Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Bennett, Robert J. (Inventor); Duval, Walter (Inventor)
2000-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Duval, Walter (Inventor); Bennett, Robert J. (Inventor)
2001-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Removable preheater elements improve oxide induction furnace
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1964-01-01
Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.
Ultra-high vacuum compatible preparation chain for intermetallic compounds
NASA Astrophysics Data System (ADS)
Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.
2016-11-01
We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.
Efficient growth of HTS films with volatile elements
Siegal, M.P.; Overmyer, D.L.; Dominguez, F.
1998-12-22
A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.
High temperature furnace modeling and performance verifications
NASA Technical Reports Server (NTRS)
Smith, James E., Jr.
1992-01-01
Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
General purpose rocket furnace
NASA Technical Reports Server (NTRS)
Aldrich, B. R.; Whitt, W. D. (Inventor)
1979-01-01
A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.
1995-09-15
Large Isothermal Furnace (LIF) was flown on a mission in cooperation with the National Space Development Agency (NASDA) of Japan. LIF is a vacuum-heating furnace designed to heat large samples uniformly. The furnace consists of a sample container and heating element surrounded by a vacuum chamber. A crewmemeber will insert a sample cartridge into the furnace. The furnace will be activated and operations will be controlled automatically by a computer in response to an experiment number entered on the control panel. At the end of operations, helium will be discharged into the furnace, allowing cooling to start. Cooling will occur through the use of a water jacket while rapid cooling of samples can be accomplished through a controlled flow of helium. Data from experiments will help scientists better understand this important process which is vital to the production of high-quality semiconductor crystals.
NASA Astrophysics Data System (ADS)
Brandon, Simon; Derby, Jeffrey J.; Atherton, L. Jeffrey; Roberts, David H.; Vital, Russel L.
1993-09-01
A novel process modification, the simultaneous growth of three cylindrical Cr:LiCaAlf 6 (Cr:LiCAF) crystals grown from a common seed in a vertical Bridgman furnace of rectangular cross section, is assessed using computational modeling. The analysis employs the FIDAP finite-element package and accounts for three-dimensional, steady-state, conductive heat transfer throughout the system. The induction heating system is rigorously simulated via solution of Maxwell's equations. The implementation of realistic thermal boundary conditions and furnace details is shown to be important. Furnace design features are assessed through calculations, and simulations indicate expected growth conditions to be favorable. In addition, the validity of using ampoules containing "dummy" charges for experimental furnace characterization measurements is examined through test computations.
Reducing Thermal Conduction In Acoustic Levitators
NASA Technical Reports Server (NTRS)
Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.
1991-01-01
Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.
Ashy, M A; Headridge, J B; Sowerbutts, A
1974-06-01
Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.
Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler
NASA Astrophysics Data System (ADS)
Zhang, P.; Lu, J. F.; Yang, H. R.; Zhang, J. S.; Zhang, H.; Yue, G. X.
Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (α) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercritical parameters. Experimental study on the heat transfer in a commercial 300MWe CFB boiler was conducted. The α from the bed to the water wall was measured by the finite element method (FEM), at five different heights. The influence of suspension density and bed temperature on α was analyzed. It was found that the pressure difference between the inlet and exit of the three cyclones, and the chamber pressure of the corresponding loop seal were not equal. The results indicated the suspension solid density was non-uniform in the cross section at a certain height. Consequently, the distributions of heat flux and α in the horizontal plane in the furnace was non-uniform. The furnace can divided into three sections according to the arrangement of the platen superheaters hanging in the upper CFB furnace. In each section, the heat flux near the center showed increasing trend.
Method for starting operation of a resistance melter
Chapman, Christopher Charles
1977-01-01
A method for starting the operation of a resistance furnace, where heating occurs by passing a current through the charge between two furnace electrodes and the charge is a material which is essentially electrically nonconductive when in a solid physical state but which becomes more electrically conductive when in a molten physical state, by connecting electrical resistance heating wire between the furnace electrodes, placing the wire in contact with the charge material between the electrodes and passing a current through the wire to heat the wire to a temperature sufficient to melt the material between the furnace electrodes so that as the material melts, current begins to pass between the electrodes through the melted material, further heating and melting more material until all current between the electrodes passes through the charge material without the aid or presence of the resistance element.
NASA Technical Reports Server (NTRS)
Bune, Andris; Ostrogorsky, Aleksandar; Marin, Carlos; Nicoara, Irina; Rose, M. Franklin (Technical Monitor)
2000-01-01
Performance of the furnace during Bridgman growth of the lead magnesium niobate-lead titanate crystal (PMN-PT) is analyzed. PMN-PT is electrostrictive ceramic that has near ideal strain-voltage function. Furthermore piezoelectric (2000 to 2300 pC/N) and coupling (92 to 95%) constants are exceptionally good. Due to these properties PMN-PT has wide range of applications - from sonars to transducers in a high precision optical systems. In this research first attempt to crystallize PMN-PT in a Mellen type vertical Bridgman furnace was not successful, as melting temperature of precursor materials was not achieved. At this point choice was between building a new more powerful facility or finding ways to enhance performance of the existing furnace. Besides adjusting power supply to the individual heating elements, redesigning ampoule holding cartridge and improving furnace insulation one more radical improvement was proposed. The entire furnace was placed into the high pressure chamber. Further experiments confirmed that temperature inside the furnace was increased sufficiently to melt precursor materials to obtain PMN-PT. Numerical modeling is undertaken to find limitations of this technique and to predict temperature distribution inside the ampoule. It is of interest also to account for main factors contributing to a higher temperatures achieved in the furnace under the higher pressure (up to 10 atm.). Numerical model of the furnace is based on general purpose finite - element code FIDAP and on previous efforts to model Bridgman type furnace with multiply heaters. In order to account for all heat transfer mechanism involved - conduction, convection and radiation - different parts of the furnace are modeled in accordance with expected dominant mode of heat transfer - conduction in the solid parts, conduction and radiation in the ampoule, gas convection and conduction in the furnace openings complemented with wall-to-wall radiation. Because of these complicating factors, dimensional rather than non-dimensional modeling is performed using steady-state 2-D and 3-D models. Particular attention is paid to the modeling of radiation in a semitransparent material of ampoule 7 sapphire. The radiation model is validated by solving realistic test problem - conduction and radiation heat transfer in the fused quartz. Results are in agreement with both experimental and analytical data.
Fiber glass pulling. [in space
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1987-01-01
Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.
Implementation of a numerical holding furnace model in foundry and construction of a reduced model
NASA Astrophysics Data System (ADS)
Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane
2016-09-01
Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts in according to geometrical and structural expectations. The definition of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. In a further stage this model will be used to characterize heat exchanges using internal sensors through inverse techniques to optimize the furnace command and the optimization of its design. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. A detailed model allows the calculation of the internal induction heat source as well as transient radiative transfer inside the furnace. A reduced lumped body model has been defined to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm with Matlab, using two synthetic temperature signals with a further validation test.
NASA Astrophysics Data System (ADS)
Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song
2017-10-01
Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.
Continous Monitoring of Melt Composition
NASA Technical Reports Server (NTRS)
Frazer, R. E.; Andrews, T. W.
1984-01-01
Compositions of glasses and alloys analyzed and corrected in real time. Spectral analysis and temperature measurement performed simultaneously on molten material in container, such as open-hearth furnace, crucible or tank of continuous furnace. Speed of analysis makes it possible to quickly measure concentration of volatile elements depleted by prolonged heating.
Model reduction for experimental thermal characterization of a holding furnace
NASA Astrophysics Data System (ADS)
Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane
2017-09-01
Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts. The definition of the structure of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. Internal sensors outputs, together with this model, can be used for assessing the thermal state of the furnace through an inverse approach, for a better control. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. The internal induction heat source as well as the transient radiative transfer inside the furnace are calculated through this detailed model. A reduced lumped body model has been constructed to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm, using two synthetic temperature signals with a further validation test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2012-06-15
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.
Study on the early warning mechanism for the security of blast furnace hearths
NASA Astrophysics Data System (ADS)
Zhao, Hong-bo; Huo, Shou-feng; Cheng, Shu-sen
2013-04-01
The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.
Inexpensive system protects megawatt resistance-heating furnace against high-voltage surges
NASA Technical Reports Server (NTRS)
Stearns, E. J.
1971-01-01
Coolant gas extinguishes arcing across the break in a heater element. Air-gap shunt which bypasses high voltage impressed across the circuit prevents damage if the resistance elements break and open the inductive circuit.
Method of making a modified ceramic-ceramic composite
Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.
1995-01-01
The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.
Studies on the Processing Methods for Extraterrestrial Materials
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1984-01-01
The literature was surveyed for high temperature mass spectrometric research on single oxides, complex oxides, and minerals in an effort to develop a means of separating elements and compounds from lunar and other extraterrestrial materials. A data acquisition system for determining vaporization rates as a function of time and temperature and software for the IEEE-488 Apple-ORTEC interface are discussed. Experimental design information from a 1000 C furnace were used with heat transfer calculations to develop the basic design for a 1600 C furnace. A controller was built for the higher temperature furnace and drawings are being made for the furnace.
NASA Astrophysics Data System (ADS)
Koai, K.; Sonnenberg, K.; Wenzl, H.
1994-03-01
Crucible assembly in a vertical Bridgman furnace is investigated by a numerical finite element model with the aim to obtain convex interfaces during the growth of GaAs crystals. During the growth stage of the conic section, a new funnel shaped crucible support has been found more effective than the concentric cylinders design similar to that patented by AT & T in promoting interface convexity. For the growth stages of the constant diameter section, the furnace profile can be effectively modulated by localized radial heating at the gradient zone. With these two features being introduced into a new furnace design, it is shown numerically that enhancement of interface convexity can be achieved using the presently available crucible materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-01-01
In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHPmore » unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).« less
Autoignition Chamber for Remote Testing of Pyrotechnic Devices
NASA Technical Reports Server (NTRS)
Harrington, Maureen L.; Steward, Gerald R.; Dartez, Toby W.
2009-01-01
The autoignition chamber (AIC) performs by remotely heating pyrotechnic devices that can fit the inner diameter of the tube furnace. Two methods, a cold start or a hot start, can be used with this device in autoignition testing of pyrotechnics. A cold start means extending a pyrotechnic device into the cold autoignition chamber and then heating the device until autoignition occurs. A hot start means heating the autoignition chamber to a specified temperature, and then extending the device into a hot autoignition chamber until autoignition occurs. Personnel are remote from the chamber during the extension into the hot chamber. The autoignition chamber, a commercially produced tubular furnace, has a 230-V, single-phase, 60-Hz electrical supply, with a total power output of 2,400 W. It has a 6-in. (15.2-cm) inner diameter, a 12-in. (30.4-cm) outer diameter and a 12-in.- long (30.4-cm), single-zone, solid tubular furnace (element) capable of heating to temperatures up to 2,012 F (1,100 C) in air.
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
High-pressure gas quenching in cold chambers for increased cooling capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segerberg, S.; Troell, E.
1996-12-31
Gas quenching for the hardening of steel parts is a lower-pollution alternative to quenching in quenchants such as oil or salt. As the surfaces of the cooled parts remain clean after gas quenching, there is no need to wash them after heat treatment, which reduces the consumption of oils and detergents. The fire risk and ventilation requirements of oil quenching are eliminated. In addition, some trials have shown that gas quenching has a positive effect on distortion, representing a saving in finishing work and thus a reduction in costs. Today, gas quenching is used almost solely in vacuum furnaces. Quenchingmore » is normally performed in the same chamber as heating, which means that besides quenching the batch, the quenching system must also remove heat from the heating elements and insulation of the furnace. Previous trials performed by IVF have shown that gas quenching with helium of ball bearing and carburizing steels (and other steels) in sizes up to 25 mm at pressures up to 20 bar in a vacuum furnace can achieve quenching rates and hardnesses similar to those achieved by hot quenching oils. This quenching performance is not, however, capable of dealing with larger sizes or lower-alloy steels. At IVF`s request, ALD Vacuum Technologies GmbH has developed a cold high-pressure gas quenching chamber that is independent of the furnace. As a result, there is no need to cool insulation or heating elements. Quenching can be carried out in the chamber at pressures of up to 40 bar for helium or up to 10 bar for nitrogen. The quenching chamber has been supplied to IVF, and has been used for experimental quenching of steel test pieces and components. Temperatures have been recorded by using some Inconel 600 test probes, {phi} 12,5 x 60 mm, with thermocouples in their centers.« less
Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Mohr, W. C.
2015-11-01
Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
Elements for the modeling of the thermal process in heating furnaces for steel forming
NASA Astrophysics Data System (ADS)
Constantinescu, D.; Carlan, A. B.
2017-02-01
In the present paper, by “modelling of thermal process” will be understood the thermal techniques modelling, applied to the heating of steel billets in a large scale, in view of processing by forming. These technologies are correlated with the particularities of the thermal aggregates, having as main objective the reducing of energy consumptions and the optimizing of the aggregate design. When heating the steel billets in view of processing by forming, the duration and the quality of heating are influenced by the modality that the billets are receiving the thermal flow. The reception of the thermal flow depends on the heated surface exposed to the thermal radiation in compliance with their position on the hearth of the heating aggregate. The present paper intends to establish some parameters in view of optimizing the heating process. A basic point of the work is also the determination of some components of a mathematical model for the proposed heating technology. The authors have in view the complexity of the technical evolutions of the furnaces.
A technique for measuring the heat transfer coefficient inside a Bridgman furnace
NASA Technical Reports Server (NTRS)
Rosch, W.; Jesser, W.; Debnam, W.; Fripp, A.; Woodell, G.; Pendergrass, T. K.
1993-01-01
Knowledge of the amount of heat that is conducted, advected and radiated between an ampoule and the furnace is important for understanding vertical Bridgman crystal growth. This heat transfer depends on the temperature, emissivities and geometries of both the furnace and ampoule, as well as the choice of ambient gas inside the furnace. This paper presents a method which directly measures this heat transfer without the need to know any physical properties of the furnace, the ampoule, or the gaseous environment. Data are given for one specific furnace in which this method was used.
