elegans. C. elegans bacterial food varies in quality: some species are easy to eat and support worm growth well, while others do not. We show that worms exhibit dietary choice: they hunt for high quality food and leave hard-to-eat bacteria. This food seeking behavior is enhanced in animals that have already experienced good food. When hunting for good food, worms alternate between two modes of locomotion, known as dwelling: movement with frequent stops and reversals; and roaming: straight rapid movement. On good food, roaming is very rare, while on bad food it is common. Using laser ablations and mutant analysis, we show that the AIY neurons serve to extend roaming periods, and are essential for efficient food seeking. PMID:16354781

  13. The laboratory domestication of Caenorhabditis elegans.

    PubMed

    Sterken, Mark G; Snoek, L Basten; Kammenga, Jan E; Andersen, Erik C

    2015-05-01

    Model organisms are of great importance to our understanding of basic biology and to making advances in biomedical research. However, the influence of laboratory cultivation on these organisms is underappreciated, and especially how that environment can affect research outcomes. Recent experiments led to insights into how the widely used laboratory reference strain of the nematode Caenorhabditis elegans compares with natural strains. Here we describe potential selective pressures that led to the fixation of laboratory-derived alleles for the genes npr-1, glb-5, and nath-10. These alleles influence a large number of traits, resulting in behaviors that affect experimental interpretations. Furthermore, strong phenotypic effects caused by these laboratory-derived alleles hinder the discovery of natural alleles. We highlight strategies to reduce the influence of laboratory-derived alleles and to harness the full power of C. elegans.

  14. RNASeq in C. elegans Following Manganese Exposure.

    PubMed

    Parmalee, Nancy L; Maqbool, Shahina B; Ye, Bin; Calder, Brent; Bowman, Aaron B; Aschner, Michael

    2015-08-06

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin, are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions and a ranked list of differentially expressed genes for further study. Copyright © 2015 John Wiley & Sons, Inc.

  15. The Natural Biotic Environment of Caenorhabditis elegans.

    PubMed

    Schulenburg, Hinrich; Félix, Marie-Anne

    2017-05-01

    Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches. Copyright © 2017 by the Genetics Society of America.

  16. The Natural Biotic Environment of Caenorhabditis elegans

    PubMed Central

    Schulenburg, Hinrich; Félix, Marie-Anne

    2017-01-01

    Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism’s biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode’s natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans. We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode’s biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches. PMID:28476862

  17. A database of Caenorhabditis elegans behavioral phenotypes.

    PubMed

    Yemini, Eviatar; Jucikas, Tadas; Grundy, Laura J; Brown, André E X; Schafer, William R

    2013-09-01

    Using low-cost automated tracking microscopes, we have generated a behavioral database for 305 Caenorhabditis elegans strains, including 76 mutants with no previously described phenotype. The growing database currently consists of 9,203 short videos segmented to extract behavior and morphology features, and these videos and feature data are available online for further analysis. The database also includes summary statistics for 702 measures with statistical comparisons to wild-type controls so that phenotypes can be identified and understood by users.

  18. A database of C. elegans behavioral phenotypes

    PubMed Central

    Yemini, Eviatar; Jucikas, Tadas; Grundy, Laura J.; Brown, André E.X.; Schafer, William R.

    2014-01-01

    Using low-cost automated tracking microscopes, we have generated a behavioral database for 305 C. elegans strains, including 76 mutants with no previously described phenotype. The database consists of 9,203 short videos segmented to extract behavior and morphology features that are available online for further analysis. The database also includes summary statistics for 702 measures with statistical comparisons to wild-type controls so that phenotypes can be identified and understood by users. PMID:23852451

  19. The Si elegans project at the interface of experimental and computational Caenorhabditis elegans neurobiology and behavior

    NASA Astrophysics Data System (ADS)

    Petrushin, Alexey; Ferrara, Lorenzo; Blau, Axel

    2016-12-01

    Objective. In light of recent progress in mapping neural function to behavior, we briefly and selectively review past and present endeavors to reveal and reconstruct nervous system function in Caenorhabditis elegans through simulation. Approach. Rather than presenting an all-encompassing review on the mathematical modeling of C. elegans, this contribution collects snapshots of pathfinding key works and emerging technologies that recent single- and multi-center simulation initiatives are building on. We thereby point out a few general limitations and problems that these undertakings are faced with and discuss how these may be addressed and overcome. Main results. Lessons learned from past and current computational approaches to deciphering and reconstructing information flow in the C. elegans nervous system corroborate the need of refining neural response models and linking them to intra- and extra-environmental interactions to better reflect and understand the actual biological, biochemical and biophysical events that lead to behavior. Together with single-center research efforts, the Si elegans and OpenWorm projects aim at providing the required, in some cases complementary tools for different hardware architectures to support advancement into this direction. Significance. Despite its seeming simplicity, the nervous system of the hermaphroditic nematode C. elegans with just 302 neurons gives rise to a rich behavioral repertoire. Besides controlling vital functions (feeding, defecation, reproduction), it encodes different stimuli-induced as well as autonomous locomotion modalities (crawling, swimming and jumping). For this dichotomy between system simplicity and behavioral complexity, C. elegans has challenged neurobiologists and computational scientists alike. Understanding the underlying mechanisms that lead to a context-modulated functionality of individual neurons would not only advance our knowledge on nervous system function and its failure in pathological

  20. Toxicological Effects of Fullerenes on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Schomaker, Justin; Snook, Renee; Howell, Carina

    2014-03-01

    The nematode species Caenorhabditis elegans is a useful genetic model organism due to its simplicity and the substantial molecular, genetic, and developmental knowledge about the species. In this study, this species was used to test the toxicological effects of C60 fullerene nanoparticles. In previous studies using rats, a solution of C60 fullerenes in olive oil proved to extend the life of the subjects. The purpose of this experiment was to subject C. elegans to varying concentrations of C60 fullerenes and observe their toxicological effects. Initial findings indicate a link between fullerene exposure and enlargement of the vulva as well as the formation of a small nodule at the base of the tail in some individuals. While the fullerenes are not lethally toxic in C. elegans, results will be presented that pertain to changes in life span and progeny of the nematodes exposed to varying concentrations of fullerenes as well as the mechanisms of toxicity. High magnification imaging via SEM and/or AFM will be used to characterize the fullerene nanoparticles. Testing the toxicity of fullerenes in a wide variety of organisms will lead to a more complete understanding of the effects of fullerenes on living organisms to ultimately understand their effects in humans. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047, DUE-0806660 and Lock Haven FPDC grants.

  1. The nematode Caenorhabditis elegans and its genome.

    PubMed

    Hodgkin, J; Plasterk, R H; Waterston, R H

    1995-10-20

    Over the past two decades, the small soil nematode Caenorhabditis elegans has become established as a major model system for the study of a great variety of problems in biology and medicine. One of its most significant advantages is its simplicity, both in anatomy and in genomic organization. The entire haploid genetic content amounts to 100 million base pairs of DNA, about 1/30 the size of the human value. As a result, C. elegans has also provided a pilot system for the construction of physical maps of larger animal and plant genomes, and subsequently for the complete sequencing of those genomes. By mid-1995, approximately one-fifth of the complete DNA sequence of this animal had been determined. Caenorhabditis elegans provides a test bed not only for the development and application of mapping and sequencing technologies, but also for the interpretation and use of complete sequence information. This article reviews the progress so far toward a realizable goal--the total description of the genome of a simple animal.

  2. In vivo laser axotomy in C. elegans.

    PubMed

    Byrne, Alexandra B; Edwards, Tyson J; Hammarlund, Marc

    2011-05-19

    Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to identify genes and signaling pathways that influence the regeneration of neurons(1-6). The main way to initiate neuronal regeneration in C. elegans is laser-mediated cutting, or axotomy. During axotomy, a fluorescently-labeled neuronal process is severed using high-energy pulses. Initially, neuronal regeneration in C. elegans was examined using an amplified femtosecond laser(5). However, subsequent regeneration studies have shown that a conventional pulsed laser can be used to accurately sever neurons in vivo and elicit a similar regenerative response(1,3,7). We present a protocol for performing in vivo laser axotomy in the worm using a MicroPoint pulsed laser, a turnkey system that is readily available and that has been widely used for targeted cell ablation. We describe aligning the laser, mounting the worms, cutting specific neurons, and assessing subsequent regeneration. The system provides the ability to cut large numbers of neurons in multiple worms during one experiment. Thus, laser axotomy as described herein is an efficient system for initiating and analyzing the process of regeneration.

  3. Acute carbon dioxide avoidance in Caenorhabditis elegans

    PubMed Central

    Hallem, Elissa A.; Sternberg, Paul W.

    2008-01-01

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFβ signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm. PMID:18524955

  4. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  5. Ant-fungus species combinations engineer physiological activity of fungus gardens.

    PubMed

    Seal, J N; Schiøtt, M; Mueller, U G

    2014-07-15

    Fungus-gardening insects are among the most complex organisms because of their extensive co-evolutionary histories with obligate fungal symbionts and other microbes. Some fungus-gardening insect lineages share fungal symbionts with other members of their lineage and thus exhibit diffuse co-evolutionary relationships, while others exhibit little or no symbiont sharing, resulting in host-fungus fidelity. The mechanisms that maintain this symbiont fidelity are currently unknown. Prior work suggested that derived leaf-cutting ants in the genus Atta interact synergistically with leaf-cutter fungi (Attamyces) by exhibiting higher fungal growth rates and enzymatic activities than when growing a fungus from the sister-clade to Attamyces (so-called 'Trachymyces'), grown primarily by the non-leaf cutting Trachymyrmex ants that form, correspondingly, the sister-clade to leaf-cutting ants. To elucidate the enzymatic bases of host-fungus specialization in leaf-cutting ants, we conducted a reciprocal fungus-switch experiment between the ant Atta texana and the ant Trachymyrmex arizonensis and report measured enzymatic activities of switched and sham-switched fungus gardens to digest starch, pectin, xylan, cellulose and casein. Gardens exhibited higher amylase and pectinase activities when A. texana ants cultivated Attamyces compared with Trachymyces fungi, consistent with enzymatic specialization. In contrast, gardens showed comparable amylase and pectinase activities when T. arizonensis cultivated either fungal species. Although gardens of leaf-cutting ants are not known to be significant metabolizers of cellulose, T. arizonensis were able to maintain gardens with significant cellulase activity when growing either fungal species. In contrast to carbohydrate metabolism, protease activity was significantly higher in Attamyces than in Trachymyces, regardless of the ant host. Activity of some enzymes employed by this symbiosis therefore arises from complex interactions between the

  6. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  7. Effect of electromagnetic nanopulses on C. elegans fertility.

    PubMed

    Bojjawar, Tripura; Jalari, Madan; Aamodt, Eric; Ware, Matthew F; Haynie, Donald T

    2006-10-01

    Electromagnetic nanopulse exposure results in decreased fertility of C. elegans, a well studied, multicellar organism. Experiments indicate that this effect is unlikely to be due to heating. Instead, nanopulses interfere with fertilization or development by an as yet undetermined mechanism. Study of nanopulse exposure of C. elegans could help to understand more generally how living organisms interact with electromagnetic fields.

  8. Caenorhabditis elegans chemical biology: lessons from small molecules

    USDA-ARS?s Scientific Manuscript database

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  9. C. elegans locomotion analysis using algorithmic information theory.

    PubMed

    Skandari, Roghieh; Le Bihan, Nicolas; Manton, Jonathan H

    2015-01-01

    This article investigates the use of algorithmic information theory to analyse C. elegans datasets. The ability of complexity measures to detect similarity in animals' behaviours is demonstrated and their strengths are compared to methods such as histograms. Introduced quantities are illustrated on a couple of real two-dimensional C. elegans datasets to investigate the thermotaxis and chemotaxis behaviours.

  10. Species differentiation in Caenorhabditis briggsae and Caenorhabditis elegans

    PubMed Central

    Friedman, P. A.; Platzer, E. G.; Eby, J. E.

    1977-01-01

    Identification of five laboratory strains (1-5) of putative Caenorhabditis briggsae was undertaken. Examination of the male bursal ray arrangement, mating tests with males of Caenorhabditis elegans, malate dehydrogenase zymograms, and SDS polyacrylamide electrophoresis demonstrated that strain 4 was C. briggsae and the others were C. elegans. PMID:19305593

  11. Strength in numbers: "Omics" studies of C. elegans innate immunity.

    PubMed

    Simonsen, Karina T; Gallego, Sandra F; Færgeman, Nils J; Kallipolitis, Birgitte H

    2012-10-01

    For more than ten years the nematode Caenorhabditis elegans has proven to be a valuable model for studies of the host response to various bacterial and fungal pathogens. When exposed to a pathogenic organism, a clear response is elicited in the nematode, which is characterized by specific alterations on the transcriptional and translational levels. Early on, researchers took advantage of the possibility to conduct large-scale investigations of the C. elegans immune response. Multiple studies demonstrated that C. elegans does indeed mount a protective response against invading pathogens, thus rendering this small nematode a very useful and simple host model for the study of innate immunity and host-pathogen interactions. Here, we provide an overview of key aspects of innate immunity in C. elegans revealed by recent whole-genome transcriptomics and proteomics studies of the global response of C. elegans to various bacterial and fungal pathogens.

  12. Ecdysteroids in Axenically Propagated Caenorhabditis elegans and Culture Medium

    PubMed Central

    Chitwood, D. J.; Feldlaufer, M. F.

    1990-01-01

    Ecdysteroids (insect molting hormones) from Caenorhabditis elegans were chromatographically purified and quantified by radioimmunoassay. Nematodes from semidefined medium contained the immunoreactive equivalent of 460 pg ecdysone per gram dry weight. Culture medium, however, contained the immunoreactive equivalent of 68 times the quantity within the nematodes. In a defined medium lacking immunoreactivity, C. elegans contained 520 pg ecdysone equivalents per gram dry weight but reproduced slowly. Reproduction of C. elegans in defined medium was enhanced by formulation in agar. Propagation of C. elegans in either agar-based or aqueous defined medium supplemented with [¹⁴C]cholesterol of high specific activity failed to result in production of radiolabeled free ecdysteroids or polar or apolar ecdysteroid conjugates. Failure to demonstrate ecdysteroid biosynthesis in C. elegans raises questions about the ecdysteroids identified previously in nematodes being products of endogenous biosynthesis, a necessary condition for these compounds to be nematode hormones. PMID:19287765

  13. The Caenorhabiditis elegans model as a reliable tool in neurotoxicology

    PubMed Central

    Avila, Daiana; Helmcke, Kirsten; Aschner, Michael

    2016-01-01

    Caenorhabiditis elegans (C. elegans) offers an attractive experimental platform as it has a short life cycle, is inexpensive to maintain and most importantly has high degree of evolutionary conservation with higher eukaryotes. Understanding the contribution of inherent genes that regulate neurotoxicity and antioxidant stress responses in the worm provides critical insight into mechanisms of mammalian neurotoxicity. The C. elegans model readily enables multi-gene approach, allowing for combinatorial genetic variation to be studied within the context of the influence of multigenic polymorphisms in environmental risk and vulnerability. This review provides a synopsis of recent studies on metal and pesticides toxicity in C. elegans, highlighting the utility of the model system in understanding molecular mechanisms that underlie developmental, reproductive and neuronal damage. The continuation of these investigations combining basic toxicological experimentation with novel genetic and high throughput methods will continue to make C. elegans an invaluable tool for future research, providing insight into molecular and cellular mechanisms of toxicity. PMID:21148196

  14. C. elegans behavior of preference choice on bacterial food.

    PubMed

    Abada, Emad Abd-elmoniem; Sung, Hyun; Dwivedi, Meenakshi; Park, Byung-Jae; Lee, Sun-Kyung; Ahnn, Joohong

    2009-09-01

    Caenorhabditis elegans is a free living soil nematode and thus in its natural habitat, C. elegans encounters many different species of soil bacteria. Although some soil bacteria may be excellent sources of nutrition for the worm, others may be pathogenic. Thus, we undertook a study to understand how C. elegans can identify their preferred food using a simple behavioral assay. We found that there are various species of soil bacteria that C. elegans prefers in comparison to the standard laboratory E. coli strain OP50. In particular, two bacterial strains, Bacillus mycoides and Bacillus soli, were preferred strains. Interestingly, the sole feeding of these bacteria to wild type animals results in extended lifespan through the activation of the autophagic process. Further studies will be required to understand the precise mechanism controlling the behavior of identification and selection of food in C. elegans.

  15. Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans

    PubMed Central

    Dimitriadi, Maria; Hart, Anne C.

    2010-01-01

    Neurodegenerative diseases impose a burden on society, yet for the most part, the mechanisms underlying neuronal dysfunction and death in these disorders remain unclear despite the identification of relevant disease genes. Given the molecular conservation in neuronal signaling pathways across vertebrate and invertebrate species, many researchers have turned to the nematode Caenorhabditis elegans to identify the mechanisms underlying neurodegenerative disease pathology. C. elegans can be engineered to express human proteins associated with neurodegeneration; additionally, the function of C. elegans orthologs of human neurodegenerative disease genes can be dissected. Herein, we examine major C. elegans neurodegeneration models that recapitulate many aspects of human neurodegenerative disease and we survey the screens that have identified modifier genes. This review highlights how the C. elegans community has used this versatile organism to model several aspects of human neurodegeneration and how these studies have contributed to our understanding of human disease. PMID:20493260

  16. The Caenorhabiditis elegans model as a reliable tool in neurotoxicology.

    PubMed

    Avila, Daiana; Helmcke, Kirsten; Aschner, Michael

    2012-03-01

    Caenorhabiditis elegans (C. elegans) offers an attractive experimental platform as it has a short life cycle, is inexpensive to maintain and most importantly has high degree of evolutionary conservation with higher eukaryotes. Understanding the contribution of inherent genes that regulate neurotoxicity and antioxidant stress responses in the worm provides critical insight into mechanisms of mammalian neurotoxicity. The C. elegans model readily enables multi-gene approach, allowing for combinatorial genetic variation to be studied within the context of the influence of multigenic polymorphisms in environmental risk and vulnerability. This review provides a synopsis of recent studies on metal and pesticides toxicity in C. elegans, highlighting the utility of the model system in understanding molecular mechanisms that underlie developmental, reproductive and neuronal damage. The continuation of these investigations combining basic toxicological experimentation with novel genetic and high throughput methods will continue to make C. elegans an invaluable tool for future research, providing insight into molecular and cellular mechanisms of toxicity.

  17. Receptor-mediated Endocytosis in the Caenorhabditis elegans Oocyte

    PubMed Central

    Grant, Barth; Hirsh, David

    1999-01-01

    The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor. PMID:10588660

  18. Identification of Antifungal Compounds Active against Candida albicans Using an Improved High-Throughput Caenorhabditis elegans Assay

    PubMed Central

    Okoli, Ikechukwu; Coleman, Jeffrey J.; Tempakakis, Emmanouil; An, W. Frank; Holson, Edward; Wagner, Florence; Conery, Annie L.; Larkins-Ford, Jonah; Wu, Gang; Stern, Andy; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2009-01-01

    Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans–C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay. PMID:19750012

  19. Microbial Light-Activatable Proton Pumps as Neuronal Inhibitors to Functionally Dissect Neuronal Networks in C. elegans

    PubMed Central

    Husson, Steven J.; Liewald, Jana F.; Schultheis, Christian; Stirman, Jeffrey N.; Lu, Hang; Gottschalk, Alexander

    2012-01-01

    Essentially any behavior in simple and complex animals depends on neuronal network function. Currently, the best-defined system to study neuronal circuits is the nematode Caenorhabditis elegans, as the connectivity of its 302 neurons is exactly known. Individual neurons can be activated by photostimulation of Channelrhodopsin-2 (ChR2) using blue light, allowing to directly probe the importance of a particular neuron for the respective behavioral output of the network under study. In analogy, other excitable cells can be inhibited by expressing Halorhodopsin from Natronomonas pharaonis (NpHR) and subsequent illumination with yellow light. However, inhibiting C. elegans neurons using NpHR is difficult. Recently, proton pumps from various sources were established as valuable alternative hyperpolarizers. Here we show that archaerhodopsin-3 (Arch) from Halorubrum sodomense and a proton pump from the fungus Leptosphaeria maculans (Mac) can be utilized to effectively inhibit excitable cells in C. elegans. Arch is the most powerful hyperpolarizer when illuminated with yellow or green light while the action spectrum of Mac is more blue-shifted, as analyzed by light-evoked behaviors and electrophysiology. This allows these tools to be combined in various ways with ChR2 to analyze different subsets of neurons within a circuit. We exemplify this by means of the polymodal aversive sensory ASH neurons, and the downstream command interneurons to which ASH neurons signal to trigger a reversal followed by a directional turn. Photostimulating ASH and subsequently inhibiting command interneurons using two-color illumination of different body segments, allows investigating temporal aspects of signaling downstream of ASH. PMID:22815873

  20. The Caenorhabditis elegans lipidome: A primer for lipid analysis in Caenorhabditis elegans.

    PubMed

    Witting, Michael; Schmitt-Kopplin, Philippe

    2016-01-01

    Lipids play important roles in biology, ranging from building blocks of membranes to signaling lipids. The nematode and model organism Caenorhabditis elegans has been used to explore lipid metabolism and several techniques for their analysis have been employed. These techniques include different possibilities ranging from visualization of lipid droplets, analysis of total fatty acids to analysis of complex lipids using lipidomics approaches. Lipidomics evolved from metabolomics, the latest off-spring of the "omics"-technologies and aims to characterize the lipid content of a given organism or system. Although being an extensively studied model organism, only a few applications of lipidomics to C. elegans have been reported to far, but the number is steadily increasing with more applications expected in the near future. This review gives an overview on the C. elegans lipidome, lipid classes it contains and ways to analyze them. It serves as primer for scientists interested in studying lipids in this model organism and list methods used so far and what information can be derived from them. Lastly, challenges and future (methodological) research directions, together with new methods potentially useful for C. elegans lipid research are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neurodegeneration Induced by Metals in Caenorhabditis elegans.

    PubMed

    Soares, Felix Antunes; Fagundez, Daiandra Almeida; Avila, Daiana Silva

    2017-01-01

    Metals are a component of a variety of ecosystems and organisms. They can generally be divided into essential and nonessential metals. The essential metals are involved in physiological processes once the deficiency of these metals has been associated with diseases. Although iron, manganese, copper, and zinc are important for life, it has been evidenced that they are also involved in neuronal damage in many neurodegenerative disorders. Nonessential metals, which are metals without physiological functions, are present in trace or higher levels in living organisms. Occupational, environmental, or deliberate exposures to lead, mercury, aluminum, and cadmium are clearly correlated with the increase of toxicity and varied kinds of pathological situations. Actually, the field of neurotoxicology needs to satisfy two opposing demands: the testing of a growing list of chemicals and resource limitations and ethical concerns associated with testing using traditional mammalian species. Toxicological assays using alternative animal models may relieve some of this pressure by allowing testing of more compounds while reducing expenses and using fewer mammals. The nervous system is by far the more complex system in C. elegans. Almost a third of their cells are neurons (302 neurons versus 959 cells in adult hermaphrodite). It initially underwent extensive development as a model organism in order to study the nervous system, and its neuronal lineage and the complete wiring diagram of its nervous system are stereotyped and fully described. The neurotransmission systems are phylogenetically conserved from nematodes to vertebrates, which allows for findings from C. elegans to be extrapolated and further confirmed in vertebrate systems. Different strains of C. elegans offer a new perspective on neurodegenerative processes. Some genes have been found to be related to neurodegeneration induced by metals. Studying these interactions may be an effective tool to slow neuronal loss and

  2. Imaging embryonic morphogenesis in C. elegans.

    PubMed

    Hardin, Jeff

    2011-01-01

    The Caenorhabditis elegans embryo is well suited to morphogenetic analysis via modern microscopy, due to its short generation time, transparency, invariant lineage, and the ability to generate transgenic embryos expressing various fluorescent proteins. This chapter provides an overview of microscopy techniques for imaging embryonic morphogenesis, including making agar mounts, capturing four-dimensional (4D) data using Nomarski microscopy, imaging of actin in embryos, factors important for optimizing 4D fluorescence microscopy, and recent techniques that leverage fluorescence microscopy for intracellular imaging of cellular components during morphogenesis.

  3. [Non-alkaloid constituents of Gelsemium elegans].

    PubMed

    Zhang, Binfeng; Chou, Guixin; Wang, Zhengtao

    2009-09-01

    To study the non-alkaloid chemical constituents of Gelsemium elegans. Compounds were isolated and purified by repeated column chromatography, and their structures were elucidated by spectroscopic methods. Ten compounds were isolated and their structures were identified as tamarixin (1), tamarixetin 3-O-beta-D-galactopyranoside (2), scopolin (3), scopoletin (4), uradine (5), caffeic acid (6), caffeic acid ethyl ester (7), ferulic acid ethyl ester (8), ethyl-alpha-D-fructofuranoside (9), and ethyl-beta-D-fructopyranoside (10). Compounds 1-3,5-10 are firstly isolated from this plant and compounds 1, 2, and 5-10 are isolated from the genus Gelsemium for the first time.

  4. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans.

    PubMed

    Xu, You-Kai; Liao, Shang-Gao; Na, Zhi; Hu, Hua-Bin; Li, Yan; Luo, Huai-Rong

    2012-09-01

    Bioassay-guided isolation of the stems of Gelsemium elegans has led to the isolation of two new Gelsemium alkaloids, 21-(2-oxopropyl)-koumine (1) and 11-methoxygelselegine (2), and two known alkaloids, koumine (3) and gelselegine (4). The structures of 1-2 were determined by spectroscopic (for both) and single-crystal X-ray diffraction (for 1) analysis. All compounds isolated were evaluated for their potential as immunosuppressive agents and the data suggested that Gelsemium alkaloids of different structural types possibly have potential as immunosuppressive agents. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Measuring Oxygen Consumption Rate in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    The rate of oxygen consumption is a vital marker indicating cellular function during lifetime under normal or metabolically challenged conditions. It is used broadly to study mitochondrial function (Artal-Sanz and Tavernarakis, 2009; Palikaras et al., 2015; Ryu et al., 2016) or investigate factors mediating the switch from oxidative phosphorylation to aerobic glycolysis (Chen et al., 2015; Vander Heiden et al., 2009). In this protocol, we describe a method for the determination of oxygen consumption rates in the nematode Caenorhabditis elegans. PMID:28239622

  6. Characterization of the effects of methylmercury on Caenorhabditis elegans

    SciTech Connect

    Helmcke, Kirsten J.; Syversen, Tore; Miller, David M.; Aschner, Michael

    2009-10-15

    The rising prevalence of methylmercury (MeHg) in seafood and in the global environment provides an impetus for delineating the mechanism of the toxicity of MeHg. Deleterious effects of MeHg have been widely observed in humans and in other mammals, the most striking of which occur in the nervous system. Here we test the model organism, Caenorhabditis elegans (C. elegans), for MeHg toxicity. The simple, well-defined anatomy of the C. elegans nervous system and its ready visualization with green fluorescent protein (GFP) markers facilitated our study of the effects of methylmercuric chloride (MeHgCl) on neural development. Although MeHgCl was lethal to C. elegans, induced a developmental delay, and decreased pharyngeal pumping, other traits including lifespan, brood size, swimming rate, and nervous system morphology were not obviously perturbed in animals that survived MeHgCl exposure. Despite the limited effects of MeHgCl on C. elegans development and behavior, intracellular mercury (Hg) concentrations ({<=} 3 ng Hg/mg protein) in MeHgCl-treated nematodes approached levels that are highly toxic to mammals. If MeHgCl reaches these concentrations throughout the animal, this finding indicates that C. elegans cells, particularly neurons, may be less sensitive to MeHgCl toxicity than mammalian cells. We propose, therefore, that C. elegans should be a useful model for discovering intrinsic mechanisms that confer resistance to MeHgCl exposure.

  7. Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans

    PubMed Central

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-01-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes. PMID:19071962

  8. CRISPR-Cas9-guided Genome Engineering in C. elegans

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms including the nematode C. elegans. Recent studies developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning and injection methods required for delivering Cas9, sgRNAs and repair template DNA into the C. elegans germline. PMID:27366893

  9. Erythritol Production by a Yeastlike Fungus

    PubMed Central

    Hajny, G. J.; Smith, J. H.; Garver, J. C.

    1964-01-01

    A yeastlike fungus, probably belonging to the genus Torula, was isolated from fresh pollen and was shown to produce erythritol in yields of 35 to 40% of the sugar utilized. The ability to produce erythritol is an inherent characteristic of the isolate, but unfavorable fermentation conditions can lead to the production of glycerol at the expense of erythritol. By the use of a synthetic medium, it was shown that the concentrations of both nitrogen and phosphorous in the medium must be closely controlled to obtain satisfactory erythritol yields. PMID:14171841

  10. In situ soil remediation: Bacteria or fungi?

    SciTech Connect

    Cutright, T.J.; Lee, S.

    1995-07-01

    Contamination of the environment is not a new problem. For most of recorded history, the unwanted byproducts of industrial and residential processes have been dumped into unlined pits or nearby streams. Although disposal techniques have greatly improved, significant quantities of hazardous materials are still being released to the environment via accidental spills and leaking underground storage tanks. One particular group of contaminants of critical environmental concern is polycyclic aromatic hydrocarbons (PAHs). PAH-contaminated sites typically cover large areas; therefore, the development of in situ remediation techniques such as bioremediation is strongly emphasized. In situations when inherent microorganisms are not capable of degrading the contaminants, foreign strains must be used. Bioremediation experiments were conducted to compare the remediation efficiencies of a bacteria and a fungus for an industrially PAH contaminated soil. Specifically, the use of three supplemental nutrient solutions were investigated in conjunction with the bacteria Achromobacter sp. and fungus Cunninghamella echinulata var. elegans.

  11. The Multilayer Connectome of Caenorhabditis elegans

    PubMed Central

    Branicky, Robyn; Barnes, Christopher L.; Bullmore, Edward T.

    2016-01-01

    Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans based on new and published gene expression data. The monoamine and neuropeptide networks exhibit distinct topological properties, with the monoamine network displaying a highly disassortative star-like structure with a rich-club of interconnected broadcasting hubs, and the neuropeptide network showing a more recurrent, highly clustered topology. Despite the low degree of overlap between the extrasynaptic (or wireless) and synaptic (or wired) connectomes, we find highly significant multilink motifs of interaction, pinpointing locations in the network where aminergic and neuropeptide signalling modulate synaptic activity. Thus, the C. elegans connectome can be mapped as a multiplex network with synaptic, gap junction, and neuromodulator layers representing alternative modes of interaction between neurons. This provides a new topological plan for understanding how aminergic and peptidergic modulation of behaviour is achieved by specific motifs and loci of integration between hard-wired synaptic or junctional circuits and extrasynaptic signals wirelessly broadcast from a small number of modulatory neurons. PMID:27984591

  12. Epigenetics in C. elegans: facts and challenges.

    PubMed

    Wenzel, Dirk; Palladino, Francesca; Jedrusik-Bode, Monika

    2011-08-01

    Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.

  13. RNA interference spreading in C. elegans.

    PubMed

    May, Robin C; Plasterk, Ronald H A

    2005-01-01

    The phenomenon of RNA interference (RNAi) occurs in eukaryotic organisms from across the boundaries of taxonomic kingdoms. In all cases, the basic mechanism of RNAi appears to be conserved--an initial trigger [double-stranded RNA (dsRNA) containing perfect homology over at least 19-21/bp with an endogenous gene] is processed into short interfering RNA (siRNA) molecules and these siRNAs stimulate degradation of the homologous mRNA. In the vast majority of species, RNAi can only be initiated following the deliberate introduction of dsRNA into a cell by microinjection, electroporation, or transfection. However, in the nematode worm Caenorhabditis elegans, RNAi can be simply initiated by supplying dsRNA in the surrounding medium or in the diet. Following uptake, this dsRNA triggers a systemic effect, initiating RNAi against the corresponding target gene in tissues that are not in direct contact with the external milieu. This phenomenon of systemic RNAi, or RNAi spreading, is notably absent from mammalian species, a fact that is likely to prove a substantial barrier to the wider use of RNAi as a clinical therapy. An understanding of the mechanism of systemic RNAi is therefore of considerable importance, and several advances of the last few years have begun to shed light on this process. Here we review our current understanding of systemic RNAi in C. elegans and draw comparisons with systemic RNAi pathways in other organisms.

  14. Food transport in the C. elegans pharynx.

    PubMed

    Avery, Leon; Shtonda, Boris B

    2003-07-01

    Pumping of the C. elegans pharynx transports food particles (bacteria) posteriorly. We examined muscle motions to determine how this posterior transport is effected. We find that the motions of the middle section of the pharynx, the anterior isthmus, are delayed relative to the anterior section, the corpus. Simulations in which particles are assumed to move at mean fluid velocity when not captured by the walls of the pharyngeal lumen show that delayed isthmus motions do indeed cause net particle transport; however, the amount is much less than in the real pharynx. We propose that the geometry of the pharyngeal lumen forces particles to the center, where they move faster than mean fluid velocity. When this acceleration is incorporated into the simulation, particles are transported efficiently. The transport mechanism we propose explains past observations that the timing of muscle relaxation is important for effective transport. Our model also makes a prediction, which we confirm, that smaller bacteria are better food sources for C. elegans than large ones.