Heat pipes and use of heat pipes in furnace exhaust
Polcyn, Adam D.
2010-12-28
An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T
2014-10-21
A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.
Heating rates in furnace atomic absorption using the L'vov platform
Koirtyohann, S.R.; Giddings, R.C.; Taylor, Howard E.
1984-01-01
Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.
Approximate analytical solution for induction heating of solid cylinders
Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...
2015-10-20
An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less
Thermally efficient melting for glass making
Chen, Michael S. K.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary; Winchester, David C.
1991-01-01
The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.
Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te
NASA Astrophysics Data System (ADS)
Lin, K.; Boschert, S.; Dold, P.; Benz, K. W.; Kriessl, O.; Schmidt, A.; Siebert, K. G.; Dziuk, G.
2002-04-01
This paper presents efficient numerical methods—the "inverse modeling" method and the adaptive finite element method—for optimizing the heat transport as well as for investigating the heat and mass transport under the influence of convection during crystal growth, especially near the liquid/solid interface. These methods have been applied to industrial Bridgman-furnaces for the growth of 65-75 mm diameter (Cd,Zn)Te crystals.
Desktop Systems for Manufacturing Carbon Nanotube Films by Chemical Vapor Deposition
2007-06-01
existing low cost tube furnace designs limit the researcher’s ability to fully separate critical reaction parameters such as temperature and flow...Often heated using an external resistive heater coil, a typical configuration, shown in Figure 4, might place a tube made of a non- reactive ...researcher’s ability to fully separate critical parameters such as temperature and flow profiles. Additionally, the use of heating elements external to
Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, H.; Umeda, Y.; Nakamura, Y.
1991-01-01
This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generallymore » in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Design and Construction of a Small Vacuum Furnace
NASA Astrophysics Data System (ADS)
Peawbang, P.; Thedsakhulwong, A.
2017-09-01
The purpose of this research is designed and constructed of a small vacuum furnace. A cylindrical graphite was chosen as the material of the furnace, the cylinder aluminium and copper sheets were employed to prevent the heat radiation that transfers from the furnace to the chamber wall. A rotary pump used, the pressure of graphite furnace can be pumped up to 30 mTorr and heated up to 700 °C driving by wire and the temperature of the chamber wall is relatively remained too low. In addition, heat loss obtained from the graphite furnace by conduction, convection, and radiation were analyzed. The dominating heat loss was found to be caused by the blackbody radiation, which can thus be used to estimate the relationship between graphite furnace temperature and the drive power needed. The cylindrical graphite furnace has an inner diameter of 44 mm, the outer diameter of 60 mm and 45 mm in height, the 355.5 W of power is needed to drive the furnace to 700 °C.
Genetic algorithms for multicriteria shape optimization of induction furnace
NASA Astrophysics Data System (ADS)
Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo
2012-09-01
In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.
The technological raw material heating furnaces operation efficiency improving issue
NASA Astrophysics Data System (ADS)
Paramonov, A. M.
2017-08-01
The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.
NASA Technical Reports Server (NTRS)
Raj, S.V.; Ghosn, L. J.
1998-01-01
Ground-based heat treatment tests are planned on an argon gas-filled tantalum cartridge developed as pan of a Diffusion Processes in Molten Semiconductors (DPIMS) experiment conducted on NASA's Space Shuttle. The possibility that the cartridge may creep during testing and touch the furnace walls is of real concern in this program. The present paper discusses the results of calculations performed to evaluate this possibility. Deformation mechanism maps were constructed using literature data in order to identify the creep mechanism dominant under the appropriate stresses and temperatures corresponding to the test conditions. These results showed that power-law creep was dominant when the grain size of the material exceeded 55 gm but Coble creep was the important mechanism below this value of grain size. Finite element analysis was used to analyze the heat treatment tWs assuming a furnace run away condition (which is a worst case scenario) using the appropriate creep parameters corresponding to grain sizes of 1 and 100 gm. Calculations were also conducted to simulate the effect of an initial 3 tilt of the cartridge assembly, the maximum possible tilt angle. The von Mises stress and su-ain distributions were calculated assuming that the cartridge was fixed at one end as it was heated from ambient temperature to 1823 K in 1.42 h, maintained at 1823 K for 9.5 h and then further heated to an over temperature condition of 2028 K in 0.3 h. The inelastic axial and radial displacements of the cartridge walls were evaluated by resolving the von Mises strain along the corresponding directions. These calculations reveal that the maximum axial and radial displacements are expected to be about 2.9 and 0.25 mm, respectively, for both fine and coarse-grained materials at 2028 K. It was determined that these displacements occur during heat-up to temperature and creep of the cartridge is likely to be relatively insignificant irrespective of grain size. Furthermore, with a 3' tilt of the cartridge, the deflection is increased by only 0.39 gm which is negligible. Since the gap between the furnace heating elements and the cartridge is about 7.5 mm and less than the maximum radial dilation of 0.25 mm at 2028 K, it is concluded that the cartridge is unlikely to touch the furnace walls during the experiments.
Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M
2000-07-01
To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.
Molten metal holder furnace and casting system incorporating the molten metal holder furnace
Kinosz, Michael J.; Meyer, Thomas N.
2003-02-11
A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).
Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru
2015-09-15
Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.
Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet) (in Chinese; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from themore » furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.« less
Lightweight High-Temperature Thermal Insulation
NASA Technical Reports Server (NTRS)
Wagner, W. R.; Fasheh, J. I.
1985-01-01
Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.
Morris, Donald E.
1993-01-01
A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.
High Temperature Transparent Furnace Development
NASA Technical Reports Server (NTRS)
Bates, Stephen C.
1997-01-01
This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.
High-speed furnace uses infrared radiation for controlled brazing
NASA Technical Reports Server (NTRS)
Eckles, P. N.
1966-01-01
Furnace produces controlled heat for brazing and heat treating metals over a wide range of temperatures by using a near-infrared heat source positioned at one focus of an ellipsoidal reflector mounted below a cylindrical quartz chamber. This furnace maintains a pure atmosphere, has rapid heatup and cooldown, and permits visual observation.
Refractory of Furnaces to Reduce Environmental Impact
NASA Astrophysics Data System (ADS)
Hanzawa, Shigeru
2011-10-01
The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.
NASA Technical Reports Server (NTRS)
Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.
2000-01-01
NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature indicating uniform axial heat flow. Delineation between the growing dendrites and eutectic structure with the "quenched-in" liquid was sharp, attesting to the efficacy of the helium quench. BUNDLE's conception, development, capability, and adaptability are presented (in view of Flight PI's needs and science requirements) through viewgraphs depicting actual hardware, generated thermal analysis, and micrographs prepared from BUNDLE processed, flight-like samples.
NASA Technical Reports Server (NTRS)
Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.
2001-01-01
NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature indicating uniform axial heat flow. Delineation between the growing dendrites and eutectic structure with the "quenched-in" liquid was sharp, attesting to the efficacy of the helium quench. BUNDLE's conception, development, capability, and adaptability are presented (in view of Flight PI's needs and science requirements) through viewgraphs depicting actual hardware, generated thermal analysis, and micrographs prepared from BUNDLE processed, flight-like samples.
Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, Megan M.; Perez, Minue A.; Arnon, Shiri
Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of themore » targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less
Using a wood stove to heat greenhouses
Gloria Whitefeather-Spears
2009-01-01
The Red Lake Tribal Forestry Greenhouse in Red Lake, MN, utilizes four types of outdoor furnaces for heating through the fall, winter, and spring. The WoodMaster® is a highly efficient, wood-fired furnace that provides forced-air heat to the greenhouse. The HeatmorTM furnace is an economical wood-fired alternative that can provide lower...
Experimental research on the application of HTAC in small-size heating furnace
NASA Astrophysics Data System (ADS)
Zhou, Yu; Qin, Chaokui; Yang, Jun; Chen, Zhiguang
2018-03-01
High temperature air combustion (HTAC) technology, which is also known as regenerative combustion technology, has realized energy saving, CO2 and NOx emissions reduction and low-noise combustion. It has been widely applied in various types of heating furnace and has achieved good energy-saving effect. However, there is little application of this technology in small-size furnace. In this paper, a small-size regenerative heating furnace was built in the laboratory and experiments were carried out on it. The result shows that, if the transport frequency was set to a group per min, the center temperature of processed workpiece at the rated conditions (i.e. burner power is 300 kW and switching time is 60s) reached 1133°C. And the efficiency of the heating furnace was 36.8%. Then the derived comprehensive heat transfer coefficient was 168 W/(m2˙°C).
Borkowski, Casimer J.
1976-08-03
A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.
8. QUENCHING MECHANISM FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING ...
8. QUENCHING MECHANISM FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING LINE AT THE HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Modernizing the automatic temperature-regulating systems for electric resistor furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anchevskii, I.V.; Afanasiadi, N.G.; Demin, V.P.
An analysis of the technical level of heat-treating equipment at the sector's plants showed that automation was either insufficient or completely lacking. Modern heat-treating technology makes stringent demands on heat-treating equipment, including electric resistor furnaces. Therefore, it became necessary to modernize these furnaces and equip them with modern automatic temperature control systems (ATCSs). This is most urgent for furnaces which handle nuclear-power-station parts, which must not only be held at a certain temperature for a definite time, but which also require a complex process with established heating rates in each time period. The heat-treatment data are recorded in the part'smore » passport certificate, and the temperatures of both the heatingzone atmosphere and the heat-treated part are monitored.« less
NASA Astrophysics Data System (ADS)
Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.
2016-05-01
A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.
Morris, D.E.
1992-07-14
A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.
Morris, Donald E.
1992-01-01
A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.
Morris, D.E.
1993-09-14
A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1992-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.
11. VIEW OF THE MANIPULATOR AND THE PARTS HEATING FURNACE. ...
11. VIEW OF THE MANIPULATOR AND THE PARTS HEATING FURNACE. THE PARTS OR METALS WERE HEATED PRIOR TO BEING PRESSED. THE MANIPULATOR ARM WAS USED TO INSERT AND REMOVE PARTS OR METALS FROM THE FURNACE. (2/9/79) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
Refractory electrodes for joule heating and methods of using same
Lamar, David A.; Chapman, Chris C.; Elliott, Michael L.
1998-01-01
A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1200 C. in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof.
Solar Convective Furnace for Metals Processing
NASA Astrophysics Data System (ADS)
Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv
2015-11-01
Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.
Acoustic Levitator With Furnace And Laser Heating
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1991-01-01
Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.
NASA Astrophysics Data System (ADS)
Drexler, Andreas; Ecker, Werner; Hessert, Roland; Oberwinkler, Bernd; Gänser, Hans-Peter; Keckes, Jozef; Hofmann, Michael; Fischersworring-Bunk, Andreas
2017-10-01
In this work the evolution of the residual stress field in a forged and heat treated turbine disk of Alloy 718 and its subsequent relaxation during machining was simulated and measured. After forging at around 1000 °C the disks were natural air cooled to room temperature and direct aged in a furnace at 720 °C for 8 hours and at 620 °C for 8 hours. The machining of the Alloy 718 turbine disk was performed in two steps: The machining of the Alloy 718 turbine disk was performed in two steps: First, from the forging contour to a contour used for ultra-sonic testing. Second, from the latter to the final contour. The thermal boundary conditions in the finite element model for air cooling and furnace heating were estimated based on analytical equations from literature. A constitutive model developed for the unified description of rate dependent and rate independent mechanical material behavior of Alloy 718 under in-service conditions up to temperatures of 1000 °C was extended and parametrized to meet the manufacturing conditions with temperatures up to 1000 °C. The results of the finite element model were validated with measurements on real-scale turbine disks. The thermal boundary conditions were validated in-field with measured cooling curves. For that purpose holes were drilled at different positions into the turbine disk and thermocouples were mounted in these holes to record the time-temperature curves during natural cooling and heating. The simulated residual stresses were validated by using the hole drilling method and the neutron diffraction technique. The accuracy of the finite element model for the final manufacturing step investigated was ±50 MPa.
Heating of cardiovascular stents in intense radiofrequency magnetic fields.
Foster, K R; Goldberg, R; Bonsignore, C
1999-01-01
We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.
AMTEC powered residential furnace and auxiliary power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.
1996-12-31
Residential gas furnaces normally rely on utility grid electric power to operate the fans and/or the pumps used to circulate conditioned air or water and they are thus vulnerable to interruptions of utility grid service. Experience has shown that such interruptions can occur during the heating season, and can lead to serious consequences. A gas furnace coupled to an AMTEC conversion system retains the potential to produce heat and electricity (gas lines are seldom interrupted during power outages), and can save approximately $47/heating season compared to a conventional gas furnace. The key to designing a power system is understanding, andmore » predicting, the cell performance characteristics. The three main processes that must be understood and modeled to fully characterize an AMTEC cell are the electro-chemical, sodium vapor flow, and heat transfer. This paper will show the results of the most recent attempt to model the heat transfer in a multi-tube AMTEC cell and then discusses the conceptual design of a self-powered residential furnace.« less
Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid
2015-01-01
Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p < 0.001). The core body temperature of workers decreased by 2.6 °C after the application of interventions which was also significant (p < 0.05). The results confirmed heat control at source can be considered as a first solution for reducing radiant heat of blast furnaces. However, the simultaneous application of interventions could noticeably reduce worker heat stress. The results provide reliable information in order to implement the effective heat controls in typical hot steel industries.
Code of Federal Regulations, 2014 CFR
2014-07-01
... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...
Code of Federal Regulations, 2013 CFR
2013-07-01
... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...
Code of Federal Regulations, 2012 CFR
2012-07-01
... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...
Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF
NASA Astrophysics Data System (ADS)
Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.
2017-08-01
The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.
Elements of EAF automation processes
NASA Astrophysics Data System (ADS)
Ioana, A.; Constantin, N.; Dragna, E. C.