  15. Early transcription in Caenorhabditis elegans embryos.

    PubMed

    Edgar, L G; Wolf, N; Wood, W B

    1994-02-01

    We have analysed early transcription in devitellinized, cultured embryos of the nematode Caenorhabditis elegans by two methods: measurement of [32P]UTP uptake into TCA-precipitable material and autoradiographic detection of [3H]UTP labelling both in the presence and absence of alpha-amanitin. RNA synthesis was first detected at the 8- to 12-cell stage, and alpha-amanitin sensitivity also appeared at this time, during the cleavages establishing the major founder cell lineages. The requirements for maternally supplied versus embryonically produced gene products in early embryogenesis were examined in the same culture system by observing the effects of alpha-amanitin on cell division and the early stereotyped lineage patterns. In the presence of high levels of alpha-amanitin added at varying times from two cells onward, cell division continued until approximately the 100-cell stage and then stopped during a single round of cell division. The characteristic unequal early cleavages, orientation of cleavage planes and lineage-specific timing of early divisions were unaffected by alpha-amanitin in embryos up to 87 cells. These results indicate that embryonic transcription starts well before gastrulation in C. elegans embryos, but that although embryonic transcripts may have important early functions, maternal products can support at least the mechanics of the first 6 to 7 cell cycles.

  16. End Joining at Caenorhabditis elegans Telomeres

    PubMed Central

    Lowden, Mia Rochelle; Meier, Bettina; Lee, Teresa Wei-sy; Hall, Julie; Ahmed, Shawn

    2008-01-01

    Critically shortened telomeres can be subjected to DNA repair events that generate end-to-end chromosome fusions. The resulting dicentric chromosomes can enter breakage–fusion–bridge cycles, thereby impeding elucidation of the structures of the initial fusion events and a mechanistic understanding of their genesis. Current models for the molecular basis of fusion of critically shortened, uncapped telomeres rely on PCR assays that typically capture fusion breakpoints created by direct ligation of chromosome ends. Here we use independent approaches that rely on distinctive features of Caenorhabditis elegans to study the frequency of direct end-to-end chromosome fusion in telomerase mutants: (1) holocentric chromosomes that allow for genetic isolation of stable end-to-end fusions and (2) unique subtelomeric sequences that allow for thorough PCR analysis of samples of genomic DNA harboring multiple end-to-end fusions. Surprisingly, only a minority of end-to-end fusion events resulted from direct end joining with no additional genome rearrangements. We also demonstrate that deficiency for the C. elegans Ku DNA repair heterodimer does not affect telomere length or cause synthetic effects in the absence of telomerase. PMID:18780750

  17. Visualizing neuroblast cytokinesis during C. elegans embryogenesis.

    PubMed

    Wernike, Denise; van Oostende, Chloe; Piekny, Alisa

    2014-03-12

    This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.

  18. Macrorestriction Analysis of Caenorhabditis Elegans Genomic DNA

    PubMed Central

    Browning, H.; Berkowitz, L.; Madej, C.; Paulsen, J. E.; Zolan, M. E.; Strome, S.

    1996-01-01

    The usefulness of genomic physical maps is greatly enhanced by linkage of the physical map with the genetic map. We describe a ``macrorestriction mapping'' procedure for Caenorhabditis elegans that we have applied to this endeavor. High molecular weight, genomic DNA is digested with infrequently cutting restriction enzymes and size-fractionated by pulsed field gel electrophoresis. Southern blots of the gels are probed with clones from the C. elegans physical map. This procedure allows the construction of restriction maps covering several hundred kilobases and the detection of polymorphic restriction fragments using probes that map several hundred kilobases away. We describe several applications of this technique. (1) We determined that the amount of DNA in a previously uncloned region is <220 kb. (2) We mapped the mes-1 gene to a cosmid, by detecting polymorphic restriction fragments associated with a deletion allele of the gene. The 25-kb deletion was initially detected using as a probe sequences located ~400 kb away from the gene. (3) We mapped the molecular endpoint of the deficiency hDf6, and determined that three spontaneously derived duplications in the unc-38-dpy-5 region have very complex molecular structures, containing internal rearrangements and deletions. PMID:8889524

  19. Morphogenesis of the C. elegans vulva

    PubMed Central

    Schindler, Adam J

    2012-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the C. elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of seven different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviours that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell-cell adhesion, cell migration, cell fusion, extracellular matrix remodelling and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. PMID:23418408

  20. Lifespan-regulating genes in C. elegans

    PubMed Central

    Uno, Masaharu; Nishida, Eisuke

    2016-01-01

    The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans. PMID:28721266

  1. Alcohol Disinhibition of Behaviors in C. elegans

    PubMed Central

    Topper, Stephen M.; Aguilar, Sara C.; Topper, Viktoria Y.; Elbel, Erin; Pierce-Shimomura, Jonathan T.

    2014-01-01

    Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water) that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals. PMID:24681782

  2. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe

    PubMed Central

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K.; Beukema, Wouter; Bletz, Molly C.; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F.; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R.; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank

    2016-01-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010–2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  3. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  4. Bacterial farming by the fungus Morchella crassipes.

    PubMed

    Pion, Martin; Spangenberg, Jorge E; Simon, Anaele; Bindschedler, Saskia; Flury, Coralie; Chatelain, Auriel; Bshary, Redouan; Job, Daniel; Junier, Pilar

    2013-12-22

    The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and (13)C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.

  5. Bacterial farming by the fungus Morchella crassipes

    PubMed Central

    Pion, Martin; Spangenberg, Jorge E.; Simon, Anaele; Bindschedler, Saskia; Flury, Coralie; Chatelain, Auriel; Bshary, Redouan; Job, Daniel; Junier, Pilar

    2013-01-01

    The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and 13C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils. PMID:24174111

  6. Assembly of complex plant–fungus networks

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2014-01-01

    Species in ecological communities build complex webs of interaction. Although revealing the architecture of these networks is fundamental to understanding ecological and evolutionary dynamics in nature, it has been difficult to characterize the structure of most species-rich ecological systems. By overcoming this limitation through next-generation sequencing technology, we herein uncover the network architecture of below-ground plant–fungus symbioses, which are ubiquitous to terrestrial ecosystems. The examined symbiotic network of a temperate forest in Japan includes 33 plant species and 387 functionally and phylogenetically diverse fungal taxa, and the overall network architecture differs fundamentally from that of other ecological networks. In contrast to results for other ecological networks and theoretical predictions for symbiotic networks, the plant–fungus network shows moderate or relatively low levels of interaction specialization and modularity and an unusual pattern of ‘nested’ network architecture. These results suggest that species-rich ecological networks are more architecturally diverse than previously recognized. PMID:25327887

  7. Population structure of dogwood anthracnose fungus.

    PubMed

    Zhang, Ning; Blackwell, Meredith

    2002-12-01

    ABSTRACT Dogwood anthracnose, caused by Discula destructiva, affects several native dogwood species in North America, especially flowering dogwood in the east and Pacific dogwood in the west. The fungus behaves as a recently introduced plant pathogen under episodic selection. Two distinct disjunct groups of fungal isolates corresponding to eastern and western groups were detected by amplified fragment length polymorphisms and sequences of the intergenic spacer (IGS) of the nuclear ribosomal DNA, translation elongation factor-1alpha, and beta-tubulin genes. Of 20 genotypes identified among 72 isolates, 17 genotypes were from the eastern United States (n = 50), but only three were present among the western isolates (n = 22), indicating that the eastern population may be more diverse. Most eastern and western isolates belonged to a few widespread clones, and the genetic variability of this apparently asexual fungus was remarkably low compared with that of many other asexual fungi. We conclude that D. destructiva is still under intense selection pressure and that episodic selection may still be in effect. The New York City area, a possible epidemic center in the east, had relatively higher genetic variability than samples from other areas.

  8. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  9. General metabolism of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Arraes, Fabrício B M; Benoliel, Bruno; Burtet, Rafael T; Costa, Patrícia L N; Galdino, Alexandro S; Lima, Luanne H A; Marinho-Silva, Camila; Oliveira-Pereira, Luciana; Pfrimer, Pollyanna; Procópio-Silva, Luciano; Reis, Viviane Castelo-Branco; Felipe, Maria Sueli S

    2005-06-30

    Annotation of the transcriptome of the dimorphic fungus Paracoccidioides brasiliensis has set the grounds for a global understanding of its metabolism in both mycelium and yeast forms. This fungus is able to use the main carbohydrate sources, including starch, and it can store reduced carbons in the form of glycogen and trehalose; these provide energy reserves that are relevant for metabolic adaptation, protection against stress and infectivity mechanisms. The glyoxylate cycle, which is also involved in pathogenicity, is present in this fungus. Classical pathways of lipid biosynthesis and degradation, including those of ketone body and sterol production, are well represented in the database of P. brasiliensis. It is able to synthesize de novo all nucleotides and amino acids, with the sole exception of asparagine, which was confirmed by the fungus growth in minimal medium. Sulfur metabolism, as well as the accessory synthetic pathways of vitamins and co-factors, are likely to exist in this fungus.

  10. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates

    USDA-ARS?s Scientific Manuscript database

    Caenorhabditis elegans, a bacterivorous soil nematode, lives in a complex environment that requires chemical communication for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied...

  11. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  12. Microfluidics as a tool for C. elegans research.

    PubMed

    San-Miguel, Adriana; Lu, Hang

    2013-09-24

    Microfluidics has emerged as a set of powerful tools that have greatly advanced some areas of biological research, including research using C. elegans. The use of microfluidics has enabled many experiments that are otherwise impossible with conventional methods. Today there are many examples that demonstrate the main advantages of using microfluidics for C. elegans research, achieving precise environmental conditions and facilitating worm handling. Examples range from behavioral analysis under precise chemical or odor stimulation, locomotion studies in well-defined structural surroundings, and even long-term culture on chip. Moreover, microfluidics has enabled coupling worm handling and imaging thus facilitating genetic screens, optogenetic studies, and laser ablation experiments. In this article, we review some of the applications of microfluidics for C. elegans research and provide guides for the design, fabrication, and use of microfluidic devices for C. elegans research studies.

  13. Action potentials drive body wall muscle contractions in Caenorhabditis elegans.

    PubMed

    Gao, Shangbang; Zhen, Mei

    2011-02-08

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel-dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals.

  14. BACTERIAL ATTRACTION AND QUORUM SENSING INHIBITION IN CAENORHABDITIS ELEGANS EXUDATES

    PubMed Central

    KAPLAN, FATMA; BADRI, DAYAKAR V.; ZACHARIAH, CHERIAN; AJREDINI, RAMADAN; SANDOVAL, FRANCISCO J; ROJE, SANJA; LEVINE, LANFANG H.; ZHANG, FENGLI; ROBINETTE, STEVEN L.; ALBORN, HANS T.; ZHAO, WEI; STADLER, MICHAEL; NIMALENDRAN, RATHIKA; DOSSEY, AARON T.; BRÜSCHWEILER, RAFAEL; VIVANCO, JORGE M.; EDISON, ARTHUR S.

    2014-01-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to chemically interact with its environment or as defense. C. elegans exudates were analyzed using several analytical methods and found to contain 36 common metabolites including organic acids, amino acids and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and E. coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Psuedomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems. PMID:19649780

  15. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    PubMed Central

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    2008-01-01

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments. PMID:18392117

  16. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates.

    PubMed

    Kaplan, Fatma; Badri, Dayakar V; Zachariah, Cherian; Ajredini, Ramadan; Sandoval, Francisco J; Roje, Sanja; Levine, Lanfang H; Zhang, Fengli; Robinette, Steven L; Alborn, Hans T; Zhao, Wei; Stadler, Michael; Nimalendran, Rathika; Dossey, Aaron T; Brüschweiler, Rafael; Vivanco, Jorge M; Edison, Arthur S

    2009-08-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.

  17. Building a Cell and Anatomy Ontology of Caenorhabditis Elegans

    PubMed Central

    Sternberg, Paul W.

    2003-01-01

    We are endowed with a rich knowledge about Caenorhabditis elegans. Its stereotyped anatomy and development has stimulated research and resulted in the accumulation of cell-based information concerning gene expression, and the role of specific cells in developmental signalling and behavioural circuits. To make the information more accessible to sophisticated queries and automated retrieval systems, WormBase has begun to construct a C. elegans cell and anatomy ontology. Here we present our strategies and progress. PMID:18629098

  18. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    NASA Astrophysics Data System (ADS)

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.

  19. The Geometry of Locomotive Behavioral States in C. elegans

    PubMed Central

    Bjorness, Theresa; Greene, Robert; You, Young-Jai

    2013-01-01

    We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming, dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming, dwelling, and quiescence may best be thought of as extremes which, mixed in any proportion, define the locomotive repertoire of C elegans foraging and feeding behavior. PMID:23555813

  20. A Transparent Window into Biology: A Primer on Caenorhabditis elegans

    PubMed Central

    Corsi, Ann K.; Wightman, Bruce; Chalfie, Martin

    2015-01-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host–parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. PMID:26088431

  1. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  2. Japanese studies on neural circuits and behavior of Caenorhabditis elegans

    PubMed Central

    Sasakura, Hiroyuki; Tsukada, Yuki; Takagi, Shin; Mori, Ikue

    2013-01-01

    The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies. PMID:24348340

  3. A Transparent Window into Biology: A Primer on Caenorhabditis elegans.

    PubMed

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-06-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. Copyright © 2015 Corsi, Wightman, and Chalfie.

  4. CeNDR, the Caenorhabditis elegans natural diversity resource.

    PubMed

    Cook, Daniel E; Zdraljevic, Stefan; Roberts, Joshua P; Andersen, Erik C

    2017-01-04

    Studies in model organisms have yielded considerable insights into the etiology of disease and our understanding of evolutionary processes. Caenorhabditis elegans is among the most powerful model organisms used to understand biology. However, C. elegans is not used as extensively as other model organisms to investigate how natural variation shapes traits, especially through the use of genome-wide association (GWA) analyses. Here, we introduce a new platform, the C. elegans Natural Diversity Resource (CeNDR) to enable statistical genetics and genomics studies of C. elegans and to connect the results to human disease. CeNDR provides the research community with wild strains, genome-wide sequence and variant data for every strain, and a GWA mapping portal for studying natural variation in C. elegans Additionally, researchers outside of the C. elegans community can benefit from public mappings and integrated tools for comparative analyses. CeNDR uses several databases that are continually updated through the addition of new strains, sequencing data, and association mapping results. The CeNDR data are accessible through a freely available web portal located at http://www.elegansvariation.org or through an application programming interface.

  5. Caenorhabditis elegans responses to bacteria from its natural habitats

    PubMed Central

    Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-01-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  6. A Transparent window into biology: A primer on Caenorhabditis elegans.

    PubMed Central

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-01-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. PMID:26087236

  7. CeNDR, the Caenorhabditis elegans natural diversity resource

    PubMed Central

    Cook, Daniel E.; Zdraljevic, Stefan; Roberts, Joshua P.; Andersen, Erik C.

    2017-01-01

    Studies in model organisms have yielded considerable insights into the etiology of disease and our understanding of evolutionary processes. Caenorhabditis elegans is among the most powerful model organisms used to understand biology. However, C. elegans is not used as extensively as other model organisms to investigate how natural variation shapes traits, especially through the use of genome-wide association (GWA) analyses. Here, we introduce a new platform, the C. elegans Natural Diversity Resource (CeNDR) to enable statistical genetics and genomics studies of C. elegans and to connect the results to human disease. CeNDR provides the research community with wild strains, genome-wide sequence and variant data for every strain, and a GWA mapping portal for studying natural variation in C. elegans. Additionally, researchers outside of the C. elegans community can benefit from public mappings and integrated tools for comparative analyses. CeNDR uses several databases that are continually updated through the addition of new strains, sequencing data, and association mapping results. The CeNDR data are accessible through a freely available web portal located at http://www.elegansvariation.org or through an application programming interface. PMID:27701074

  8. [Biological toxicity of heavy metals to Caenorhabditis elegans].

    PubMed

    Huang, Yue-e; Zhang, Nan; Jiang, Yu-xin; Guo, Wei; Li, Chao-pin

    2015-06-01

    To evaluate the biological toxicity of heavy metals by using Caenorhabditis elegans. The C. elegans at L4 stage were exposed to CdCl, CrCl3, As2O3, PbCh2, HgCl2 with low concentrations and M9 buffer (the control group) for 72 h, respectively, and the effects of heavy metals with different concentrations on the survival time and reproduction of C. elegans were evaluated. After exposure to 2.5, 10 µmol/L HgCl2 and PbCl2, 10 µmol/L CdCl2, and 50 µmol/L CrCl3 for 72 h, respectively, the life spans and survival curves of the C. elegans were different from those in the control group, the differences were statistically significant (all P < 0.05). After exposure to CdCl2, CrCl3, As2O3, PbCl2 and HgCl2 with the con- centrations of 2.5, 50, 100 µmol/L for 72 h, respectively, the generational time and brood size of C. elegans were all different from those in the control group (all P < 0.01). Among the 5 heavy metals at low concentrations, the reproduction toxicity of Hg was bigger than Pb, Cd, Cr, and the toxicity of As was the weakest. Heavy metal exposure can affect the life span and reproductive toxicity of C. elegans.

  9. Mainstreaming Caenorhabditis elegans in experimental evolution

    PubMed Central

    Gray, Jeremy C.; Cutter, Asher D.

    2014-01-01

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host–pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery. PMID:24430852

  10. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions

    PubMed Central

    Watanabe, Shigeki; Liu, Qiang; Davis, M Wayne; Hollopeter, Gunther; Thomas, Nikita; Jorgensen, Nels B; Jorgensen, Erik M

    2013-01-01

    Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI: http://dx.doi.org/10.7554/eLife.00723.001 PMID:24015355

  11. Mainstreaming Caenorhabditis elegans in experimental evolution.

    PubMed

    Gray, Jeremy C; Cutter, Asher D

    2014-03-07

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.

  12. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed Central

    Hutter, Harald; Moerman, Donald

    2015-01-01

    A clear definition of what constitutes “Big Data” is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of “complete” data sets for this organism is actually rather small—not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein–protein interaction—important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. PMID:26543198

  13. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed

    Hutter, Harald; Moerman, Donald

    2015-11-05

    A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. © 2015 Hutter and Moerman. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Chemical composition of metapleural gland secretions of fungus-growing and non-fungus-growing ants.

    PubMed

    Vieira, Alexsandro S; Morgan, E David; Drijfhout, Falko P; Camargo-Mathias, Maria I

    2012-10-01

    The metapleural gland is exclusive to ants, and unusual among exocrine glands in having no mechanism for closure and retention of secretion. As yet, no clear conclusion has been reached as to the function of metapleural gland secretion. Metapleural gland secretions were investigated for fungus-growing ants representing the derived attines Trachymyrmex fuscus, Atta laevigata, and Acromyrmex coronatus, the basal attines Apterostigma pilosum and Mycetarotes parallelus, and non-fungus-growing ants of the tribes Ectatommini (Ectatomma brunneum) and Myrmicini (Pogonomyrmex naegeli). Our results showed that the secretions of leaf-cutting ants (A. laevigata and A. coronatus) and the derived attine, T. fuscus, contain a greater variety and larger quantities of volatile compounds than those of myrmicine and ectatommine ants. The most abundant compounds found in the metapleural glands of A. laevigata and A. coronatus were hydroxyacids, and phenylacetic acid (only in A. laevigata). Indole was present in all groups examined, while skatole was found in large quantities only in attines. Ketones and aldehydes are present in the secretion of some attines. Esters are present in the metapleural gland secretion of all species examined, although mainly in A. laevigata, A. coronatus, and T. fuscus. Compared with basal attines and non-fungus-growing ants, the metapleural glands of leaf-cutting ants produce more acidic compounds that may have an antibiotic or antifungal function.

  15. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1.

    PubMed

    Xu, Ling-Ling; Lai, Yi-Ling; Wang, Lin; Liu, Xing-Zhong

    2011-02-01

    The in vitro effects of abscisic acid (ABA) and nitric oxide (NO) on the nematode-trapping fungus Drechslerella stenobrocha AS6.1 were examined. The average number of traps (constricting rings) per colony and the percentage of nematodes (Caenorhabditis elegans) trapped were greatly increased by addition of ABA but greatly suppressed by addition of sodium nitroprusside (SNP, an NO donor) to corn meal agar. The suppressive effect of SNP was not negated by addition of an NO synthase competitive inhibitor (l-naphthylacetic acid, L-NNA) or an NO-specific scavenger [2-(4-carboxyphenyl)-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO]. When added without SNP, however, L-NNA and cPTIO caused moderate increases in trap number and trapping. The results indicate that the trap formation and nematode-trapping ability of D. stenobrocha were enhanced by ABA but decreased by exogenous NO.

  16. Effects of sterols on the development and aging of caenorhabditis elegans

    USDA-ARS?s Scientific Manuscript database

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthesis pathway, it requires sterols as essential nutrients. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. Because sterol metabolism in ...

  17. Is the Fungus Magnaporthe Losing DNA Methylation?

    PubMed Central

    Ikeda, Ken-ichi; Van Vu, Ba; Kadotani, Naoki; Tanaka, Masaki; Murata, Toshiki; Shiina, Kohta; Chuma, Izumi; Tosa, Yukio; Nakayashiki, Hitoshi

    2013-01-01

    The long terminal repeat retrotransposon, Magnaporthe gypsy-like element (MAGGY), has been shown to be targeted for cytosine methylation in a subset of Magnaporthe oryzae field isolates. Analysis of the F1 progeny from a genetic cross between methylation-proficient (Br48) and methylation-deficient (GFSI1-7-2) isolates revealed that methylation of the MAGGY element was governed by a single dominant gene. Positional cloning followed by gene disruption and complementation experiments revealed that the responsible gene was the DNA methyltransferase, MoDMT1, an ortholog of Neurospora crassa Dim-2. A survey of MAGGY methylation in 60 Magnaporthe field isolates revealed that 42 isolates from rice, common millet, wheat, finger millet, and buffelgrass were methylation proficient while 18 isolates from foxtail millet, green bristlegrass, Japanese panicgrass, torpedo grass, Guinea grass, and crabgrass were methylation deficient. Phenotypic analyses showed that MoDMT1 plays no major role in development and pathogenicity of the fungus. Quantitative polymerase chain reaction analysis showed that the average copy number of genomic MAGGY elements was not significantly different between methylation-deficient and -proficient field isolates even though the levels of MAGGY transcript were generally higher in the former group. MoDMT1 gene sequences in the methylation-deficient isolates suggested that at least three independent mutations were responsible for the loss of MoDMT1 function. Overall, our data suggest that MoDMT1 is not essential for the natural life cycle of the fungus and raise the possibility that the genus Magnaporthe may be losing the mechanism of DNA methylation on the evolutionary time scale. PMID:23979580

  18. Caenorhabditis elegans: An important tool for dissecting microRNA functions

    PubMed Central

    Zhu, Ziwen; Zhang, Duo; Lee, Heedoo; Jin, Yang

    2016-01-01

    Caenorhabditis elegans (C. elegans), a member of the phylum Nematoda, carries the evolutionarily conserved genes comparing to mammals. Due to its short lifespan and completely sequenced genome, C. elegans becomes a potentially powerful model for mechanistic studies in human diseases. In this mini review, we will outline the current understandings on C. elegans as a model organism for microRNA (miRNA)-related research in the pathogenesis of human diseases. PMID:28529981

  19. Specificity in the interaction between an epibiotic clavicipitalean fungus and its convolvulaceous host in a fungus/plant symbiotum

    PubMed Central

    Steiner, Ulrike; Hellwig, Sabine

    2008-01-01

    Ipomoea asarifolia and Turbina corymbosa (Convolvulaceae) are associated with epibiotic clavicipitalean fungi responsible for the presence of ergoline alkaloids in these plants. Experimentally generated plants devoid of these fungi were inoculated with different epibiotic and endophytic fungi resulting in a necrotic or commensal situation. A symbiotum of host plant and its respective fungus was best established by integration of the fungus into the morphological differentiation of the host plant. This led us to suppose that secretory glands on the leaf surface of the host plant may play an essential role in ergoline alkaloid biosynthesis which takes place in the epibiotic fungus. PMID:19704834

  20. An insect parasitoid carrying an ochratoxin producing fungus

    NASA Astrophysics Data System (ADS)

    Vega, Fernando E.; Posada, Francisco; Gianfagna, Thomas J.; Chaves, Fabio C.; Peterson, Stephen W.

    2006-06-01

    The insect parasitoid Prorops nasuta has been introduced from Africa to many coffee-producing countries in an attempt to control the coffee berry borer. In this paper, we report on the sequencing of the ITS LSU-rDNA and beta-tubulin loci used to identify a fungus isolated from the cuticle of a P. nasuta that emerged from coffee berries infected with the coffee berry borer. The sequences were compared with deposits in GenBank and the fungus was identified as Aspergillus westerdijkiae. The fungus tested positive for ochratoxin A production, with varying levels depending on the media in which it was grown. These results raise the possibility that an insect parasitoid might be disseminating an ochratoxin-producing fungus in coffee plantations.

  1. An insect parasitoid carrying an ochratoxin producing fungus.

    PubMed

    Vega, Fernando E; Posada, Francisco; Gianfagna, Thomas J; Chaves, Fabio C; Peterson, Stephen W

    2006-06-01

    The insect parasitoid Prorops nasuta has been introduced from Africa to many coffee-producing countries in an attempt to control the coffee berry borer. In this paper, we report on the sequencing of the ITS LSU-rDNA and beta-tubulin loci used to identify a fungus isolated from the cuticle of a P. nasuta that emerged from coffee berries infected with the coffee berry borer. The sequences were compared with deposits in GenBank and the fungus was identified as Aspergillus westerdijkiae. The fungus tested positive for ochratoxin A production, with varying levels depending on the media in which it was grown. These results raise the possibility that an insect parasitoid might be disseminating an ochratoxin-producing fungus in coffee plantations.

  2. Parasitic Aspects of a Fairy Ring Fungus, Marasmius oreades

    Treesearch

    T. H. Filer

    1965-01-01

    Marasmius oreades parasitizes Poa pratensis, Festuca rubra, and Agrostis tenuis. The fungus penetrates the root directly in all three species and does not require natural openings or wounds. The mycelium ramifies in the cortical cells and destroys the cell contents.

  3. FLUORESCENT-SERIOLOGICAL INVESTIGATIONS OF A PATHOGENIC FUNGUS (SPOROTRICHUM SCHENCKII),

    DTIC Science & Technology

    coloration of numerous other species of fungus no cross reactions with Sporotrichum schenkii were found. The use of this fluorescent coloring method for the diagnosis of Sporotrichosis is suggested. (Author)

  4. The role of mites in insect-fungus associations.

    PubMed

    Hofstetter, R W; Moser, J C

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on fungi for nutrients, and fungi benefit from them with regard to spore dispersal, habitat provision, or nutrient resources. Mites have important impacts on community dynamics, ecosystem processes, and biodiversity within many insect-fungus systems. Given that mites are understudied but highly abundant, they likely have bigger, more important, and more widespread impacts on communities than previously recognized. We describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the processes that underpin ecological and evolutionary patterns of these multipartite communities, review well-researched examples of the effects of mites on insect-fungus associations, and discuss approaches for studying mites within insect-fungus communities.

  5. Fungus Ball in Concha Bullosa: A Rare Case with Anosmia

    PubMed Central

    Özkırıs, Mahmut; Kapusuz, Zeliha; Seçkın, Selda; Saydam, Levent

    2013-01-01

    Concha bullosa is the pneumatization of the concha and is one of the most common variations of the sinonasal anatomy. The histopathological changes caused by the infections which arise from the impaired aeration of conchal cavity are frequently found. Fungus ball of the nasal cavity is an extremely rare, fungal infection with only three cases reported previously. In this paper, we present the fourth fungus ball case which developed within a concha bullosa and presented with anosmia. PMID:23936708

  6. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans.

    PubMed

    Holden-Dye, Lindy; Walker, Robert J

    2014-12-16

    Parasitic nematodes infect many species of animals throughout the phyla, including humans. Moreover, nematodes that parasitise plants are a global problem for agriculture. As such, these nematodes place a major burden on human health, on livestock production, on the welfare of companion animals and on crop production. In the 21st century there are two major challenges posed by the wide-spread prevalence of parasitic nematodes. First, many anthelmintic drugs are losing their effectiveness because nematode strains with resistance are emerging. Second, serious concerns regarding the environmental impact of the nematicides used for crop protection have prompted legislation to remove them from use, leaving agriculture at increased risk from nematode pests. There is clearly a need for a concerted effort to address these challenges. Over the last few decades the free-living nematode Caenorhabditis elegans has provided the opportunity to use molecular genetic techniques for mode of action studies for anthelmintics and nematicides. These approaches continue to be of considerable value. Less fruitful so far, but nonetheless potentially very useful, has been the direct use of C. elegans for anthelmintic and nematicide discovery programmes. Here we provide an introduction to the use of C. elegans as a 'model' parasitic nematode, briefly review the study of nematode control using C. elegans and highlight approaches that have been of particular value with a view to facilitating wider-use of C. elegans as a platform for anthelmintic and nematicide discovery and development.

  7. Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior

    PubMed Central

    Horspool, Alexander M.; Chang, Howard C.

    2017-01-01

    The C. elegans nervous system mediates protective physiological and behavioral responses amid infection. However, it remains largely unknown how the nervous system responds to reactive oxygen species (ROS) activated by pathogenic microbes during infection. Here, we show superoxide dismutase-1 (SOD-1), an enzyme that converts superoxide into less toxic hydrogen peroxide and oxygen, functions in the gustatory neuron ASER to mediate C. elegans pathogen avoidance response. When C. elegans first encounters pathogenic bacteria P. aeruginosa, SOD-1 is induced in the ASER neuron. After prolonged P. aeruginosa exposure, ASER-specific SOD-1 expression is diminished. In turn, C. elegans starts to vacate the pathogenic bacteria lawn. Genetic knockdown experiments reveal that pathogen-induced ROS activate sod-1 dependent behavioral response non cell-autonomously. We postulate that the delayed aversive response to detrimental microbes may provide survival benefits by allowing C. elegans to temporarily utilize food that is tainted with pathogens as an additional energy source. Our data offer a mechanistic insight into how the nervous system mediates food-seeking behavior amid oxidative stress and suggest that the internal state of redox homeostasis could underlie the behavioral response to harmful microbial species. PMID:28322326

  8. Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans.

    PubMed

    Sun, Quancai; Yue, Yiren; Shen, Peiyi; Yang, Jeremy J; Park, Yeonhwa

    2016-04-01

    Cranberry phenolic compounds have been linked to many health benefits. A recent report suggested that cranberry bioactives inhibit adipogenesis in 3T3-L1 adipocytes. Thus, we investigated the effects and mechanisms of the cranberry product (CP) on lipid metabolism using the Caenorhabditis elegans (C. elegans) model. CP (0.016% and 0.08%) dose-dependently reduced overall fat accumulation in C. elegans (N2, wild type) by 43% and 74%, respectively, without affecting its pumping rates or locomotive activities. CP decreased fat accumulation in aak-2 (an ortholog of AMP-activated kinase α) and tub-1 (an ortholog of TUBBY) mutants significantly, but only minimal effects were observed in sbp-1 (an ortholog of sterol response element-binding protein-1) and nhr-49 (an ortholog of peroxisome proliferator-activated receptor-α) mutant strains. We further confirmed that CP downregulated sbp-1, cebp, and hosl-1 (an ortholog of hormone-sensitive lipase homolog) expression, while increasing the expression of nhr-49 in wild-type C. elegans. These results suggest that CP could effectively reduce fat accumulation in C. elegans dependent on sbp-1, cebp, and nhr-49, but not aak-2 and tub-1.

  9. Genetic Dissection of Late-Life Fertility in Caenorhabditis elegans

    PubMed Central

    Wu, Deqing; Park, Sang-Kyu; Cypser, James R.; Tedesco, Patricia M.; Phillips, Patrick C.; Johnson, Thomas E.

    2011-01-01

    The large post-reproductive life span reported for the free-living hermaphroditic nematode, Caenorhabditis elegans, which lives for about 10 days after its 5-day period of self-reproduction, seems at odds with evolutionary theory. Species with long post-reproductive life spans such as mammals are sometimes explained by a need for parental care or transfer of information. This does not seem a suitable explanation for C elegans. Previous reports have shown that C elegans can regain fertility when mated after the self-fertile period but did not report the functional limits. Here, we report the functional life span of the C elegans germ line when mating with males. We show that C elegans can regain fertility late in life (significantly later than in previous reports) and that the end of this period corresponds quite well to its 3-week total life span. Genetic analysis reveals that late-life fertility is controlled by conserved pathways involved with aging and dietary restriction. PMID:21622982

  10. Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach

    NASA Technical Reports Server (NTRS)

    Szewczyk, N. J.; Kozak, E.; Conley, C. A.

    2003-01-01

    C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  11. The C. elegans touch response facilitates escape from predacious fungi

    PubMed Central

    Maguire, Sean M.; Clark, Christopher M.; Nunnari, John; Pirri, Jennifer K.; Alkema, Mark J.

    2012-01-01

    Summary Predator-prey interactions are vital determinants in the natural selection of behavioral traits. However, we have few insights into both the neural mechanisms and the selective advantage of specific behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1]. Even though the C. elegans touch response has provided one of the rare examples of how neural networks translate sensory input to a coordinated motor output [2], the ecological significance of the escape response is unclear. We investigate predator-prey relationships between C. elegans and predacious fungi that catch nematodes using constricting rings as trapping devices. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before getting caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild type in constricting fungal rings. Direct competition experiments show that the suppression of head movements in response to touch is an ecologically relevant behavior that allows the C. elegans to smoothly retract from a fungal noose and evade capture. These results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior. PMID:21802299

  12. Using transgenic Caenorhabditis elegans in soil toxicity testing.

    PubMed

    Graves, Amber L; Boyd, Windy A; Williams, Phillip L

    2005-05-01

    Soil bioassays are important tools for evaluating toxicological effects within the terrestrial environment. The American Society for Testing and Materials E2172-01 Standard Guide outlines a method for conducting laboratory soil toxicity tests using the nematode Caenorhabditis elegans. This method is an efficient tool for extracting C. elegans from soil samples and can be carried out after a 24-h exposure period using relatively small amounts of soil. Drawbacks of this method include problems with (1) recovery of nematodes from soils containing a high percentage of organic matter, and (2) distinguishing indigenous nematode species from nematodes added for the laboratory test. Due in part to these issues, C. elegans has not been extensively accepted for use in soil testing. To address these concerns and improve upon the American Society for Testing and Materials method, this project focused on using transgenic strains of C. elegans carrying a GFP-expressing element. Lethality and behavior tests revealed that the transgenic nematodes respond similarly to the wild-type N2 strain, indicating that they can be used in the same manner in soil testing. The GFP marker is easily identifiable not only within soils containing a large amount of organic matter, but also in field-collected soils containing indigenous nematodes. These results support the use of transgenic GFP C. elegans in soil bioassays as a tool to further the reliability of laboratory toxicity tests.

  13. Radiation-induced genomic instability in Caenorhabditis elegans.

    PubMed

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-09

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  14. L-Theanine extends lifespan of adult Caenorhabditis elegans.

    PubMed

    Zarse, Kim; Jabin, Saskia; Ristow, Michael

    2012-09-01

    Compounds that delay aging in model organisms may be of significant interest to anti-aging medicine, since these substances potentially provide pharmaceutical approaches to promote healthy lifespan in humans. We here aimed to test whether pharmaceutical concentrations of L-theanine, a putative anti-cancer, anti-obesity, blood pressure-lowering, and neuroprotective compound contained in green tea (Camellia sinensis), are capable of extending lifespan in a nematodal model organism for aging processes, the roundworm Caenorhabditis elegans. Adult C. elegans roundworms were maintained on agar plates, were fed E. coli strain OP50 bacteria, and L-theanine was applied to agar to test (1) whether it may increase survival upon paraquat exposure and (2) whether it may promote longevity by quantifying survival in the presence and absence of the compound. L-Theanine increases survival of C. elegans in the presence of paraquat at a concentration of 1 micromolar. L-theanine extends C. elegans lifespan when applied at concentrations of 100 nM, as well as 1 and 10 micromolar. In the model organism C. elegans, L-theanine is capable of promoting paraquat resistance and longevity suggesting that this compound may as well promote healthy lifespan in mammals and possibly humans.

  15. Anthelmintic activity of KSI-4088 against Caenorhabditis elegans.

    PubMed

    Kaewintajuk, Kusuma; Cho, Pyo Yun; Kim, Sung Yeon; Lee, Eun Sil; Lee, Hyeon-Kyu; Choi, Eun Bok; Park, Hyun

    2010-06-01

    Anthelmintic resistance is a serious global problem because of the worldwide spread of resistant nematodes in animals and humans. This has triggered increasing investment in research for new anthelmintics. Over the past decade, Caenorhabditis elegans has become a popular model organism for parasitic nematode research, and many examples have been published to illustrate its use. In this study, we investigated the effect of KSI-4088 on the egg hatching, larval development, and migration of the nematode worm C. elegans compared with ivermectin and levamisole (well-known anthelmintic drugs). KSI-4088 demonstrated anthelmintic activity on all assays of C. elegans. The anthelmintic activity of KSI-4088 on egg hatching and larval development showed especially strong activity, but assays showed that ivermectin and levamisole had no effects on C. elegans. In addition, KSI-4088 was capable of producing a change in the timing of the development of the worms at the L1-L3 and L4 stage. Also, we demonstrate that C. elegans L3-4 are more sensitive than adults to KSI-4088 in assay of migration. Our results indicate that KSI-4088 is an active anthelmintic compound that should be further investigated with the aim of developing a potent drug against nematodes.

  16. The dynamics of the thermal memory of C. elegans

    NASA Astrophysics Data System (ADS)

    Ryu, William; Palanski, Konstantine; Bartumeus, Frederic; Nemenman, Ilya

    2014-03-01

    C. elegans has the capacity to learn associatively. For example, C. elegans associates temperature with food and performs thermotaxis towards this temperature when placed on a spatial thermal gradient. However, very little is understood how C. elegans acquires this thermal memory. We have developed a novel droplet-based microfluidic assay to measure the dynamics of the thermal memory of C. elegans. Individual animals are placed in an array of microdroplets on a slide, and a linear temperature gradient of 0.5 deg/cm is applied to the array. By measuring the swimming motions of C. elegans in the droplets, we show that they can perform thermotaxis. By calculating an index of this taxis behavior over time, we quantify the worm's thermal memory and measure its dynamics when the animals are exposed to different conditions of feeding and starvation. Over a time scale of hours, we find that the thermal preference of wild-type worms decays and will actually become inverted and that mutations in the insulin signaling pathway perturb the dynamics. This biphasic conditional association can be explained with a reinforcement learning model with independent reinforcement and avoidance pathways with distinct time scales. Human Frontier Science Program.

  17. Biological control of Ascaris suum eggs by Pochonia chlamydosporia fungus.

    PubMed

    Ferreira, Sebastião Rodrigo; de Araújo, Jackson Victor; Braga, Fábio Ribeiro; Araujo, Juliana Milani; Frassy, Luiza Neme; Ferreira, Aloízio Soares

    2011-12-01

    Ascaris suum is a gastrointestinal nematode parasite of swines. The aim of this study was to observe Pochonia chlamydosporia fungus on biological control of A. suum eggs after fungus passage through swines gastrointestinal tract. Eighteen pigs, previously dewormed, were randomly divided into three groups: group 1, treated with the fungus isolate VC4; group 2, treated with the fungus isolate VC1 and group 3 did not receive fungus (control). In the treated groups, each animal received a 9 g single dose of mycelium mass containing P. chlamydosporia (VC1 or VC4). Thereafter, animal fecal samples were collected at the following intervals: 8, 12, 24, 36, 48, 72 and 96 h after treatment beginning and these were poured in Petri dishes containing 2% water-agar culture medium. Then, 1,000 A. suum eggs were poured into each dish and kept in an incubator at 26 °C and in the dark for 30 days. After this period, approximately 100 eggs were removed from each Petri dish and morphologically analyzed under light microscopy following the ovicidal activity parameters. The higher percentage observed for isolated VC4 eggs destruction was 57.5% (36 h) after fungus administration and for isolate VC1 this percentage was 45.8% (24 h and 72 h) (p > 0.01). P. chlamydosporia remained viable after passing through the gastrointestinal tract of swines, maintaining its ability of destroying A. suum eggs.

  18. Pathogenic nature of Syncephalastrum in Atta sexdens rubropilosa fungus gardens.

    PubMed

    Barcoto, Mariana O; Pedrosa, Felipe; Bueno, Odair C; Rodrigues, Andre

    2017-05-01

    Leaf-cutter ants are considered to be a major herbivore and agricultural pest in the Neotropics. They are often controlled by environmentally persistent insecticides. Biological control using pathogenic fungi is regarded as an alternative for the management of these insects. Here, we assess whether the filamentous fungus Syncephalastrum sp. is a pathogenic microorganism responsible for a characteristic disease in fungus gardens. We also characterise the damage caused by this fungus by evaluating physiological and behavioural responses of Atta sexdens rubropilosa subcolonies infected with Syncephalastrum sp. Syncephalastrum sp. fulfils Koch's postulates characterising it as a pathogenic microorganism. Ant workers recognise the infection and remove contaminated fragments from the fungus garden. Syncephalastrum sp. infection causes an interruption of foraging activity, an increase in ant mortality, subcolony deterioration and an increase in the amount of waste generated, all resulting in subcolony death. Syncephalastrum sp. also inhibits the ant fungal cultivar in vitro. The pathogenic effect of Syncephalastrum sp. does not depend on host morbidity or stress (e.g. worker mortality caused by an entomopathogenic fungus). Syncephalastrum sp. treatment resulted in progressive damage in subcolonies. The interactions among Syncephalastrum sp., fungus garden and ants offer new opportunities in integrated pest management of leaf-cutter ants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Secondary Metabolites from the Fungus Emericella nidulans

    PubMed Central

    Tarawneh, Amer H.; León, Francisco; Radwan, Mohamed M.; Rosa, Luiz H.

    2014-01-01

    A new polyketide derivative koninginin H (1), has been isolated from the fungus Emericella nidulans, together with koninginin E (2), koninginin A (3), trichodermatide B (4), citrantifidiol (5), (4S,5R)-4-hydroxy-5-methylfuran-2-one (6), the glycerol derivatives gingerglycolipid B (7), (2S)-bis[9Z,12Z]-1-O, 2-O-dilinoleoyl-3-O-[α-d-galactopyranosyl-(1″→6′)β-d-galactopyranosyl]glycerol (8), (2S)-bis[9Z,12Z]-1-O, 2-O-dilinoleoyl-3-O-β-d-galactopyranosylglycerol (9), the cerebroside flavuside B (10), and the known sterols β-sitosterol glucoside and ergosta-5,7,22-trien-3-ol. Their structures were established by extensive NMR studies (1H NMR, 13C NMR, DEPT, 1H–1H COSY, HSQC, HMBC) and mass spectrometry. The antibacterial, antimalarial, antifungal and antileishmanial activities of compounds 1-10 were examined and the results indicated that compound 4 showed good antifungal activity against Cryptococcus neoformans with an IC50 value of 4.9 μg /mL. PMID:24273867

  20. Malaria Mosquitoes Attracted by Fatal Fungus

    PubMed Central

    George, Justin; Jenkins, Nina E.; Blanford, Simon; Thomas, Matthew B.; Baker, Thomas C.

    2013-01-01

    Insect-killing fungi such as Beauveria bassiana are being evaluated as possible active ingredients for use in novel biopesticides against mosquito vectors that transmit malaria. Fungal pathogens infect through contact and so applications of spores to surfaces such as walls, nets, or other resting sites provide possible routes to infect mosquitoes in and around domestic dwellings. However, some insects can detect and actively avoid fungal spores to reduce infection risk. If true for mosquitoes, such behavior could render the biopesticide approach ineffective. Here we find that the spores of B. bassiana are highly attractive to females of Anopheles stephensi, a major anopheline mosquito vector of human malaria in Asia. We further find that An. stephensi females are preferentially attracted to dead and dying caterpillars infected with B. bassiana, landing on them and subsequently becoming infected with the fungus. Females are also preferentially attracted to cloth sprayed with oil-formulated B. bassiana spores, with 95% of the attracted females becoming infected after a one-minute visit on the cloth. This is the first report of an insect being attracted to a lethal fungal pathogen. The exact mechanisms involved in this behavior remain unclear. Nonetheless, our results indicate that biopesticidal formulations comprising B. bassiana spores will be conducive to attraction and on-source visitation by malaria vectors. PMID:23658757

  1. The agricultural pathology of ant fungus gardens

    PubMed Central

    Currie, Cameron R.; Mueller, Ulrich G.; Malloch, David

    1999-01-01

    Gardens of fungus-growing ants (Formicidae: Attini) traditionally have been thought to be free of microbial parasites, with the fungal mutualist maintained in nearly pure “monocultures.” We conducted extensive isolations of “alien” (nonmutualistic) fungi from ant gardens of a phylogenetically representative collection of attine ants. Contrary to the long-standing assumption that gardens are maintained free of microbial pathogens and parasites, they are in fact host to specialized parasites that are only known from attine gardens and that are found in most attine nests. These specialized garden parasites, belonging to the microfungus genus Escovopsis (Ascomycota: anamorphic Hypocreales), are horizontally transmitted between colonies. Consistent with theory of virulence evolution under this mode of pathogen transmission, Escovopsis is highly virulent and has the potential for rapid devastation of ant gardens, leading to colony mortality. The specialized parasite Escovopsis is more prevalent in gardens of the more derived ant lineages than in gardens of the more “primitive” (basal) ant lineages. Because fungal cultivars of derived attine lineages are asexual clones of apparently ancient origin whereas cultivars of primitive ant lineages were domesticated relatively recently from free-living sexual stocks, the increased virulence of pathogens associated with ancient asexual cultivars suggests an evolutionary cost to cultivar clonality, perhaps resulting from slower evolutionary rates of cultivars in the coevolutionary race with their pathogens. PMID:10393936

  2. Coordination of behavioral hierarchies during environmental transitions in Caenorhabditis elegans

    PubMed Central

    Vidal-Gadea, Andrés G.; Davis, Scott; Becker, Lindsay; Pierce-Shimomura, Jonathan T.

    2012-01-01

    For animals inhabiting multiple environments, the ability to select appropriate behaviors is crucial as their adaptability is often context dependent. Caenorhabditis elegans uses distinct gaits to move on land and in water. Gait transitions can potentially coordinate behaviors associated with distinct environments. We investigated whether land and water differentially affect the behavioral repertoire of C. elegans. Swimming worms interrupted foraging, feeding, egg-laying and defecation. Exogenous dopamine induced bouts of these land-associated behaviors in water. Our finding that worms do not drink fluid while immersed may explain why higher drug doses are required in water than on land to elicit the same effects. C. elegans is a valid model to study behavioral hierarchies and how environmental pressures alter their balance. PMID:23525841

  3. The effects of short-term hypergravity on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Saldanha, Jenifer N.; Pandey, Santosh; Powell-Coffman, Jo Anne

    2016-08-01

    As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.

  4. Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans

    PubMed Central

    Zhao, Y.-L.; Wang, D.-Y.

    2012-01-01

    All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc.) with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control. PMID:22997543

  5. Dynamical complexity in the C.elegans neural network

    NASA Astrophysics Data System (ADS)

    Antonopoulos, C. G.; Fokas, A. S.; Bountis, T. C.

    2016-09-01

    We model the neuronal circuit of the C.elegans soil worm in terms of a Hindmarsh-Rose system of ordinary differential equations, dividing its circuit into six communities which are determined via the Walktrap and Louvain methods. Using the numerical solution of these equations, we analyze important measures of dynamical complexity, namely synchronicity, the largest Lyapunov exponent, and the ΦAR auto-regressive integrated information theory measure. We show that ΦAR provides a useful measure of the information contained in the C.elegans brain dynamic network. Our analysis reveals that the C.elegans brain dynamic network generates more information than the sum of its constituent parts, and that attains higher levels of integrated information for couplings for which either all its communities are highly synchronized, or there is a mixed state of highly synchronized and desynchronized communities.

  6. Mechanisms of aging-related proteinopathies in Caenorhabditis elegans

    PubMed Central

    Kim, Dong-Kyu; Kim, Tae Ho; Lee, Seung-Jae

    2016-01-01

    Aging is the most important risk factor for human neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Pathologically, these diseases are characterized by the deposition of specific protein aggregates in neurons and glia, representing the impairment of neuronal proteostasis. However, the mechanism by which aging affects the proteostasis system and promotes protein aggregation remains largely unknown. The short lifespan and ample genetic resources of Caenorhabditis elegans (C. elegans) have made this species a favorite model organism for aging research, and the development of proteinopathy models in this organism has helped us to understand how aging processes affect protein aggregation and neurodegeneration. Here, we review the recent literature on proteinopathies in C. elegans models and discuss the insights we have gained into the mechanisms of how aging processes are integrated into the pathogenesis of various neurodegenerative diseases. PMID:27713398

  7. Live-cell imaging of mitosis in Caenorhabditis elegans embryos.

    PubMed

    Powers, James A

    2010-06-01

    Caenorhabditis elegans is a wonderful model system for live imaging studies of mitosis. A huge collection of research tools is readily available to facilitate experimentation. For imaging, C. elegans embryos provide large clear cells, an invariant pattern of cell division, only six chromosomes, a very short cell cycle, and remain healthy and happy at room temperature. Mitosis is a complicated process and the types of research questions being asked about the mechanisms involved are continuously expanding. For each experiment, the details of imaging methods need to be tailored to the question. Specific imaging methods will depend on the microscopy hardware and software available to each researcher. This article presents points to consider when choosing a microscope, designing an imaging experiment, or selecting appropriate worm strains for imaging. A method for mounting C. elegans embryos and guidelines for fluorescence and differential interference contrast imaging of mitosis in live embryos are presented.

  8. Lessons from C. elegans: Signaling pathways for longevity

    PubMed Central

    Lapierre, Louis R.; Hansen, Malene

    2012-01-01

    Recent research using model organisms such as the nematode Caenorhabditis elegans has highlighted a critical role for several conserved signaling pathways in longevity determination. Here, we review three major endocrine- and nutrient-sensing signaling pathways with influence on lifespan, the insulin/insulin-like growth factor (IGF), target of rapamycin (TOR), and germline signaling pathways. Although these pathways engage distinct sets of transcription factors, the three pathways appear to modulate aging in C. elegans through partially overlapping effector mechanisms, including lipid metabolism and autophagy. This review highlights the latest advances in our understanding of how the insulin/IGF-1, TOR, and germline signaling pathways utilize different transcription factors to modulate aging in C. elegans with special emphasis on the role of lipid metabolism and autophagy. PMID:22939742

  9. Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans.

    PubMed

    Machado, Alan Rodrigues Teixeira; Ferreira, Sebastião Rodrigo; da Silva Medeiros, Felipe; Fujiwara, Ricardo Toshio; de Souza Filho, José Dias; Pimenta, Lúcia Pinheiro Santos

    2015-02-19

    The aim of this work was to investigate the potential nematicidal activity of Annona crassiflora leaf extract against Caenorhabditis elegans. The hydroalcoholic leaf extract and its fractions (dichloromethane, ethyl acetate, methanol and water) were submitted to mobility assay against the roundworm Caenorhabditis elegans. GC-MS and NMR analysis were performed in order to identify metabolites. The dichloromethane and ethyl acetate fractions showed to be the most active among the hydroalcoholic leaf extracts and its four fractions. The percentages of C. elegans larvae immobility were 98.13 and 89.66%, respectively, at a concentration of 1000 μg.mL(-1). Besides some amino acids, palmitic acid methyl ester, 2-isopropyl-5-methylcyclohexanol, oleic acid methyl esther, stearic acid methyl ester, quercetin and kaempferol were also identified in these fractions. The results indicated that of A. crassiflora leaf ethanolic extract has a good potential as a source for natural nematicide.

  10. High-throughput screening in the C. elegans nervous system.

    PubMed

    Kinser, Holly E; Pincus, Zachary

    2016-06-03

    The nematode Caenorhabditis elegans is widely used as a model organism in the field of neurobiology. The wiring of the C. elegans nervous system has been entirely mapped, and the animal's optical transparency allows for in vivo observation of neuronal activity. The nematode is also small in size, self-fertilizing, and inexpensive to cultivate and maintain, greatly lending to its utility as a whole-animal model for high-throughput screening (HTS) in the nervous system. However, the use of this organism in large-scale screens presents unique technical challenges, including reversible immobilization of the animal, parallel single-animal culture and containment, automation of laser surgery, and high-throughput image acquisition and phenotyping. These obstacles require significant modification of existing techniques and the creation of new C. elegans-based HTS platforms. In this review, we outline these challenges in detail and survey the novel technologies and methods that have been developed to address them.

  11. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion

    PubMed Central

    Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George

    2012-01-01

    Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960

  12. Microbial pathogenesis and host defense in the nematode C. elegans

    PubMed Central

    Cohen, Lianne B.; Troemel, Emily R.

    2014-01-01

    Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial infection. Like many other metazoans, the nematode C. elegans lacks known professional immune cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core physiology within host cells and through autophagic defense against intracellular and extracellular pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies used against C. elegans. These findings are providing insight into the underpinnings of host/pathogen interactions in a simple animal host that can inform studies of infectious diseases in humans. PMID:25461579

  13. Caenorhabditis elegans: A Genetic Guide to Parasitic Nematode Biology.

    PubMed

    Bird, D M; Opperman, C H

    1998-09-01

    The advent of parasite genome sequencing projects, as well as an increase in biology-directed gene discovery, promises to reveal genes encoding many of the key molecules required for nematode-host interactions. However, distinguishing parasitism genes from those merely required for nematode viability remains a substantial challenge. Although this will ultimately require a functional test in the host or parasite, the free-living nematode Caenorhabditis elegans can be exploited as a heterologous system to determine function of candidate parasitism genes. Studies of C. elegans also have revealed genetic networks, such as the dauer pathway, that may also be important adaptations for parasitism. As a more directed means of identifying parasitism traits, we developed classical genetics for Heterodera glycines and have used this approach to map genes conferring host resistance-breaking phenotypes. It is likely that the C. elegans and H. glycines genomes will be at least partially syntenic, thus permitting predictive physical mapping of H. glycines genes of interest.

  14. Dissection of C. elegans behavioral genetics in 3-D environments

    PubMed Central

    Kwon, Namseop; Hwang, Ara B.; You, Young-Jai; V. Lee, Seung-Jae; Ho Je, Jung

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments. PMID:25955271

  15. Mechanisms of innate immunity in C. elegans epidermis

    PubMed Central

    Taffoni, Clara; Pujol, Nathalie

    2015-01-01

    The roundworm C. elegans has been successfully used for more than 50 y as a genetically tractable invertebrate model in diverse biological fields such as neurobiology, development and interactions. C. elegans feeds on bacteria and can be naturally infected by a wide range of microorganisms, including viruses, bacteria and fungi. Most of these pathogens infect C. elegans through its gut, but some have developed ways to infect the epidermis. In this review, we will mainly focus on epidermal innate immunity, in particular the signaling pathways and effectors activated upon wounding and fungal infection that serve to protect the host. We will discuss the parallels that exist between epidermal innate immune responses in nematodes and mammals. PMID:26716073

  16. Dissection of C. elegans behavioral genetics in 3-D environments.

    PubMed

    Kwon, Namseop; Hwang, Ara B; You, Young-Jai; V Lee, Seung-Jae; Je, Jung Ho

    2015-05-08

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments.

  17. Solid plate-based dietary restriction in Caenorhabditis elegans.

    PubMed

    Ching, Tsui-Ting; Hsu, Ao-Lin

    2011-05-28

    Reduction of food intake without malnutrition or starvation is known to increase lifespan and delay the onset of various age-related diseases in a wide range of species, including mammals. It also causes a decrease in body weight and fertility, as well as lower levels of plasma glucose, insulin, and IGF-1 in these animals. This treatment is often referred to as dietary restriction (DR) or caloric restriction (CR). The nematode Caenorhabditis elegans has emerged as an important model organism for studying the biology of aging. Both environmental and genetic manipulations have been used to model DR and have shown to extend lifespan in C. elegans. However, many of the reported DR studies in C. elegans were done by propagating animals in liquid media, while most of the genetic studies in the aging field were done on the standard solid agar in petri plates. Here we present a DR protocol using standard solid NGM agar-based plate with killed bacteria.

  18. ASI regulates satiety quiescence in C. elegans.

    PubMed

    Gallagher, Thomas; Kim, Jeongho; Oldenbroek, Marieke; Kerr, Rex; You, Young-Jai

    2013-06-05

    In Caenorhabditis elegans, satiety quiescence mimics behavioral aspects of satiety and postprandial sleep in mammals. On the basis of calcium-imaging, genetics, and behavioral studies, here we report that a pair of amphid neurons, ASI, is activated by nutrition and regulates worms' behavioral states specifically promoting satiety quiescence; ASI inhibits the switch from quiescence to dwelling (a browsing state) and accelerates the switch from dwelling to quiescence. The canonical TGFβ pathway, whose ligand is released from ASI, regulates satiety quiescence. The mutants of a ligand, a receptor and SMADs in the TGFβ pathway all eat more and show less quiescence than wild-type. The TGFβ receptor in downstream neurons RIM and RIC is sufficient for worms to exhibit satiety quiescence, suggesting neuronal connection from ASI to RIM and RIC is essential for feeding regulation through the TGFβ pathway. ASI also regulates satiety quiescence partly through cGMP signaling; restoring cGMP signaling in ASI rescues the satiety quiescence defect of cGMP signaling mutants. From these results, we propose that TGFβ and cGMP pathways in ASI connect nutritional status to promotion of satiety quiescence, a sleep-like behavioral state.

  19. Chromosome I Duplications in Caenorhabditis Elegans

    PubMed Central

    McKim, K. S.; Rose, A. M.

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome. PMID:2307351

  20. Assessing behavioral toxicity with Caenorhabditis elegans.

    PubMed

    Anderson, Gary L; Cole, Russell D; Williams, Phillip L

    2004-05-01

    Behavior, even in simple metazoans, depends upon integrated processes at the subcellular, cellular, and organismal level, and thus is susceptible to disruption by a broad spectrum of chemicals. Locomotor behavior (movement) of the small free-living nematode Caenorhabditis elegans has proven to be useful in assessing toxicity. Recently reported observations suggest that behavioral change (reduced movement) occurs after 4 h of exposure to heavy metals, and that with abbreviated exposure, the concentration-response relationship for Pb (a known neurotoxic metal) differs from that for Cu. In this study, movement was evaluated after 4-h exposures for nine compounds from three chemical classes: organic pesticides, organic solvents, and heavy metals. Concentration-dependent reduction of movement was observed for all test compounds with the exception of mebendazole, for which test concentrations were limited by solubility. Within each chemical class, movement was more sensitive to the neurotoxic compounds than to substances not believed to be neurotoxic, as evidenced by behavioral effective concentration to reduce average worm movement to 50% of the control movement values (e.g., levamisole and chlorpyrifos < mebendazole, ethanol and acetone < dimethylsulfoxide, and Pb and Al < Cu). These observations are discussed as they relate to the use of acute behavioral tests in assessing general chemical toxicity, and the enhanced value of 4-h testing for the detection of neural toxicants.

  1. Biosynthesis of the Caenorhabditis elegans dauer pheromone.

    PubMed

    Butcher, Rebecca A; Ragains, Justin R; Li, Weiqing; Ruvkun, Gary; Clardy, Jon; Mak, Ho Yi

    2009-02-10

    To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.

  2. Muscle cell attachment in Caenorhabditis elegans

    PubMed Central

    1991-01-01

    In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle. PMID:1860880

  3. Developmental genetics of the Caenorhabditis elegans pharynx

    PubMed Central

    Pilon, Marc

    2014-01-01

    The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using ‘fishing line’ and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists. PMID:25262818

  4. Achieving immortality in the C. elegans germline.

    PubMed

    Smelick, Chris; Ahmed, Shawn

    2005-01-01

    Germline immortality is a topic that has intrigued theoretical biologists interested in aging for over a century. The germ cell lineage can be passed from one generation to the next, indefinitely. In contrast, somatic cells are typically only needed for a single generation and are then discarded. Germ cells may, therefore, harbor rejuvenation mechanisms that enable them to proliferate for eons. Such processes are thought to be either absent from or down-regulated in somatic cells, although cell non-autonomous forms of rejuvenation are formally possible. A thorough description of mechanisms that foster eternal youth in germ cells is lacking. The mysteries of germline immortality are being addressed in the nematode Caenorhabditis elegans by studying mutants that reproduce normally for several generations but eventually become sterile. The mortal germline mutants probably become sterile as a consequence of accumulating various forms of heritable cellular damage. Such mutants are abundant, indicating that several different biochemical pathways are required to rejuvenate the germline. Thus, forward genetics should help to define mechanisms that enable the germline to achieve immortality.

  5. ASI regulates satiety quiescence in C. elegans

    PubMed Central

    Gallagher, Thomas; Kim, Jeongho; Oldenbroek, Marieke; Kerr, Rex; You, Young-Jai

    2013-01-01

    In C. elegans, satiety quiescence mimics behavioral aspects of satiety and post-prandial sleep in mammals. On the basis of calcium-imaging, genetics and behavioral studies, here we report that a pair of amphid neurons ASI is activated by nutrition and regulates worms’ behavioral states specifically promoting satiety quiescence; ASI inhibits the switch from quiescence to dwelling (a browsing state) and accelerates the switch from dwelling to quiescence. The canonical TGFβ pathway, whose ligand is released from ASI, regulates satiety quiescence. The mutants of a ligand, a receptor and SMADs in the TGFβ pathway all eat more and show less quiescence than wild type. The TGFβ receptor in downstream neurons RIM and RIC is sufficient for worms to exhibit satiety quiescence, suggesting neuronal connection from ASI to RIM and RIC is essential for feeding regulation through the TGFβ pathway. ASI also regulates satiety quiescence partly through cGMP signaling; restoring cGMP signaling in ASI rescues the satiety quiescence defect of cGMP signaling mutants. From these results, we propose that TGFβ and cGMP pathways in ASI connect nutritional status to promotion of satiety quiescence, a sleep-like behavioral state. PMID:23739968

  6. Developmental genetics of the Caenorhabditis elegans pharynx.

    PubMed

    Pilon, Marc

    2014-01-01

    The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using 'fishing line' and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists. © 2014 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

  7. Feeding of the Chaetognath Sagitta elegans Verrill

    NASA Astrophysics Data System (ADS)

    Alvarez-Cadena, José N.

    1993-02-01

    Gut contents of a total of 11 776 specimens of Sagitta elegans sampled monthly in the Irish Sea during 12 h at day and at night from February 1986 to October 1987 were analysed. Copepods were the main prey items in the diet. The Common and abundant calanoid copepods in the area Pseudocalanus elongatus, Oithona spp., Acartia clausi, and Temora longicornis were the main constituents in the diet. Calanus an abundant and ubiquitous copepod for the area, however, was preyed upon to a relatively smaller extent. In March 1987, cirripede larvae comprised up to 68% of the diet while tintinnids and dinoflagellates were mainly consumed in April 1986 (28·4%) and April 1987 (13%). Highest intrageneric predation ('cannibalism') was recorded in February 1986, when 10% of the diet consisted of Sagitta spp. Consumption of fish larvae was low and was mainly recorded at times of Clupea harengus spawning. Percentage of animals with gut contents was higher at night, and the daily feeding rate (FR) for this species ranged between 0·75 and 3·55 prey day -1 during the study period.

  8. Functional Genomic Analysis of C. elegans Molting

    PubMed Central

    Frand, Alison R; Russel, Sascha

    2005-01-01

    Although the molting cycle is a hallmark of insects and nematodes, neither the endocrine control of molting via size, stage, and nutritional inputs nor the enzymatic mechanism for synthesis and release of the exoskeleton is well understood. Here, we identify endocrine and enzymatic regulators of molting in C. elegans through a genome-wide RNA-interference screen. Products of the 159 genes discovered include annotated transcription factors, secreted peptides, transmembrane proteins, and extracellular matrix enzymes essential for molting. Fusions between several genes and green fluorescent protein show a pulse of expression before each molt in epithelial cells that synthesize the exoskeleton, indicating that the corresponding proteins are made in the correct time and place to regulate molting. We show further that inactivation of particular genes abrogates expression of the green fluorescent protein reporter genes, revealing regulatory networks that might couple the expression of genes essential for molting to endocrine cues. Many molting genes are conserved in parasitic nematodes responsible for human disease, and thus represent attractive targets for pesticide and pharmaceutical development. PMID:16122351

  9. Locomotion of C elegans in structured environments

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Keaveny, Eric; Shelley, Michael; Zhang, Jun

    2010-11-01

    Undulatory locomotion of microorganisms like soil-dwelling worms and sperm, in structured environments, is ubiquitous in nature. They navigate complex environments consisting of fluids and obstacles, negotiating hydrodynamic effects and geometrical constraints. Here we report experimental observations on the locomotion of C elegans swimming in arrays of micro-pillars in square lattices, with different lattice spacing. We observe that the worm employs a number of different locomotion strategies depending on the lattice spacing. As observed previously in the literature, we uncover regimes of enhanced locomotion, where the velocity is much higher than the free-swimming velocity. In addition, we also observe changes in frequency, velocity, and the gait of the worm as a function of lattice spacing. We also track the worm over time and find that it exhibits super-diffusive behavior and covers a larger area by utilizing the obstacles. These results may have significant impact on the foraging behavior of the worm in its natural environment. Our experimental approach, in conjunction with modeling and simulations, allows us to disentangle the effects of structure and hydrodynamics for an undulating microorganism.