2017-01-01
Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line widths... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
Refractory electrodes for joule heating and methods of using same
Lamar, D.A.; Chapman, C.C.; Elliott, M.L.
1998-05-12
A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1,200 C in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof. 2 figs.
Better VPS Fabrication of Crucibles and Furnace Cartridges
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Zimmerman, Frank R.; O'Dell, J. Scott; McKechnie, Timothy N.
2003-01-01
An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.
EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES
The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...
JPRS Report, Science & Technology Europe
1988-07-27
materials research under microgravity conditions, such as ELLI, AMF of MHF ( Mirror Heating Facility) the Zone Melt- ing Furnace is a resistance-heated...pendently controlled zones. This is another advantage of a resistance-heated furnace over a mirror heating facil- ity. When the experiment requires a...zone, the subdivision into several heating zones will be preferable to the single light focus of a mirror heating facility. In 1987/88, following
Pollock, George G.
1997-01-01
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.
Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.
1991-01-01
A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.
A multi-zone muffle furnace design
NASA Technical Reports Server (NTRS)
Rowe, Neil D.; Kisel, Martin
1993-01-01
A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.
Construction material processed using lunar simulant in various environments
NASA Technical Reports Server (NTRS)
Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry
1995-01-01
The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.
Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-01-01
Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft 2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronicmore » heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.« less
Mathematical modeling of thermal stresses in basic oxygen furnace hood tubes
NASA Astrophysics Data System (ADS)
Samarasekera, I. V.
1985-06-01
The stress-strain history of Basic Oxygen Furnace hood tubes during thermal cycling has been computed using heat flow and stress analyses. The steady-state temperature distribution in a transverse section of the tube was computed at a location where gas temperature in the hood could be expected to be a maximum. Calculations were performed for peak gas temperatures in the range 1950 to 2480 °C (3500 to 4500 °F). The stress-strain history of an element of material located at the center of the tube hot face was traced for three consecutive cycles using elasto-plastic finite-element analysis. It has been shown that the state of stress in the element alternates between compression and tension as the tube successively heats and cools. Yielding and plastic flow occurs at the end of each half of a given cycle. It was postulated that owing to repctitive yielding, plastic strain energy accumulates causing failure of the tubes by fatigue in the low cycle region. Using fatigue theory a conservative estimate for tube life was arrived at. In-plant observations support this mechanism of failure, and the number of cycles within which tube cracking was observed compares reasonably with model predictions. Utilizing the heat flow and stress models it was recommended that tube life could be enhanced by changing the tube material to ARMCO 17-4 pH or AISI 405 steel or alternatively reconstructing hoods with AISI 316L tubes of reduced thickness. These recommendations were based on the criterion that low-cycle fatigue failure could be averted if the magnitude of the cyclic strain could be reduced or if macroscopic plastic flow could be prevented.
STS-47 MS Davis uses SLJ Rack 8 continuous heating furnace (CHF) on OV-105
1992-09-20
STS047-02-003 (12 - 20 Sept 1992) --- Astronaut N. Jan Davis, mission specialist, works at the Continuous Heating Furnace (CHF) in the Spacelab-J Science Module. This furnace provided temperatures up to 1,300 degrees Celsius and rapid cooling to two sets of samples concurrently. The furnace accommodated in-space experiments in the Fabrication of Si-As-Te:Ni Ternary Amorphous Semiconductor and the Crystal Growth of Compound Semiconductors. These were two of the many experiments designed and monitored by Japan's National Space Development Agency (NASDA).
Pollock, G.G.
1997-01-28
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V.K.; Santella, M.L.; Viswanathan, S.
1998-08-01
This Cooperative Research and Development Agreement (CRADA) report deals with the development of nickel aluminide alloy for improved longer life heat-resistant fixture assemblies for batch and continuous pusher carburizing furnaces. The nickel aluminide development was compared in both coupon and component testing with the currently used Fe-Ni-Cr heat-resisting alloy known as HU. The specific goals of the CRADA were: (1) casting process development, (2) characterization and possible modification of the alloy composition to optimize its manufacturing ability and performance under typical furnace operating conditions, and (3) testing and evaluation of specimens and prototype fixtures. In support of the CRADA objectives,more » coupons of nickel aluminide and the HU alloy were installed in both batch and pusher furnaces. The coupons were taken from two silicon levels and contained welds made with two different filler compositions (IC-221LA and IC-221W). Both nickel-aluminide and HU coupons were removed from the batch and pusher carburizing furnace at time intervals ranging from one month to one year. The exposed coupons were cut and mounted for metallographic, hardness, and microprobe analysis. The results of the microstructural analysis have been transmitted to General Motors Corporation, Saginaw Division (Delphi Saginaw) through reports that were presented at periodic CRADA review meetings. Based on coupon testing and verification of the coupon results with the testing of trays, Delphi Saginaw moved forward with the use of six additional trays in a batch furnace and two assemblies in a pusher furnace. Fifty percent of the trays and fixtures are in the as-cast condition and the remaining trays and fixtures are in the preoxidized condition. The successful operating experience of two assemblies in the pusher furnace for nearly a year formed the basis for a production run of 63 more assemblies. The production run required melting of 94 heats weighing 500 lb. each. Twenty-six of the 94 heats were from virgin stock, and 68 were from the revert that used 50% virgin and 50% revert. Detailed chemical analysis of the 94 heats reflected that the nickel aluminide can be cast into heat-treat fixtures under production conditions. In addition to the chemical analysis, the castings showed excellent dimensional reproducibility. A total of six batch furnace trays and 65 pusher furnace assemblies of nickel aluminide alloy IC-221M are currently operating in production furnaces at Delphi Saginaw. Two of the pusher furnace assemblies have completed two years of service without any failure. The CRADA has accomplished the goal of demonstrating that the nickel aluminide can be produced under commercial production conditions and it has superior performance over the currently used HU alloy in both batch and pusher furnaces.« less
Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace
NASA Astrophysics Data System (ADS)
Mitra, Tamoghna; Saxén, Henrik
2016-11-01
The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.
Heat storage in alloy transformations
NASA Technical Reports Server (NTRS)
Birchenall, C. E.
1980-01-01
Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.
Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.
1985-01-01
An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.
1984-01-06
The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
NOx Emission Reduction by Oscillating combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Institute of Gas Technology
2004-01-30
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less
NOx Emission Reduction by Oscillating Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
John C. Wagner
2004-03-31
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anameric, B.; Kawatra, S.K.
The pig iron nugget process is gaining in importance as an alternative to the traditional blast furnace. Throughout the process, self-reducing-fluxing dried greenballs composed of iron ore concentrate, reducing-carburizing agent (coal), flux (limestone) and binder (bentonite) are heat-treated. During the heat treatment, dried greenballs are first transformed into direct reduced iron (DRI), then to transition direct reduced iron (TDRI) and finally to pig iron nuggets. The furnace temperature and/or residence time and the corresponding levels of carburization, reduction and metallization dictate these transformations. This study involved the determination of threshold furnace temperatures and residence times for completion of all ofmore » the transformation reactions and pig iron nugget production. The experiments involved the heat treatment of self-reducing-fluxing dried greenballs at various furnace temperatures and residence times. The products of these heat treatments were identified by utilizing optical microscopy, apparent density and microhardness measurements.« less
Thermal analysis of HGFQ using FIDAP(trademark): Solidification front motion
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.
1996-01-01
The High Gradient Furnace with Quench (HGFQ) is being designed by NASA/MSFC for flight on the International Space Station. The furnace is being designed specifically for solidification experiments in metal and metallic alloy systems. The HGFQ Product development Team (PDT) has been active since January 1994 and their effort is now in early Phase B. Thermal models have been developed both by NASA and Sverdrup (support contractor) to assist in the HGFQ design effort. Both these models use SINDA as a solution engine, but the NASA model was developed using PATRAN and includes more detail than the Sverdrup model. These models have been used to guide design decisions and have been validated through experimentation on a prototypical 'Breadboard' furnace at MSFC. One facet of the furnace operation of interest to the designers is the sensitivity of the solidification interface location to changes in the furnace setpoint. Specifically of interest is the motion (position and velocity) of the solidification front due to a small perturbation in the furnace temperature. FIDAP(TM) is a commercially available finite element program for analysis of heat transfer and fluid flow processes. Its strength is in solution of the Navier-Stokes equations for incompressible flow, but among its capabilities is the analysis of transient processes involving radiation and solidification. The models presently available from NASA and Sverdrup are steady-state models and are incapable of computing the motion of the solidification front. The objective of this investigation is to use FIDAP(TM) to compute the motion of the solidification interface due to a perturbation in the furnace setpoint.
19. VIEW OF THE BAKEOUT FURNACE, WHERE PARTS WERE HEATED ...
19. VIEW OF THE BAKE-OUT FURNACE, WHERE PARTS WERE HEATED UNDER A VACUUM TO HEAT TREAT OR TO BAKE OUT ANY IMPURITIES. (9/19/72) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Egorova, V. M.; Gusev, S. V.
2001-05-01
A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.
12. VIEW OF THE MANIPULATOR AND PARTS HEATING FURNACE. THE ...
12. VIEW OF THE MANIPULATOR AND PARTS HEATING FURNACE. THE METALS WERE HEATED PRIOR TO BEING PRESSED. THE ARM IS DRAPED WITH FIRE RESISTANT MATERIAL. (2/9/79) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
Miniaturized King furnace permits absorption spectroscopy of small samples
NASA Technical Reports Server (NTRS)
Ercoli, B.; Tompkins, F. S.
1968-01-01
Miniature King-type furnace, consisting of an inductively heated, small diameter tantalum tube supported in a radiation shield eliminates the disadvantages of the conventional furnace in obtaining absorption spectra of metal vapors.
High-Flux Solar Furnace Facility | Concentrating Solar Power | NREL
High-Flux Solar Furnace Facility High-Flux Solar Furnace Facility NREL's High-Flux Solar Furnace (HFSF) is a 10-kW optical furnace for testing high-temperature processes or applications requiring high range of technologies with a diverse set of experimental requirements. The high heating rates create the
CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...
CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY
34. REDUCTION PLANT Furnace and boiler which provided steam heat ...
34. REDUCTION PLANT Furnace and boiler which provided steam heat required in converting fish, and fish offal, into meal and fish oil. Cone shaped tank at right held extracted oil. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
Holcombe, C.E.
1984-11-29
The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.
Holcombe, Cressie E.
1985-01-01
The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.
An improved gas extraction furnace
NASA Technical Reports Server (NTRS)
Wilkin, R. B.
1972-01-01
Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
Glass shell manufacturing in space
NASA Technical Reports Server (NTRS)
Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.
1981-01-01
Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.
Numerical Simulation and Chaotic Analysis of an Aluminum Holding Furnace
NASA Astrophysics Data System (ADS)
Wang, Ji-min; Zhou, Yuan-yuan; Lan, Shen; Chen, Tao; Li, Jie; Yan, Hong-jie; Zhou, Jie-min; Tian, Rui-jiao; Tu, Yan-wu; Li, Wen-ke
2014-12-01
To achieve high heat efficiency, low pollutant emission and homogeneous melt temperature during thermal process of secondary aluminum, taking into account the features of aluminum alloying process, a CFD process model was developed and integrated with heat load and aluminum temperature control model. This paper presented numerical simulation of aluminum holding furnaces using the customized code based on FLUENT packages. Thermal behaviors of aluminum holding furnaces were investigated by probing into main physical fields such as flue gas temperature, velocity, and concentration, and combustion instability of aluminum holding process was represented by chaos theory. The results show that aluminum temperature uniform coefficient firstly decreases during heating phase, then increases and reduces alternately during holding phase, lastly rises during standing phase. Correlation dimension drops with fuel velocity. Maximal Lyapunov exponent reaches to a maximum when air-fuel ratio is close to 1. It would be a clear comprehension about each phase of aluminum holding furnaces to find new technology, retrofit furnace design, and optimize parameters combination.
LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ...
LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ROOM; THE PIPES AT THE BOTTOM ARE PART OF THE RADIANT HEATING SYSTEM USED FOR HEATING THE FACTORY DURING COLD WEATHER. - Westmoreland Glass Company, Seventh & Kier Streets, Grapeville, Westmoreland County, PA
Distribution of radionuclides during melting of carbon steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurber, W.C.; MacKinney, J.
1997-02-01
During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the othermore » possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... Furnace Fans: Reopening of Public Comment Period AGENCY: Office of Energy Efficiency and Renewable Energy... work of residential heating and cooling systems (``furnace fans''). The comment period closed on July 6... information relevant to the furnace fan rulemaking will be accepted until July 27, 2010. ADDRESSES: Interested...
NASA Astrophysics Data System (ADS)
Zhao, W.; Wang, H. T.; Liu, Z. G.; Chu, M. S.; Ying, Z. W.; Tang, J.
2017-10-01
A new type of blast furnace burden, named VTM-CCB (vanadium titanomagnetite carbon composite hot briquette), is proposed and optimized in this paper. The preparation process of VTM-CCB includes two components, hot briquetting and heat treatment. The hot-briquetting and heat-treatment parameters are systematically optimized based on the Taguchi method and single-factor experiment. The optimized preparation parameters of VTM-CCB include a hot-briquetting temperature of 300°C, a coal particle size of <0.075 mm, a vanadium titanomagnetite particle size of <0.075 mm, a coal-added ratio of 28.52%, a heat-treatment temperature of 500°C and a heat-treatment time of 3 h. The compressive strength of VTM-CCB, based on the optimized parameters, reaches 2450 N, which meets the requirement of blast furnace ironmaking. These integrated parameters provide a theoretical basis for the production and application of a blast furnace smelting VTM-CCB.
A new method of efficient heat transfer and storage at very high temperatures
NASA Technical Reports Server (NTRS)
Shaw, D.; Bruckner, A. P.; Hertzberg, A.