  10. The Caenorhabditis elegans septin complex is nonpolar

    PubMed Central

    John, Corinne M; Hite, Richard K; Weirich, Christine S; Fitzgerald, Daniel J; Jawhari, Hatim; Faty, Mahamadou; Schläpfer, Dominik; Kroschewski, Ruth; Winkler, Fritz K; Walz, Tom; Barral, Yves; Steinmetz, Michel O

    2007-01-01

    Septins are conserved GTPases that form heteromultimeric complexes and assemble into filaments that play a critical role in cell division and polarity. Results from budding and fission yeast indicate that septin complexes form around a tetrameric core. However, the molecular structure of the core and its influence on the polarity of septin complexes and filaments is poorly defined. The septin complex of the nematode Caenorhabditis elegans is formed entirely by the core septins UNC-59 and UNC-61. We show that UNC-59 and UNC-61 form a dimer of coiled-coil-mediated heterodimers. By electron microscopy, this heterotetramer appears as a linear arrangement of four densities representing the four septin subunits. Fusion of GFP to the N termini of UNC-59 and UNC-61 and subsequent electron microscopic visualization suggests that the sequence of septin subunits is UNC-59/UNC-61/UNC-61/UNC-59. Visualization of GFP extensions fused to the extremity of the C-terminal coiled coils indicates that these extend laterally from the heterotetrameric core. Together, our study establishes that the septin core complex is symmetric, and suggests that septins form nonpolar filaments. PMID:17599066

  11. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets.

    PubMed

    Zhang, Peng; Na, Huimin; Liu, Zhenglong; Zhang, Shuyan; Xue, Peng; Chen, Yong; Pu, Jing; Peng, Gong; Huang, Xun; Yang, Fuquan; Xie, Zhensheng; Xu, Tao; Xu, Pingyong; Ou, Guangshuo; Zhang, Shaobing O; Liu, Pingsheng

    2012-08-01

    Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved across almost all species. Many metabolic syndromes are directly linked to the over-storage of neutral lipids in LDs. The study of LDs in Caenorhabditis elegans (C. elegans) has been difficult because of the lack of specific LD marker proteins. Here we report the purification and proteomic analysis of C. elegans lipid droplets for the first time. We identified 306 proteins, 63% of these proteins were previously known to be LD-proteins, suggesting a similarity between mammalian and C. elegans LDs. Using morphological and biochemical analyses, we show that short-chain dehydrogenase, DHS-3 is almost exclusively localized on C. elegans LDs, indicating that it can be used as a LD marker protein in C. elegans. These results will facilitate further mechanistic studies of LDs in this powerful genetic system, C. elegans.

  12. Proteomic Study and Marker Protein Identification of Caenorhabditis elegans Lipid Droplets*

    PubMed Central

    Zhang, Peng; Na, Huimin; Liu, Zhenglong; Zhang, Shuyan; Xue, Peng; Chen, Yong; Pu, Jing; Peng, Gong; Huang, Xun; Yang, Fuquan; Xie, Zhensheng; Xu, Tao; Xu, Pingyong; Ou, Guangshuo; Zhang, Shaobing O.; Liu, Pingsheng

    2012-01-01

    Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved across almost all species. Many metabolic syndromes are directly linked to the over-storage of neutral lipids in LDs. The study of LDs in Caenorhabditis elegans (C. elegans) has been difficult because of the lack of specific LD marker proteins. Here we report the purification and proteomic analysis of C. elegans lipid droplets for the first time. We identified 306 proteins, 63% of these proteins were previously known to be LD-proteins, suggesting a similarity between mammalian and C. elegans LDs. Using morphological and biochemical analyses, we show that short-chain dehydrogenase, DHS-3 is almost exclusively localized on C. elegans LDs, indicating that it can be used as a LD marker protein in C. elegans. These results will facilitate further mechanistic studies of LDs in this powerful genetic system, C. elegans. PMID:22493183

  13. Caenorhabditis elegans as a Model for Microbiome Research

    PubMed Central

    Zhang, Fan; Berg, Maureen; Dierking, Katja; Félix, Marie-Anne; Shapira, Michael; Samuel, Buck S.; Schulenburg, Hinrich

    2017-01-01

    The nematode Caenorhabditis elegans is used as a central model system across biological disciplines. Surprisingly, almost all research with this worm is performed in the absence of its native microbiome, possibly affecting generality of the obtained results. In fact, the C. elegans microbiome had been unknown until recently. This review brings together results from the first three studies on C. elegans microbiomes, all published in 2016. Meta-analysis of the data demonstrates a considerable conservation in the composition of the microbial communities, despite the distinct geographical sample origins, study approaches, labs involved and perturbations during worm processing. The C. elegans microbiome is enriched and in some cases selective for distinct phylotypes compared to corresponding substrate samples (e.g., rotting fruits, decomposing plant matter, and compost soil). The dominant bacterial groups include several Gammaproteobacteria (Enterobacteriaceae, Pseudomonaceae, and Xanthomonodaceae) and Bacteroidetes (Sphingobacteriaceae, Weeksellaceae, Flavobacteriaceae). They are consistently joined by several rare putative keystone taxa like Acetobacteriaceae. The bacteria are able to enhance growth of nematode populations, as well as resistance to biotic and abiotic stressors, including high/low temperatures, osmotic stress, and pathogenic bacteria and fungi. The associated microbes thus appear to display a variety of effects beneficial for the worm. The characteristics of these effects, their relevance for C. elegans fitness, the presence of specific co-adaptations between microbiome members and the worm, and the molecular underpinnings of microbiome-host interactions represent promising areas of future research, for which the advantages of C. elegans as an experimental system should prove of particular value. PMID:28386252

  14. Malignant worms: what cancer research can learn from C. elegans.

    PubMed

    Saito, R Mako; van den Heuvel, Sander

    2002-01-01

    Developmental processes in the nematode C. elegans are controlled by pathways of gene functions that are analogous to those used in mammals. Hence, genetic studies in C. elegans have helped build the frameworks for these regulatory pathways. Many homologs of human genes that are targets for mutation in cancer have been found to function at distinct steps within such genetic pathways. This way, studies in C. elegans have provided important clues about the functions of human oncogenes and tumor suppressors. Understanding how human cancer genes function and act in signaling cascades is of great importance. This information reveals what kind of molecular changes contribute to the process of cell transformation. Moreover, additional candidate oncogenes and tumor suppressors may be revealed by identifying the functional partners of genes with an established role in cancer. Furthermore, identifying a cascade of gene functions increases the number of potential targets for therapeutic intervention, as blocking either one of multiple genes may interfere with signal transduction through the pathway. Simultaneous approaches in a number of different model systems act synergistically in solving pathways of gene functions. By using multiple models, the field takes advantage of the strengths of each system and circumvents its limitations. As one of the most powerful genetic animal systems, C. elegans will continue to reveal new mammalian signaling components. In addition, now that the C. elegans genome sequence has been completed, an increasing number of researchers are likely to discover homologs of human disease genes in the nematode and to analyze gene function in the worm model. Combined with the great potential of this animal in drug screens, it is simple to predict that C. elegans will worm its way deeper and deeper into cancer research.

  15. Caenorhabditis elegans as a Model for Microbiome Research.

    PubMed

    Zhang, Fan; Berg, Maureen; Dierking, Katja; Félix, Marie-Anne; Shapira, Michael; Samuel, Buck S; Schulenburg, Hinrich

    2017-01-01

    The nematode Caenorhabditis elegans is used as a central model system across biological disciplines. Surprisingly, almost all research with this worm is performed in the absence of its native microbiome, possibly affecting generality of the obtained results. In fact, the C. elegans microbiome had been unknown until recently. This review brings together results from the first three studies on C. elegans microbiomes, all published in 2016. Meta-analysis of the data demonstrates a considerable conservation in the composition of the microbial communities, despite the distinct geographical sample origins, study approaches, labs involved and perturbations during worm processing. The C. elegans microbiome is enriched and in some cases selective for distinct phylotypes compared to corresponding substrate samples (e.g., rotting fruits, decomposing plant matter, and compost soil). The dominant bacterial groups include several Gammaproteobacteria (Enterobacteriaceae, Pseudomonaceae, and Xanthomonodaceae) and Bacteroidetes (Sphingobacteriaceae, Weeksellaceae, Flavobacteriaceae). They are consistently joined by several rare putative keystone taxa like Acetobacteriaceae. The bacteria are able to enhance growth of nematode populations, as well as resistance to biotic and abiotic stressors, including high/low temperatures, osmotic stress, and pathogenic bacteria and fungi. The associated microbes thus appear to display a variety of effects beneficial for the worm. The characteristics of these effects, their relevance for C. elegans fitness, the presence of specific co-adaptations between microbiome members and the worm, and the molecular underpinnings of microbiome-host interactions represent promising areas of future research, for which the advantages of C. elegans as an experimental system should prove of particular value.

  16. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans

    PubMed Central

    Gomez-Amaro, Rafael L.; Valentine, Elizabeth R.; Carretero, Maria; LeBoeuf, Sarah E.; Rangaraju, Sunitha; Broaddus, Caroline D.; Solis, Gregory M.; Williamson, James R.; Petrascheck, Michael

    2015-01-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. PMID:25903497

  17. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.

    PubMed

    Gomez-Amaro, Rafael L; Valentine, Elizabeth R; Carretero, Maria; LeBoeuf, Sarah E; Rangaraju, Sunitha; Broaddus, Caroline D; Solis, Gregory M; Williamson, James R; Petrascheck, Michael

    2015-06-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.

  18. Rhino-orbitocerebral mucormycosis caused by Apophysomyces elegans.

    PubMed

    Liang, Kimberly P; Tleyjeh, Imad M; Wilson, Walter R; Roberts, Glenn D; Temesgen, Zelalem

    2006-03-01

    Rhino-orbitocerebral mucormycosis (ROCM) caused by more common zygomycetes (e.g., Mucor) is known to cause rapidly fatal infections in immunocompromised patients. Apophysomyces elegans is an emerging zygomycete that has been reported to cause invasive cutaneous and rhino-orbitocerebral infections in immunocompetent individuals. Limited data exist describing the syndrome of ROCM caused by A. elegans. We describe a recent case and performed a comprehensive literature review to delineate the clinical characteristics of ROCM caused by A. elegans. Our case is a 50-year-old man with diabetes mellitus who presented with facial pain and right eye proptosis. Endoscopic sinus sampling revealed A. elegans. He was treated with liposomal amphotericin B and multiple debridements, with no disease on 1.5-year follow-up examination. Seven cases were identified on literature review, including the present case. Most patients (86%) were male, with a mean age of 40 years. Most patients (71%) did not have predisposing medical conditions. Three patients had predisposing head trauma. All presented with facial and/or periorbital pain. All had magnetic resonance imaging or computed tomography of the head showing intraorbital and/or sinus inflammation. Diagnosis was confirmed by histopathology and deep tissue culture in all cases. All patients required eye exenteration and extensive surgical debridement, in addition to intravenous amphotericin B. Six of the seven patients (86%) recovered. ROCM caused by A. elegans is rarely reported in the literature. Most such infections occurred in immunocompetent patients, often after facial trauma. Survival in ROCM caused by A. elegans is favorable in reported cases, with prompt surgical debridement and antifungal therapy.

  19. The first fossil fungus gardens of Isoptera: oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin)

    NASA Astrophysics Data System (ADS)

    Duringer, Philippe; Schuster, Mathieu; Genise, Jorge F.; Likius, Andossa; Mackaye, Hassan Taisso; Vignaud, Patrick; Brunet, Michel

    2006-12-01

    Higher termites of the subfamily Macrotermitinae (fungus-growing termites) are known to build fungus gardens where a symbiotic fungus ( Termitomyces sp.) is cultivated. The fungus grows on a substrate called fungus comb, a structure built with the termites’ own faeces. Here we present the first fossil fungus combs ever found in the world. They were extracted from 7-million-year-old continental sandstone (Chad basin). Fossilized fungus combs have an ovoid morphology with a more or less flattened concave base and a characteristic general alveolar aspect. Under lens, they display a typical millimetre-scale pelletal structure. The latter, as well as the general shape and alveolar aspect, are similar to the morphology of fungus combs from extant fungus-growing termites.

  20. Sperm and Oocyte Communication Mechanisms Controlling C. elegans Fertility

    PubMed Central

    Han, Sung Min; Cottee, Pauline A.; Miller, Michael A.

    2010-01-01

    During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders. PMID:20034089

  1. Single-Molecule Fluorescence Microscopy in Living Caenorhabditis elegans.

    PubMed

    van Krugten, Jaap; Peterman, Erwin J G

    2018-01-01

    Transportation of organelles and biomolecules is vital for many cellular processes. Single-molecule (SM) fluorescence microscopy can expose molecular aspects of the dynamics that remain unresolved in ensemble experiments. For example, trajectories of individual, moving biomolecules can reveal velocity and changes therein, including pauses. We use SM imaging to study the dynamics of motor proteins and their cargo in the cilia of living C. elegans. To this end, we employ standard fluorescent proteins, an epi-illuminated, wide-field fluorescence microscope and mostly open-source software. This chapter describes the setup we use, the preparation of samples, a protocol for single-molecule imaging in C. elegans and data analysis.

  2. Regulation of the X Chromosomes in Caenorhabditis elegans

    PubMed Central

    Kelly, William G.; Ercan, Sevinc; Lieb, Jason D.

    2014-01-01

    Dosage compensation, which regulates the expression of genes residing on the sex chromosomes, has provided valuable insights into chromatin-based mechanisms of gene regulation. The nematode Caenorhabditis elegans has adopted various strategies to down-regulate and even nearly silence the X chromosomes. This article discusses the different chromatin-based strategies used in somatic tissues and in the germline to modulate gene expression from the C. elegans X chromosomes and compares these strategies to those used by other organisms to cope with similar X-chromosome dosage differences. PMID:24591522

  3. Isolated Polynucleotides and Methods of Promoting a Morphology in a Fungus

    DOEpatents

    Lasure, Linda L [Fall City, WA; Dai, Ziyu [Richland, WA

    2008-10-21

    The invention includes isolated polynucleotide molecules that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention includes a method of enhancing a bioprocess utilizing a fungus. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to a promoter. The polynucleotide sequence is expressed to promote a first morphology. The first morphology of the transformed fungus enhances a bioprocess relative to the bioprocess utilizing a second morphology.

  4. Allergens of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Westwood, Greg S; Huang, Shih-Wen; Keyhani, Nemat O

    2005-01-11

    BACKGROUND: Beauveria bassiana is an important entomopathogenic fungus currently under development as a bio-control agent for a variety of insect pests. Although reported to be non-toxic to vertebrates, the potential allergenicity of Beauveria species has not been widely studied. METHODS: IgE-reactivity studies were performed using sera from patients displaying mould hypersensitivity by immunoblot and immunoblot inhibition. Skin reactivity to B. bassiana extracts was measured using intradermal skin testing. RESULTS: Immunoblots of fungal extracts with pooled as well as individual sera showed a distribution of IgE reactive proteins present in B. bassiana crude extracts. Proteinase K digestion of extracts resulted in loss of IgE reactive epitopes, whereas EndoH and PNGaseF (glycosidase) treatments resulted in minor changes in IgE reactive banding patterns as determined by Western blots. Immunoblot inhibitions experiments showed complete loss of IgE-binding using self protein, and partial inhibition using extracts from common allergenic fungi including; Alternaria alternata, Aspergillus fumigatus, Cladosporium herbarum, Candida albicans, Epicoccum purpurascens, and Penicillium notatum. Several proteins including a strongly reactive band with an approximate molecular mass of 35 kDa was uninhibited by any of the tested extracts, and may represent B. bassiana specific allergens. Intradermal skin testing confirmed the in vitro results, demonstrating allergenic reactions in a number of individuals, including those who have had occupational exposure to B. bassiana. CONCLUSIONS: Beauveria bassiana possesses numerous IgE reactive proteins, some of which are cross-reactive among allergens from other fungi. A strongly reactive potential B. bassiana specific allergen (35 kDa) was identified. Intradermal skin testing confirmed the allergenic potential of B. bassiana.

  5. The temporal scaling of Caenorhabditis elegans ageing

    PubMed Central

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-01-01

    The process of ageing makes death increasingly likely, but involves a random aspect that produces a wide distribution of lifespan even in homogeneous populations1,2. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating how and how much specific molecular processes contribute to the aspect of ageing that determines lifespan. PMID:26814965

  6. The temporal scaling of Caenorhabditis elegans ageing.

    PubMed

    Stroustrup, Nicholas; Anthony, Winston E; Nash, Zachary M; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F; Apfeld, Javier; Fontana, Walter

    2016-02-04

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  7. The temporal scaling of Caenorhabditis elegans ageing

    NASA Astrophysics Data System (ADS)

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-02-01

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  8. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  9. Material properties of Caenorhabditis elegans swimming at low Reynolds number.

    PubMed

    Sznitman, J; Purohit, Prashant K; Krajacic, P; Lamitina, T; Arratia, P E

    2010-02-17

    Undulatory locomotion, as seen in the nematode Caenorhabditis elegans, is a common swimming gait of organisms in the low Reynolds number regime, where viscous forces are dominant. Although the nematode's motility is expected to be a strong function of its material properties, measurements remain scarce. Here, the swimming behavior of C. elegans is investigated in experiments and in a simple model. Experiments reveal that nematodes swim in a periodic fashion and generate traveling waves that decay from head to tail. The model is able to capture the experiments' main features and is used to estimate the nematode's Young's modulus E and tissue viscosity eta. For wild-type C. elegans, we find E approximately 3.77 kPa and eta approximately -860 Pa.s; values of eta for live C. elegans are negative because the tissue is generating rather than dissipating energy. Results show that material properties are sensitive to changes in muscle functional properties, and are useful quantitative tools with which to more accurately describe new and existing muscle mutants. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Population dynamics of Lanyu Scops Owls (Otus elegans botelensis)

    Treesearch

    L. L. Severinghaus

    1997-01-01

    Monthly visits to Lanyu Island have been made to study Lanyu Scops Owls (Otus elegans botelensis) since 1986. This population has been surveyed by regular census and playback counts, by color banding, by monitoring the survival, reproduction and movements of individual owls, and by mapping and documenting the change in nest trees.

  11. Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans

    PubMed Central

    Murphy, John T.; Bruinsma, Janelle J.; Schneider, Daniel L.; Collier, Sara; Guthrie, James; Chinwalla, Asif; Robertson, J. David; Mardis, Elaine R.; Kornfeld, Kerry

    2011-01-01

    Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1) gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals. PMID:21455490

  12. High-Throughput Gene Mapping in Caenorhabditis elegans

    PubMed Central

    Swan, Kathryn A.; Curtis, Damian E.; McKusick, Kathleen B.; Voinov, Alexander V.; Mapa, Felipa A.; Cancilla, Michael R.

    2002-01-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 ± 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18. [The sequence data described in this paper have been submitted to the NCBI dbSNP data library under accession nos. 4388625–4389689 and GenBank dbSTS under accession nos. 973810–974874. The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: The C. elegans Sequencing Consortium and The Caenorhabditis Genetics Center.] PMID:12097347

  13. Regulatory myosin light-chain genes of Caenorhabditis elegans.

    PubMed Central

    Cummins, C; Anderson, P

    1988-01-01

    We have cloned and analyzed the Caenorhabditis elegans regulatory myosin light-chain genes. C. elegans contains two such genes, which we have designated mlc-1 and mlc-2. The two genes are separated by 2.6 kilobases and are divergently transcribed. We determined the complete nucleotide sequences of both mlc-1 and mlc-2. A single, conservative amino acid substitution distinguishes the sequences of the two proteins. The C. elegans proteins are strongly homologous to regulatory myosin light chains of Drosophila melanogaster and vertebrates and weakly homologous to a superfamily of eucaryotic calcium-binding proteins. Both mlc-1 and mlc-2 encode abundant mRNAs. We mapped the 5' termini of these transcripts by using primer extension sequencing of mRNA templates. mlc-1 mRNAs initiate within conserved hexanucleotides at two different positions, located at -28 and -38 relative to the start of translation. The 5' terminus of mlc-2 mRNA is not encoded in the 4.8-kilobase genomic region upstream of mlc-2. Rather, mlc-2 mRNA contains at its 5' end a short, untranslated leader sequence that is identical to the trans-spliced leader sequence of three C. elegans actin genes. Images PMID:3244358

  14. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans

    PubMed Central

    Wilson, Mark A; Shukitt-Hale, Barbara; Kalt, Wilhelmina; Ingram, Donald K; Joseph, James A; Wolkow, Catherine A

    2006-01-01

    Summary The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blue-berry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects. PMID:16441844

  15. Molecular profiling of mitochondrial dysfunction in Caenorhabditis elegans.

    PubMed

    Polyak, Erzsebet; Zhang, Zhe; Falk, Marni J

    2012-01-01

    Cellular effects of primary mitochondrial dysfunction, as well as potential mitochondrial disease therapies, can be modeled in living animals such as the microscopic nematode, Caenorhabditis elegans. In particular, molecular analyses can provide substantial insight into the mechanism by which genetic and/or pharmacologic manipulations alter mitochondrial function. The relative expression of individual genes across both nuclear and mitochondrial genomes, as well as relative quantitation of mitochondrial DNA content, can be readily performed by quantitative real-time PCR (qRT-PCR) analysis of C. elegans. Additionally, microarray expression profiling offers a powerful tool by which to survey the global genetic consequences of various causes of primary mitochondrial dysfunction and potential therapeutic interventions at both the single gene and integrated pathway level. Here, we describe detailed protocols for RNA and DNA isolation from whole animal populations in C. elegans, qRT-PCR analysis of both nuclear and mitochondrial genes, and global nuclear genome expression profiling using the Affymetrix GeneChip C. elegans Genome Array.

  16. Biophysical and biological meanings of healthspan from C. elegans cohort

    SciTech Connect

    Suda, Hitoshi

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.

  17. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  18. The evolutionary role of males in C. elegans

    PubMed Central

    Chasnov, Jeffrey R.

    2013-01-01

    Although the nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, males are maintained in natural populations at low frequency. In this commentary, I discuss the evolutionary forces that maintain males and the role males might play in this mating system. PMID:24058855

  19. A pharmacological network for lifespan extension in Caenorhabditis elegans

    PubMed Central

    Ye, Xiaolan; Linton, James M; Schork, Nicholas J; Buck, Linda B; Petrascheck, Michael

    2014-01-01

    One goal of aging research is to find drugs that delay the onset of age-associated disease. Studies in invertebrates, particularly Caenorhabditis elegans, have uncovered numerous genes involved in aging, many conserved in mammals. However, which of these encode proteins suitable for drug targeting is unknown. To investigate this question, we screened a library of compounds with known mammalian pharmacology for compounds that increase C. elegans lifespan. We identified 60 compounds that increase longevity in C. elegans, 33 of which also increased resistance to oxidative stress. Many of these compounds are drugs approved for human use. Enhanced resistance to oxidative stress was associated primarily with compounds that target receptors for biogenic amines, such as dopamine or serotonin. A pharmacological network constructed with these data reveal that lifespan extension and increased stress resistance cluster together in a few pharmacological classes, most involved in intercellular signaling. These studies identify compounds that can now be explored for beneficial effects on aging in mammals, as well as tools that can be used to further investigate the mechanisms underlying aging in C. elegans. PMID:24134630

  20. Small-molecule mechanism of action studies in Caenorhabditis elegans.

    PubMed

    Zlotkowski, Katherine; Eliasen, Anders M; Mitra, Aurpon; Siegel, Dionicio

    2013-11-25

    A general protocol for exogenous small-molecule pull-down experiments with Caenorhabditis elegans is described; it provides a link between small-molecule screens in worms and existing mutant and RNAi technologies, thereby enabling organismal mechanism of action studies for the natural product clovanemagnolol. Forward chemical genetic screens followed by mechanism of action studies with C. elegans, when coupled with genetic validation of identified targets to reproduce the small molecule's phenotypic effects, provide a unique platform for discovering the biological targets of compounds that affect multicellular processes. First, the use of an immobilized FK506 derivative and soluble competition experiments with optimally prepared soluble C. elegans proteome successfully identified interactions with FK506 binding proteins 1 to 6. This approach was used to determine an unknown mechanism of action for clovanemagnolol, a small molecule that promotes axonal branching in both primary neuronal cultures and in vivo in C. elegans. Following the synthesis of an appropriately functionalized solid-phase reagent bearing a clovanemagnolol analogue pull-down experiments employing soluble competition identified kinesin light chain-1 (KLC-1), a protein involved in axonal cargo transport, as a putative target. This was corroborated through the use of mutant worms lacking klc-1 and possessing GFP neuronal labeling, reproducing the axonal branching phenotype induced by the small molecule clovanemagnolol. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The C. elegans touch response facilitates escape from predacious fungi.

    PubMed

    Maguire, Sean M; Clark, Christopher M; Nunnari, John; Pirri, Jennifer K; Alkema, Mark J

    2011-08-09

    Predator-prey interactions are vital determinants in the natural selection of behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1, 2]. Here, we investigate the ecological significance of the touch response in predator-prey interactions between C. elegans and predacious fungi that catch nematodes using constricting hyphal rings. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before being caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild-type. This demonstrates that the coordination of motor programs allows C. elegans to smoothly retract from a fungal noose and evade capture. Our results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior.

  2. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  3. Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans

    PubMed Central

    Deline, Marshall L.; Vrablik, Tracy L.; Watts, Jennifer L.

    2013-01-01

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method. PMID:24326396

  4. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  5. Homologs of the Hh signalling network in C. elegans.

    PubMed

    Bürglin, Thomas R; Kuwabara, Patricia E

    2006-01-28

    In Drosophila and vertebrates, Hedgehog (Hh) signalling is mediated by a cascade of genes, which play essential roles in cell proliferation and survival, and in patterning of the embryo, limb buds and organs. In C. elegans, this pathway has undergone considerable evolutionary divergence; genes encoding homologues of key pathway members, including Hh, Smoothened, Cos2, Fused and Suppressor of Fused, are absent. Surprisingly, over sixty proteins (i.e. WRT, GRD, GRL, and QUA), encoded by a set of genes collectively referred to as the Hh-related genes, and two co-orthologs (PTC-1,-3) of fly Patched, a Hh receptor, are present in C. elegans. Several of the Hh-related proteins are bipartite and all can potentially generate peptides with signalling activity, although none of these peptides shares obvious sequence similarity with Hh. In addition, the ptc-related (ptr) genes, which are present in a single copy in Drosophila and vertebrates and encode proteins closely related to Patched, have undergone an expansion in number in nematodes. A number of functions, including roles in molting, have been attributed to the C. elegans Hh-related, PTC and PTR proteins; most of these functions involve processes that are associated with the trafficking of proteins, sterols or sterol-modified proteins. Genes encoding other components of the Hh signalling pathway are also found in C. elegans, but their functions remain to be elucidated.

  6. Concentration dependent differential activity of signalling molecules in Caenorhabditis elegans

    USDA-ARS?s Scientific Manuscript database

    Caenorhabditis elegans employs specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) for monitoring population density/ dauer formation and finding mates. A synergistic blend of three ascarosides, called ascr#2, ascr#3 and ascr#4 acts as a dauer pheromone at a high concentration na...

  7. Silicon-inducible defenses of Zinnia elegans against Myzus persicae

    USDA-ARS?s Scientific Manuscript database

    Several examples exist of silicon (Si) amendment inducing plant chemical defenses against plant pathogens, but few studies have focused on Si-induced defenses against phloem-feeding herbivores. The current study examined Si treatment of Zinnia elegans Jacq. cv. Oklahoma White (Compositae) on the pe...

  8. Lessons from bloodless worms: heme homeostasis in C. elegans.

    PubMed

    Sinclair, Jason; Hamza, Iqbal

    2015-06-01

    Heme is an essential cofactor for proteins involved in diverse biological processes such as oxygen transport, electron transport, and microRNA processing. Free heme is hydrophobic and cytotoxic, implying that specific trafficking pathways must exist for the delivery of heme to target hemoproteins which reside in various subcellular locales. Although heme biosynthesis and catabolism have been well characterized, the pathways for trafficking heme within and between cells remain poorly understood. Caenorhabditis elegans serves as a unique animal model for uncovering these pathways because, unlike vertebrates, the worm lacks enzymes to synthesize heme and therefore is crucially dependent on dietary heme for sustenance. Using C. elegans as a genetic animal model, several novel heme trafficking molecules have been identified. Importantly, these proteins have corresponding homologs in vertebrates underscoring the power of using C. elegans, a bloodless worm, in elucidating pathways in heme homeostasis and hematology in humans. Since iron deficiency and anemia are often exacerbated by parasites such as helminths and protozoa which also rely on host heme for survival, C. elegans will be an ideal model to identify anti-parasitic drugs that target heme transport pathways unique to the parasite.

  9. Caenorhabditis elegans pathways that surveil and defend mitochondria

    PubMed Central

    Liu, Ying; Samuel, Buck S.; Breen, Peter C.; Ruvkun, Gary

    2014-01-01

    Mitochondrial function is challenged by toxic byproducts of metabolism as well as by pathogen attack1,2. Caenorhabditis elegans normally responds to mitochondrial dysfunction with activation of mitochondrial repair, drug detoxification, and pathogen-response pathways1–7. From a genome-wide RNAi screen, we identified 45 C. elegans genes that are required to upregulate detoxification, pathogen-response, and mitochondrial repair pathways after inhibition of mitochondrial function by drugs or genetic disruption. Animals defective in ceramide biosynthesis are deficient in mitochondrial surveillance, and addition of particular ceramides can rescue the surveillance defects. Ceramide can also rescue the mitochondrial surveillance defects of other gene inactivations, mapping these gene activities upstream of ceramide. Inhibition of the mevalonate pathway, either by RNAi or statin drugs also disrupts mitochondrial surveillance. Growth of C. elegans with a significant fraction of bacterial species from their natural habitat causes mitochondrial dysfunction. Other bacterial species inhibit C. elegans defense responses to a mitochondrial toxin, revealing bacterial countermeasures to animal defense. PMID:24695221

  10. Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans.

    PubMed

    Caito, Samuel W; Zhang, Yaofang; Aschner, Michael

    2013-06-14

    Methylmercury (MeHg) is a potent neurotoxin that enters mammalian cells as a conjugate with L-cysteine through L-type large neutral amino acid transporter, LAT1, by a molecular mimicry mechanism by structurally resembling L-methionine. Caenorhabditis elegans (C. elegans) has been increasingly used to study the neurotoxic effects of MeHg, but little is known about uptake and transport of MeHg in the worm. This study examined whether MeHg uptake through LAT1 is evolutionarily conserved in nematodes. MeHg toxicity in C. elegans was blocked by pre-treatment of worms with l-methionine, suggesting a role for amino acid transporters in MeHg transport. Knockdown of aat-1, aat-2, and aat-3, worm homologues to LAT1, increased the survival of C. elegans following MeHg treatment and significantly attenuated MeHg content following exposure. These results indicate that MeHg is transported in the worm by a conserved mechanism dependent on functioning amino acid transporters.

  11. Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans.

    PubMed

    Roh, Ji-Yeon; Choi, Jinhee

    2008-10-01

    To investigate the effects of chlorpyrifos (CP), an organophosphorus insecticide, on the soil nematode Caenorhabditis elegans, the toxicity of the insecticide on the molecular, biochemical, and physiological levels were investigated upon sublethal exposure, and an acute toxicity test was conducted using lethality as an endpoint. To assess the molecular-level effect, stress-related gene expression was investigated, and the neurotoxicity indicator, acetylcholinesterase (AChE) activity was assessed as the biochemical-level response. Growth, reproduction and development were also studied as physiological-level responses. The overall results indicate that CP exposure leads to the alteration of the expression of some stress genes, such as of heat shock protein, metallothionein, vitellogenin and C. elegans p53-like protein genes; the inhibition of AChE activity; and the retardation of development. These data suggest that the toxicity of CP on C. elegans occurred in multiple biological organizations; nevertheless this is not sufficient to conclude that there is a casual relationship between them. Thus, direct experimental demonstrations of the wider relationships between the molecular/biochemical effects of CP exposure and their consequences at higher levels of biological organization are needed to fully understand the effects of this compound on C. elegans.