1980-01-01
A unique, high temperature (1000-2000 K) continuously operating capacitive heat exchanger system is described. The system transfers heat from a combustion or solar furnace to a working gas by means of a circulating high temperature molten refractory. A uniform aggregate of beads of a glass-like refractory is injected into the furnace volume. The aggregate is melted and piped to a heat exchanger where it is sprayed through a counter-flowing, high pressure working gas. The refractory droplets transfer their heat to the gas, undergoing a phase change into the solid bead state. The resulting high temperature gas is used to drive a suitable high efficiency heat engine. The solidified refractory beads are delivered back to the furnace and melted to continue the cycle. This approach avoids the important temperature limitations of conventional tube-type heat exchangers, giving rise to the potential of converting heat energy into useful work at considerably higher efficiencies than currently attainable and of storing energy at high thermodynamic potential.
Analysis of BF Hearth Reasonable Cooling System Based on the Water Dynamic Characteristics
NASA Astrophysics Data System (ADS)
Zuo, Haibin; Jiao, Kexin; Zhang, Jianliang; Li, Qian; Wang, Cui
A rational cooling water system is the assurance for long campaign life of blast furnace. In the paper, the heat transfer of different furnace period and different furnace condition based on the water quality characteristics were analysed, and the reason of the heat flux over the normal from the hydrodynamics was analysed. The results showed that, the vapour-film and scale existence significantly influenced the hearth heat transfer, which accelerated the brick lining erosion. The water dynamic characteristics of the parallel inner pipe or among the pipes were the main reason for the abnormal heat flux and film boiling. As to the reasonable cooling water flow, the gas film and the scale should be controlled and the energy saving should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Jacobson, David
The high-efficiency boiler and furnace measure produces gas heating savings resulting from installation of more energy-efficient heating equipment in a residence. Such equipment, which ranges in size from 60 kBtu/hr to 300 kBtu/hr, is installed primarily in single-family homes and multifamily buildings with individual heating systems for each dwelling unit. This protocol does not cover integrated heating and water heating units which can be used in lieu of space heating only equipment.
Simulation of one-sided heating of boiler unit membrane-type water walls
NASA Astrophysics Data System (ADS)
Kurepin, M. P.; Serbinovskiy, M. Yu.
2017-03-01
This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.
NASA Astrophysics Data System (ADS)
Błaszczuk, Artur; Krzywański, Jarosław
2017-03-01
The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K) and 111-240 W/(m2K), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.
Orbital fabrication of aluminum foam and apparatus therefore
NASA Technical Reports Server (NTRS)
Tucker, Dennis S. (Inventor)
2010-01-01
A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.
Hydrogen-atmosphere induction furnace has increased temperature range
NASA Technical Reports Server (NTRS)
Caves, R. M.; Gresslin, C. H.
1966-01-01
Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.
Electrostatic Levitation Furnace for the ISS
NASA Technical Reports Server (NTRS)
Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko
2012-01-01
JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, K.H.; Ahluwalia, R.K.
1994-10-18
A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, Kwan H.; Ahluwalia, Rajesh K.
1994-01-01
A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.
Thermally efficient melting and fuel reforming for glass making
Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.
1991-01-01
An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.
Characterizing and modeling organic binder burnout from green ceramic compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewsuk, K.G.; Cesarano, J. III; Cochran, R.J.
New characterization and computational techniques have been developed to evaluate and simulate binder burnout from pressed powder compacts. Using engineering data and a control volume finite element method (CVFEM) thermal model, a nominally one dimensional (1-D) furnace has been designed to test, refine, and validate computer models that simulate binder burnout assuming a 1-D thermal gradient across the ceramic body during heating. Experimentally, 1-D radial heat flow was achieved using a rod-shaped heater that directly heats the inside surface of a stack of ceramic annuli surrounded by thermal insulation. The computational modeling effort focused on producing a macroscopic model formore » binder burnout based on continuum approaches to heat and mass conservation for porous media. Two increasingly complex models have been developed that predict the temperature and mass of a porous powder compact as a function of time during binder burnout. The more complex model also predicts the pressure within a powder compact during binder burnout. Model predictions are in reasonably good agreement with experimental data on binder burnout from a 57--65% relative density pressed powder compact of a 94 wt% alumina body containing {approximately}3 wt% binder. In conjunction with the detailed experimental data from the prototype binder burnout furnace, the models have also proven useful for conducting parametric studies to elucidate critical i-material property data required to support model development.« less
36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...
36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I
A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...
22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL ...
22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL CONSTRUCTION. CONCRETE PAD AT LEFT IS SITE OF FORMER FURNACE USED TO HEAT URANIUM BILLETS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.
1985-01-01
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... contractors in the product supply chain. The Department is considering these approaches or some combination of... Conditioners and Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... efficiency standards for residential furnaces and residential central air conditioners and heat pumps. DOE...
Panayotou, N.F.; Green, D.R.; Price, L.S.
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
Alternative fuels for multiple-hearth furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, B.D.; Lawson, T.U.
1980-04-01
A study of alternative procedures for reducing the consumption of No. 2 fuel oil at the Lower Molonglo Water Quality Control Centre near Canberra, Aust., indicated that in comparison with the present system of incineration with heat supplied by burning fuel oil, the installation of a sludge drying operation, consisting of a rotary dryer heated by furnace exhaust gases with the dried sludge used to fuel the furnace, would become economically desirable by 1985 if afterburning is not required, and would be justified immediately if afterburning is required to meet air pollution control regulations. The substitution of any of fourmore » waste fuels (refuse-derived fuel, waste paper, wood waste, or waste oil) or of coal for the No. 2 fuel oil would not be cost-effective through 1989. The furnace system, including afterburning and fuel oil requirements, the envisioned alternative fuel use systems, sludge processing alternatives, heat balance results, and economics are discussed.« less
Recirculating Molten Metal Supply System And Method
Kinosz, Michael J.; Meyer, Thomas N.
2003-07-01
The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).
NASA Astrophysics Data System (ADS)
Erasmus, L. J.; Fourie, L. J.
2017-02-01
The envirosteel smelter is a rectangular furnace with a large free board volume and multiple channel inductors mounted below the hearth. The raw materials are charged against the back wall forming an inclined heap sloping toward the front long wall. The feed blend is spread in thin layers over the surface of the heap and is heated by exposure to radiation from the free board. Reducing conditions in the top layer of the heap permit gas-solid reduction. Metal, in the hearth of the furnace, flows into the channel inductor where it is heated. The heated metal flows back against the front long wall to under the heap. The bottom of the heap is continuously melted by energy transferred from the metal layer. The two off-gas ducts are located in the short end walls. The combustion air is heated to around 800°C by a furnace gas in an external heat exchanger.
Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition
NASA Astrophysics Data System (ADS)
Story, William A.; Brewer, Luke N.
2018-02-01
This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.
NASA Astrophysics Data System (ADS)
Landron, Claude; Hennet, Louis; Coutures, Jean-Pierre; Jenkins, Tudor; Alétru, Chantal; Greaves, Neville; Soper, Alan; Derbyshire, Gareth
2000-04-01
Conventional radiative furnaces require sample containment that encourages contamination at elevated temperatures and generally need windows which restrict the entrance and exit solid angles required for diffraction and scattering measurements. We describe a contactless windowless furnace based on aerodynamic levitation and laser heating which has been designed for high temperature neutron scattering experiments. Data from initial experiments are reported for crystalline and amorphous oxides at temperatures up to 1900 °C, using the spallation neutron source ISIS together with our laser-heated aerodynamic levitator. Accurate reproduction of thermal expansion coefficients and radial distribution functions have been obtained, demonstrating the utility of aerodynamic levitation methods for neutron scattering methods.
NASA Technical Reports Server (NTRS)
Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie
1999-01-01
Much of the material science gained in microgravity research requires processing a sample in a high performance furnace. One such furnace currently being designed is the Quench Module Insert (QMI). The Principle Investigators, for whom the furnace is proposed, require high temperature gradients in their cylindrical samples to achieve the science objectives. One of the components critical to achieving high sample axial temperature gradients in the Quench Module Insert is a high performance cold zone to extract the heat from the sample. This cold zone employs a compliant, sliding thermal interface based on a Vel-Therm felt. This felt provides a conductive path between the Sample Cartridge Assembly (SCA) exterior surface and the interior surface of the water cooled chill block while allowing movement of the sample relative to the chill block. The Vel-Therm felt is composed of long polymer-based fibers affixed to a thin flexible substrate layer. The fibers are oriented perpendicular to this substrate giving the felt the appearance of a velvet fabric. The Vel-Therm felt heat extraction capability was quantified in earlier tests performed in an inert gas environment. The current activity, described in this paper, is intended to characterize the extraction capability of Vel-Therm felt in a vacuum environment similar to the QMI environment. This testing is necessary to quantify the thermal performance of the Vel-Therm felt and the sensitivity of that performance to key variables. The data derived from these tests will be incorporated into the current thermal models to improve the quality of the models and reduce uncertainty of the analytical results. In addition, the data will be used to help select the appropriate Vel-Therm felt and set proper operating limits as well as assess the performance range of the furnace. The objective of this test is to measure the heat extraction rate of the Vel-Therm felt as specified by the effective heat transfer coefficient. Therefore, the test setup was designed to force the bulk of the heat transfer through the area where the Vel-Therm felt was applied. A heat source, consisting of a ceramic heating element encased in a Copper (Cu) housing is mounted on four isolated support rods. A 6-layer molybdenum radiation shield is used to insulate against heat loss from the heater and prevent heat exchange between the hot and cold sides of the test apparatus. The Vel-Therm felt is affixed to the surface of the cold sink, a water-cooled Cu chill block. An adjustable plate supports and isolates the cold sink from above and is used to control the amount of the deflection of the Vel- Therm when in contact with the Cu heating element housing. The primary means of establishing the power being conducted through the felt is to measure the energy being transferred to the water passing through the chill block. Analysis was performed to support the assumption that the source and sink surfaces were approximately isothermal under the specific test conditions. As a check on the amount of power passing through the felt, the power supplied to the heater was also measured. Thermocouples were strategically located throughout the test apparatus for measurement purposes. A bell jar was lowered over the assembly to impose vacuum conditions. Currently, variables tested have been fiber compression and fiber type and surface temperatures (both the hot and cold side temperatures are hypothesized to be important to the performance of the Vel-Therm.) Selected runs were repeated to ensure consistency and repeatability. Results obtained thus far reveal that Vel-Therm performance is significantly degraded by fibers being exposed to high compression. It also shows that performance is somewhat negatively impacted by previous compression, thereby, raising the question of repeatability. In addition, early results show a significant dependence on temperature. A computer aided mathematical analysis of the test setup is ongoing. The results will be correlated to actual results. The correlation will examine such details as parasitic loses, conduction down the power leads and many other concerns.
Intelligent sensor in control systems for objects with changing thermophysical properties
NASA Astrophysics Data System (ADS)
Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.
2018-04-01
The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.
NASA Astrophysics Data System (ADS)
Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry
2018-06-01
Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.
Thermally efficient melting and fuel reforming for glass making
Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.
1991-10-15
An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.
Behavior of Quartz and Carbon Black Pellets at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
This paper studies the quartz and carbon black pellets at elevated temperature with varying temperature and gas atmosphere. High-purity quartz and commercial ultra-pure carbon black was mixed (carbon content vet. 15%), and then pelletized into particles of l-3mm in diameter. The stoichiometric analysis of the pellet during heating is studied in thermogravimetric analysis (TGA) furnace at different temperature in CO and Ar atmosphere. The microstructure, phase changes and element content of sample before/after heating is characterized by X-ray diffraction, scanning electron microscope, X-ray fluorescence and LECO analyzer. The reaction process can be divided into two stages. Higher temperature and argon atmosphere are the positive parameters for SiC formation.
This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.
Thermal Modeling of Bridgman Crystal Growth
NASA Technical Reports Server (NTRS)
Cothran, E.
1983-01-01
Heat Flow modeled for moving or stationary rod shaped sample inside directional-solidification furnace. Program effectively models one-dimensional heat flow in translating or motionless rod-shaped sample inside of directionalsolidification furnace in which adiabatic zone separates hot zone and cold zone. Applicable to systems for which Biot numbers in hot and cold zones are less than unity.
Acoustic propagation in rigid ducts with blockage
NASA Technical Reports Server (NTRS)
El-Raheb, M.; Wagner, P.
1982-01-01
Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.
NASA Astrophysics Data System (ADS)
Liu, Ying; Wen, Zhi; Lou, Guofeng; Li, Zhi; Yong, Haiquan; Feng, Xiaohong
2014-12-01
In a rotary hearth furnace (RHF) the direct reduction of composite pellets and processes of heat and mass transfer as well as combustion in the chamber of RHF influence each other. These mutual interactions should be considered when an accurate model of RHF is established. This paper provides a combined model that incorporates two sub-models to investigate the effects of C/O mole ratio in the feed pellets on the reduction kinetics and heat and mass transfer as well as combustion processes in the chamber of a pilot-scale RHF. One of the sub-models is established to describe the direct reduction process of composite pellets on the hearth of RHF. Heat and mass transfer within the pellet, chemical reactions, and radiative heat transfer from furnace walls and combustion gas to the surface of the pellet are considered in the model. The other sub-model is used to simulate gas flow and combustion process in the chamber of RHF by using commercial CFD software, FLUENT. The two sub-models were linked through boundary conditions and heat, mass sources. Cases for pellets with different C/O mole ratio were calculated by the combined model. The calculation results showed that the degree of metallization, the total amounts of carbon monoxide escaping from the pellet, and heat absorbed by chemical reactions within the pellet as well as CO and CO2 concentrations in the furnace increase with the increase of C/O mole ratio ranging from 0.6 to 1.0, when calculation conditions are the same except for C/O molar ratio. Carbon content in the pellet has little influence on temperature distribution in the furnace under the same calculation conditions except for C/O mole ratio in the feed pellets.
Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Yee, S.; Baker, J.
2015-02-01
In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less
Burner Rig in the Material and Stresses Building
1969-11-21
A burner rig heats up a material sample in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Materials technology is an important element in the successful development of advanced airbreathing and rocket propulsion systems. Different types of engines operate in different environments so an array of dependable materials is needed. NASA Lewis began investigating the characteristics of different materials shortly after World War II. In 1949 the materials group was expanded into its own division. The Lewis researchers sought to study and test materials in environments that simulate the environment in which they would operate. The Materials and Stresses Building, built in 1949, contained a number of laboratories to analyze the materials. They are subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The Metallographic Laboratory possessed six x-ray diffraction machines, two metalloscopes, and other equipment. The Furnace Room had two large induction machines, a 4500⁰ F graphite furnace, and heat treating equipment. The Powder Laboratory included 60-ton and 3000-ton presses. The Stresses Laboratory included stress rupture machines, fatigue machines, and tensile strength machines.
12. INTERIOR VIEW OF SINGLE BAY SLOTTED TYPE FURNACE (LEFT) ...
12. INTERIOR VIEW OF SINGLE BAY SLOTTED TYPE FURNACE (LEFT) AND CHAMBERSBURG DROP HAMMER OPERATED BY JEFF HOHMAN (RIGHT); THE FURNACE IS USED TO PRE-HEAT THE STEEL PRIOR TO FORGING, TOOL IS POST HOLE DIGGER WITH TAMPING BAR - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV
A Heat and Mass Transfer Model of a Silicon Pilot Furnace
NASA Astrophysics Data System (ADS)
Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald
2017-10-01
The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.
4. Within building #6 chain was heattreated. On the left ...
4. Within building #6 chain was heat-treated. On the left are the overhead dumpers, which loaded tire chain into the rotary atmospheric furnaces (missing). On the right is the conveyor which pulled the heat-treated chain out of the quencher (cooking), situated beneath the furnaces. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
[Variables effecting casting accuracy of quick heating casting investments].
Takahashi, H; Nakamura, H; Iwasaki, N; Morita, N; Habu, N; Nishimura, F
1994-06-01
Recently, several new products of investments for "quick heating" have been put on the Japanese market. The total casting procedure time for this quick heating method involves only one hour; 30-minutes waiting after the start of mixing before placing the mold directly into the 700 degrees C furnace and 30-minutes heating in the furnace. The purpose of this study was to evaluate two variables effecting casting accuracy using these new investments. The effect of thickness of the casting liner inside the casting ring and the effect of waiting time before placing the mold into the 700 degrees C furnace were evaluated. A stainless-steel die with a convergence angle of 8 degrees was employed. Marginal discrepancies of the crown between the wax patterns and castings were measured. The size of the cast crown became larger when the thickness of the ring liner was thick and when the waiting time before placing the mold into the furnace was long. These results suggest that these new investments have the advantage of providing sound castings using short-time casting procedures. However, it is necessary to pay careful attention to the casting conditions for obtaining reproducible castings.
Ferrosilicon smelting in a direct current furnace
Dosaj, Vishu D.; May, James B.
1992-12-29
The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.
Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Yee, S.; Baker, J.
2015-02-01
In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is providedmore » by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... lead bullion. (g) Electric smelting furnace means any furnace in which the heat necessary for smelting of the lead sulfide ore concentrate charge is generated by passing an electric current through a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... lead bullion. (g) Electric smelting furnace means any furnace in which the heat necessary for smelting of the lead sulfide ore concentrate charge is generated by passing an electric current through a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... lead bullion. (g) Electric smelting furnace means any furnace in which the heat necessary for smelting of the lead sulfide ore concentrate charge is generated by passing an electric current through a...
Numerical study of bituminous coal combustion in a boiler furnace with bottom blowing
NASA Astrophysics Data System (ADS)
Zroychikov, N. A.; Kaverin, A. A.
2016-11-01
Results obtained by the numerical study of a solid fuel combustion scheme with bottom blowing using Ekibastuz and Kuznetsk bituminous coals of different fractional makeup are presented. Furnace chambers with bottom blowing provide high-efficiency combustion of coarse-grain coals with low emissions of nitrogen oxides. Studying such a combustion scheme, identification of its technological capabilities, and its further improvement are topical issues. As the initial object of study, we selected P-57-R boiler plant designed for burning of Ekibastuz bituminous coal in a prismatic furnace with dry-ash (solid slag) removal. The proposed modernization of the furnace involves a staged air inflow under the staggered arrangement of directflow burners (angled down) and bottom blowing. The calculation results revealed the specific aerodynamics of the flue gases, the trajectories of solid particles in the furnace chamber, and the peculiarities of the fuel combustion depending on the grinding fineness. It is shown that, for coal grinding on the mill, the overall residue on the screen plate of 90 µm ( R 90 ≤ 27% for Ekibastuz coal and R 90 ≤ 15% for Kuznetsk coal) represents admissible values for fuel grind coarsening in terms of economic efficiency and functional reliability of a boiler. The increase in these values leads to the excess of regulatory heat losses and unburned combustible losses. It has been established that the change in the grade of the burned coal does not significantly affect the flow pattern of the flue gases, and the particles trajectory is essentially determined by the elemental composition of the fuel.
Fabrication of Thin Film Heat Flux Sensors
NASA Technical Reports Server (NTRS)
Will, Herbert A.
1992-01-01
Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.
16 CFR Appendix G4 to Part 305 - Mobile Home Furnaces
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Mobile Home Furnaces G4 Appendix G4 to Part... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix G4 to Part 305—Mobile Home Furnaces Manufacturer's rated heating capacities (Btu's/hr.) Range of...
16 CFR Appendix G4 to Part 305 - Mobile Home Furnaces
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Mobile Home Furnaces G4 Appendix G4 to Part... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix G4 to Part 305—Mobile Home Furnaces Manufacturer's rated heating capacities (Btu's/hr.) Range of...
16 CFR Appendix G4 to Part 305 - Mobile Home Furnaces
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Mobile Home Furnaces G4 Appendix G4 to Part... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix G4 to Part 305—Mobile Home Furnaces Manufacturer's rated heating capacities (Btu's/hr.) Range of...
16 CFR Appendix G4 to Part 305 - Mobile Home Furnaces
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Mobile Home Furnaces G4 Appendix G4 to Part... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix G4 to Part 305—Mobile Home Furnaces Manufacturer's rated heating capacities (Btu's/hr.) Range of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... Oxygen Furnaces AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is... carbon monoxide (CO) emissions from basic oxygen furnaces (BOFs) at steel mills in the State of Maryland... blast furnace and scrap metal which is heated with oxygen to produce molten metal. The molten metal is...
NASA Astrophysics Data System (ADS)
Kondrashov, V. P.; Pogrebisskiy, M. Ya; Lykov, A. G.; Rabinovich, V. L.; Bulgakov, A. S.
2018-02-01
Ways of increase of ore-heating electric furnaces, used for production of silicomanganese, engineering-and-economical performance are analyzed. Questions of data of the electric, thermal and technological modes of the furnace functioning collecting and processing for use in operation of an advanced control system of the furnace providing increase in technical and economic efficiency of technological process and an adaptability to quality of burden stock are considered.
Ferrosilicon smelting in a direct current furnace
Dosaj, V.D.; May, J.B.
1992-12-29
The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.
Increasing the efficiency of the condensing boiler
NASA Astrophysics Data System (ADS)
Zaytsev, O. N.; Lapina, E. A.
2017-11-01
Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2014-01-01
This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less
Clark, J.R.; Viets, J.G.
1981-01-01
The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.
NASA Astrophysics Data System (ADS)
Nagarajan, S. G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.
2018-04-01
Transient simulation has been carried out for analyzing the heat transfer properties of Directional Solidification (DS) furnace. The simulation results revealed that the additional heat exchanger block under the bottom insulation on the DS furnace has enhanced the control of solidification of the silicon melt. Controlled Heat extraction rate during the solidification of silicon melt is requisite for growing good quality ingots which has been achieved by the additional heat exchanger block. As an additional heat exchanger block, the water circulating plate has been placed under the bottom insulation. The heat flux analysis of DS system and the temperature distribution studies of grown ingot confirm that the established additional heat exchanger block on the DS system gives additional benefit to the mc-Si ingot.
Code of Federal Regulations, 2010 CFR
2010-07-01
... containing copper as its predominant constituent, and lesser amounts of zinc, tin, lead, or other metals. (b... heat required in the production of refined brass or bronze. (d) Blast furnace means any furnace used to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... containing copper as its predominant constituent, and lesser amounts of zinc, tin, lead, or other metals. (b... heat required in the production of refined brass or bronze. (d) Blast furnace means any furnace used to...
Local Dynamics of Chemical Kinetics at Different Phases of Nitriding Process
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Firat
2015-08-01
The local dynamics of chemical kinetics at different phases of the nitriding process have been studied. The calculations are performed under the conditions where the temperature and composition data are provided experimentally from an in-service furnace. Results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It is shown that if it is available in the furnace, the adsorption of the N2 gas can seemingly start at temperatures as low as 200 °C. However, at such low temperatures, as the diffusion into the material is very unlikely, this results in the surface poisoning. It becomes clear that, contrary to common knowledge, the nitriding heat treatment with ammonia as a nitrogen-providing medium is possible at temperatures like 400 °C. Under these conditions, however, the presence of excess amounts of product gas N2 in the furnace atmosphere suppresses the forward kinetics in the nitriding process. It seems that the best operating point in the nitriding heat treatment is achieved with a mixture of 6% N2. When the major nitriding species NH3 is substituted by N2 and the N2 fraction increases above 30%, the rate of the forward reaction decreases drastically, so that there is no point to continue the furnace operation any further. Hence, during the initial heating phase, the N2 gas must be purged from the furnace to keep its fraction less than 30% before the furnace reaches the temperature where the reaction starts.
Control of carbon balance in a silicon smelting furnace
Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.
1992-12-29
The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.
Hybrid fluidized bed combuster
Kantesaria, Prabhudas P.; Matthews, Francis T.
1982-01-01
A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.
Improved Casting Furnace Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney; Tolman, David Donald
In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.
Method and apparatus for melting glass batch
Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.
1988-01-01
A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.
40 CFR 420.20 - Applicability; description of the sintering subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... resulting from sintering operations conducted by the heating of iron bearing wastes (mill scale and dust from blast furnaces and steelmaking furnaces) together with fine iron ore, limestone, and coke fines in...
40 CFR 420.20 - Applicability; description of the sintering subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... resulting from sintering operations conducted by the heating of iron bearing wastes (mill scale and dust from blast furnaces and steelmaking furnaces) together with fine iron ore, limestone, and coke fines in...
40 CFR 420.20 - Applicability; description of the sintering subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... resulting from sintering operations conducted by the heating of iron bearing wastes (mill scale and dust from blast furnaces and steelmaking furnaces) together with fine iron ore, limestone, and coke fines in...
40 CFR 420.20 - Applicability; description of the sintering subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... resulting from sintering operations conducted by the heating of iron bearing wastes (mill scale and dust from blast furnaces and steelmaking furnaces) together with fine iron ore, limestone, and coke fines in...
40 CFR 420.20 - Applicability; description of the sintering subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... resulting from sintering operations conducted by the heating of iron bearing wastes (mill scale and dust from blast furnaces and steelmaking furnaces) together with fine iron ore, limestone, and coke fines in...
102. Giullotine type gate (inclosed position to regulate furnace exhaust ...
102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL
Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaman, John
2013-01-14
The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel;more » however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.« less
Method of manufacturing metallic products such as sheet by cold working and flash anealing
Hajaligol, Mohammad R.; Sikka, Vinod K.
2001-01-01
A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.
Method of manufacturing metallic products such as sheet by cold working and flash annealing
Hajaligol, Mohammad R.; Sikka, Vinod K.
2000-01-01
A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.
Pulsed Laser Annealing of Carbon
NASA Astrophysics Data System (ADS)
Abrahamson, Joseph P.
This dissertation investigates laser heating of carbon materials. The carbon industry has been annealing carbon via traditional furnace heating since at least 1800, when Sir Humphry Davy produced an electric arc with carbon electrodes made from carbonized wood. Much knowledge has been accumulated about carbon since then and carbon materials have become instrumental both scientifically and technologically. However, to this day the kinetics of annealing are not known due to the slow heating and cooling rates of furnaces. Additionally, consensus has yet to be reached on the cause of nongraphitizability. Annealing trajectories with respect to time at temperature are observed from a commercial carbon black (R250), model graphitizable carbon (anthracene coke) and a model nongraphitizable carbon (sucrose char) via rapid laser heating. Materials were heated with 1064 nm and 10.6 im laser radiation from a Q-switched Nd:YAG laser and a continuous wave CO2 laser, respectively. A pulse generator was used reduce the CO2 laser pulse width and provide high temporal control. Time-temperature-histories with nanosecond temporal resolution and temperature reproducibility within tens of degrees Celsius were determined by spectrally resolving the laser induced incandescence signal and applying multiwavelength pyrometry. The Nd:YAG laser fluences include: 25, 50, 100, 200, 300, and 550 mJ/cm2. The maximum observed temperature ranged from 2,400 °C to the C2 sublimation temperature of 4,180 °C. The CO2 laser was used to collect a series of isothermal (1,200 and 2,600 °C) heat treatments versus time (100 milliseconds to 30 seconds). Laser heated samples are compared to furnace annealing at 1,200 and 2,600 °C for 1 hour. The material transformation trajectory of Nd:YAG laser heated carbon is different than traditional furnace heating. The traditional furnace annealing pathway is followed for CO2 laser heating as based upon equivalent end structures. The nanostructure of sucrose char after 5 seconds of isothermal annealing at 2,600 °C is comprised almost entirely of quasi-spherical closed shell particles that are free of sp3 and oxygen content. With additional time at temperature the particles unravel and propagative particle opening occurs throughout the material. The irregular pore structure found in the end product is a result of particle unraveling. The structures found in heat treated sucrose char believed to contain odd membered rings are not manufactured during the annealing process due to impinging growth of stacks. Thus, odd membered rings are likely present in the starting non-graphitizable char. Furnace annealing of cokes and chars produced from: oxygen containing compounds (polyfurfuryl alcohol and anthanthrone), from a five membered ring containing polyaromatic hydrocarbon (fluorene), and from sulfur containing decant oil and a blend of anthracene-dibenzothiophene were compared to furnace annealed anthracene coke and sucrose char. The majority of initial oxygen content evolved out during low temperature carbonization. The intermediate species formed after oxygen evolution dictated the resulting carbon skeleton and thus the graphitizability. Carbonization of anthanthrone resulted in a graphitizable coke. It is proposed that carbon monoxide loss from anthanthrone results in the formation of perylene. An obvious resemblance was observed in structure between heat treated sucrose and polyfurfuryl alcohol char as compared to heated treated char embedded with 5 membered rings via carbonization of fluorene. Thus, providing evidence that 5 membered rings are present in the virgin chars and are the cause of non-graphitizability. The heteroatom sulfur effects carbon structure in a different way as compared to oxygen. Sulfur is thermally stable in carbon up to ˜ 1,000 °C and thus plays little role in the initial low temperature (500 °C) carbonization. As such it imparts a relatively unobservable impact on nanostructure, but rather acts to cause micro-cracks upon rapid evolution in the form of H2S and CS2, upon subsequent heat treatment. Laboratory generated synthetic soot from benzene and benzene-thiophene were Nd:YAG laser and furnace annealed. Furnace annealing of sulfur doped synthetic soot results in cracks and rupturing due to the high pressures caused by explosive sulfur evolution at elevated temperature. Whereas Nd:YAG laser heating of the sulfur doped sample acted to induce curvature. The observed curvature is owed to annealing occurring simultaneously with sulfur evolution. The unset lamellae are strongly influenced by the defect formed upon sulfur evolution. Coke and char samples were prepared via carbonization in sealed tubing reactors. The extent of mesophase development was assessed by measuring the materials optical anisotropy with a polarized light microscope. Physical and chemical transformations from annealing were measured with electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction, and electron energy loss spectroscopy. Virgin samples and traditional furnace annealed samples available in bulk were analyzed with X-ray diffraction. The potential technological importance of laser annealing carbon is demonstrated as annealing can be performed continuously and rapidly. Examples of material processing and synthesis not possible via traditional furnace annealing are provided.