  12. Caenorhabditis elegans glia modulate neuronal activity and behavior

    PubMed Central

    Stout Jr., Randy F.; Verkhratsky, Alexei; Parpura, Vladimir

    2014-01-01

    Glial cells of Caenorhabditis elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived Glial-Like cells in the nerve Ring (GLRs) appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general. PMID:24672428

  13. Modulating Behavior in C. elegans Using Electroshock and Antiepileptic Drugs

    PubMed Central

    Jia, Kailiang; Grill, Brock; Dawson-Scully, Ken

    2016-01-01

    The microscopic nematode Caenorhabditis elegans has emerged as a valuable model for understanding the molecular and cellular basis of neurological disorders. The worm offers important physiological similarities to mammalian models such as conserved neuron morphology, ion channels, and neurotransmitters. While a wide-array of behavioral assays are available in C. elegans, an assay for electroshock/electroconvulsion remains absent. Here, we have developed a quantitative behavioral method to assess the locomotor response following electric shock in C. elegans. Electric shock impairs normal locomotion, and induces paralysis and muscle twitching; after a brief recovery period, shocked animals resume normal locomotion. We tested electric shock responses in loss-of-function mutants for unc-25, which encodes the GABA biosynthetic enzyme GAD, and unc-49, which encodes the GABAA receptor. unc-25 and unc-49 mutants have decreased inhibitory GABAergic transmission to muscles, and take significantly more time to recover normal locomotion following electric shock compared to wild-type. Importantly, increased sensitivity of unc-25 and unc-49 mutants to electric shock is rescued by treatment with antiepileptic drugs, such as retigabine. Additionally, we show that pentylenetetrazol (PTZ), a GABAA receptor antagonist and proconvulsant in mammalian and C. elegans seizure models, increases susceptibility of worms to electric shock. PMID:27668426

  14. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans.

    PubMed

    Meyer, Dean; Williams, Phillip L

    2014-01-01

    The use of pesticides is ubiquitous worldwide, and these chemicals exert adverse effects on both target and nontarget species. Understanding the modes of action of pesticides, as well as quantifying exposure concentration and duration, is an important goal of clinicians and environmental health scientists. Some chemical exposures result in adverse effects on the nervous system. The nematode Caenorhabditis elegans (C. elegans) is a model lab organism well established for studying neurotoxicity, since the components of its nervous system are mapped and known, and most of its neurotransmitters correspond to human homologs. This review encompasses published studies in which C. elegans nematodes were exposed to pesticides with known neurotoxic actions. Endpoints measured include changes in locomotion, feeding behavior, brood size, growth, life span, and cell death. From data presented, evidence indicates that C. elegans can serve a role in assessing the effects of neurotoxic pesticides at the sublethal cellular level, thereby advancing our understanding of the mechanisms underlying toxicity induced by these chemicals. A proposed toxicity testing scheme for water-soluble chemicals is also included.

  15. Artificial and natural RNA interactions between bacteria and C. elegans.

    PubMed

    Braukmann, Fabian; Jordan, David; Miska, Eric

    2017-03-23

    19 years after Lisa Timmons and Andy Fire first described RNA transfer from bacteria to C. elegans in an experimental setting [Timmons and Fire, 1998 ] the biological role of this trans-kingdom RNA-based communication remains unknown. Here we summarize our current understanding on the mechanism and potential role of such social RNA.

  16. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  17. The C. elegans rab family: identification, classification and toolkit construction.

    PubMed

    Gallegos, Maria E; Balakrishnan, Sanjeev; Chandramouli, Priya; Arora, Shaily; Azameera, Aruna; Babushekar, Anitha; Bargoma, Emilee; Bokhari, Abdulmalik; Chava, Siva Kumari; Das, Pranti; Desai, Meetali; Decena, Darlene; Saramma, Sonia Dev Devadas; Dey, Bodhidipra; Doss, Anna-Louise; Gor, Nilang; Gudiputi, Lakshmi; Guo, Chunyuan; Hande, Sonali; Jensen, Megan; Jones, Samantha; Jones, Norman; Jorgens, Danielle; Karamchedu, Padma; Kamrani, Kambiz; Kolora, Lakshmi Divya; Kristensen, Line; Kwan, Kelly; Lau, Henry; Maharaj, Pranesh; Mander, Navneet; Mangipudi, Kalyani; Menakuru, Himabindu; Mody, Vaishali; Mohanty, Sandeepa; Mukkamala, Sridevi; Mundra, Sheena A; Nagaraju, Sudharani; Narayanaswamy, Rajhalutshimi; Ndungu-Case, Catherine; Noorbakhsh, Mersedeh; Patel, Jigna; Patel, Puja; Pendem, Swetha Vandana; Ponakala, Anusha; Rath, Madhusikta; Robles, Michael C; Rokkam, Deepti; Roth, Caroline; Sasidharan, Preeti; Shah, Sapana; Tandon, Shweta; Suprai, Jagdip; Truong, Tina Quynh Nhu; Uthayaruban, Rubatharshini; Varma, Ajitha; Ved, Urvi; Wang, Zeran; Yu, Zhe

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).

  18. Metabolite diversification by cultivation of the endophytic fungus Dothideomycete sp. in halogen containing media: Cultivation of terrestrial fungus in seawater.

    PubMed

    Wijesekera, Kanchana; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2017-06-01

    The endophytic fungus, Dothideomycete sp. CRI7, isolated from the terrestrial plant, Tiliacora triandra, was salt tolerant, capable of growing in the culture medium prepared from seawater; salts in seawater did not have any effects on the fungal growth. Metabolite productions of the fungus CRI7 cultivated in media prepared from seawater (MSW), prepared from deionized water supplemented with potassium bromide (MKBr) or potassium iodide (MKI), and prepared from deionized water (MDW) were investigated. It was found that the cultivation of the fungus CRI7 in MKBr and MSW enabled the fungus to produce nine new metabolites (1-9). The production of an azaphilone, austdiol (10), of the fungus CRI7 grown in MDW was 0.04g/L, which was much lower than that grown in MSW, MKBr, and MKI media which provided the yields of 0.5, 0.9, and 1.2g/L, respectively, indicating that halogen salts significantly enhanced the production of the polyketide 10. The cultivation of terrestrial fungi in media containing halogen salts could therefore be useful for the metabolite diversification by one strain-many compounds (OSMAC) approach. Moreover, the isolated polyketides had significant biosynthetic relationship, suggesting that the cultivation of fungi in halogen containing media could provide the insights into certain polyketide biosynthesis. One of the isolated compounds exhibited antibacterial activity with the MIC value of 100μg/mL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans

    PubMed Central

    Scerbak, Courtney; Vayndorf, Elena M.; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E.

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  20. MicroRNA binding sites in C. elegans 3' UTRs.

    PubMed

    Liu, Chaochun; Rennie, William A; Mallick, Bibekanand; Kanoria, Shaveta; Long, Dang; Wolenc, Adam; Carmack, C Steven; Ding, Ye

    2014-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org.

  1. Functional characterization of Caenorhabditis elegans heteromeric amino acid transporters.

    PubMed

    Veljkovic, Emilija; Stasiuk, Susan; Skelly, Patrick J; Shoemaker, Charles B; Verrey, François

    2004-02-27

    Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.

  2. Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans.

    PubMed

    Hsu, Pei-Chun L; O'Callaghan, Maureen; Al-Salim, Najeh; Hurst, Mark R H

    2012-10-01

    Quantum dots (QDs) are an increasingly important class of nanoparticle, but little ecotoxicological data for QDs has been published to date. The effects of mercaptosuccinic acid (MSA)-capped QDs (QDs-MSA) and equivalent concentrations of cadmium (Cd) from cadmium chloride on growth and reproduction of the nematode Caenorhabditis elegans (Rhabditidae) were assessed in laboratory experiments. Growth from larvae to adults of C. elegans was unaffected by exposure to 1 µM fluorescent QDs-MSA, but adults produced more embryos and laid them prematurely. Furthermore, C. elegans exposed to QDs-MSA (1 µM) showed a high percentage of embryo mortality (19.2 ± 0.5, p < 0.001, percentage ± standard deviation) compared with unexposed nematodes (11.6 ± 0.4). An egg-laying defect phenotype was also observed at high frequency in response to 1 µM QDs-MSA exposure (38.3 ± 3.6%, p < 0.01; control 10.0 ± 2.2%). This resulted in a reduced mean life span (20.5 ± 1.1 d, p < 0.05) compared with the control (24.6 ± 1.0 d). Cadmium also caused reduced life span in C. elegans, but a low incidence of egg-laying defects was observed, suggesting that Cd and QDs-MSA affected C. elegans by different mechanisms. Furthermore, egg-laying defects caused by QDs-MSA responded to the addition of the anticonvulsant ethosuximide and to a lesser extent to the neurotransmitter serotonin, suggesting that QDs-MSA might have disrupted motor neurons during the reproduction process.

  3. Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans.

    PubMed

    Cheon, Se-Myeong; Jang, Insoo; Lee, Myon-Hee; Kim, Dae Keun; Jeon, Hoon; Cha, Dong Seok

    2017-12-01

    The twigs of Sorbus alnifolia (Sieb. et Zucc.) K. Koch (Rosaceae) have been used to treat neurological disorders as a traditional medicine in Korea. However, there are limited data describing the efficacy of S. alnifolia in Parkinson's disease (PD). This study was conducted to identify the protective effects of the methanol extracts of S. alnifolia (MESA) on the dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. To test the neuroprotective action of MESA, viability assay was performed after 48 h exposure to 1-methyl-4-phenylpyridine (MMP(+)) in PC12 cells and C. elegans (400 μM and 2 mM of MMP(+), respectively). Fluorescence intensity was quantified using transgenic mutants such as BZ555 (Pdat-1::GFP) and and UA57 (Pdat-1::GFP and Pdat-1::CAT-2) to determine MESA's effects on DA neurodegeneration in C. elegans. Aggregation of α-synuclein was observed using NL5901 strain (unc-54p::α-synuclein::YFP). MESA's protective effects on the DA neuronal functions were examined by food-sensing assay. Lifespan assay was conducted to test the effects of MESA on the longevity. MESA restored MPP(+)-induced loss of viability in both PC12 cells and C. elegans (85.8% and 54.9%, respectively). In C. elegans, MESA provided protection against chemically and genetically-induced DA neurodegeneration, respectively. Moreover, food-sensing functions were increased 58.4% by MESA in the DA neuron degraded worms. MESA also prolonged the average lifespan by 25.6%. However, MESA failed to alter α-synuclein aggregation. These results revealed that MESA protects DA neurodegeneration and recovers diminished DA neuronal functions, thereby can be a valuable candidate for the treatment of PD.

  4. Together or alone?: foraging strategies in Caenorhabditis elegans.

    PubMed

    Boender, Arjen J; Roubos, Eric W; van der Velde, Gerard

    2011-11-01

    A central goal in Life Sciences is to understand how genes encode behaviour and how environmental factors influence the expression of the genes concerned. To reach this goal a combined ecological, molecular biological and physiological approach is required in combination with a suitable model organism. Such an approach allows the elucidation of all parts of the complicated chain of events that lead from induction of gene expression to behaviour, i.e. from environmental stimulus, sensory organs and extracellular and intracellular neuronal signal processing to activation of effector organs. A particularly good model species with which to take this approach is the nematode Caenorhabditis elegans, as it has been described in great detail at the genomic, cellular and behavioural levels. Different strains of C. elegans display prominent behavioural variation in foraging behaviour. Some strains will form social feeding groups when subjected to certain environmental stimuli, while others do not. This variation is due to the existence of just two isoforms of the gene npr-1, namely 215F and 215V. Here, we describe these behavioural variations at the molecular and cellular levels to attempt to determine the environmental inputs that cause aggregation of these small nematodes. As many different stimuli affect aggregation either positively or negatively, aggregation behaviour seems to be displayed when it improves survival chances. However, not much is known about the ecological context in which C. elegans lives. Investigation of the habitats of different strains of C. elegans would help us to understand why and how a specific foraging strategy enhances survival. The relatively well-understood molecular pathways that direct its social feeding behaviour make C. elegans a highly suitable model organism to test ecological and behavioural hypotheses about the mechanisms that differentiate between aggregation and solitary behaviours. © 2011 The Authors. Biological Reviews © 2011

  5. Rust-red stringy white rot: The Indian paint fungus, Echinodontium tinctorium

    Treesearch

    A. D. Wilson

    1997-01-01

    Older trees are more susceptible to damage by this fungus, although even very young trees are susceptible to infection. Infections occur most frequently in dense stands where selfpruning creates infection courts for the fungus.

  6. Roles of Peroxisomes in the Rice Blast Fungus

    PubMed Central

    Liu, Caiyun

    2016-01-01

    The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity. PMID:27610388

  7. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  8. Detection of 3-hydroxykynurenine in a plant pathogenic fungus.

    PubMed Central

    Wilson, T J Greer; Thomsen, Karl Kristian; Petersen, Bent O; Duus, Jens Ø; Oliver, Richard P

    2003-01-01

    A redox-active compound has been purified from the barley powdery mildew fungus Blumeria ( Erysiphe ) graminis f. sp. hordei. A combination of spectrophotometry, MS and NMR has identified it as 3-hydroxykynurenine (3OHKyn). This compound, never previously detected in any fungus or pathogen, is best known for its role in vertebrate cataracts. It is found abundantly in developing and germinating spores and also in runner hyphae. Two roles for 3OHKyn are discussed: first, the presence of active oxygen species would enable 3OHKyn to cross-link the spore chemically with the plant. Secondly, it may be acting as an UV protectant and an antioxidant. PMID:12556224

  9. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    PubMed

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  10. A Monoclonal Antibody Toolkit for C. elegans

    PubMed Central

    Hadwiger, Gayla; Dour, Scott; Arur, Swathi; Fox, Paul; Nonet, Michael L.

    2010-01-01

    in whole mount immunocytochemistry, most of these antibodies work on western blots and thus should be of use for biochemical fractionation studies. Conclusions/Significance We have produced a set of monoclonal antibodies to subcellular components of the nematode C. elegans for the research community. These reagents are being made available through the Developmental Studies Hybridoma Bank (DSHB). PMID:20405020

  11. Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis

    PubMed Central

    Wyss, Tania; Masclaux, Frédéric G; Rosikiewicz, Pawel; Pagni, Marco; Sanders, Ian R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance. PMID:26953600

  12. [Study of water-soluble compounds from fungus garden of Odontotermes formosanus].

    PubMed

    Xue, Dejun; Zhou, Hui; Zhang, Min; Xie, Kang; Zhang, Yong

    2005-10-01

    To study water-soluble compounds from fungus garden of Odontotermes formosanus. The chemical constituents of fungus garden were analyzed and identified by GC-MS. 28 compounds were separated and 11 chemical constituents were identified. The main constituents in water-solubles from fungus garden of Odontotermes formosanus are palmitic acid, linolei acid and oleic aid.

  13. Microbial transformation of 6-nitrobenzo[a]pyrene.

    PubMed

    Millner, G C; Fu, P P; Cerniglia, C E

    1986-01-01

    The fungal metabolism of the potent mutagenic and carcinogenic nitropolycyclic aromatic hydrocarbon (nitro-PAH) 6-nitrobenzo[a]pyrene (6-NO2-BaP) was investigated. Cunninghamella elegans was incubated with 6-NO2-BaP for periods ranging between 1 and 7 d, and the metabolites formed were separated by high-performance liquid chromatography and identified by their UV-visible absorption, mass, and 1H nuclear magnetic resonance spectra. The results of our study indicate that C. elegans metabolized 6-NO2-BaP to glucoside and sulfate conjugates of 1- and 3-hydroxy 6-NO2-BaP and suggests that glycosylation and sulfation reactions may represent detoxification pathways in the fungal metabolism of nitro-PAHs. Experiments using [G3H]-6-NO2-BaP indicated that C. elegans metabolized 62% of 6-NO2-BaP within 168 h. Our data also indicated that the nitro group at the C-6 position of benzo[a]pyrene blocked metabolism at the regions peri to the nitro substituent (C-7, C-8 positions) and enhanced metabolism at the C-1 and C-3 positions. The ability of the fungus C. elegans to metabolize 6-NO2-BaP to biologically inactive compounds may have practical applications in the detoxification of nitro-PAH-contaminated wastes.

  14. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity.

  15. Unidirectional, electrotactic-response valve for Caenorhabditis elegans in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Carr, John A.; Lycke, Roy; Parashar, Archana; Pandey, Santosh

    2011-04-01

    We report a nematode electrotactic-response valve (NERV) to control the locomotion of Caenorhabditis elegans (C. elegans) in microfluidic devices. This nonmechanical, unidirectional valve is based on creating a confined region of lateral electric field that is switchable and reversible. We observed that C. elegans do not prefer to pass through this region if the field lines are incident to its forward movement. Upon reaching the boundary of the NERV, the incident worms partially penetrate the field region, pull back, and turn around. The NERV is tested on three C. elegans mutants: wild-type (N2), lev-8, and acr-16.

  16. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    PubMed Central

    2012-01-01

    Background Ribosomal protein genes (RPGs) are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from those of all other species

  17. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  18. Functional Analyses of Vertebrate TCF Proteins in C. elegans Embryos

    PubMed Central

    Robertson, Scott M.; Lo, Miao-Chia; Odom, Ranaan; Yang, Xiao-Dong; Medina, Jessica; Huang, Shuyi; Lin, Rueyling

    2011-01-01

    In the canonical Wnt pathway, signaling results in the stabilization and increased levels of β-catenin in responding cells. β-catenin then enters the nucleus, functioning as a coactivator for the Wnt effector, TCF/LEF protein. In the absence of Wnt signaling, TCF is complexed with corepressors, together repressing Wnt target genes. In C. elegans, Wnt signaling specifies the E blastomere to become the endoderm precursor. Activation of endoderm genes in E requires not only an increase in β-catenin level, but a concomitant decrease in the nuclear level of POP-1, the sole C. elegans TCF. A decrease in nuclear POP-1 levels requires Wnt-induced phosphorylation of POP-1 and 14-3-3 protein-mediated nuclear export. Nuclear POP-1 levels remain high in the sister cell of E, MS, where POP-1 represses the expression of endoderm genes. Here we express three vertebrate TCF proteins (human TCF4, mouse LEF1 and Xenopus TCF3) in C. elegans embryos and compare their localization, repression and activation functions to POP-1. All three TCFs are localized to the nucleus in C. elegans embryos, but none undergoes Wnt-induced nuclear export. Although unable to undergo Wnt-induced nuclear export, human TCF4, but not mouse LEF1 or Xenopus TCF3, can repress endoderm genes in MS, in a manner very similar to POP-1. This repressive activity requires that human TCF4 recognize specific promoter sequences upstream of endoderm genes and interact with C. elegans corepressors. Domain swapping identified two regions of POP-1 that are sufficient to confer nuclear asymmetry to human TCF4 when swapped with its corresponding domains. Despite undergoing Wnt-induced nuclear export, the human TCF4/POP-1 chimeric protein continues to function as a repressor for endoderm genes in E, a result we attribute to the inability of hTCF4 to bind to C. elegans β-catenin. Our results reveal a higher degree of species specificity among TCF proteins for coactivator interactions than for corepressor interactions, and

  19. Directed Evolution of a Filamentous Fungus for Thermotolerance

    USDA-ARS?s Scientific Manuscript database

    Filamentous fungi represent the most widely used eukaryotic biocatalysts in industrial and chemical applications. Metarhizium anisopliae is a broad-host-range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. One of the most p...

  20. Using copper sulfate to control fungus on fish eggs

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) is widely used by the catfish industry as an economical treatment to control fungus (Saprolegnia spp.) on catfish eggs. This is an overview of our effectiveness and safety studies. Channel catfish spawns were 24 - 48 hrs old. Comparable portions of a single spawn were place...

  1. Asterogynins: Secondary Metabolites from a Costa Rican Endophytic Fungus

    PubMed Central

    2010-01-01

    An endophytic fungus isolated from the small palm Asterogyne martiana produced two unusual steroid-like metabolites, asterogynin A (1) and asterogynin B (2), along with the known compounds viridiol (3) and viridin (4). Asterogynins A and B were characterized by NMR and MS spectroscopic analysis. PMID:20839869

  2. Fun Microbiology: How To Measure Growth of a Fungus.

    ERIC Educational Resources Information Center

    Mitchell, James K.; And Others

    1997-01-01

    Describes an experiment to demonstrate a simple method for measuring fungus growth by monitoring the effect of temperature on the growth of Trichoderma viride. Among the advantages that this experimental model provides is introducing students to the importance of using the computer as a scientific tool for analyzing and presenting data. (AIM)

  3. A Brazilian social bee must cultivate fungus to survive.

    PubMed

    Menezes, Cristiano; Vollet-Neto, Ayrton; Marsaioli, Anita Jocelyne; Zampieri, Davila; Fontoura, Isabela Cardoso; Luchessi, Augusto Ducati; Imperatriz-Fonseca, Vera Lucia

    2015-11-02

    The nests of social insects provide suitable microenvironments for many microorganisms as they offer stable environmental conditions and a rich source of food [1-4]. Microorganisms in turn may provide several benefits to their hosts, such as nutrients and protection against pathogens [1, 4-6]. Several examples of symbiosis between social insects and microorganisms have been found in ants and termites. These symbioses have driven the evolution of complex behaviors and nest structures associated with the culturing of the symbiotic microorganisms [5, 7, 8]. However, while much is known about these relationships in many species of ants and termites, symbiotic relationships between microorganisms and social bees have been poorly explored [3, 4, 9, 10]. Here, we report the first case of an obligatory relationship between the Brazilian stingless bee Scaptotrigona depilis and a fungus of the genus Monascus (Ascomycotina). Fungal mycelia growing on the provisioned food inside the brood cell are eaten by the larva. Larvae reared in vitro on sterilized larval food supplemented with fungal mycelia had a much higher survival rate (76%) compared to larvae reared under identical conditions but without fungal mycelia (8% survival). The fungus was found to originate from the material from which the brood cells are made. Since the bees recycle and transport this material between nests, fungus would be transferred to newly built cells and also to newly founded nests. This is the first report of a fungus cultivation mutualism in a social bee. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analysis of a Functional Lactate Permease in the Fungus Rhizopus

    USDA-ARS?s Scientific Manuscript database

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  5. Lignocellulose pretreatment in a fungus-cultivating termite

    Treesearch

    Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo

    2017-01-01

    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating...

  6. Microsatellites from the charcoal rot fungus (Macrophomina phaseolina)

    USDA-ARS?s Scientific Manuscript database

    Microsatellite loci were identified from the charcoal rot fungus Macrophomina phaseolina. Primer pairs for 46 loci were developed and of these 13 were optimized and screened using genomic DNA from 44 fungal isolates collected predominantly from two soybean fields in MS. All optimized loci were poly...

  7. Fun Microbiology: How To Measure Growth of a Fungus.

    ERIC Educational Resources Information Center

    Mitchell, James K.; And Others

    1997-01-01

    Describes an experiment to demonstrate a simple method for measuring fungus growth by monitoring the effect of temperature on the growth of Trichoderma viride. Among the advantages that this experimental model provides is introducing students to the importance of using the computer as a scientific tool for analyzing and presenting data. (AIM)

  8. Genetic variability in the pistachio late blight fungus, Alternaria alternata

    USDA-ARS?s Scientific Manuscript database

    Genetic variation in the pistachio late blight fungus, Alternaria alternata, was investigated by restriction fragment length polymorphism (RFLP) in the rDNA region. Southern hybridization of EcoRI, HindIII, and Xbal digested fungal DNA with a RNA probe derived from Alt1, an rDNA clone isolated from ...

  9. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    EPA Science Inventory

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  10. The development and endophytic nature of the fungus Heteroconium chaetospira.

    PubMed

    Hashiba, Teruyoshi; Narisawa, Kazuhiko

    2005-11-15

    The root endophytic fungus Heteroconium chaetospira was isolated from roots of Chinese cabbage grown in field soil in Japan. This fungus penetrates through the outer epidermal cells of its host, passes into the inner cortex, and grows throughout the cortical cells, including those of the root tip region, without causing apparent pathogenic symptoms. There are no ultrastructural signs of host resistance responses. H. chaetospira has been recovered from 19 plant species in which there was no disruption of host growth. H. chaetospira has a symbiotic association with Chinese cabbage. The fungus provides nitrogen in exchange for carbon. These associations are beneficial for the inoculated plants, as demonstrated by increased growth rate. When used as a preinoculum, H. chaetospira suppresses the incidence of clubroot and Verticillium yellows when the test plant is post-inoculated with the causal agents of these diseases. H. chaetospira is an effective biocontrol agent against clubroot in Chinese cabbage at a low to moderate soil moisture range and a pathogen resting spore density of 10(5) resting spores per gram of soil in situ. Disease caused by Pseudomonas syringae pv. macricola and Alternaria brassicae on leaves can be suppressed by treatment with H. chaetospira. The fungus persists in the roots and induces systemic resistance to the foliar disease.

  11. Inferring dispersal patterns of the generalist root fungus Armillaria mellea

    USDA-ARS?s Scientific Manuscript database

    Investigating the dispersal of the root-pathogenic fungus Armillaria mellea is necessary to understand its population biology. Such an investigation is complicated by both its subterranean habit and the persistence of genotypes over successive host generations. As such, host colonization by resident...

  12. Genomic sequence of the aflatoxigenic filamentous fungus Aspergillus nomius

    USDA-ARS?s Scientific Manuscript database

    Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural soils so the host range is not well known. Having a si...

  13. Diseases of pines caused by the pitch canker fungus

    Treesearch

    L. David Dwinell; Stephen W. Fraedrich; D. Adams

    2001-01-01

    Fusarium subglutinans f. sp. pini, the pitch canker fungus, causes a number of serious diseases of Pinus species. The pathogen infects a variety of vegetative and reproductive pine structures at different stages of maturity and produces a diversity of symptoms. When the pathogen infects the woody vegetative...

  14. [Modification of wood lignin by the fungus Panus tigrinus].

    PubMed

    Revin, V V; Kadimaliev, D A; Shutova, V V; Samuilov, V D

    2002-01-01

    The treatment of sawdust with the fungus Panus tigrinus VKM F-3616 D changed the contents of functional groups in lignin from wood raw material. These changes are accompanied by the release of carboxyl and phenyl hydroxyl groups involved in chemical bond formation between wood particles in pressed materials manufactured from wood wastes.

  15. Draft Genome Sequence of the Fungus Trametes hirsuta 072.

    PubMed

    Pavlov, Andrey R; Tyazhelova, Tatiana V; Moiseenko, Konstantin V; Vasina, Daria V; Mosunova, Olga V; Fedorova, Tatiana V; Maloshenok, Lilya G; Landesman, Elena O; Bruskin, Sergei A; Psurtseva, Nadezhda V; Slesarev, Alexei I; Kozyavkin, Sergei A; Koroleva, Olga V

    2015-11-19

    A standard draft genome sequence of the white rot saprotrophic fungus Trametes hirsuta 072 (Basidiomycota, Polyporales) is presented. The genome sequence contains about 33.6 Mb assembled in 141 scaffolds with a G+C content of ~57.6%. The draft genome annotation predicts 14,598 putative protein-coding open reading frames (ORFs). Copyright © 2015 Pavlov et al.

  16. Draft Genome Sequence of the Fungus Trametes hirsuta 072

    PubMed Central

    Tyazhelova, Tatiana V.; Moiseenko, Konstantin V.; Vasina, Daria V.; Mosunova, Olga V.; Fedorova, Tatiana V.; Maloshenok, Lilya G.; Landesman, Elena O.; Bruskin, Sergei A.; Psurtseva, Nadezhda V.; Slesarev, Alexei I.; Kozyavkin, Sergei A.; Koroleva, Olga V.

    2015-01-01

    A standard draft genome sequence of the white rot saprotrophic fungus Trametes hirsuta 072 (Basidiomycota, Polyporales) is presented. The genome sequence contains about 33.6 Mb assembled in 141 scaffolds with a G+C content of ~57.6%. The draft genome annotation predicts 14,598 putative protein-coding open reading frames (ORFs). PMID:26586872

  17. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    EPA Science Inventory

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  18. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus.

    PubMed

    Mitchell, Angela M; Strobel, Gary A; Moore, Emily; Robison, Richard; Sears, Joe

    2010-01-01

    Muscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry.

  19. Controlling fungus on channel catfish eggs with peracetic acid

    USDA-ARS?s Scientific Manuscript database

    There is much interest in the use of peracetic acid (PAA) to treat pathogens in aquaculture. It is a relatively new compound and is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish Ictalurus punctatus egg...

  20. The origin of Ceratocystis fagacearum, the oak wilt fungus

    Treesearch

    Jennifer Juzwik; Thomas C. Harrington; William L. MacDonald; David N. Appel

    2008-01-01

    The oak wilt pathogen, Ceratocystis fagacearum, may be another example of a damaging, exotic species in forest ecosystems in the United States. Though C. fagacearum has received much research attention, the origin of the fungus is unknown. The pathogen may have been endemic at a low incidence until increased disturbances, changes...

  1. Endophytic fungus-vascular plant-insect interactions.

    PubMed

    Raman, A; Wheatley, W; Popay, A

    2012-06-01

    Insect association with fungi has a long history. Theories dealing with the evolution of insect herbivory indicate that insects used microbes including fungi as their principal food materials before flowering plants evolved. Subtlety and the level of intricacy in the interactions between insects and fungi indicate symbiosis as the predominant ecological pattern. The nature of the symbiotic interaction that occurs between two organisms (the insect and the fungus), may be either mutualistic or parasitic, or between these two extremes. However, the triangular relationship involving three organisms, viz., an insect, a fungus, and a vascular plant is a relationship that is more complicated than what can be described as either mutualism or parasitism, and may represent facets of both. Recent research has revealed such a complex relationship in the vertically transmitted type-I endophytes living within agriculturally important grasses and the pestiferous insects that attack them. The intricacy of the association depends on the endophytic fungus-grass association and the insect present. Secondary compounds produced in the endophytic fungus-grass association can provide grasses with resistance to herbivores resulting in mutualistic relationship between the fungus and the plant that has negative consequences for herbivorous insects. The horizontally transmitted nongrass type-II endophytes are far less well studied and as such their ecological roles are not fully understood. This forum article explores the intricacy of dependence in such complex triangular relationships drawing from well-established examples from the fungi that live as endophytes in vascular plants and how they impact on the biology and evolution of free-living as well as concealed (e.g., gall-inducing, gall-inhabiting) insects. Recent developments with the inoculation of strains of type-I fungal endophytes into grasses and their commercialization are discussed, along with the possible roles the endophytic

  2. Morphophysiological Differences between the Metapleural Glands of Fungus-Growing and Non–Fungus-Growing Ants (Hymenoptera, Formicidae)

    PubMed Central

    Vieira, Alexsandro Santana; Bueno, Odair Correa; Camargo-Mathias, Maria Izabel

    2012-01-01

    The metapleural gland is an organ exclusive to ants. Its main role is to produce secretions that inhibit the proliferation of different types of pathogens. The aim of the present study was to examine the morphophysiological differences between the metapleural gland of 3 non–fungus-growing ants of the tribes Ectatommini, Myrmicini, and Blepharidattini and that of 5 fungus-growing ants from 2 basal and 3 derived attine genera. The metapleural gland of the non–fungus-growing ants and the basal attine ants has fewer secretory cells than that of the derived attine ants (leaf-cutting ants). In addition, the metapleural gland of the latter had more clusters of secretory cells and sieve plates, indicating a greater storage capacity and demand for secretion in these more advanced farming ants. The glands of the derived attine ants also produced higher levels of polysaccharides and acidic lipids than those of Myrmicini, Blepharidattini, and basal attines. Our results confirm morphophysiological differences between the metapleural glands of the derived attines and those of the basal attines and non–fungus-growing ants, suggesting that the metapleural glands of the derived attines (leaf-cutting ants) are more developed in morphology and physiology, with enhanced secretion production (acidic lipids and protein) to protect against the proliferation of unwanted fungi and bacteria in the fungal garden, it is possible that leaf-cutting ants may have evolved more developed metapleural glands in response to stronger pressure from parasites. PMID:22927993

  3. Morphophysiological differences between the metapleural glands of fungus-growing and non-fungus-growing ants (Hymenoptera, Formicidae).

    PubMed

    Vieira, Alexsandro Santana; Bueno, Odair Correa; Camargo-Mathias, Maria Izabel

    2012-01-01

    The metapleural gland is an organ exclusive to ants. Its main role is to produce secretions that inhibit the proliferation of different types of pathogens. The aim of the present study was to examine the morphophysiological differences between the metapleural gland of 3 non-fungus-growing ants of the tribes Ectatommini, Myrmicini, and Blepharidattini and that of 5 fungus-growing ants from 2 basal and 3 derived attine genera. The metapleural gland of the non-fungus-growing ants and the basal attine ants has fewer secretory cells than that of the derived attine ants (leaf-cutting ants). In addition, the metapleural gland of the latter had more clusters of secretory cells and sieve plates, indicating a greater storage capacity and demand for secretion in these more advanced farming ants. The glands of the derived attine ants also produced higher levels of polysaccharides and acidic lipids than those of Myrmicini, Blepharidattini, and basal attines. Our results confirm morphophysiological differences between the metapleural glands of the derived attines and those of the basal attines and non-fungus-growing ants, suggesting that the metapleural glands of the derived attines (leaf-cutting ants) are more developed in morphology and physiology, with enhanced secretion production (acidic lipids and protein) to protect against the proliferation of unwanted fungi and bacteria in the fungal garden, it is possible that leaf-cutting ants may have evolved more developed metapleural glands in response to stronger pressure from parasites.

  4. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans.

    PubMed

    Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan

    2015-06-17

    Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one.