Shear transfer capacity of reinforced concrete exposed to fire
NASA Astrophysics Data System (ADS)
Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay
2018-04-01
Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.
Microscale Waste Heat Driven Cooling System
2012-05-02
Concept Slow, expensive, one‐at‐a‐time process Nickel Brazing Lower Cost Method Can braze 50 – 200 in single furnace run (vs 1 – 2 using Diffusion Bonding...Potential Use of Continuous Belt‐Type Furnace Nickel Brazing Technical Issues Micro channel size reduction and/or blockage Amount of Alloy...Pressure Tightness vs. Channel Blockage Alloy Application: Spray, Plating, Foil Furnace Temperature and Heat/Cool Rates Sustainable Products for a
BELL ANNEALING FURNACES FOR LIGHT GAUGE PRODUCTS (LESS THE 10/1000" ...
BELL ANNEALING FURNACES FOR LIGHT GAUGE PRODUCTS (LESS THE 10/1000" THICKNESS). COILS INSIDE COVERING SHELLS ARE HEATED BY GAS-FIRED JETS TO TEMPERATURES OF 280-400C., OVER 3-4 HOURS. AFTER COMPLETION OF THE HEATING CYCLE, COILS ARE COOLED SLOWLY TO BELOW 100 DEGREES CELSIUS BEFORE THE SHELL IS REMOVED AND THE COILS REMOVED. THE ENTIRE PROCESS TAKES 24 HOURS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY
Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan
2016-05-11
Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.
A 3D mathematical model for the horizontal anode baking furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.
In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variationmore » of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.« less
Thermochemical hydrogen production based on magnetic fusion
NASA Astrophysics Data System (ADS)
Krikorian, O. H.; Brown, L. C.
Preliminary results of a DoE study to define the configuration and production costs for a Tandem Mirror Reactor (TMR) heat source H2 fuel production plant are presented. The TMR uses the D-T reaction to produce thermal energy and dc electrical current, with an Li blanket employed to breed more H-3 for fuel. Various blanket designs are being considered, and the coupling of two of them, a heat pipe blanket to a Joule-boosted decomposer, and a two-temperature zone blanket to a fluidized bed decomposer, are discussed. The thermal energy would be used in an H2SO4 thermochemical cycler to produce the H2. The Joule-boosted decomposer, involving the use of electrically heated commercial SiC furnace elements to transfer process heat to the thermochemical H2 cycle, is found to yield H2 fuel at a cost of $12-14/GJ, which is the projected cost of fossil fuels in 30-40 yr, when the TMR H2 production facility would be operable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
Multiple sensor multifrequency eddy current monitor for solidification and growth
NASA Technical Reports Server (NTRS)
Wallace, John
1990-01-01
A compact cylindrical multisensor eddy current measuring system with integral furnace was develop to monitor II-VI crystal growth to provide interfacial information, solutal segregation, and conductivities of the growth materials. The use of an array of sensors surrounding the furnace element allows one to monitor the volume of interest. Coupling these data with inverse multifrequency analysis allows radial conductivity profiles to be generated at each sensor position. These outputs were incorporated to control the processes within the melt volume. The standard eddy current system functions with materials whose electric conductivities are as low as 2E2 Mhos/m. A need was seen to extend the measurement range to poorly conducting media so the unit was modified to allow measurement of materials conductivities 4 order of magnitude lower and bulk dielectric properties. Typically these included submicron thick films and semiinsulating GaAs. This system was used to monitor complex heat transfer in grey bodies as well as semiconductor and metallic solidification.
Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants
2016-06-01
The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.
Data summary report for fission product release Test VI-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, M.F.; Lorentz, R.A.; Travis, J.R.
Test VI-7 was the final test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the Monticello boiling water reactor (BWR). The fuel had experienced a burnup of {approximately}-40 Mwd/kg U. It was heated in an induction furnace for successive 20-min periods at 2000 and 2300 K in a moist air-helium atmosphere. Integral releases were 69% for {sup 85}Kr, 52% for {sup 125}Sb, 71% for both {sup 134}Cs and {sup 137}Cs, and 0.04% for {sup 154}Eu. For the non-gamma-emitting species, release values for 42% for I, 4.1% formore » Ba, 5.3% for Mo, and 1.2% for Sr were determined. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.89 g, with 37% being collected on the thermal gradient tubes and 63% downstream on filters. Posttest examination of the fuel specimen indicated that most of the cladding was completely oxidized to ZrO{sub 2}, but that oxidation was not quite complete at the upper end. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL-Booth Model.« less
Ultra-high temperature isothermal furnace liners (IFLS) for copper freeze point cells
NASA Astrophysics Data System (ADS)
Dussinger, P. M.; Tavener, J. P.
2013-09-01
Primary Laboratories use large fixed-point cells in deep calibration furnaces utilizing heat pipes to achieve temperature uniformity. This combination of furnace, heat pipe, and cell gives the smallest of uncertainties. The heat pipe, also known as an isothermal furnace liner (IFL), has typically been manufactured with Alloy 600/601 as the envelope material since the introduction of high temperature IFLs over 40 years ago. Alloy 600/601 is a widely available high temperature material, which is compatible with Cesium, Potassium, and Sodium and has adequate oxidation resistance and reasonable high temperature strength. Advanced Cooling Technologies, Inc. (ACT) Alloy 600/Sodium IFLs are rated to 1100°C for approximately 1000 hours of operation (based on creep strength). Laboratories interested in performing calibrations and studies around the copper freezing point (1084.62°C) were frustrated by the 1000 hours at 1100°C limitation and the fact that expensive freeze-point cells were getting stuck and/or crushed inside the IFL. Because of this growing frustration/need, ACT developed an Ultra High Temperature IFL to take advantage of the exceptional high temperature strength properties of Haynes 230.
DEMONSTRATION BULLETIN: THE PLASMA CENTRIFUGAL FURNACE RETECH, INC.
The plasma centrifugal furnace is a thermal technology which uses the heat generated from a plasma torch to decontaminate metal and organic contaminated waste. This is accomplished by melting metal-bearing solids and, in the process, thermally destroying organic contaminants. The...
Calculation of gas release from DC and AC arc furnaces in a foundry
NASA Astrophysics Data System (ADS)
Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.
2016-12-01
A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.
NASA Technical Reports Server (NTRS)
Varma, A.; Lau, C.; Mukasyan, A.
2003-01-01
Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.
NASA Astrophysics Data System (ADS)
Blaszczuk, Artur; Nowak, Wojciech
2016-10-01
In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.
NASA Astrophysics Data System (ADS)
Méchi, Rachid; Farhat, Habib; Said, Rachid
2016-01-01
Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO2-H2O- N2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces.
NASA Astrophysics Data System (ADS)
Peterson, Robb Alex
Northern Minnesota's iron mines are the starting point for the majority of the steel that gets produced in the United States. Their taconite processing plants use heat in furnaces to oxidize and indurate iron in the final stage of making a taconite pellet. Facilities can increase efficiencies when refractory service life is maintained. Efficiencies gained include: less fuel used, better quality control, better furnace control, and less mechanical component maintenance. Furnace refractory linings fail when the cracks that develop in them are uncontrolled or too large. These failures allow heat and gases retained by the lining to reach structural or mechanical components. Furnace control and efficiencies are also compromised when heat and gases are allowed to short circuit or escape the system. These failures are primarily the result of thermal of shock and expansion. It is common place to add stainless steel needle reinforcement to a monolithic refractory in an effort to counteract these effects. This study used several standard ASTM testing procedures to test 65% alumina mullite based refractory samples with 304 and 406 grade stainless steel needles. Mechanical property data gathered was used to analyze performance. The study found that adding reinforcement does not increase initial Compression and Cold Modulus of Ruptures strengths, however, after prolonged heat and thermal shock exposure, needles help maintain integrity and mechanical properties of samples. The study also found that corrosion due to oxidation was a major contributing factor to the way needles performed; and concluded that a concentration of 3% 406 "Alfa 1" stainless steel reinforcing needles added to the working lining of a taconite furnace is recommended.
Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies
NASA Astrophysics Data System (ADS)
Hang, N. Tran Thi; Lüdtke, U.
2018-05-01
The foundry industry worldwide commonly uses induction channel furnaces to heat and melt alloys. The operating frequency is one of the main issues when constructing an efficient channel furnace. It is possible to choose operating frequencies lower than 50 Hz using a modern IGBT power converter. This work shows the simulation results using ANSYS with the goal of finding the best electrical frequency necessary to operate the induction furnace. First, a two-dimensional model is used to calculate the efficiency depending on frequency. Then, the channel model is extended to a more realistic three-dimensional model. Finally, the influence of frequency, inductor profile, and several components of the induction channel furnace are discussed.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
1998-01-01
This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and Proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The proto-type heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/m2 can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micro-meteoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2002-01-01
This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The prototype heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/sq m can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micrometeoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.
Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry
NASA Astrophysics Data System (ADS)
Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.
2002-03-01
The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.
ERIC Educational Resources Information Center
Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.
2004-01-01
An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…
Jet-controlled freeze valve for use in a glass melter
Routt, K.R.
1985-07-29
A drain valve for use in furnace for the melting of thermoplastic material is disclosed. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace.
Method and apparatus for thermal processing of semiconductor substrates
Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.
2002-01-01
An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.
Method and apparatus for thermal processing of semiconductor substrates
Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.
2000-01-01
An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.
MoS2 thin films prepared by sulfurization
NASA Astrophysics Data System (ADS)
Sojková, M.; Chromik, Å.; Rosová, A.; Dobročka, E.; Hutár, P.; Machajdík, D.; Kobzev, A. P.; Hulman, M.
2017-08-01
Sulfurization of a Mo layer is one of the most used methods for preparation of thin MoS2 films. In the method, a sulfur powder and Mo covered substrate are placed in different positions within a furnace, and heated separately. This requires a furnace having at least two zones. Here, we present a simplified version of the method where a one-zone tube furnace was used. A molybdenum film on a substrate and a sulfur powder were placed in the center of the furnace and heated at temperatures above 800°C. Mo films transform into MoS2 in vapors of sulphur at high temperatures. As-prepared films were characterized by number of techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman, Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). It appears that one-zone sulfurization, with just one annealing temperature used, is a suitable method for fabrication of MoS2 thin films. This method is fast, cheap and easy to scale up.
NASA Astrophysics Data System (ADS)
Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad
2018-03-01
In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.
1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING ...
1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING AT BATCH FURNACES, QUENCHING PIT IN FOREGROUND. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).
Apparatus and method for microwave processing of materials
Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.
1996-05-28
Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.
40 CFR 63.11532 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Electric arc furnace means any furnace wherein electrical energy is converted to heat energy by..., slag, carbonaceous material, and/or limestone. Control device means the air pollution control equipment... operations means the use of electric and electrolytic processes to purify metals or reduce metallic compounds...
40 CFR 63.11532 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Electric arc furnace means any furnace wherein electrical energy is converted to heat energy by..., slag, carbonaceous material, and/or limestone. Control device means the air pollution control equipment... operations means the use of electric and electrolytic processes to purify metals or reduce metallic compounds...
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... blown into molten steel for further refining. Capture system means the equipment (including ducts, hoods... furnace that produces molten steel and heats the charge materials with electric arcs from carbon... furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels...
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... blown into molten steel for further refining. Capture system means the equipment (including ducts, hoods... furnace that produces molten steel and heats the charge materials with electric arcs from carbon... furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels...
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... blown into molten steel for further refining. Capture system means the equipment (including ducts, hoods... furnace that produces molten steel and heats the charge materials with electric arcs from carbon... furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels...
Catalytic reactor with improved burner
Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.
1981-01-01
To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less
NASA Technical Reports Server (NTRS)
Batur, Celal
1991-01-01
The objective of this research is to control the dynamics of multizone programmable crystal growth furnaces. Due to the inevitable heat exchange among different heating zones and the transient nature of the process, the dynamics of multizone furnaces is time varying, distributed, and therefore complex in nature. Electrical power to heating zones and the translational speed of the ampoule are employed as inputs to control the dynamics. Structural properties of the crystal is the ultimate aim of this adaptive control system. These properties can be monitored in different ways. Following an order of complexity, these may include: (1) on line measurement of the material optical properties such as the refractive index of crystal; (2) on line x-ray imaging of the interface topology; (3) on line optical quantification of the interface profile such as the determination of concavity or convexity of the interface shape; and (4) on line temperature measurement at points closest to the material such as measurements of the ampoule's outside and inside surface temperatures. The research performed makes use of the temperature and optical measurements, specified in (3) and (4) as the outputs of furnace dynamics. However, if the instrumentation is available, the proposed control methodology can be extended to the measurements listed in (1) and (2).
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-09-02
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-01-01
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom
2013-10-15
This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most effective treatment process, achieving consistently significant leaching stabilization, while also effectively washing out Cl ions, a requirement for the utilization of the ashes in construction applications. The benefits of carbonation were linked to the formation of significant quantities of Ca-carbonates, including appreciable quantities of the Aragonite polymorph formed in the slurry carbonated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of an Austenitization Kinetics Model for 22MnB5 Steel
NASA Astrophysics Data System (ADS)
Di Ciano, M.; Field, N.; Wells, M. A.; Daun, K. J.
2018-03-01
This paper presents a first-order austenitization kinetics model for 22MnB5 steel, commonly used in hot forming die quenching. Model parameters are derived from constant heating rate dilatometry measurements. Vickers hardness measurements made on coupons that were quenched at intermediate stages of the process were used to verify the model, and the Ac 1 and Ac 3 temperatures inferred from dilatometry are consistent with correlations found in the literature. The austenitization model was extended to consider non-constant heating rates typical of industrial furnaces and again showed reasonable agreement between predictions and measurements. Finally, the model is used to predict latent heat evolution during industrial heating and is shown to be consistent with values inferred from thermocouple measurements of furnace-heated 22MnB5 coupons reported in the literature.
Modeling of Radiative Heat Transfer in an Electric Arc Furnace
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen
2017-12-01
Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.
16 CFR Appendix G2 to Part 305 - Furnaces-Electric
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...
16 CFR Appendix G2 to Part 305 - Furnaces-Electric
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...
16 CFR Appendix G2 to Part 305 - Furnaces-Electric
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...
16 CFR Appendix G2 to Part 305 - Furnaces-Electric
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...
16 CFR Appendix G1 to Part 305 - Furnaces-Gas
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Gas Manufacturer's rated heating capacities (Btu's/hr.) Range of annual fuel...
A Solar Furnace for Your School
ERIC Educational Resources Information Center
Meyer, Edwin C.
1978-01-01
Industrial arts students at Litchfield (Minnesota) High School designed and built a solar furnace for research and experimentation and to help heat the industrial arts department. A teacher describes the construction process and materials and the temperature record keeping by the physics classes. Student and community interest has been high. (MF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; B. Anamerie; T.C. Eisele
The pig iron nugget process was developed as an alternative to the traditional blast furnace process by Kobe Steel. The process aimed to produce pig iron nuggets, which have similar chemical and physical properties to blast furnace pig iron, in a single step. The pig iron nugget process utilizes coal instead of coke and self reducing and fluxing dried green balls instead of pellets and sinters. In this process the environmental emissions caused by coke and sinter production, and energy lost between pellet induration (heat hardening) and transportation to the blast furnace can be eliminated. The objectives of this researchmore » were to (1) produce pig iron nuggets in the laboratory, (2) characterize the pig iron nugget produced and compare them with blast furnace pig iron, (3) investigate the furnace temperature and residence time effects on the pig iron nugget production, and (4) optimize the operational furnace temperatures and residence times. The experiments involved heat treatment of self reducing and fluxing dried green balls at various furnace temperatures and residence times. Three chemically and physically different products were produced after the compete reduction of iron oxides to iron depending on the operational furnace temperatures and/or residence times. These products were direct reduced iron (DRI), transition direct reduced iron (TDRI), and pig iron nuggets. The increase in the carbon content of the system as a function of furnace temperature and/or residence time dictated the formation of these products. The direct reduced iron, transition direct reduced iron, and pig iron nuggets produced were analyzed for their chemical composition, degree of metallization, apparent density, microstructure and microhardness. In addition, the change in the carbon content of the system with the changing furnace temperature and/or residence time was detected by optical microscopy and Microhardness measurements. The sufficient carbon dissolution required for the production of pig iron nuggets was determined. It was determined that pig iron nuggets produced had a high apparent density (6.7-7.2 gr/cm3), highly metallized, slag free structure, high iron content (95-97%), high microhardness values (> 325 HVN) and microstructure similar to white cast iron. These properties made them a competitive alternative to blast furnace pig iron.« less
Solubility of hydrogen in metals and its effect of pore-formation and embrittlement. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shahani, H. R.
1984-01-01
The effect of alloying elements on hydrogen solubility were determined by evaluating solubility equations and interaction coefficients. The solubility of dry hydrogen at one atmosphere was investigated in liquid aluminum, Al-Ti, Al-Si, Al-Fe, liquid gold, Au-Cu, and Au-Pd. The design of rapid heating and high pressure casting furnaces used in meta foam experiments is discussed as well as the mechanism of precipitation of pores in melts, and the effect of hydrogen on the shrinkage porosity of Al-Cu and Al-Si alloys. Hydrogen embrittlement in iron base alloys is also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii
The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.
2013-05-16
Furthermore, MoS2 also shows promise for use in logic circuits and optoelectronic devices, and it is a promising material for use on flexible and...onto an auxiliary silicon substrate and placed inside a tube furnace with the growth substrates surrounding it. Sulfur powder, placed upstream near the...opening of the furnace at an approximate temperature of 600 C, was subli- mated for use as the sulfur vapor source. The furnace was heated to a peak
NASA Astrophysics Data System (ADS)
Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke
Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.
System and method for making metallic iron with reduced CO.sub.2 emissions
Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan
2014-10-14
A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.
Composition and methods of preparation of target material for producing radionuclides
Seropeghin, Yurii D; Zhuikov, Boris L
2013-05-28
A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.
Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System
NASA Astrophysics Data System (ADS)
Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila
2017-10-01
Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal properties that low in melting point and have high specific heat capacity which could be a potential heat transfer fluid in heat recovery application.
NASA Astrophysics Data System (ADS)
Winardi, Y.; Triyono; Muhayat, N.
2018-03-01
The aim of the present study was to investigate the effect temperature of heat treatment process on the interfacial microstructure and mechanical properties of cemented carbide/carbon steel single lap joint brazed using Ag based alloy filler metal. The brazing process was carried out using torch brazing. Heat treatment process was carried out in induction furnace on the temperature of 700, 725, and 750°C, for 30 minutes. Microstructural examinations and phase analysis were performed using scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS). Shear strength of the joints was measured by the universal testing machine. The results of the microstructural analyses of the brazed area indicate that the increase temperature of treatment lead to the increase of solid solution phase of enrichted Cu. Based on EDS test, the carbon elements spread to all brazed area, which is disseminated by base metals. Shear strength joint is increased with temperature treatment. The highest shear strength of the brazed joint was 214,14 MPa when the heated up at 725°C.
Multiple hearth furnace for reducing iron oxide
Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC
2012-03-13
A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).
Pollution-free, resource recovery, garbage disposal/fuel burning plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, J.P
1989-05-16
A method is described of burning solid combustibles containing potential atmospheric pollutants and of recovering valuable resources from the combustibles while preventing the release of pollutants into the atmosphere, including the steps of introducing the combustibles through an airlock into a furnace substantially sealed against the atmosphere; introducing combustion-supporting fluid into the furnace; burning the combustibles at a temperature high enough to melt at least some of the inorganic components contained therin; removing and recovering solid components from the furnace through a gas lock; removing and recovering molten components from the furnace through a conduit and valve; passing high temperaturegaseousmore » products of combustion from the furnace through heat exchanger means utilizing boiler tubes carrying the gaseous products surrounded by water to generate steam as a useful product.« less
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Design and Development of a Residential Gas-Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac
2017-01-01
Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less
7. VIEW OF THE HOT BED FOR THE CONTINUOUS ELECTRIC ...
7. VIEW OF THE HOT BED FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING LINE AT THE HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA
An induction reactor for studying crude-oil oxidation relevant to in situ combustion.
Bazargan, Mohammad; Lapene, Alexandre; Chen, Bo; Castanier, Louis M; Kovscek, Anthony R
2013-07-01
In a conventional ramped temperature oxidation kinetics cell experiment, an electrical furnace is used to ramp temperature at a prescribed rate. Thus, the heating rate of a kinetics cell experiment is limited by furnace performance to heating rates of about 0.5-3 °C/min. A new reactor has been designed to overcome this limit. It uses an induction heating method to ramp temperature. Induction heating is fast and easily controlled. The new reactor covers heating rates from 1 to 30 °C/min. This is the first time that the oxidation profiles of a crude oil are available over such a wide range of heating rate. The results from an induction reactor and a conventional kinetics cell at roughly 2 °C/min are compared to illustrate consistency between the two reactors. The results at low heating rate are the same as the conventional kinetics cell. As presented in the paper, the new reactor couples well with the isoconversional method for interpretation of reaction kinetics.
Three story residence with solar heat--Manchester, New Hampshire
NASA Technical Reports Server (NTRS)
1981-01-01
When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
.... Description of AFUE Inflation Issues Associated with Omitting Cool-Down and Heat-Up Testing for Two-Stage and... to revise a provision concerning the insulation of the flue collector box in order to ensure the... furnaces and boilers that employ the optional procedure to skip [[Page 7683
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... and other inputs to form cylinders that are shot through with electricity and baked to produce... electricity into the furnace, heating the furnace and melting scrap steel. 11. Graphite electrodes oxidize and... consumption of graphite electrodes. 12. Petroleum needle coke, relative to other varieties of coke, is...
Refractory metal shielding /insulation/ increases operating range of induction furnace
NASA Technical Reports Server (NTRS)
Ebihara, B. T.
1965-01-01
Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels.
NASA Astrophysics Data System (ADS)
Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.
2017-02-01
In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion zone by bleeding them from the turning chamber.
NASA Astrophysics Data System (ADS)
Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian
2016-12-01
Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.
Data summary report for fission product release test VI-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, M.F.; Lorenz, R.A.; Travis, J.R.
Test VI-6 was the sixth test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium. The fuel had experienced a burnup of {approximately}42 MWd/kg, with inert gas release during irradiation of {approximately}2%. The fuel specimen was heated in an induction furnace at 2300 K for 60 min, initially in hydrogen, then in a steam atmosphere. The released fission products were collected in three sequentially operated collection trains designed to facilitate sampling and analysis. The fission product inventories in the fuel were measured directlymore » by gamma-ray spectrometry, where possible, and were calculated by ORIGEN2. Integral releases were 75% for {sup 85}Kr, 67% for {sup 129}I, 64% for {sup 125}Sb, 80% for both {sup 134}Cs and {sup 137}Cs, 14% for {sup 154}Eu, 63% for Te, 32% for Ba, 13% for Mo, and 5.8% for Sr. Of the totals released from the fuel, 43% of the Cs, 32% of the Sb, and 98% of the Eu were deposited in the outlet end of the furnace. During the heatup in hydrogen, the Zircaloy cladding melted, ran down, and reacted with some of the UO{sub 2} and fission products, especially Te and Sb. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.57 g, almost equally divided between thermal gradient tubes and filters. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL Diffusion Model.« less
Thermal convection of liquid metal in the titanium reduction reactor
NASA Astrophysics Data System (ADS)
Teimurazov, A.; Frick, P.; Stefani, F.
2017-06-01
The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.
Apparatus and method for microwave processing of materials
Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.
1996-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Computer simulation of rapid crystal growth under microgravity
NASA Astrophysics Data System (ADS)
Hisada, Yasuhiro; Saito, Osami; Mitachi, Koshi; Nishinaga, Tatau
We are planning to grow a Ge single crystal under microgravity by the TR-IA rocket in 1992. The furnace temperature should be controlled so as to finish the crystal growth in a quite short time interval (about 6 min). This study deals with the computer simulation of rapid crystal growth in space to find the proper conditions for the experiment. The crystal growth process is influenced by various physical phenomena such as heat conduction, natural and Marangoni convections, phase change, and radiation from the furnace. In this study, a 2D simulation with axial symmetry is carried out, taking into account the radiation field with a specific temperature distribution of the furnace wall. The simulation program consists of four modules. The first module is applied for the calculation of the parabolic partial differential equation by using the control volume method. The second one evaluates implicitly the phase change by the enthalpy method. The third one is for computing the heat flux from surface by radiation. The last one is for calculating with the Monte Carlo method the view factors which are necessary to obtain the heat flux.
Burnout in the horizontal tubes of a furnace waterwall panel
NASA Astrophysics Data System (ADS)
Kamenetskii, B. Ya.
2009-08-01
An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.
NASA Astrophysics Data System (ADS)
Lavrov, V. V.; Spirin, N. A.
2016-09-01
Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.
Programmable multi-zone furnace for microgravity research
NASA Technical Reports Server (NTRS)
Rosenthal, Bruce N.; Krolikowski, Cathryn R.
1991-01-01
In order to provide new furnace technology to accommodate microgravity research studies and commercial applications in material processes, research has been initiated on the development of the Programmable-Multi-zone Furnace (PMZF). The PMZF is described as a multi-user materials processing furnace facility that is composed of thirty or more heater elements in series on a muffle tube or in a stacked ring-type configuration and independently controlled by a computer. One of the aims of the PMZF project is to allow furnace thermal gradient profiles to be reconfigured without physical modification of the hardware by creating the capability of reconfiguring thermal profiles in response to investigators' requests. The future location of the PMZF facility is discussed; the preliminary science survey results and preliminary conceptual designs for the PMZF are presented; and a review of multi-zone furnace technology is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, R.A.