  5. Stochastic assembly produces heterogeneous communities in the Caenorhabditis elegans intestine

    PubMed Central

    Vega, Nicole M.; Gore, Jeff

    2017-01-01

    Host-associated bacterial communities vary extensively between individuals, but it can be very difficult to determine the sources of this heterogeneity. Here, we demonstrate that stochastic bacterial community assembly in the Caenorhabditis elegans intestine is sufficient to produce strong interworm heterogeneity in community composition. When worms are fed with two neutrally competing, fluorescently labeled bacterial strains, we observe stochastically driven bimodality in community composition, in which approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions, the bimodality disappears. These results demonstrate that demographic noise is a potentially important driver of diversity in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities. PMID:28257456

  6. Neuroendocrine modulation sustains the C. elegans forward motor state

    PubMed Central

    Lim, Maria A; Chitturi, Jyothsna; Laskova, Valeriya; Meng, Jun; Findeis, Daniel; Wiekenberg, Anne; Mulcahy, Ben; Luo, Linjiao; Li, Yan; Lu, Yangning; Hung, Wesley; Qu, Yixin; Ho, Chi-Yip; Holmyard, Douglas; Ji, Ni; McWhirter, Rebecca; Samuel, Aravinthan DT; Miller, David M; Schnabel, Ralf; Calarco, John A; Zhen, Mei

    2016-01-01

    Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates C. elegans motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in C. elegans. DOI: http://dx.doi.org/10.7554/eLife.19887.001 PMID:27855782

  7. Dietary and microbiome factors determine longevity in Caenorhabditis elegans

    PubMed Central

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K.; Mollinedo, Faustino

    2016-01-01

    Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity. PMID:27510225

  8. Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans.

    PubMed

    Meisel, Joshua D; Kim, Dennis H

    2014-10-01

    The simple animal host Caenorhabditis elegans utilizes its nervous system to respond to diverse microbial cues, and can engage in a protective behavioral avoidance response to environmental pathogens. This behavior bears hallmarks of an immune response, with sensors and recognition systems that trigger a protective response following a learning experience. Neuronal circuits required for aversive learning have been defined, revealing conserved signaling modules with dual roles in immunity and neuronal responses to pathogenic bacteria. Identification of natural polymorphisms that modulate avoidance behavior has enabled an improved understanding of host-microbe interactions at the molecular level. We review here these findings and discuss how the microbial cues and host responses defined in C. elegans may provide insight into evolutionarily diverse host-microbe interactions. Copyright © 2014. Published by Elsevier Ltd.

  9. Organization of neuronal microtubules in the nematode Caenorhabditis elegans

    PubMed Central

    1979-01-01

    We have studied the organization of microtubules in neurons of the nematode Caenorhabditis elegans. Six neurons, which we call the microtubule cells, contain bundles of darkly staining microtubules which can be followed easily in serial-section electron micrographs. Reconstruction of individual microtubules in these cells indicate that most, if not all, microtubules are short compared with the length of the cell process. Average microtubule length varies characteristically with cell type. The arrangement of microtubules gives an overall polarity to each bundle: the distal ends of the microtubles are on the outside of the bundle, whereas the proximal ends are preferentially inside. The distal and proximal ends each have a characteristic appearance indicating that these microtubules may have a polarity of their own. Short microtubules in processes of other neurons in C. elegans have also been observed. PMID:479300

  10. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans.

    PubMed Central

    Kaplan, J M; Horvitz, H R

    1993-01-01

    After light touch to its nose, the nematode Caenorhabditis elegans halts forward locomotion and initiates backing. Here we show that three classes of neurons (ASH, FLP, and OLQ) sense touch to the nose and hence are required for this avoidance response. ASH, FLP, and OLQ have sensory endings that contain axonemal cilia. Mutant animals that have defective ciliated sensory endings as well as laser-operated animals that lack ASH, FLP, and OLQ fail to respond to touch to the nose. Together with the previous work of others, these results demonstrate that C. elegans has at least five morphologically distinct classes of mechanosensory neurons. Interestingly, the ASH neuron also acts as a chemosensory neuron; it mediates the avoidance of noxious chemicals. Since ASH possesses both chemosensory and mechanosensory modalities, this neuron might be functionally analogous to vertebrate nociceptors, which mediate the sensation of pain. PMID:8460126

  11. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.

  12. High-throughput imaging of neuronal activity in Caenorhabditis elegans

    PubMed Central

    Larsch, Johannes; Ventimiglia, Donovan; Bargmann, Cornelia I.; Albrecht, Dirk R.

    2013-01-01

    Neuronal responses to sensory inputs can vary based on genotype, development, experience, or stochastic factors. Existing neuronal recording techniques examine a single animal at a time, limiting understanding of the variability and range of potential responses. To scale up neuronal recordings, we here describe a system for simultaneous wide-field imaging of neuronal calcium activity from at least 20 Caenorhabditis elegans animals under precise microfluidic chemical stimulation. This increased experimental throughput was used to perform a systematic characterization of chemosensory neuron responses to multiple odors, odor concentrations, and temporal patterns, as well as responses to pharmacological manipulation. The system allowed recordings from sensory neurons and interneurons in freely moving animals, whose neuronal responses could be correlated with behavior. Wide-field imaging provides a tool for comprehensive circuit analysis with elevated throughput in C. elegans. PMID:24145415

  13. The time-resolved transcriptome of C. elegans

    PubMed Central

    Boeck, Max E.; Huynh, Chau; Gevirtzman, Lou; Thompson, Owen A.; Wang, Guilin; Kasper, Dionna M.; Reinke, Valerie; Hillier, LaDeana W.; Waterston, Robert H.

    2016-01-01

    We generated detailed RNA-seq data for the nematode Caenorhabditis elegans with high temporal resolution in the embryo as well as representative samples from post-embryonic stages across the life cycle. The data reveal that early and late embryogenesis is accompanied by large numbers of genes changing expression, whereas fewer genes are changing in mid-embryogenesis. This lull in genes changing expression correlates with a period during which histone mRNAs produce almost 40% of the RNA-seq reads. We find evidence for many more splice junctions than are annotated in WormBase, with many of these suggesting alternative splice forms, often with differential usage over the life cycle. We annotated internal promoter usage in operons using SL1 and SL2 data. We also uncovered correlated transcriptional programs that span >80 kb. These data provide detailed annotation of the C. elegans transcriptome. PMID:27531719

  14. Life span extension of Caenorhabditis elegans by novel pyridoperimidine derivative.

    PubMed

    Sayed, Ahmed A R; El-Shaieb, Kamal M; Mourad, Aboul-Fetouh E

    2012-01-01

    Zwitterions formed from the addition of triphenylphosphine to dialky acetylene-dicarboxylates attack the nucleus of both 1H-perimidine (1) and 1H-benzo[d]imidazole (9) to form novel pyrido[1,2,3-cd]perimidine and imidazo[4,5,1-ij]quinoline derivatives in moderate yields (64-72%). The biological activity of the products has been studied. Compound 3a was found to extend life span of wild type Caenorhabditis elegans under standard laboratory conditions. Both heat stress and induced chemical stress resistance of wild type C. elegans were improved in a reverse dose-dependent manner due to 3a treatment. In addition, treatment of worms with compound 3a significantly attenuated the formation of advanced glycation end products in a reverse dose-dependent manner.

  15. Aging in the nervous system of Caenorhabditis elegans

    PubMed Central

    Chew, Yee Lian; Fan, Xiaochen; Götz, Jürgen; Nicholas, Hannah R.

    2013-01-01

    It has recently been described that aging in C. elegans is accompanied by the progressive development of morphological changes in the nervous system. These include novel outgrowths from the cell body or axonal process, as well as blebbing and beading along the length of the axon. The formation of these structures is regulated by numerous molecular players including members of the well-conserved insulin/insulin growth factor-like (IGF)-1 signaling and mitogen-activated protein (MAP) kinase pathways. This review summarizes the recent literature on neuronal aging in C. elegans, including our own findings, which indicate a role for protein with tau-like repeats (PTL-1), the homolog of mammalian tau and MAP2/4, in maintaining neuronal integrity during aging. PMID:24255742

  16. Endogenous RNAi and adaptation to environment in C. elegans

    PubMed Central

    Grishok, Alla

    2012-01-01

    The contributions of short RNAs to the control of repetitive elements are well documented in animals and plants. Here, the role of endogenous RNAi and AF10 homolog ZFP-1 in the adaptation of C. elegans to the environment is discussed. First, modulation of insulin signaling through regulation of transcription of the PDK-1 kinase (Mansisidor et al., PLoS Genetics, 2011) is reviewed. Second, an siRNA-based natural selection model is proposed in which variation in endogenous siRNA pools between individuals is subject to natural selection similarly to DNA-based genetic variation. The value of C. elegans for the research of siRNA-based epigenetic variation and adaptation is highlighted. PMID:24058837

  17. Transcriptional Regulation of Gene Expression in C. elegans

    PubMed Central

    Reinke, Valerie; Krause, Michael; Okkema, Peter

    2013-01-01

    Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single cell and minute time scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated protein and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation. PMID:23801596

  18. Dietary and microbiome factors determine longevity in Caenorhabditis elegans.

    PubMed

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K; Mollinedo, Faustino

    2016-07-01

    Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity.

  19. C. elegans as a model for membrane traffic

    PubMed Central

    Sato, Ken; Norris, Anne; Sato, Miyuki; Grant, Barth D.

    2014-01-01

    The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to changes in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine. PMID:24778088

  20. Sensory regulation of C. elegans male mate-searching behaviour

    PubMed Central

    Barrios, Arantza; Nurrish, Stephen; Emmons, Scott W.

    2009-01-01

    Summary How do animals integrate internal drives and external environmental cues to coordinate behaviours? We address this question studying mate-searching behaviour in C. elegans. C. elgans males explore their environment in search of mates (hermaphrodites) and will leave food if mating partners are absent. However, when mates and food coincide, male exploratory behaviour is suppressed and males are retained on the food source. We show that the drive to explore is stimulated by male specific neurons in the tail, the ray neurons. Periodic contact with the hermaphrodite detected through ray neurons changes the male’s behaviour during periods of no contact and prevents the male from leaving the food source. The hermaphrodite signal is conveyed by male-specific interneurons that are post-synaptic to the rays and that send processes to the major integrative center in the head. This study identifies key parts of the neural circuit that regulates a sexual appetitive behaviour in C. elegans. PMID:19062284

  1. Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans

    PubMed Central

    Sánchez-Blanco, Adolfo; Kim, Stuart K.

    2011-01-01

    A common property of aging in all animals is that chronologically and genetically identical individuals age at different rates. To unveil mechanisms that influence aging variability, we identified markers of remaining lifespan for Caenorhabditis elegans. In transgenic lines, we expressed fluorescent reporter constructs from promoters of C. elegans genes whose expression change with age. The expression levels of aging markers in individual worms from a young synchronous population correlated with their remaining lifespan. We identified eight aging markers, with the superoxide dismutase gene sod-3 expression being the best single predictor of remaining lifespan. Correlation with remaining lifespan became stronger if expression from two aging markers was monitored simultaneously, accounting for up to 49% of the variation in individual lifespan. Visualizing the physiological age of chronologically-identical individuals allowed us to show that a major source of lifespan variability is different pathogenicity from individual to individual and that the mechanism involves variable activation of the insulin-signaling pathway. PMID:21533182

  2. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui; Chuang, Chiou-Fen

    2016-12-19

    Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC(OFF) (default) and AWC(ON) (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  3. Draft genome of the fungus-growing termite pathogenic fungus Ophiocordyceps bispora (Ophiocordycipitaceae, Hypocreales, Ascomycota).

    PubMed

    Conlon, Benjamin H; Mitchell, Jannette; de Beer, Z Wilhelm; Carøe, Christian; Gilbert, M Thomas P; Eilenberg, Jørgen; Poulsen, Michael; de Fine Licht, Henrik H

    2017-04-01

    This article documents the public availability of genome sequence data and assembled contigs representing the partial draft genome of Ophiocordyceps bispora. As one of the few known pathogens of fungus-farming termites, a draft genome of O. bispora represents the opportunity to further the understanding of disease and resistance in these complex termite societies. With the ongoing attempts to resolve the taxonomy of the Hypocralaean family, more genetic data will also help to shed light on the phylogenetic relationship between sexual and asexual life stages. Next generation sequence data is available from the European Nucleotide Archive (ENA) under accession PRJEB13655; run numbers: ERR1368522, ERR1368523, and ERR1368524. Genome assembly available from ENA under accession numbers: FKNF01000001-FKNF01000302. Gene prediction available as protein fasta, nucleotide fasta and GFF file from Mendeley Data with accession doi:10.17632/r99fd6g3s4.2 (http://dx.doi.org/10.17632/r99fd6g3s4.2).

  4. Discovery of Novel microRNAs in Aging Caenorhabditis elegans.

    PubMed

    de Lencastre, Alexandre; Slack, Frank

    2015-01-01

    The rapid development of deep sequencing technologies over the last few years and concomitant increases in sequencing depth and cost efficiencies have opened the door to a ever-widening range of applications in biology-from whole-genome sequencing, to ChIP-seq analysis, epigenomic and RNA transcriptome surveys. Here we describe the application of deep sequencing to the discovery of novel microRNAs and characterization of their differential expression during adulthood in Caenorhabditis elegans.

  5. Genomic Analysis of Stress Response against Arsenic in Caenorhabditis elegans

    PubMed Central

    Sahu, Surasri N.; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H.; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  6. A soil bioassay using the nematode Caenorhabditis elegans

    SciTech Connect

    Freeman, M.N.; Peredney, C.L.; Williams, P.L.

    1999-07-01

    Caenorhabditis elegans is a free-livings soil nematode that is commonly used as a biological model. Recently, much work has been done using the nematode as a toxicological model as well. Much of the work involving C. elegans has been performed in aquatic media, since it lives in the interstitial water of soil. However, testing in soil would be expected to more accurately reproduce the organism's normal environment and may take into consideration other factors not available in an aquatic test, i.e., toxicant availability effects due to sorption, various chemical interactions, etc. This study used a modification of a previous experimental protocol to determine 24h LC{sub 50} values for Cu in a Cecil series soil mixture, and examined the use of CuCl{sub 2} as a reference toxicant for soil toxicity testing with C. elegans. Three different methods of determining percent lethality were used, each dependent on how the number of worms missing after the recovery process was used in the lethality calculations. Only tests having {ge}80% worm recovery and {ge}90% control survival were used in determining the LC{sub 50}s, by Probit analysis. The replicate LC{sub 50} values generated a control chart for each method of calculating percent lethality. The coefficient of variation (CV) for each of the three methods was {le}14%. The control charts and the protocol outlined in this study are intended to be used to assess test organism health and monitor precision of future soil toxicity tests with C. elegans.

  7. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  8. Gene editing activity on extrachromosomal arrays in C. elegans transgenics.

    PubMed

    Falgowski, Kerry A; Kmiec, Eric B

    2011-04-15

    Gene editing by modified single-stranded oligonucleotides is a strategy aimed at inducing single base changes into the genome, generating a permanent genetic change. The work presented here explores gene editing capabilities in the model organism Caenorhabditis elegans. Current approaches to gene mutagenesis in C. elegans have been plagued by non-specificity and thus the ability to induce precise, directed alterations within the genome of C. elegans would offer a platform upon which structure/function analyses can be carried out. As such, several in vivo assay systems were developed to evaluate gene editing capabilities in C. elegans. Fluorescence was chosen as the selectable endpoint as fluorescence can be easily detected through the transparent worm body even from minimal expression. Two tissue specific fluorescent expression vectors containing either a GFP or mCherry transgene were mutagenized to create a single nonsense mutation within the open reading frame of each respective fluorescent gene. These served as the target site to evaluate the frequency of gene editing on extrachromosomal array transgenic lines. Extrachromosomal arrays can carry hundreds of copies of the transgene, therefore low frequency events (like those in the gene editing reaction) may be detected. Delivery of the oligonucleotide was accomplished by microinjection into the gonads of young adult worms in an effort to induce repair of the mutated fluorescent gene in the F1 progeny. Despite many microinjections on the transgenic strains with varying concentrations of ODNs, no gene editing events were detected. This result is consistent with the previous research, demonstrating the difficulties encountered in targeting embryonic stem cells and the pronuclei of single-celled embryos. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Evaluation of Burkholderia cepacia Complex Bacteria Pathogenicity Using Caenorhabditis elegans

    PubMed Central

    Tedesco, Pietro; Di Schiavi, Elia; Esposito, Fortunato Palma; de Pascale, Donatella

    2017-01-01

    This protocol describes two biological assays to evaluate pathogenicity of Burkholderia cepacia complex (Bcc) strains against the nematode Caenorhabditis elegans. Specifically, these two assays allow one to identify if the under-investigated Bcc strains are able to kill the nematodes by intestinal colonization (slow killing assay, SKA) or by toxins production (fast killing assay, FKA). The principal differences between the two assays rely on the different killing kinetics for worms. PMID:28255573

  10. Evaluation of Burkholderia cepacia Complex Bacteria Pathogenicity Using Caenorhabditis elegans.

    PubMed

    Tedesco, Pietro; Di Schiavi, Elia; Esposito, Fortunato Palma; de Pascale, Donatella

    2016-10-20

    This protocol describes two biological assays to evaluate pathogenicity of Burkholderia cepacia complex (Bcc) strains against the nematode Caenorhabditis elegans. Specifically, these two assays allow one to identify if the under-investigated Bcc strains are able to kill the nematodes by intestinal colonization (slow killing assay, SKA) or by toxins production (fast killing assay, FKA). The principal differences between the two assays rely on the different killing kinetics for worms.

  11. Caenorhabditis elegans Neuromuscular Junction: GABA Receptors and Ivermectin Action

    PubMed Central

    Hernando, Guillermina; Bouzat, Cecilia

    2014-01-01

    The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their

  12. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    PubMed Central

    2011-01-01

    Background Allyl isothiocyanate (AITC) from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP) 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC (< 0.1 μM). However, treatment with higher concentrations (> 1.0 μM) resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed. PMID:22093285

  13. An Elegan(t) Screen for Drug-Microbe Interactions.

    PubMed

    Vrbanac, Alison; Debelius, Justine W; Jiang, Lingjing; Morton, James T; Dorrestein, Pieter; Knight, Rob

    2017-05-10

    Microbes affect drug responses, but mechanisms remain elusive. Two papers in Cell exploit C. elegans to infer anticancer drug mechanisms. Through high-throughput screens of drug-microbe-host interactions, García-González et al. (2017) and Scott et al. (2017) determine that bacterial metabolism underpins fluoropyrimidine cytotoxicity, providing a paradigm for unraveling bacterial mechanisms in drug metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  15. Caenorhabditis elegans neuromuscular junction: GABA receptors and ivermectin action.

    PubMed

    Hernando, Guillermina; Bouzat, Cecilia

    2014-01-01

    The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their

  16. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.

    PubMed

    Honda, Yoko; Honda, Shuji; Narici, Marco; Szewczyk, Nathaniel J

    2014-01-01

    The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.

  17. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis.

    PubMed

    Haeder, Susanne; Wirth, Rainer; Herz, Hubert; Spiteller, Dieter

    2009-03-24

    Leaf-cutting ants such as Acromyrmex octospinosus live in obligate symbiosis with fungi of the genus Leucoagaricus, which they grow with harvested leaf material. The symbiotic fungi, in turn, serve as a major food source for the ants. This mutualistic relation is disturbed by the specialized pathogenic fungus Escovopsis sp., which can overcome Leucoagaricus sp. and thus destroy the ant colony. Microbial symbionts of leaf-cutting ants have been suggested to protect the fungus garden against Escovopsis by producing antifungal compounds [Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701-704.]. To date, however, the chemical nature of these compounds has remained elusive. We characterized 19 leaf-cutting ant-associated microorganisms (5 Pseudonocardia, 1 Dermacoccus, and 13 Streptomyces) from 3 Acromyrmex species, A. octospinosus, A. echinatior, and A. volcanus, using 16S-rDNA analysis. Because the strain Streptomyces sp. Ao10 proved highly active against the pathogen Escovopsis, we identified the molecular basis of its antifungal activity. Using bioassay-guided fractionation, high-resolution electrospray mass spectrometry (HR-ESI-MS), and UV spectroscopy, and comparing the results with an authentic standard, we were able identify candicidin macrolides. Candicidin macrolides are highly active against Escovopsis but do not significantly affect the growth of the symbiotic fungus. At least one of the microbial isolates from each of the 3 leaf-cutting ant species analyzed produced candicidin macrolides. This suggests that candicidins play an important role in protecting the fungus gardens of leaf-cutting ants against pathogenic fungi.

  18. Direct micro-mechanical measurements on C. elegans

    NASA Astrophysics Data System (ADS)

    Backholm, Matilda; Ryu, William S.; Dalnoki-Veress, Kari

    2013-03-01

    The millimeter-sized nematode Caenorhabditis elegans provides an excellent biophysical system for both static and dynamic biomechanical studies. The undulatory motion exhibited by this model organism as it crawls or swims through a medium is ubiquitous in nature at scales from microns to meters. A successful description of this form of locomotion requires knowledge of the material properties of the crawler, as well as its force output as it moves. Here we present an experimental technique with which the material properties and dynamics of C. elegans can be directly probed. By using the deflection of a flexible micropipette, the bending stiffness of C. elegans has been measured at all stages of its life cycle, as well as along the body of the adult worm. The mechanical properties of the worm are modelled as a viscoelastic material which provides new insights into its material properties. The forces exerted by the worm during undulatory motion are also discussed. Direct experimental characterization of this model organism provides guidance for theoretical treatments of undulatory locomotion in general.

  19. High-throughput gene mapping in Caenorhabditis elegans.

    PubMed

    Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R

    2002-07-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.

  20. Control of Oocyte Growth and Meiotic Maturation in C. elegans

    PubMed Central

    Kim, Seongseop; Spike, Caroline; Greenstein, David

    2013-01-01

    In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. C. elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gαs-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition. PMID:22872481

  1. Tat-mediated protein delivery in living Caenorhabditis elegans

    SciTech Connect

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric . E-mail: eric.chevet@mcgill.ca

    2007-01-19

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm.

  2. Cell-specific proteomic analysis in Caenorhabditis elegans

    PubMed Central

    Yuet, Kai P.; Doma, Meenakshi K.; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Moradian, Annie; Hess, Sonja; Schuman, Erin M.; Sternberg, Paul W.; Tirrell, David A.

    2015-01-01

    Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive noncanonical amino acid p-azido-l-phenylalanine. We achieved spatiotemporal selectivity in the labeling of C. elegans proteins by controlling expression of the mutant synthetase using cell-selective (body wall muscles, intestinal epithelial cells, neurons, and pharyngeal muscle) or state-selective (heat-shock) promoters in several transgenic lines. Tagged proteins are distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to probes that permit visualization and isolation of labeled proteins. By coupling our methodology with stable-isotope labeling of amino acids in cell culture (SILAC), we successfully profiled proteins expressed in pharyngeal muscle cells, and in the process, identified proteins not previously known to be expressed in these cells. Our results show that tagging proteins with spatiotemporal selectivity can be achieved in C. elegans and illustrate a convenient and effective approach for unbiased discovery of proteins expressed in targeted subsets of cells. PMID:25691744

  3. Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging

    PubMed Central

    Hou, Nicole Shangming; Taubert, Stefan

    2012-01-01

    Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefiting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular, and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging. PMID:22629250

  4. Exposure to Mitochondrial Genotoxins and Dopaminergic Neurodegeneration in Caenorhabditis elegans

    PubMed Central

    Bodhicharla, Rakesh K.; McKeever, Madeline G.; Arrant, Andrew E.; Margillo, Kathleen M.; Ryde, Ian T.; Cyr, Derek D.; Kosmaczewski, Sara G.; Hammarlund, Marc; Meyer, Joel N.

    2014-01-01

    Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms. PMID:25486066

  5. Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans.

    PubMed

    Stupp, Gregory S; Clendinen, Chaevien S; Ajredini, Ramadan; Szewc, Mark A; Garrett, Timothy; Menger, Robert F; Yost, Richard A; Beecher, Chris; Edison, Arthur S

    2013-12-17

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass-spectrometry-based technique called isotopic ratio outlier analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95 and 5% (13)C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: (1) compounds arising from biosynthesis are easily distinguished from artifacts, (2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, (3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulas, and (4) relative concentrations of all metabolites are easily determined. A heat-shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans . Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline.

  6. Caenorhabditis elegans is a useful model for anthelmintic discovery

    PubMed Central

    Burns, Andrew R.; Luciani, Genna M.; Musso, Gabriel; Bagg, Rachel; Yeo, May; Zhang, Yuqian; Rajendran, Luckshika; Glavin, John; Hunter, Robert; Redman, Elizabeth; Stasiuk, Susan; Schertzberg, Michael; Angus McQuibban, G.; Caffrey, Conor R.; Cutler, Sean R.; Tyers, Mike; Giaever, Guri; Nislow, Corey; Fraser, Andy G.; MacRae, Calum A.; Gilleard, John; Roy, Peter J.

    2015-01-01

    Parasitic nematodes infect one quarter of the world's population and impact all humans through widespread infection of crops and livestock. Resistance to current anthelmintics has prompted the search for new drugs. Traditional screens that rely on parasitic worms are costly and labour intensive and target-based approaches have failed to yield novel anthelmintics. Here, we present our screen of 67,012 compounds to identify those that kill the non-parasitic nematode Caenorhabditis elegans. We then rescreen our hits in two parasitic nematode species and two vertebrate models (HEK293 cells and zebrafish), and identify 30 structurally distinct anthelmintic lead molecules. Genetic screens of 19 million C. elegans mutants reveal those nematicides for which the generation of resistance is and is not likely. We identify the target of one lead with nematode specificity and nanomolar potency as complex II of the electron transport chain. This work establishes C. elegans as an effective and cost-efficient model system for anthelmintic discovery. PMID:26108372

  7. Mechanosensitive unpaired innexin channels in C. elegans touch neurons

    PubMed Central

    Sangaletti, Rachele; Dahl, Gerhard

    2014-01-01

    Invertebrate innexin proteins share sequence homology with vertebrate pannexins and general membrane topology with both pannexins and connexins. While connexins form gap junctions that mediate intercellular communication, pannexins are thought to function exclusively as plasma membrane channels permeable to both ions and small molecules. Undoubtedly, certain innexins function as gap junction proteins. However, due to sequence similarity to pannexins, it was postulated that innexins also function as plasma membrane channels. Indeed, some of the leech innexins were found to mediate ATP release as unpaired membrane channels with shared pharmacology to pannexin channels. We show here that Caenorhabditis elegans touch-sensing neurons express a mechanically gated innexin channel with a conductance of ∼1 nS and voltage-dependent and K+-selective subconductance state. We also show that C. elegans touch neurons take up ethidium bromide through a mechanism that is activated and blocked by innexin activating stimuli and inhibitors, respectively. Finally, we present evidence that touch neurons' innexins are required for cell death induced by chemical ischemia. Our work demonstrates that innexins function as plasma membrane channels in native C. elegans neurons, where they may play a role in pathological cell death. PMID:25252948

  8. Mating Damages the Cuticle of C. elegans Hermaphrodites

    PubMed Central

    Woodruff, Gavin C.; Knauss, Christine M.; Maugel, Timothy K.; Haag, Eric S.

    2014-01-01

    Lifespan costs to reproduction are common across multiple species, and such costs could potentially arise through a number of mechanisms. In the nematode Caenorhabditis elegans, it has been suggested that part of the lifespan cost to hermaphrodites from mating results from physical damage owing to the act of copulation itself. Here, we examine whether mating damages the surface of the hermaphrodite cuticle via scanning electron microscopy. It is found that mated hermaphrodites suffered delamination of cuticle layers surrounding the vulva, and that the incidence of such damage depends on genetic background. Unmated hermaphrodites demonstrated almost no such damage, even when cultured in soil with potentially abrasive particles. Thus, a consequence of mating for C. elegans hermaphrodites is physical cuticle damage. These experiments did not assess the consequences of cuticle damage for lifespan, and the biological significance of this damage remains unclear. We further discuss our results within the context of recent studies linking the lifespan cost to mating in C. elegans hermaphrodites to male secretions. PMID:25105881

  9. Analyzing cell physiology in C. elegans with fluorescent ratiometric reporters

    PubMed Central

    Wang, Hongning; Karadge, Uma; Humphries, William H.; Fisher, Alfred L.

    2014-01-01

    Ratiometric fluorescent reporters have recently emerged a new technique to non-invasively measure aspects of cell physiology such as redox status, calcium levels, energy production, and NADH levels. These reporters consist of either a single or pair of fluorophores along with specific modifications, such as the addition of a protein domain which binds to a metabolite of interest, thereby producing gradual alterations in fluorescence in response to changes in the measured parameter. Measurement of the changes in fluorescence produces a quantitative read-out of the cellular environment. While these reporters were initially developed to easily visualize and track changes in cultured cells, several groups have adapted these reporters to use in Caenorhabditis elegans which opens a new avenue through which to explore cell physiology during development or aging, in response to changes in external environment, or in response to genetic manipulation. These reporters have the advantage of being easily targeted to any part of the worm, and because C. elegans is transparent both the reporters and changes in their fluorescence can be clearly observed in vivo. Here we discuss the application of ratiometric reporters to C. elegans, and outline a method to quantitatively measure changes in intracellular peroxide levels using the HyPer ratiometric reporter. However, these principles can be applied to alternate ratiometric reporters which are designed to measure either other chemical species or other cellular parameters. PMID:24915644

  10. Courtship herding in the fiddler crab Uca elegans.

    PubMed

    How, Martin J; Hemmi, Jan M

    2008-12-01

    Male and female animals are not always complicit during reproduction, giving rise to coercion. One example of a system that is assumed to involve sexual coercion is the mate herding behaviour of fiddler crabs: males push females towards the home burrow with the goal of forcing copulation at the burrow entrance. We recorded and analysed in detail the courtship behaviour of a North Australian species of fiddler crab Uca elegans. Courtship was composed of four main phases: broadcast waving, outward run, herding and at burrow display. During interactions males produced claw-waving displays which were directed posteriorly towards the female and which varied in timing and structure depending on the courtship phase. We suggest that courtship herding in U. elegans is driven primarily by mate choice for the following reasons, (1) females can evade herding, (2) no other reproductive strategies were observed, (3) males broadcast their presence and accompany courtship with conspicuous claw waves, and (4) the behaviour ends with the female leading the male into the home burrow. As an alternative function for herding in U. elegans we suggest that the behaviour represents a form of courtship guiding, in which males direct complicit females to the correct home burrow.

  11. Optical reversal of halothane-induced immobility in C. elegans.

    PubMed

    Singaram, Vinod K; Somerlot, Benjamin H; Falk, Scott A; Falk, Marni J; Sedensky, Margaret M; Morgan, Philip G

    2011-12-20

    Volatile anesthetics (VAs) cause profound neurological effects, including reversible loss of consciousness and immobility. Despite their widespread use, the mechanism of action of VAs remains one of the unsolved puzzles of neuroscience [1, 2]. Genetic studies in Caenorhabditis elegans [3, 4], Drosophila [3, 5], and mice [6-9] indicate that ion channels controlling the neuronal resting membrane potential (RMP) also control anesthetic sensitivity. Leak channels selective for K(+) [10-13] or permeable to Na(+) [14] are critical for establishing RMP. We hypothesized that halothane, a VA, caused immobility by altering the neuronal RMP. In C. elegans, halothane-induced immobility is acutely and completely reversed by channelrhodopsin-2 based depolarization of the RMP when expressed specifically in cholinergic neurons. Furthermore, hyperpolarizing cholinergic neurons via halorhodopsin activation increases sensitivity to halothane. The sensitivity of C. elegans to halothane can be altered by 25-fold by either manipulation of membrane conductance with optogenetic methods or generation of mutations in leak channels that set the RMP. Immobility induced by another VA, isoflurane, is not affected by these treatments, thereby excluding the possibility of nonspecific hyperactivity. The sum of our data indicates that leak channels and the RMP are important determinants of halothane-induced general anesthesia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A method for measuring fatty acid oxidation in C. elegans

    PubMed Central

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius; Færgeman, Nils Joakim

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured by scintillation counting. Treating animals with sodium azide, an inhibitor of the electron transport chain, reduced 3H2O production to approximately 15%, while boiling of animals prior to assay completely blocked the production of labeled water. We demonstrate that worms fed different bacterial strains exhibit different fatty acid oxidation rates. We show that starvation results in increased fatty acid oxidation, which is independent of the transcription factor NHR-49. On the contrary, fatty acid oxidation is reduced to approximately 70% in animals lacking the worm homolog of the insulin receptor, DAF-2. Hence, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans. PMID:24058820

  13. Genome Editing in C. elegans and Other Nematode Species

    PubMed Central

    Sugi, Takuma

    2016-01-01

    Caenorhabditis elegans, a 1 mm long free-living nematode, is a popular model animal that has been widely utilized for genetic investigations of various biological processes. Characteristic features that make C. elegans a powerful model of choice for eukaryotic genetic studies include its rapid life cycle (development from egg to adult in 3.5 days at 20 °C), well-annotated genome, simple morphology (comprising only 959 somatic cells in the hermaphrodite), and transparency (which facilitates non-invasive fluorescence observations). However, early approaches to introducing mutations in the C. elegans genome, such as chemical mutagenesis and imprecise excision of transposons, have required large-scale mutagenesis screens. To avoid this laborious and time-consuming procedure, genome editing technologies have been increasingly used in nematodes including C. briggsae and Pristionchus pacificus, thereby facilitating their genetic analyses. Here, I review the recent progress in genome editing technologies using zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in nematodes and offer perspectives on their use in the future. PMID:26927083

  14. Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development.

    PubMed

    Chai, Yongping; Li, Wei; Feng, Guoxin; Yang, Yihong; Wang, Xiangming; Ou, Guangshuo

    2012-12-01

    Postembryonic development is an important process of organismal maturation after embryonic growth. Despite key progress in recent years in understanding embryonic development via fluorescence time-lapse microscopy, comparatively less live-cell imaging of postembryonic development has been done. Here we describe a protocol to image larval development in the nematode Caenorhabditis elegans. Our protocol describes the construction of fluorescent transgenic C. elegans, immobilization of worm larvae and time-lapse microscopy analysis. To improve the throughput of imaging, we developed a C. elegans triple-fluorescence imaging approach with a worm-optimized blue fluorescent protein (TagBFP), green fluorescent protein (GFP) and mCherry. This protocol has been previously applied to time-lapse imaging analysis of Q neuroblast asymmetric division, migration and apoptosis, and we show here that it can also be used to image neuritogenesis in the L1 larvae. Other applications are also possible. The protocol can be completed within 3 h and may provide insights into understanding postembryonic development.

  15. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  16. Disruption of iron homeostasis increases phosphine toxicity in Caenorhabditis elegans.

    PubMed

    Cha'on, Ubon; Valmas, Nicholas; Collins, Patrick J; Reilly, Paul E B; Hammock, Bruce D; Ebert, Paul R

    2007-03-01

    The aim of this study is to identify the biochemical mechanism of phosphine toxicity and resistance, using Caenorhabditis elegans as a model organism. To date, the precise mode of phosphine action is unclear. In this report, we demonstrate the following dose-dependent actions of phosphine, in vitro: (1) reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), (2) release of iron from horse ferritin, (3) and the peroxidation of lipid as a result of iron release from ferritin. Using in situ hybridization, we show that the ferritin genes of C. elegans, both ferritin-1 and ferritin-2, are expressed along the digestive tract with greatest expression at the proximal and distal ends. Basal expression of the ferritin-2 gene, as determined by quantitative PCR, is approximately 80 times that of ferritin-1. However, transcript levels of ferritin-1 are induced at least 20-fold in response to phosphine, whereas there is no change in the level of ferritin-2. This resembles the reported pattern of ferritin gene regulation by iron, suggesting that phosphine toxicity may be related to an increase in the level of free iron. Indeed, iron overload increases phosphine toxicity in C. elegans at least threefold. Moreover, we demonstrate that suppression of ferritin-2 gene expression by RNAi, significantly increases sensitivity to phosphine. This study identifies similarities between phosphine toxicity and iron overload and demonstrates that phosphine can trigger iron release from storage proteins, increasing lipid peroxidation, leading to cell injury and/or cell death.

  17. Black tea increased survival of Caenorhabditis elegans under stress.

    PubMed

    Xiong, Li-Gui; Huang, Jian-An; Li, Juan; Yu, Peng-Hui; Xiong, Zhe; Zhang, Jian-Wei; Gong, Yu-Shun; Liu, Zhong-Hua; Chen, Jin-Hua

    2014-11-19

    The present study examined the effects of black tea (Camellia sinensis) extracts (BTE) in Caenorhabditis elegans under various abiotic stressors. Results showed BTE increased nematode resistance to osmosis, heat, and UV irradiation treatments. However, BTE could not increase nematodes' lifespan under normal culture conditions and MnCl2-induced toxicity at concentrations we used. Further studies showed that BTE decreased reactive oxygen species and up-regulated some antioxidant enzymes, including GSH-PX, and genes, such as gsh-px and sod-3. However, only a slight extension in mev-1 mutants mean lifespan was observed without significance. These results indicated that the antioxidant activity of BTE might be necessary but not sufficient to protect against aging to C. elegans. Moreover, BTE increased the mRNA level of stress-response genes such as sir-2.1 and sek-1. Our finding demonstrated BTE might increase heat and UV stress resistance in a sir.2.1-dependent manner. Taken together, BTE enhanced stress resistance with multiple mechanisms in C. elegans.

  18. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans.

    PubMed

    Kesäniemi, Jenni E; Heikkinen, Liisa; Knott, K Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species.

  19. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans

    PubMed Central

    Kesäniemi, Jenni E.; Heikkinen, Liisa; Knott, K. Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  20. Mechanosensitive unpaired innexin channels in C. elegans touch neurons.

    PubMed

    Sangaletti, Rachele; Dahl, Gerhard; Bianchi, Laura

    2014-11-15

    Invertebrate innexin proteins share sequence homology with vertebrate pannexins and general membrane topology with both pannexins and connexins. While connexins form gap junctions that mediate intercellular communication, pannexins are thought to function exclusively as plasma membrane channels permeable to both ions and small molecules. Undoubtedly, certain innexins function as gap junction proteins. However, due to sequence similarity to pannexins, it was postulated that innexins also function as plasma membrane channels. Indeed, some of the leech innexins were found to mediate ATP release as unpaired membrane channels with shared pharmacology to pannexin channels. We show here that Caenorhabditis elegans touch-sensing neurons express a mechanically gated innexin channel with a conductance of ∼1 nS and voltage-dependent and K(+)-selective subconductance state. We also show that C. elegans touch neurons take up ethidium bromide through a mechanism that is activated and blocked by innexin activating stimuli and inhibitors, respectively. Finally, we present evidence that touch neurons' innexins are required for cell death induced by chemical ischemia. Our work demonstrates that innexins function as plasma membrane channels in native C. elegans neurons, where they may play a role in pathological cell death.

  1. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans.

    PubMed

    Herrera-Ruiz, Maribel; García-Beltrán, Yolanda; Mora, Sergio; Díaz-Véliz, Gabriela; Viana, Glauce S B; Tortoriello, Jaime; Ramírez, Guillermo

    2006-08-11

    Salvia elegans Vahl (Lamiaceae), popularly known as "mirto", is a shrub that has been widely used in Mexican traditional medicine for the treatment of different central nervous system (CNS) diseases, principally, anxiety. Nevertheless, the available scientific information about this species is scarce and there are no reports related to its possible effect on the CNS. In this work, the antidepressant and anxiolytic like effects of hydroalcoholic (60%) extract of Salvia elegans (leaves and flowers) were evaluated in mice. The extract, administered orally, was able to increase the percentage of time spent and the percentage of arm entries in the open arms of the elevated plus-maze, as well as to increase the time spent by mice in the illuminated side of the light-dark test, and to decrease the immobility time of mice subjected to the forced swimming test. The same extract was not able to modify the spontaneous locomotor activity measured in the open field test. These results provide support for the potential antidepressant and anxiolytic activity of Salvia elegans.

  2. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Wyart, Matthieu; Xie, Julie; Kawai, Risa; Kodger, Tom; Chen, Sway; Wen, Quan; Samuel, Aravinthan D. T.

    2010-01-01

    To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm’s body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm’s elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust. PMID:21048086

  3. Undulatory locomotion of Caenorhabditis elegans on wet surfaces.

    PubMed

    Shen, X N; Sznitman, J; Krajacic, P; Lamitina, T; Arratia, P E

    2012-06-20

    The physical and biomechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode Caenorhabditis elegans, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the C. elegans crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating the physical features at the nematode-gel interface. Using kinematic data and a hydrodynamic model based on lubrication theory, we calculate both the surface drag forces and the nematode's bending force while crawling on the surface of agar gels within a preexisting groove. We find that the normal and tangential surface drag coefficients during crawling are ∼222 and 22, respectively, and the drag coefficient ratio is ∼10. During crawling, the calculated internal bending force is time-periodic and spatially complex, exhibiting a phase lag with respect to the nematode's body bending curvature. This phase lag is largely due to viscous drag forces, which are higher during crawling as compared to swimming in an aqueous buffer solution. The spatial patterns of bending force generated during either swimming or crawling correlate well with previously described gait-specific features of calcium signals in muscle. Further, our analysis indicates that one may be able to control the motility gait of C. elegans by judiciously adjusting the magnitude of the surface drag coefficients. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Undulatory Locomotion of Caenorhabditis elegans on Wet Surfaces

    PubMed Central

    Shen, X.N.; Sznitman, J.; Krajacic, P.; Lamitina, T.; Arratia, P.E.

    2012-01-01

    The physical and biomechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode Caenorhabditis elegans, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the C. elegans crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating the physical features at the nematode-gel interface. Using kinematic data and a hydrodynamic model based on lubrication theory, we calculate both the surface drag forces and the nematode's bending force while crawling on the surface of agar gels within a preexisting groove. We find that the normal and tangential surface drag coefficients during crawling are ∼222 and 22, respectively, and the drag coefficient ratio is ∼10. During crawling, the calculated internal bending force is time-periodic and spatially complex, exhibiting a phase lag with respect to the nematode's body bending curvature. This phase lag is largely due to viscous drag forces, which are higher during crawling as compared to swimming in an aqueous buffer solution. The spatial patterns of bending force generated during either swimming or crawling correlate well with previously described gait-specific features of calcium signals in muscle. Further, our analysis indicates that one may be able to control the motility gait of C. elegans by judiciously adjusting the magnitude of the surface drag coefficients. PMID:22735527

  5. In vivo neuronal calcium imaging in C. elegans.

    PubMed

    Chung, Samuel H; Sun, Lin; Gabel, Christopher V

    2013-04-10

    The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.

  6. Mechanistic analysis of the search behaviour of Caenorhabditis elegans

    PubMed Central

    Salvador, Liliana C. M.; Bartumeus, Frederic; Levin, Simon A.; Ryu, William S.

    2014-01-01

    A central question in movement research is how animals use information and movement to promote encounter success. Current random search theory identifies reorientation patterns as key to the compromise between optimizing encounters for both nearby and faraway targets, but how the balance between intrinsic motor programmes and previous environmental experience determines the occurrence of these reorientation behaviours remains unknown. We used high-resolution tracking and imaging data to describe the complete motor behaviour of Caenorhabditis elegans when placed in a novel environment (one in which food is absent). Movement in C. elegans is structured around different reorientation behaviours, and we measured how these contributed to changing search strategies as worms became familiar with their new environment. This behavioural transition shows that different reorientation behaviours are governed by two processes: (i) an environmentally informed ‘extrinsic’ strategy that is influenced by recent experience and that controls for area-restricted search behaviour, and (ii) a time-independent, ‘intrinsic’ strategy that reduces spatial oversampling and improves random encounter success. Our results show how movement strategies arise from a balance between intrinsic and extrinsic mechanisms, that search behaviour in C. elegans is initially determined by expectations developed from previous environmental experiences, and which reorientation behaviours are modified as information is acquired from new environments. PMID:24430127

  7. Effects of nonimmobilizers and halothane on Caenorhabditis elegans.

    PubMed

    Morgan, P G; Radke, G W; Sedensky, M M

    2000-10-01

    We studied the effects of two nonimmobilizers, a transitional compound, and halothane on the nematode, Caenorhabditis elegans, by using reversible immobility as an end point. By themselves, the nonimmobilizers did not immobilize any of the four strains of animals tested. Toluene appears to be a transitional compound for all strains tested. The additive effects of the nonimmobilizers with halothane were also studied. Similar to results seen in studies of mice, the nonimmobilizers were antagonistic to halothane in the wild type nematode. However, the nonimmobilizers did not affect the 50% effective concentrations of halothane for two other mutant strains. For halothane, the slopes of the dose response curves were smaller in more sensitive strains compared with the wild type. As in mammals, nonimmobilizers antagonize the effects of halothane on the nematode, C. elegans. The variation in slopes in the response to halothane in different strains is consistent with multiple sites of action. These results support the use of C. elegans as a model for the study of anesthetics.

  8. A global analysis of C. elegans trans-splicing

    PubMed Central

    Allen, Mary Ann; Hillier, LaDeana W.; Waterston, Robert H.; Blumenthal, Thomas

    2011-01-01

    Trans-splicing of one of two short leader RNAs, SL1 or SL2, occurs at the 5′ ends of pre-mRNAs of many C. elegans genes. We have exploited RNA-sequencing data from the modENCODE project to analyze the transcriptome of C. elegans for patterns of trans-splicing. Transcripts of ∼70% of genes are trans-spliced, similar to earlier estimates based on analysis of far fewer genes. The mRNAs of most trans-spliced genes are spliced to either SL1 or SL2, but most genes are not trans-spliced to both, indicating that SL1 and SL2 trans-splicing use different underlying mechanisms. SL2 trans-splicing occurs in order to separate the products of genes in operons genome wide. Shorter intercistronic distance is associated with greater use of SL2. Finally, increased use of SL1 trans-splicing to downstream operon genes can indicate the presence of an extra promoter in the intercistronic region, creating what has been termed a “hybrid” operon. Within hybrid operons the presence of the two promoters results in the use of the two SL classes: Transcription that originates at the promoter upstream of another gene creates a polycistronic pre-mRNA that receives SL2, whereas transcription that originates at the internal promoter creates transcripts that receive SL1. Overall, our data demonstrate that >17% of all C. elegans genes are in operons. PMID:21177958

  9. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.

    PubMed

    Hu, Liang; Ye, Jinjuan; Tan, Haowei; Ge, Anle; Tang, Lichun; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2015-08-05

    Caenorhabditis elegans, one of the widely studied model organisms, sense external chemical cues and perform relative chemotaxis behaviors through its simple chemosensory neuronal system. To study the mechanism underlying chemosensory behavior, a rapid and reliable method for quantitatively analyzing the worms' behaviors is essential. In this work, we demonstrated a microfluidic approach for investigating chemotaxis responses of worms to chemical gradients. The flow-based microfluidic chip was consisted of circular tree-like microchannels, which was able to generate eight flow streams containing stepwise chemical concentrations without the difference in flow velocity. Worms' upstream swimming into microchannels with various concentrations was monitored for quantitative analysis of the chemotaxis behavior. By using this microfluidic chip, the attractive and repellent responses of C. elegans to NaCl were successfully quantified within several minutes. The results demonstrated the wild type-like repellent responses and severely impaired attractive responses in grk-2 mutant animals with defects in calcium influx. In addition, the chemotaxis analysis of the third stage larvae revealed that its gustatory response was different from that in the adult stage. Thus, our microfluidic method provided a useful platform for studying the chemosensory behaviors of C. elegans and screening of chemosensation-related chemical drugs.

  10. Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans.

    PubMed

    Stastna, Jana J; Snoek, L Basten; Kammenga, Jan E; Harvey, Simon C

    2015-11-05

    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction.

  11. Introduction to Germ Cell Development in C. elegans

    PubMed Central

    Pazdernik, Nanette; Schedl, Tim

    2013-01-01

    A central feature of the continuum of life in sexually reproducing metazoans is the cycle of the germline from one generation to the next. This volume describes the cycle of the germline for Caenorhabditis elegans, through chapters that are focused on distinct aspects or processes in germ cell development. Topics include sequential and dependent processes such as specification of germ cells as distinct from somatic cells, sex determination, stem cell proliferative fate versus meiotic development decision, recombination/ progression through meiotic prophase, contemporaneous processes such as gametogenesis, meiotic development and apoptosis, and continuing the cycle into the next generation through fertilization and the oocyte-to-embryo-transition. Throughout germ cell development, translational control and epigenetic mechanisms play prominent roles. These different aspects of germ cell development are seamlessly integrated under optimal conditions and are modified in the different reproductive strategies that are employed by C. elegans under harsh environmental conditions. In this chapter we set the stage by providing a brief background on the C. elegans system and germ cell development, indicating processes in the cycle of the germline that are covered in each chapter. PMID:22872472

  12. An Aversive Response to Osmotic Upshift in Caenorhabditis elegans.

    PubMed

    Yu, Jingyi; Yang, Wenxing; Liu, He; Hao, Yingsong; Zhang, Yun

    2017-01-01

    Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.

  13. An Aversive Response to Osmotic Upshift in Caenorhabditis elegans

    PubMed Central

    Yu, Jingyi; Liu, He

    2017-01-01

    Abstract Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity. PMID:28451641

  14. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.

    PubMed

    Fang-Yen, Christopher; Wyart, Matthieu; Xie, Julie; Kawai, Risa; Kodger, Tom; Chen, Sway; Wen, Quan; Samuel, Aravinthan D T

    2010-11-23

    To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm's body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm's elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.

  15. Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

    PubMed Central

    Szewc, Mark A.; Garrett, Timothy; Menger, Robert F.; Yost, Richard A.; Beecher, Chris; Edison, Arthur S.

    2014-01-01

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass spectrometry-based technique called Isotopic Ratio Outlier Analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95% and 5% 13C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: 1) compounds arising from biosynthesis are easily distinguished from artifacts, 2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, 3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulae, and 4) relative concentrations of all metabolites are easily determined. A heat shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway, which we use to demonstrate the approach. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans. Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline. PMID:24274725

  16. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans

    PubMed Central

    Sanyal, Suparna; Wintle, Richard F; Kindt, Katie S; Nuttley, William M; Arvan, Rokhand; Fitzmaurice, Paul; Bigras, Eve; Merz, David C; Hébert, Terence E; van der Kooy, Derek; Schafer, William R; Culotti, Joseph G; Van Tol, Hubert H M

    2004-01-01

    Dopamine-modulated behaviors, including information processing and reward, are subject to behavioral plasticity. Disruption of these behaviors is thought to support drug addictions and psychoses. The plasticity of dopamine-mediated behaviors, for example, habituation and sensitization, are not well understood at the molecular level. We show that in the nematode Caenorhabditis elegans, a D1-like dopamine receptor gene (dop-1) modulates the plasticity of mechanosensory behaviors in which dopamine had not been implicated previously. A mutant of dop-1 displayed faster habituation to nonlocalized mechanical stimulation. This phenotype was rescued by the introduction of a wild-type copy of the gene. The dop-1 gene is expressed in mechanosensory neurons, particularly the ALM and PLM neurons. Selective expression of the dop-1 gene in mechanosensory neurons using the mec-7 promoter rescues the mechanosensory deficit in dop-1 mutant animals. The tyrosine hydroxylase-deficient C. elegans mutant (cat-2) also displays these specific behavioral deficits. These observations provide genetic evidence that dopamine signaling modulates behavioral plasticity in C. elegans. PMID:14739932

  17. Automated quantification of synaptic fluorescence in C. elegans.

    PubMed

    Sturt, Brianne L; Bamber, Bruce A

    2012-08-10

    Synapse strength refers to the amplitude of postsynaptic responses to presynaptic neurotransmitter release events, and has a major impact on overall neural circuit function. Synapse strength critically depends on the abundance of neurotransmitter receptors clustered at synaptic sites on the postsynaptic membrane. Receptor levels are established developmentally, and can be altered by receptor trafficking between surface-localized, subsynaptic, and intracellular pools, representing important mechanisms of synaptic plasticity and neuromodulation. Rigorous methods to quantify synaptically-localized neurotransmitter receptor abundance are essential to study synaptic development and plasticity. Fluorescence microscopy is an optimal approach because it preserves spatial information, distinguishing synaptic from non-synaptic pools, and discriminating among receptor populations localized to different types of synapses. The genetic model organism Caenorhabditis elegans is particularly well suited for these studies due to the small size and relative simplicity of its nervous system, its transparency, and the availability of powerful genetic techniques, allowing examination of native synapses in intact animals. Here we present a method for quantifying fluorescently-labeled synaptic neurotransmitter receptors in C. elegans. Its key feature is the automated identification and analysis of individual synapses in three dimensions in multi-plane confocal microscope output files, tabulating position, volume, fluorescence intensity, and total fluorescence for each synapse. This approach has two principal advantages over manual analysis of z-plane projections of confocal data. First, because every plane of the confocal data set is included, no data are lost through z-plane projection, typically based on pixel intensity averages or maxima. Second, identification of synapses is automated, but can be inspected by the experimenter as the data analysis proceeds, allowing fast and accurate

  18. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    PubMed

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  19. Mapping a Mutation in "Caenorhabditis elegans" Using a Polymerase Chain Reaction-Based Approach

    ERIC Educational Resources Information Center

    Myers, Edith M.

    2014-01-01

    Many single nucleotide polymorphisms (SNPs) have been identified within the "Caenorhabditis elegans" genome. SNPs present in the genomes of two isogenic "C. elegans" strains have been routinely used as a tool in forward genetics to map a mutation to a particular chromosome. This article describes a laboratory exercise in which…

  20. Selenite Enhances Immune Response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans

    PubMed Central

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2014-01-01

    Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway. PMID:25147937

  1. Mapping a Mutation in "Caenorhabditis elegans" Using a Polymerase Chain Reaction-Based Approach

    ERIC Educational Resources Information Center

    Myers, Edith M.

    2014-01-01

    Many single nucleotide polymorphisms (SNPs) have been identified within the "Caenorhabditis elegans" genome. SNPs present in the genomes of two isogenic "C. elegans" strains have been routinely used as a tool in forward genetics to map a mutation to a particular chromosome. This article describes a laboratory exercise in which…

  2. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning

    PubMed Central

    Oliver, C. Ryan; Gourgou, Eleni; Bazopoulou, Daphne; Chronis, Nikos; Hart, A. John

    2016-01-01

    Caenorhabditis elegans (C. elegans) is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar) substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry. PMID:26730604

  3. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  4. Heritable Custom Genomic Modifications in Caenorhabditis elegans via a CRISPR–Cas9 System

    PubMed Central

    Tzur, Yonatan B.; Friedland, Ari E.; Nadarajan, Saravanapriah; Church, George M.; Calarco, John A.; Colaiácovo, Monica P.

    2013-01-01

    We adapted the CRISPR–Cas9 system for template-mediated repair of targeted double-strand breaks via homologous recombination in Caenorhabditis elegans, enabling customized and efficient genome editing. This system can be used to create specific insertions, deletions, and base pair changes in the germline of C. elegans. PMID:23979579

  5. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  6. A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed "C. elegans" Research

    ERIC Educational Resources Information Center

    Lindblom, Tim

    2006-01-01

    The model organism, "Caenorhabditis elegans," in addition to being well suited to genetics and cell biology teaching applications, can also be useful in the physiology laboratory. In this article, the author describes how students in a junior level college Comparative Physiology course have made use of "C. elegans" in semester-long,…

  7. Neuronal regulation of ascaroside response during mate response behavior in the nematode Caenorhabditis elegans

    USDA-ARS?s Scientific Manuscript database

    Small-molecule signaling plays an important role in the biology of Caenorhabditis elegans. We have previously shown that ascarosides, glycosides of the dideoxysugar ascarylose regulate both development and behavior in C. elegans The mating signal consists of a synergistic blend of three dauer-induc...

  8. FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1

    USDA-ARS?s Scientific Manuscript database

    G-protein coupled receptors (GPCRs) are ancient molecules that sense environmental and physiological signals. Currently, the majority of the predicted Caenorhabditis elegans GPCRs are orphan. Here, we describe the characterization of such an orphan C. elegans GPCR, which is categorized in the tachyk...

  9. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity

    USDA-ARS?s Scientific Manuscript database

    To investigate the biochemical mechanism for sterol-mediated alteration in aging in Caenorhabditis elegans, we established sterol depletion conditions by treating worms with azacoprostane, which reduced mean lifespan of adult C. elegans by 35%. Proteomic analyses of egg proteins from treated and un...

  10. Influence of Silicon on Resistance of Zinnia Elegans to Myzus Persicae (Hemiptera: Aphididae)

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to examine the effect of treating Zinnia elegans Jacq. with soluble silicon on the performance of the green peach aphid, Myzus persicae (Sulzer). Zinnia elegans plants were irrigated every 2 days throughout the duration of the experiment with a nutrient solution amended with ...

  11. First Descriptions of Immature Stages of the Weevils Bagous elegans, B. aliciae, and B. lutulosus

    PubMed Central

    Gosik, Rafał; Wanat, Marek

    2014-01-01

    Last-instar larvae of Bagous elegans (F.), Bagous aliciae Cmoluch, and Bagous lutulosus (Gyllenhal), and the pupa of B. elegans, are described and illustrated for the first time. Biology of these species is analyzed in association with larval morphology and feeding habits. Overall larval and pupal morphological diagnoses of the genus Bagous are updated. PMID:25347832

  12. A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed "C. elegans" Research

    ERIC Educational Resources Information Center

    Lindblom, Tim

    2006-01-01

    The model organism, "Caenorhabditis elegans," in addition to being well suited to genetics and cell biology teaching applications, can also be useful in the physiology laboratory. In this article, the author describes how students in a junior level college Comparative Physiology course have made use of "C. elegans" in semester-long,…

  13. Using RNAi in C. "elegans" to Demonstrate Gene Knockdown Phenotypes in the Undergraduate Biology Lab Setting

    ERIC Educational Resources Information Center

    Roy, Nicole M.

    2013-01-01

    RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using "Caenorhabditis elegans" ("C. elegans") was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However,…

  14. Autofluorescence of the fungus Morchella conica var. rigida.

    PubMed

    Zižka, Z; Gabriel, J

    2011-03-01

    Autofluorescence (primary fluorescence (AF)) of fruiting bodies and stems of the fungus Morchella conica var. rigida was studied by fluorescence microscopy including sporangia and ascospores. The ascospores were characterized by a weak green-yellow AF at blue excitation. Using a green excitation, no AF was observed. The hyphae located under the layer of asci with ascospores exhibited a higher primary fluorescence, namely their walls that had green-yellow color at blue excitation. Also, their red AF observed when a green excitation was used was significant. Similarly, the hyphae located in the fungal stem exhibited a significant AF, especially their walls when the blue light was used for excitation. In addition, large, yellow-to-yellow/green, oval-to-round bodies with strong fluorescence were detected whose morphological equivalents were not clearly visible in the white halogen light. The AF of the fungus M. conica var. rigida was lower compared with the other higher fungi studied so far.

  15. Gaeumannomyces graminis, the take-all fungus and its relatives.

    PubMed

    Freeman, Jacqueline; Ward, Elaine

    2004-07-01

    SUMMARY Take-all, caused by the fungus Gaeumannomyces graminis var. tritici, is the most important root disease of wheat worldwide. Many years of intensive research, reflected by the large volume of literature on take-all, has led to a considerable degree of understanding of many aspects of the disease. However, effective and economic control of the disease remains difficult. The application of molecular techniques to study G. graminis and related fungi has resulted in some significant advances, particularly in the development of improved methods for identification and in elucidating the role of the enzyme avenacinase as a pathogenicity determinant in the closely related oat take-all fungus (G. graminis var. avenae). Some progress in identifying other factors that may be involved in determining host range and pathogenicity has been made, despite the difficulties of performing genetic analyses and the lack of a reliable transformation system.

  16. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    SciTech Connect

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-05-06

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.

  17. White-nose syndrome fungus (Geomyces destructans) in bats, Europe.

    PubMed

    Wibbelt, Gudrun; Kurth, Andreas; Hellmann, David; Weishaar, Manfred; Barlow, Alex; Veith, Michael; Prüger, Julia; Görföl, Tamás; Grosche, Lena; Bontadina, Fabio; Zöphel, Ulrich; Seidl, Hans Peter; Seidl, Hans Peter; Blehert, David S

    2010-08-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus.

  18. Hormonemate Derivatives from Dothiora sp., an Endophytic Fungus.

    PubMed

    Pérez-Bonilla, Mercedes; González-Menéndez, Víctor; Pérez-Victoria, Ignacio; de Pedro, Nuria; Martín, Jesús; Molero-Mesa, Joaquín; Casares-Porcel, Manuel; González-Tejero, María Reyes; Vicente, Francisca; Genilloud, Olga; Tormo, José R; Reyes, Fernando

    2017-03-09

    A search for cytotoxic agents from cultures of the endophytic fungus Dothiora sp., isolated from the endemic plant Launaea arborescens, led to the isolation of six new compounds structurally related to hormonemate, with moderate cytotoxic activity against different cancer cell lines. By using a bioassay-guided fractionation approach, hormonemates A-D (1-4), hormonemate (5), and hormonemates E (6) and F (7) were obtained from the acetone extract of this fungus. Their structures were determined using a combination of HRMS, ESI-qTOF-MS/MS, 1D and 2D NMR experiments, and chemical degradation. The cytotoxic activities of these compounds were evaluated by microdilution colorimetric assays against human breast adenocarcinoma (MCF-7), human liver cancer cells (HepG2), and pancreatic cancer cells (MiaPaca_2). Most of the compounds displayed cytotoxic activity against this panel.

  19. Functional genome of the human pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Felipe, Maria Sueli S; Torres, Fernando A G; Maranhão, Andrea Q; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio J; Campos, Elida G; Moraes, Lídia M P; Arraes, Fabrício B M; Carvalho, Maria José A; Andrade, Rosângela V; Nicola, André M; Teixeira, Marcus M; Jesuíno, Rosália S A; Pereira, Maristela; Soares, Célia M A; Brígido, Marcelo M

    2005-09-01

    Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America. Pathogenicity is assumed to be a consequence of the cellular differentiation process that this fungus undergoes from mycelium to yeast cells during human infection. In an effort to elucidate the molecular mechanisms involved in this process a network of Brazilian laboratories carried out a transcriptome project for both cell types. This review focuses on the data analysis yielding a comprehensive view of the fungal metabolism and the molecular adaptations during dimorphism in P. brasiliensis from analysis of 6022 groups, related to expressed genes, which were generated from both mycelium and yeast phases.

  20. Engineering a filamentous fungus for L-rhamnose extraction.

    PubMed

    Kuivanen, Joosu; Richard, Peter

    2016-03-01

    L-Rhamnose is a high value rare sugar that is used as such or after chemical conversions. It is enriched in several biomass fractions such as the pectic polysaccharides rhamnogalacturonan I and II and in naringin, hesperidin, rutin, quercitrin and ulvan. We engineered the filamentous fungus Aspergillus niger to not consume L-rhamnose, while it is still able to produce the enzymes for the hydrolysis of L-rhamnose rich biomass. As a result we present a strain that can be used for the extraction of L-rhamnose in a consolidated process. In the process the biomass is hydrolysed to the monomeric sugars which are consumed by the fungus leaving the L-rhamnose.

  1. Fungus-associated asthma: overcoming challenges in diagnosis and treatment.

    PubMed

    Ogawa, Haruhiko; Fujimura, Masaki; Ohkura, Noriyuki; Satoh, Kazuo; Makimura, Koichi

    2014-05-01

    With regard to fungal colonization and fungal sensitization, the goals of fungus-associated asthma management are as follows: 1) to survey fungi colonizing the airways of patients repeatedly; 2) to evaluate the tendency of the colonizing fungi to sensitize patients and the influence on clinical manifestations of asthma; 3) to follow disease development to allergic bronchopulmonary mycosis or sinobronchial allergic mycosis; and 4) to determine whether fungal eradication from the airway of patients is beneficial from the viewpoints of future risk factors. Recent developments in molecular biological analyses have facilitated the identification of basidiomycetous fungi that were not previously thought to be of concern in fungal allergy. The total control of fungus-associated asthma will be accomplished by environmental management established from the viewpoint of both the ecology and life cycle of the responsible fungi.

  2. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum.

    PubMed

    Narayanan, Kannan Badri; Sakthivel, Natarajan

    2013-11-01

    The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.

  3. White-nose syndrome fungus (Geomyces destructans) in bats, Europe

    USGS Publications Warehouse

    Wibbelt, G.; Kurth, A.; Hellmann, D.; Weishaar, M.; Barlow, A.; Veith, M.; Pruger, J.; Gorfol, T.; Grosche, T.; Bontadina, F.; Zophel, U.; Seidl, Hans-Peter; Cryan, P.M.; Blehert, D.S.

    2010-01-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus.

  4. White-Nose Syndrome Fungus (Geomyces destructans) in Bats, Europe

    PubMed Central

    Kurth, Andreas; Hellmann, David; Weishaar, Manfred; Barlow, Alex; Veith, Michael; Prüger, Julia; Görföl, Tamás; Grosche, Lena; Bontadina, Fabio; Zöphel, Ulrich; Seidl, Hans-Peter; Cryan, Paul M.; Blehert, David S.

    2010-01-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus. PMID:20678317

  5. Insight into the Family of Na+/Ca2+ Exchangers of Caenorhabditis elegans

    PubMed Central

    Sharma, Vishal; He, Chao; Sacca-Schaeffer, Julian; Brzozowski, Eric; Martin-Herranz, Daniel E.; Mendelowitz, Zelda; Fitzpatrick, David A.; O’Halloran, Damien M.

    2013-01-01

    Here we provide the first genome-wide in vivo analysis of the Na+/Ca2+ exchanger family in the model system Caenorhabditis elegans. We source all members of this family within the Caenorhabditis genus and reconstruct their phylogeny across humans and Drosophila melanogaster. Next, we provide a description of the expression pattern for each exchanger gene in C. elegans, revealing a wide expression in a number of tissues and cell types including sensory neurons, interneurons, motor neurons, muscle cells, and intestinal tissue. Finally, we conduct a series of behavioral and functional analyses through mutant characterization in C. elegans. From these data we demonstrate that, similar to mammalian systems, the expression of Na+/Ca2+ exchangers in C. elegans is skewed toward excitable cells, and we propose that C. elegans may be an ideal model system for the study of Na+/Ca2+ exchangers. PMID:23893482

  6. Automatic identification of Caenorhabditis elegans in population images by shape energy features.

    PubMed

    Ochoa, D; Gautama, S; Philips, W

    2010-05-01

    Experiments on model organisms are used to extend the understanding of complex biological processes. In Caenorhabditis elegans studies, populations of specimens are sampled to measure certain morphological properties and a population is characterized based on statistics extracted from such samples. Automatic detection of C. elegans in such culture images is a difficult problem. The images are affected by clutter, overlap and image degradations. In this paper, we exploit shape and appearance differences between C. elegans and non-C. elegans segmentations. Shape information is captured by optimizing a parametric open contour model on training data. Features derived from the contour energies are proposed as shape descriptors and integrated in a probabilistic framework. These descriptors are evaluated for C. elegans detection in culture images. Our experiments show that measurements extracted from these samples correlate well with ground truth data. These positive results indicate that the proposed approach can be used for quantitative analysis of complex nematode images.

  7. Cytochalasin derivatives from a jellyfish-derived fungus Phoma sp.

    PubMed

    Kim, Eun La; Wang, Haibo; Park, Ju Hee; Hong, Jongki; Choi, Jae Sue; Im, Dong Soon; Chung, Hae Young; Jung, Jee H

    2015-01-01

    Four new cytochalasin derivatives (1-4), together with proxiphomin (5), were isolated from a jellyfish-derived fungus Phoma sp. The planar structures and relative stereochemistry were established by analysis of 1D and 2D NMR data. The absolute configuration was defined by the modified Mosher's method. The compounds showed moderate cytotoxicity against a small panel of human solid tumor cell lines (A549, KB, and HCT116).

  8. Complete Genome Sequence of the Endophytic Fungus Diaporthe (Phomopsis) ampelina

    PubMed Central

    Bhargavi, S. D.; Praveen, V. K.

    2016-01-01

    Diaporthe ampelina was isolated as an endophytic fungus from the root of Commiphora wightii, a medicinal plant collected from Dhanvantri Vana, Bangalore University, Bangalore, India. The whole genome is 59 Mb, contains a total of 905 scaffolds, and has a G+C content of 51.74%. The genome sequence of D. ampelina shows a complete absence of lovastatin (an anticholesterol drug) gene cluster. PMID:27257198

  9. The yeast spectrum of the 'tea fungus Kombucha'.

    PubMed

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  10. Oxygenated lanostane-type triterpenoids from the fungus ganodermalucidum.

    PubMed

    Akihisa, Toshihiro; Tagata, Masaaki; Ukiya, Motohiko; Tokuda, Harukuni; Suzuki, Takashi; Kimura, Yumiko

    2005-04-01

    Two new triterpenoids, 20(21)-dehydrolucidenic acid A (1) and methyl 20(21)-dehydrolucidenate A (2), and five new 20-hydroxylucidenic acids, 20-hydroxylucidenic acid D(2) (3), 20-hydroxylucidenic acid F (4), 20-hydroxylucidenic acid E(2) (5), 20-hydroxylucidenic acid N (6), and 20-hydroxylucidenic acid P (7), were isolated from the fruiting body of the fungus Ganoderma ludicum, and their structures were established on the basis of spectroscopic methods.

  11. The Kinome of Edible and Medicinal Fungus Wolfiporia cocos.

    PubMed

    Wei, Wei; Shu, Shaohua; Zhu, Wenjun; Xiong, Ying; Peng, Fang

    2016-01-01

    Wolfiporia cocos is an edible and medicinal fungus that grows in association with pine trees, and its dried sclerotium, known as Fuling in China, has been used as a traditional medicine in East Asian countries for centuries. Nearly 10% of the traditional Chinese medicinal preparations contain W. cocos. Currently, the commercial production of Fuling is limited because of the lack of pine-based substrate and paucity of knowledge about the sclerotial development of the fungus. Since protein kinase (PKs) play significant roles in the regulation of growth, development, reproduction, and environmental responses in filamentous fungi, the kinome of W. cocos was analyzed by identifying the PKs genes, studying transcript profiles and assigning PKs to orthologous groups. Of the 10 putative PKs, 11 encode atypical PKs, and 13, 10, 2, 22, and 11 could encoded PKs from the AGC, CAMK, CK, CMGC, STE, and TLK Groups, respectively. The level of transcripts from PK genes associated with sclerotia formation in the mycelium and sclerotium stages were analyzed by qRT-PCR. Based on the functions of the orthologs in Sclerotinia sclerotiorum (a sclerotia-formation fungus) and Saccharomyces cerevisiae, the potential roles of these W. cocos PKs were assigned. To the best of our knowledge, our study is the first identification and functional discussion of the kinome in the edible and medicinal fungus W. cocos. Our study systematically suggests potential roles of W. cocos PKs and provide comprehensive and novel insights into W. cocos sclerotial development and other economically important traits. Additionally, based on our result, genetic engineering can be employed for over expression or interference of some significant PKs genes to promote sclerotial growth and the accumulation of active compounds.

  12. Pseudocopulatory Pollination in Lepanthes (Orchidaceae: Pleurothallidinae) by Fungus Gnats

    PubMed Central

    BLANCO, MARIO A.; BARBOZA, GABRIEL

    2005-01-01

    • Background and Aims Lepanthes is one of the largest angiosperm genera (>800 species). Their non-rewarding, tiny and colourful flowers are structurally complex. Their pollination mechanism has hitherto remained unknown, but has been subject of ample speculation; the function of the minuscule labellum appendix is especially puzzling. Here, the pollination of L. glicensteinii by sexually deceived male fungus gnats is described and illustrated. • Methods Visitors to flowers of L. glicensteinii were photographed and their behaviour documented; some were captured for identification. Occasional visits to flowers of L. helleri, L. stenorhyncha and L. turialvae were also observed. Structural features of flowers and pollinators were studied with SEM. • Key Results Sexually aroused males of the fungus gnat Bradysia floribunda (Diptera: Sciaridae) were the only visitors and pollinators of L. glicensteinii. The initial long-distance attractant seems to be olfactory. Upon finding a flower, the fly curls his abdomen under the labellum and grabs the appendix with his genitalic claspers, then dismounts the flower and turns around to face away from it. The pollinarium attaches to his abdomen during this pivoting manoeuvre. Pollinia are deposited on the stigma during a subsequent flower visit. The flies appear to ejaculate during pseudocopulation. The visitors of L. helleri, L. stenorhyncha and L. turialvae are different species of fungus gnats that display a similar behaviour. • Conclusions Lepanthes glicensteinii has genitalic pseudocopulatory pollination, the first case reported outside of the Australian orchid genus Cryptostylis. Since most species of Lepanthes have the same unusual flower structure, it is predicted that pollination by sexual deception is prevalent in the genus. Several morphological and phenological traits in Lepanthes seem well suited for exploiting male fungus gnats as pollinators. Correspondingly, some demographic trends common in Lepanthes are

  13. The Kinome of Edible and Medicinal Fungus Wolfiporia cocos

    PubMed Central

    Wei, Wei; Shu, Shaohua; Zhu, Wenjun; Xiong, Ying; Peng, Fang

    2016-01-01

    Wolfiporia cocos is an edible and medicinal fungus that grows in association with pine trees, and its dried sclerotium, known as Fuling in China, has been used as a traditional medicine in East Asian countries for centuries. Nearly 10% of the traditional Chinese medicinal preparations contain W. cocos. Currently, the commercial production of Fuling is limited because of the lack of pine-based substrate and paucity of knowledge about the sclerotial development of the fungus. Since protein kinase (PKs) play significant roles in the regulation of growth, development, reproduction, and environmental responses in filamentous fungi, the kinome of W. cocos was analyzed by identifying the PKs genes, studying transcript profiles and assigning PKs to orthologous groups. Of the 10 putative PKs, 11 encode atypical PKs, and 13, 10, 2, 22, and 11 could encoded PKs from the AGC, CAMK, CK, CMGC, STE, and TLK Groups, respectively. The level of transcripts from PK genes associated with sclerotia formation in the mycelium and sclerotium stages were analyzed by qRT-PCR. Based on the functions of the orthologs in Sclerotinia sclerotiorum (a sclerotia-formation fungus) and Saccharomyces cerevisiae, the potential roles of these W. cocos PKs were assigned. To the best of our knowledge, our study is the first identification and functional discussion of the kinome in the edible and medicinal fungus W. cocos. Our study systematically suggests potential roles of W. cocos PKs and provide comprehensive and novel insights into W. cocos sclerotial development and other economically important traits. Additionally, based on our result, genetic engineering can be employed for over expression or interference of some significant PKs genes to promote sclerotial growth and the accumulation of active compounds. PMID:27708635

  14. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    SciTech Connect

    Khan, Shadab Ali; Ahmad, Absar

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  15. Decomposition of Plant Debris by the Nematophagous Fungus ARF

    PubMed Central

    Wang, Kening; Riggs, R. D.; Crippen, Devany

    2004-01-01

    In the study of the biological control of plant-parasitic nematodes, knowledge of the saprophytic ability of a nematophagous fungus is necessary to understand its establishment and survival in the soil. The objectives of this study were (i) to determine if the nematophagous fungus ARF (Arkansas Fungus) shows differential use of plant residues; and (ii) to determine if ARF still existed in the soil of a field in which ARF was found originally and in which the population level of Heterodera glycines had remained very low, despite 15 years of continuous, susceptible soybean. Laboratory studies of the decomposition of wheat straw or soybean root by ARF were conducted in two separate experiments, using a CO₂ collection apparatus, where CO₂-free air was passed through sterilized cotton to remove the microorganisms in the air and then was passed over the samples, and evolved CO₂ was trapped by KOH. Milligrams of C as CO₂ was used to calculate the percentage decomposition of the plant debris by ARF. Data indicated ARF decomposed 11.7% of total organic carbon of the wheat straw and 20.1% of the soybean roots in 6 weeks. In the field soil study, 21 soil samples were taken randomly from the field. Only 3 months after the infestation of the soil with H. glycines, the percentage of parasitized eggs of H. glycines reached 64 ± 19%, and ARF was isolated from most parasitized eggs of H. glycines. Research results indicated ARF could use plant residues to survive. PMID:19262814

  16. Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent

    NASA Astrophysics Data System (ADS)

    Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.

    2017-02-01

    The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.

  17. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum.

    PubMed

    Paço, Ana; Duarte, Kátia; da Costa, João P; Santos, Patrícia S M; Pereira, R; Pereira, M E; Freitas, Ana C; Duarte, Armando C; Rocha-Santos, Teresa A P

    2017-05-15

    Plastic yearly production has surpassed the 300milliontons mark and recycling has all but failed in constituting a viable solution for the disposal of plastic waste. As these materials continue to accumulate in the environment, namely, in rivers and oceans, in the form of macro-, meso-, micro- and nanoplastics, it becomes of the utmost urgency to find new ways to curtail this environmental threat. Multiple efforts have been made to identify and isolate microorganisms capable of utilizing synthetic polymers and recent results point towards the viability of a solution for this problem based on the biodegradation of plastics resorting to selected microbial strains. Herein, the response of the fungus Zalerion maritimum to different times of exposition to polyethylene (PE) pellets, in a minimum growth medium, was evaluated, based on the quantified mass differences in both the fungus and the microplastic pellets used. Additionally, molecular changes were assessed through attenuated total reflectance Fourier transform Infrared Spectroscopy (FTIR-ATR) and Nuclear Magnetic Resonance (NMR). Results showed that, under the tested conditions, Z. maritimum is capable of utilizing PE, resulting in the decrease, in both mass and size, of the pellets. These results indicate that this naturally occurring fungus may actively contribute to the biodegradation of microplastics, requiring minimum nutrients.

  18. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.

    PubMed

    Okamoto, Kenji; Kanawaku, Ryuichi; Masumoto, Masaru; Yanase, Hideshi

    2012-02-10

    The efficient production of bioethanol on an industrial scale requires the use of renewable lignocellulosic biomass as a starting material. A limiting factor in developing efficient processes is identifying microorganisms that are able to effectively ferment xylose, the major pentose sugar found in hemicellulose, and break down carbohydrate polymers without pre-treatment steps. Here, a basidiomycete brown rot fungus was isolated as a new biocatalyst with unprecedented fermentability, as it was capable of converting not only the 6-carbon sugars constituting cellulose, but also the major 5-carbon sugar xylose in hemicelluloses, to ethanol. The fungus was identified as Neolentinus lepideus and was capable of assimilating and fermenting xylose to ethanol in yields of 0.30, 0.33, and 0.34 g of ethanol per g of xylose consumed under aerobic, oxygen-limited, and anaerobic conditions, respectively. A small amount of xylitol was detected as the major by-product of xylose metabolism. N. lepideus produced ethanol from glucose, mannose, galactose, cellobiose, maltose, and lactose with yields ranging from 0.34 to 0.38 g ethanol per g sugar consumed, and also exhibited relatively favorable conversion of non-pretreated starch, xylan, and wheat bran. These results suggest that N. lepideus is a promising candidate for cost-effective and environmentally friendly ethanol production from lignocellulosic biomass. To our knowledge, this is the first report on efficient ethanol fermentation from various carbohydrates, including xylose, by a naturally occurring brown rot fungus.

  19. New and poorly known Palaearctic fungus gnats (Diptera, Sciaroidea)

    PubMed Central

    Kolcsár, Levente-Péter

    2017-01-01

    Abstract Background Fungus gnats (Sciaroidea) are a globally species rich group of lower Diptera. In Europe, Fennoscandian peninsula in particular holds a notable diversity, ca. 1000 species, of which 10 % are still unnamed. Fungus gnats are predominantly terrestrial insects, but some species dwell in wetland habitats. New information Eight new fungus gnat species, belonging to the families Keroplatidae (Orfelia boreoalpina Salmela sp.n.) and Mycetophilidae (Sciophila holopaineni Salmela sp.n., S. curvata Salmela sp.n., Boletina sasakawai Salmela & Kolcsár sp.n., B. norokorpii Salmela & Kolcsár sp.n., Phronia sompio Salmela sp.n., P. reducta Salmela sp.n., P. prolongata Salmela sp.n.), are described. Four of the species are known from Fennoscandia only whilst two are supposed to have boreo-alpine disjunct ranges, i.e. having populations in Fennoscandia and the Central European Alps. One of the species probably has a boreal range (Finnish Lapland and Central Siberia). Type material of Boletina curta Sasakawa & Kimura from Japan was found to consist of two species, and a further species close to these taxa is described from Finland. Phronia elegantula Hackman is redescribed and reported for the first time from Norway. DNA barcodes are provided for the first time for five species. PMID:28325987

  20. Evolutionary transitions in enzyme activity of ant fungus gardens.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  1. Relationships between Swiss needle cast and ectomycorrhizal fungus diversity.

    PubMed

    Luoma, Daniel L; Eberhart, Joyce L

    2014-01-01

    Swiss needle cast (SNC) is a disease specific to Douglas-fir (Pseudotsuga menziesii) caused by the ascomycete Phaeocryptopus gaeumannii. Here we examine characteristics of the EM fungus community that are potentially useful in predictive models that would monitor forest health. We found that mean EM density (number of colonized root tips/soil core) varied nearly 10-fold among sites of varying levels of SNC, while mean EM fungus species richness (number of species/soil core) varied by about 2.5 times. Strong relationships were found between EM and SNC parameters: EM species richness was positively correlated with both Douglas-fir needle retention (R(2) = 0.93) and EM density (R(2) = 0.65); EM density also was significantly correlated with Douglas-fir needle retention (R(2) = 0.70). These simple characteristics of the EM fungus community could be used to monitor forest health and generate predictive models of site suitability for Douglas-fir. Based on previous findings that normally common EM types were reduced in frequency on sites with severe SNC, we also hypothesized that some EM fungi would be stress tolerant-dominant species. Instead, we found that various fungi were able to form EM with the stressed trees, but none were consistently dominant across samples in the severely diseased areas.

  2. Fungus dose-dependent primary pulmonary aspergillosis in immunosuppressed mice.

    PubMed Central

    Dixon, D M; Polak, A; Walsh, T J

    1989-01-01

    We report on a model of primary pulmonary aspergillosis occurring after intranasal instillation of concentrated suspensions of conidia of Aspergillus fumigatus in immunocompromised mice. Unconcentrated suspensions of inoculum contained ca. 2 x 10(7) conidia per ml (1x). These suspensions were concentrated by centrifugation, adjusted to give ca. 2 x 10(8) (10x) or 2 x 10(9) (100x) conidia per ml, and delivered in 30-microliters droplets to the nares of anesthetized mice. Mice were untreated or injected with cortisone acetate (CA) or cyclophosphamide (CY) in various dosage regimens. It was not possible to obtain mortality of more than 50% with sublethal immunosuppressive treatment and 1x fungus. In contrast, mortality followed a fungus dose response in mice receiving sublethal immunosuppression with either CA or CY. Mortality rates of up to 100% were obtained with 100x fungus and a single dose of CY (200 mg/kg) or CA (250 mg/kg) or three alternate doses (125 mg/kg per day) of CA prior to infection. This model is applicable to the study of acute, fatal primary pulmonary aspergillosis and chemotherapy trials. PMID:2651308

  3. Datasheet: Pseudogymnoascus destructans (white-nose syndrome fungus)

    USGS Publications Warehouse

    Blehert, David; Lankau, Emily

    2017-01-01

    Pseudogymnoascus destructans is a psychrophilic (cold-loving) fungus that causes white-nose syndrome (WNS), an emerging disease of North American bats that has caused unprecedented population declines. The fungus is believed to have been introduced to North America from Europe or Asia (where it is present but does not cause significant mortality), but the full extent of its native range is unknown. The route of introduction is also unknown. In North America, hibernating bats become infected with P. destructans when body temperature decreases during winter torpor into the range permissive for growth of this fungus. Infected bats may develop visible fungal growth on the nose or wings, awaken more frequently from torpor, and experience a cascade of physiologic changes that result in weight loss, dehydration, electrolyte imbalances, and death. P. destructans persists in the environments of underground bat hibernation sites (hibernacula) and is believed to spread primarily by natural movements of infected bats. The first evidence of WNS in North America is from a photograph of a hibernating bat taken during winter of 2005-2006 in a hibernaculum near Albany, New York. P. destructans subsequently spread rapidly from the northeastern United States throughout much of the eastern portions of the United States and Canada, and most recently (as of May 2017) was detected in Washington State. It has killed millions of bats, threatening some species with regional extirpation and putting at risk the valuable environmental services that bats provide by eating harmful insects.

  4. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans.

    PubMed

    Song, Pengfei; Dong, Xianke; Liu, Xinyu

    2016-01-01

    The nematode worm Caenorhabditis elegans has been widely used as a model organism in biological studies because of its short and prolific life cycle, relatively simple body structure, significant genetic overlap with human, and facile/inexpensive cultivation. Microinjection, as an established and versatile tool for delivering liquid substances into cellular/organismal objects, plays an important role in C. elegans research. However, the conventional manual procedure of C. elegans microinjection is labor-intensive and time-consuming and thus hinders large-scale C. elegans studies involving microinjection of a large number of C. elegans on a daily basis. In this paper, we report a novel microfluidic device that enables, for the first time, fully automated, high-speed microinjection of C. elegans. The device is automatically regulated by on-chip pneumatic valves and allows rapid loading, immobilization, injection, and downstream sorting of single C. elegans. For demonstration, we performed microinjection experiments on 200 C. elegans worms and demonstrated an average injection speed of 6.6 worm/min (average worm handling time: 9.45 s/worm) and a success rate of 77.5% (post-sorting success rate: 100%), both much higher than the performance of manual operation (speed: 1 worm/4 min and success rate: 30%). We conducted typical viability tests on the injected C. elegans and confirmed that the automated injection system does not impose significant adverse effect on the physiological condition of the injected C. elegans. We believe that the developed microfluidic device holds great potential to become a useful tool for facilitating high-throughput, large-scale worm biology research.

  5. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans

    PubMed Central

    Song, Pengfei; Dong, Xianke; Liu, Xinyu

    2016-01-01

    The nematode worm Caenorhabditis elegans has been widely used as a model organism in biological studies because of its short and prolific life cycle, relatively simple body structure, significant genetic overlap with human, and facile/inexpensive cultivation. Microinjection, as an established and versatile tool for delivering liquid substances into cellular/organismal objects, plays an important role in C. elegans research. However, the conventional manual procedure of C. elegans microinjection is labor-intensive and time-consuming and thus hinders large-scale C. elegans studies involving microinjection of a large number of C. elegans on a daily basis. In this paper, we report a novel microfluidic device that enables, for the first time, fully automated, high-speed microinjection of C. elegans. The device is automatically regulated by on-chip pneumatic valves and allows rapid loading, immobilization, injection, and downstream sorting of single C. elegans. For demonstration, we performed microinjection experiments on 200 C. elegans worms and demonstrated an average injection speed of 6.6 worm/min (average worm handling time: 9.45 s/worm) and a success rate of 77.5% (post-sorting success rate: 100%), both much higher than the performance of manual operation (speed: 1 worm/4 min and success rate: 30%). We conducted typical viability tests on the injected C. elegans and confirmed that the automated injection system does not impose significant adverse effect on the physiological condition of the injected C. elegans. We believe that the developed microfluidic device holds great potential to become a useful tool for facilitating high-throughput, large-scale worm biology research. PMID:26958099

  6. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    PubMed

    Deng, Shuguang; Zeng, Defang

    2017-03-01

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  7. Isolation and characterization of a β-glucuronide of hydroxylated SARM S1 produced using a combination of biotransformation and chemical oxidation.

    PubMed

    Rydevik, Axel; Lagojda, Andreas; Thevis, Mario; Bondesson, Ulf; Hedeland, Mikael

    2014-09-01

    In this study, using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, it has been confirmed that biotransformation with the fungus Cunninghamella elegans combined with chemical oxidation with the free radical tetramethylpiperidinyl-1-oxy (TEMPO) can produce drug glucuronides of β-configuration. Glucuronic acid conjugates are a common type of metabolites formed by the human body. The detection of such conjugates in doping control and other kinds of forensic analysis would be beneficial owing to a decrease in analysis time as hydrolysis can be omitted. However the commercial availability of reference standards for drug glucuronides is poor. The selective androgen receptor modulator (SARM) SARM S1 was incubated with the fungus C. elegans. The sample was treated with the free radical TEMPO oxidizing agent and was thereafter purified by SPE. A glucuronic acid conjugate was isolated using a fraction collector connected to an ultra high performance liquid chromatographic (UHPLC) system. The isolated compound was characterized by NMR spectroscopy and mass spectrometry and its structure was confirmed as a glucuronic acid β-conjugate of hydroxylated SARM S1 bearing the glucuronide moiety on carbon C-10.

  8. Caenorhabditis elegans: a model to monitor bacterial air quality

    PubMed Central

    2011-01-01

    Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test. PMID:22099854

  9. Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans.

    PubMed

    Komura, Tomomi; Ikeda, Takanori; Yasui, Chikako; Saeki, Shigeru; Nishikawa, Yoshikazu

    2013-02-01

    Lactobacilli and bifidobacteria are probiotic bacteria that modify host defense systems and have the ability to extend the lifespan of the nematode Caenorhabditis elegans. Here, we attempted to elucidate the mechanism by which bifidobacteria prolong the lifespan of C. elegans. When the nematode was fed Bifidobacterium infantis (BI) mixed at various ratios with the standard food bacterium Escherichia coli strain OP50 (OP), the mean lifespan of worms was extended in a dose-dependent manner. Worms fed BI displayed higher locomotion and produced more offspring than control worms. The growth curves of nematodes were similar regardless of the amount of BI mixed with OP, suggesting that BI did not induce prolongevity effects through caloric restriction. Notably, feeding worms the cell wall fraction of BI alone was sufficient to promote prolongevity. The accumulation of protein carbonyls and lipofuscin, a biochemical marker of aging, was also lower in worms fed BI; however, the worms displayed similar susceptibility to heat, hydrogen peroxide, and paraquat, an inducer of free radicals, as the control worms. As a result of BI feeding, loss-of-function mutants of daf-16, jnk-1, aak-2, tol-1, and tir-1 exhibited a longer lifespan than OP-fed control worms, but BI failed to extend the lifespan of pmk-1, skn-1, and vhp-1 mutants. As skn-1 induces phase 2 detoxification enzymes, our findings suggest that cell wall components of bifidobacteria increase the average lifespan of C. elegans via activation of skn-1, regulated by the p38 MAPK pathway, but not by general activation of the host defense system via DAF-16.

  10. Global remodeling of nucleosome positions in C. elegans

    PubMed Central

    2013-01-01

    Background Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. Results To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Conclusions Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans. Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational

  11. Caenorhabditis elegans-based Model Systems for Antifungal Drug Discovery

    PubMed Central

    Anastassopoulou, Cleo G.; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2013-01-01

    The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of novel antifungal drugs. Currently, drug discovery is transitioning from the traditional in vitro large-scale screens of chemical libraries to more complex bioassays, including in vivo studies on whole animals; invertebrates, such as Caenorhabditis elegans, are thus gaining momentum as screening tools. Key pathogenesis features of fungal infections, including filament formation, are expressed in certain invertebrate and mammalian hosts; among the various potential hosts, C. elegans provides an attractive platform both for the study of host-pathogen interactions and the identification of new antifungal agents. Advantages of compound screening in this facile, relatively inexpensive and not as ethically challenged whole-animal context, include the simultaneous assessment of antifungal efficacy and toxicity that could result in the identification of compounds with distinct mechanisms of action, for example by promoting host immune responses or by impeding fungal virulence factors. With the recent advent of using predictive models to screen for compounds with improved chances of bioavailability in the nematode a priori, high-throughput screening of chemical libraries using the C. elegans-c. albicans antifungal discovery assay holds even greater promise for the identification of novel antifungal agents in the near future. PMID:21470110

  12. Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans

    PubMed Central

    Bell, Ryan T.; Fu, Becky X. H.; Fire, Andrew Z.

    2016-01-01

    The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence. PMID:26680661

  13. Structural Properties of the Caenorhabditis elegans Neuronal Network

    PubMed Central

    Varshney, Lav R.; Chen, Beth L.; Paniagua, Eric; Hall, David H.; Chklovskii, Dmitri B.

    2011-01-01

    Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation. PMID:21304930

  14. Larval crowding accelerates C. elegans development and reduces lifespan

    PubMed Central

    Ludewig, Andreas H.; Gimond, Clotilde; Judkins, Joshua C.; Thornton, Staci; Pulido, Dania C.; Micikas, Robert J.; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C.

    2017-01-01

    Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity. PMID:28394895

  15. Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans.

    PubMed

    Bell, Ryan T; Fu, Becky X H; Fire, Andrew Z

    2016-02-01

    The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence.

  16. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome

    PubMed Central

    2014-01-01

    Background Although sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome. Results First, sperm transcriptome consists of considerable amounts of non-coding RNAs, many of which have not been annotated and may play functional roles during spermatogenesis. Second, apart from kinases/phosphatases as previously reported, ion binding proteins are also enriched in sperm, underlying the crucial roles of intracellular ions in post-translational regulation in sperm. Third, while the majority of sperm genes/proteins have low abundance, a small number of sperm genes/proteins are hugely enriched in sperm, implying that sperm only rely on a small set of proteins for post-translational regulation. Lastly, by extensive RNAi screening of sperm enriched genes, we identified a few genes that control fertility. Our further analysis reveals a tight correlation between sperm transcriptome and sperm small RNAome, suggesting that the endogenous siRNAs strongly repress sperm genes. This leads to an idea that the inefficient RNAi screening of sperm genes, a phenomenon currently with unknown causes, might result from the competition between the endogenous RNAi pathway and the exogenous RNAi pathway. Conclusions Together, the obtained sperm transcriptome and proteome serve as valuable resources to systematically study spermatogenesis in C. elegans. PMID:24581041

  17. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans.

    PubMed

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W; Heymsfield, Steven B; Greenway, Frank L; Li, Zhaoping; Heber, David; Burton, Jeffrey H; Johnson, William D; Laine, Roger A

    2017-05-04

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P < 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P < 0.001). Equal amount of G&F or HFCS reduced lifespan (P < 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated.

  18. Forces applied during classical touch assays for Caenorhabditis elegans

    PubMed Central

    Mazzochette, Eileen A.; Goodman, Miriam B.; Pruitt, Beth L.

    2017-01-01

    For decades, Caenorhabditis elegans roundworms have been used to study the sense of touch, and this work has been facilitated by a simple behavioral assay for touch sensation. To perform this classical assay, an experimenter uses an eyebrow hair to gently touch a moving worm and observes whether or not the worm reverses direction. We used two experimental approaches to determine the manner and moment of contact between the eyebrow hair tool and freely moving animals and the forces delivered by the classical assay. Using high-speed video (2500 frames/second), we found that typical stimulus delivery events include a brief moment when the hair is contact with the worm’s body and not the agar substrate. To measure the applied forces, we measured forces generated by volunteers mimicking the classical touch assay by touching a calibrated microcantilever. The mean (61 μN) and median forces (26 μN) were more than ten times higher than the 2-μN force known to saturate the probability of evoking a reversal in adult C. elegans. We also considered the eyebrow hairs as an additional source of variation. The stiffness of the sampled eyebrow hairs varied between 0.07 and 0.41 N/m and was correlated with the free length of hair. Collectively, this work establishes that the classical touch assay applies enough force to saturate the probability of evoking reversals in adult C. elegans in spite of its variability among trials and experimenters and that increasing the free length of the hair can decrease the applied force. PMID:28542494

  19. C. elegans SMA-10 regulates BMP receptor trafficking

    PubMed Central

    Li, Ying; Kane, Nanci S.; Liao, Kelvin

    2017-01-01

    Signal transduction of the conserved transforming growth factor-β (TGFβ) family signaling pathway functions through two distinct serine/threonine transmembrane receptors, the type I and type II receptors. Endocytosis orchestrates the assembly of signaling complexes by coordinating the entry of receptors with their downstream signaling mediators. Recently, we showed that the C. elegans type I bone morphogenetic protein (BMP) receptor SMA-6, part of the TGFβ family, is recycled through the retromer complex while the type II receptor, DAF-4 is recycled in a retromer-independent, ARF-6 dependent manner. From genetic screens in C. elegans aimed at identifying new modifiers of BMP signaling, we reported on SMA-10, a conserved LRIG (leucine-rich and immunoglobulin-like domains) transmembrane protein. It is a positive regulator of BMP signaling that binds to the SMA-6 receptor. Here we show that the loss of sma-10 leads to aberrant endocytic trafficking of SMA-6, resulting in its accumulation in distinct intracellular endosomes including the early endosome, multivesicular bodies (MVB), and the late endosome with a reduction in signaling strength. Our studies show that trafficking defects caused by the loss of sma-10 are not universal, but affect only a limited set of receptors. Likewise, in Drosophila, we find that the fly homolog of sma-10, lambik (lbk), reduces signaling strength of the BMP pathway, consistent with its function in C. elegans and suggesting evolutionary conservation of function. Loss of sma-10 results in reduced ubiquitination of the type I receptor SMA-6, suggesting a possible mechanism for its regulation of BMP signaling. PMID:28704415

  20. C. elegans SMA-10 regulates BMP receptor trafficking.

    PubMed

    Gleason, Ryan J; Vora, Mehul; Li, Ying; Kane, Nanci S; Liao, Kelvin; Padgett, Richard W

    2017-01-01

    Signal transduction of the conserved transforming growth factor-β (TGFβ) family signaling pathway functions through two distinct serine/threonine transmembrane receptors, the type I and type II receptors. Endocytosis orchestrates the assembly of signaling complexes by coordinating the entry of receptors with their downstream signaling mediators. Recently, we showed that the C. elegans type I bone morphogenetic protein (BMP) receptor SMA-6, part of the TGFβ family, is recycled through the retromer complex while the type II receptor, DAF-4 is recycled in a retromer-independent, ARF-6 dependent manner. From genetic screens in C. elegans aimed at identifying new modifiers of BMP signaling, we reported on SMA-10, a conserved LRIG (leucine-rich and immunoglobulin-like domains) transmembrane protein. It is a positive regulator of BMP signaling that binds to the SMA-6 receptor. Here we show that the loss of sma-10 leads to aberrant endocytic trafficking of SMA-6, resulting in its accumulation in distinct intracellular endosomes including the early endosome, multivesicular bodies (MVB), and the late endosome with a reduction in signaling strength. Our studies show that trafficking defects caused by the loss of sma-10 are not universal, but affect only a limited set of receptors. Likewise, in Drosophila, we find that the fly homolog of sma-10, lambik (lbk), reduces signaling strength of the BMP pathway, consistent with its function in C. elegans and suggesting evolutionary conservation of function. Loss of sma-10 results in reduced ubiquitination of the type I receptor SMA-6, suggesting a possible mechanism for its regulation of BMP signaling.