1981-09-01
Eighteen heat-up tests were run on nine standard and experimental dual component monolithic refractory concrete linings. These tests were run with a five foot diameter by 14-ft high Pressure Vessel/Test Furnace designed to accommodate a 12-inch thick by 5-ft high refractory lining, heat the hot face to 2000/sup 0/F and expose the lining to air or steam pressures up to 150 psig. Results obtained from standard type linings in the test facility indicated that lining degradation duplicated that observed in field installations. The lining performance was significantly improved due to information gained from a systematic study of the cracking thatmore » occurred in the linings; the analysis of the lining strains, shell stresses and acoustic emission results; and the stress analyses performed on the standard and experimental lining designs with the finite element analysis computer programs, REFSAM and RESGAP.« less
Investigation of combustion characteristics of methane-hydrogen fuels
NASA Astrophysics Data System (ADS)
Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.
2015-01-01
Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.
Code of Federal Regulations, 2010 CFR
2010-01-01
... boiler, hot water supply boiler, commercial warm air furnace, instantaneous water heater, storage water heater, or unfired hot water storage tank. Flue loss means the sum of the sensible heat and latent heat... Provisions for Commercial HVAC & Water Heating Products § 431.172 Definitions. The following definitions...
Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool
NASA Astrophysics Data System (ADS)
van der Ham, E.; Ballico, M.; Jahan, F.
2015-08-01
A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.
Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems
NASA Astrophysics Data System (ADS)
Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin
2016-02-01
Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.
Method for forming microspheres for encapsulation of nuclear waste
Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.
1984-01-01
Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential central air conditioners and heat pumps. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards for these products would be technologically feasible and economically justified, and would save a significant amount of energy. In this direct final rule, DOE adopts amended energy conservation standards for residential furnaces and for residential central air conditioners and heat pumps. A notice of proposed rulemaking that proposes identical energy efficiency standards is published elsewhere in this issue of the Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, this final rule will be withdrawn, and DOE will proceed with the proposed rule.
Lance for fuel and oxygen injection into smelting or refining furnace
Schlichting, Mark R.
1994-01-01
A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.
Lance for fuel and oxygen injection into smelting or refining furnace
Schlichting, M.R.
1994-12-20
A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.
Ultra-high vacuum compatible induction-heated rod casting furnace
NASA Astrophysics Data System (ADS)
Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.
2016-06-01
We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.
Ultra-high vacuum compatible induction-heated rod casting furnace.
Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C
2016-06-01
We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential central air conditioners and heat pumps. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards for these products would be technologically feasible and economically justified, and would save a significant amount of energy. In this notice, DOE proposes energy conservation standards for residential furnaces and for residential central air conditioners and heat pumps identical to those set forth in a direct final rule published elsewhere in today's Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, DOE will publish a notice withdrawing the direct final rule and will proceed with this proposed rule.
Optical processing for semiconductor device fabrication
NASA Technical Reports Server (NTRS)
Sopori, Bhushan L.
1994-01-01
A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.
Application of AI techniques to blast furnace operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro
1995-10-01
It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less
Blaugher, Richard D.
1998-05-05
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Vertical two chamber reaction furnace
Blaugher, Richard D.
1999-03-16
A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.
Blaugher, R.D.
1998-05-05
A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
Vertical two chamber reaction furnace
Blaugher, R.D.
1999-03-16
A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.
NASA Astrophysics Data System (ADS)
Wu, Yu-liang; Jiang, Ze-yi; Zhang, Xin-xin; Wang, Peng; She, Xue-feng
2013-07-01
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300°C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace
NASA Astrophysics Data System (ADS)
Zhubrin, S.; Glazov, V.; Guzhov, S.
2017-11-01
A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.
Electric furnace dust: Can you bury the hazard?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManus, G.J.
1996-04-01
Electric furnace waste treatment is moving into high gear, but the exact direction is unclear. On one hand, there is a trend toward complete recycling of the dust captured in furnace baghouses. Iron units as well as zinc and other elements are being reclaimed. On the other side, recent actions by regulators indicate recycling may not be required at all. With the correct chemical stabilization, it appears, dust may simply be placed in ordinary landfill. This paper describes three processes for waste treatment of furnace dust: Super Detox, a process for zinc removal from galvanized scrap before melting, and themore » INMETCO process.« less
Walking beam furnace well-way slot covers at Rouge Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, F. Jr.; Meinzinger, A.D.; Faust, C.H.
1993-07-01
Rouge Steel's 68-in. hot strip mill is served by three walking beam slab reheat furnaces. The first two were commissioned in 1974 and the third was installed in 1980. During the period 1979 to 1981, an intensive plant-wide energy management program to reduce energy consumption was undertaken. A major part of that program involved a comprehensive upgrading of refractory and insulation systems utilized in the walking beam reheat furnaces. A durable system for reducing heat losses through the well-way floor openings associated with walking beam slab reheat furnaces has, in addition to 4 to 5% savings in fuel consumption, reducedmore » maintenance costs. Payback is achieved in four to five months.« less
Fire-tube boiler optimization criteria and efficiency indicators rational values defining
NASA Astrophysics Data System (ADS)
Batrakov, P. A.; Mikhailov, A. G.; Ignatov, V. Yu
2018-01-01
Technical and economic calculations problems solving with the aim of identifying the opportunity to recommend the project for industrial implementation are represented in the paper. One of the main determining factors impacting boiler energy efficiency is the exhaust gases temperature, as well as the furnace volume thermal stress. Fire-tube boilers with different types of furnaces are considered in the study. The fullest analysis of the boiler performance thermal and technical indicators for the following engineering problem: Q=idem, M=idem and evaluation according to η, B is presented. The furnace with the finned ellipse profile application results in the fuel consumption decrease due to a more efficient heat exchange surface of the furnace compared to other examined ones.
Self-tuning multivariable pole placement control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.
1992-01-01
This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.
Method for curing polymers using variable-frequency microwave heating
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.
Fariñas, Juan C; Rucandio, Isabel; Pomares-Alfonso, Mario S; Villanueva-Tagle, Margarita E; Larrea, María T
2016-07-01
An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44. Copyright © 2016 Elsevier B.V. All rights reserved.
System and method for producing metallic iron nodules
Bleifuss, Rodney L [Grand Rapids, MN; Englund, David J [Bovey, MN; Iwasaki, Iwao [Grand Rapids, MN; Lindgren, Andrew J [Grand Rapids, MN; Kiesel, Richard F [Hibbing, MN
2011-09-20
A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.
Effect of Outside Combustion Air on Gas Furnace Efficiency.
1981-10-15
Support Agency REPORT FESA-TS-2104 EFFECT OF OUTSIDE COMBUSTION AIR ON GAS FURNACE EFFICIENCY THOMAS E. BRISBANE Q KATHLEEN L. HANCOCK u JOHNS - MANVILLE SALES...and Dilution Air With No Furnace Setback. 93 AO-A113 4~84 . JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND OEV--ETC F/6 13/ 1 EFFECT OF OUTSIDE...NUMBER(S) Thomas E. Brisbane, Kathleen L. Hancock DAAK 70-78-D-0002 9. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELEMENT. PR.;ECT, TASK Johns
Use of photovoltaics for waste heat recovery
Polcyn, Adam D
2013-04-16
A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.
Modeling of Blast Furnace with Layered Cohesive Zone
NASA Astrophysics Data System (ADS)
Dong, X. F.; Yu, A. B.; Chew, S. J.; Zulli, P.
2010-04-01
An ironmaking blast furnace (BF) is a moving bed reactor involving counter-, co-, and cross-current flows of gas, powder, liquids, and solids, coupled with heat exchange and chemical reactions. The behavior of multiple phases directly affects the stability and productivity of the furnace. In the present study, a mathematical model is proposed to describe the behavior of fluid flow, heat and mass transfer, as well as chemical reactions in a BF, in which gas, solid, and liquid phases affect each other through interaction forces, and their flows are competing for the space available. Process variables that characterize the internal furnace state, such as reduction degree, reducing gas and burden concentrations, as well as gas and condensed phase temperatures, have been described quantitatively. In particular, different treatments of the cohesive zone (CZ), i.e., layered, isotropic, and anisotropic nonlayered, are discussed, and their influence on simulation results is compared. The results show that predicted fluid flow and thermochemical phenomena within and around the CZ and in the lower part of the BF are different for different treatments. The layered CZ treatment corresponds to the layered charging of burden and naturally can predict the CZ as a gas distributor and liquid generator.
Monte Carlo simulation of electrothermal atomization on a desktop personal computer
NASA Astrophysics Data System (ADS)
Histen, Timothy E.; Güell, Oscar A.; Chavez, Iris A.; Holcombea, James A.
1996-07-01
Monte Carlo simulations have been applied to electrothermal atomization (ETA) using a tubular atomizer (e.g. graphite furnace) because of the complexity in the geometry, heating, molecular interactions, etc. The intense computational time needed to accurately model ETA often limited its effective implementation to the use of supercomputers. However, with the advent of more powerful desktop processors, this is no longer the case. A C-based program has been developed and can be used under Windows TM or DOS. With this program, basic parameters such as furnace dimensions, sample placement, furnace heating and kinetic parameters such as activation energies for desorption and adsorption can be varied to show the absorbance profile dependence on these parameters. Even data such as time-dependent spatial distribution of analyte inside the furnace can be collected. The DOS version also permits input of external temperaturetime data to permit comparison of simulated profiles with experimentally obtained absorbance data. The run-time versions are provided along with the source code. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a diskette with a program (PC format), data files and text files.
Elements of the electric arc furnace's environmental management
NASA Astrophysics Data System (ADS)
Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş
2017-12-01
The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.
Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel
NASA Astrophysics Data System (ADS)
Veit, R.; Hofmann, H.; Kolleck, R.; Sikora, S.
2011-01-01
Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating. In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.
Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces
NASA Astrophysics Data System (ADS)
Kartavtcev, S.; Matveev, S.; Neshporenko, E.
2018-03-01
Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.
Potential New Sensor for Use With Conventional Gas Carburizing
NASA Technical Reports Server (NTRS)
deGroot, W. A.
1997-01-01
Diagnostics developed for in-situ monitoring of rocket combustion environments have been adapted for use in heat treating furnaces. Simultaneous, in-situ monitoring of the carbon monoxide, carbon dioxide, methane, water, nitrogen and hydrogen concentrations in the endothermic gas of a heat treating furnace has been demonstrated under a Space Act Agreement between NASA Lewis, the Heat Treating Network, and Akron Steel Treating Company. Equipment installed at the Akron Steel Treating Company showed the feasibility of the method. Clear and well-defined spectra of carbon monoxide, nitrogen and hydrogen were obtained by means of an optical probe mounted on the endothermic gas line of a gas generator inside the plant, with the data reduction hardware located in the basement laboratory. Signals to and from the probe were transmitted via optical fibers.
Modelling and control of a diffusion/LPCVD furnace
NASA Astrophysics Data System (ADS)
Dewaard, H.; Dekoning, W. L.
1988-12-01
Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.
Active Control of Interface Shape During the Crystal Growth of Lead Bromide
NASA Technical Reports Server (NTRS)
Duval, W. M. B.; Batur, C.; Singh, N. B.
2003-01-01
A thermal model for predicting and designing the furnace temperature profile was developed and used for the crystal growth of lead bromide. The model gives the ampoule temperature as a function of the furnace temperature, thermal conductivity, heat transfer coefficients, and ampoule dimensions as variable parameters. Crystal interface curvature was derived from the model and it was compared with the predicted curvature for a particular furnace temperature and growth parameters. Large crystals of lead bromide were grown and it was observed that interface shape was in agreement with the shape predicted by this model.
DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDREWS,J.W.
2002-10-02
Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residencemore » time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small amount (probably in the range 1%-3%) to the thermal distribution efficiency. Nevertheless, the effect of furnace modulation on thermal distribution efficiency, both as calculated and as measured in the laboratory, is quite significant. Although exact quantification of the impact will depend on factors such as climate and the location of the ducts within the structure, impacts in the 15%-25% range are to be expected for ducts located outside the conditioned space, as most residential duct systems are. This is too large a handicap to ignore.« less
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.
2011-01-01
This presentation showed progress made in extending luminescence-base delamination monitoring to TBCs exposed to high heat fluxes, which is an environment that much better simulates actual turbine engine conditions. This was done by performing upconversion luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was employed to create the desired heat flux. Upconverison luminescence refers to luminescence where the emission is at a higher energy (shorter wavelength) than the excitation. Since there will be negligible background emission at higher energies than the excitation, this methods produces superb contrast. Delamination contrast is produced because both the excitation and emission wavelengths are reflected at delamination cracks so that substantially higher luminescence intensity is observed in regions containing delamination cracks. Erbium was selected as the dopant for luminescence specifically because it exhibits upconversion luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used to produce the heat flux in combination with forced air backside cooling. Testing was performed at a lower (95 W/sq cm) and higher (125 W/sq cm) heat flux as well as furnace cycling at 1163C for comparison. The lower heat flux showed the same general behavior as furnace cycling, a gradual, "spotty" increase in luminescence associated with debond progression; however, a significant difference was a pronounced incubation period followed by acceleration delamination progression. These results indicate that extrapolating behavior from furnace cycling measurements will grossly overestimate remaining life under high heat flux conditions. The higher heat flux results were not only accelerated, but much different in character. Extreme bond coat rumpling occurred, and delamination propagation extended over much larger areas before precipitating macroscopic TBC failure. This indicates that under the higher heat flux (and surface & interface temperatures), the TBC was more tolerant of damage. The main conclusions were that high heat flux conditions can not only accelerate TBC debond progression but can also grossly alter the pathway of delamination.
Ion release and cytotoxicity of stainless steel wires.
Oh, Keun-Taek; Kim, Kyoung-Nam
2005-12-01
Heat treatment is generally applied to orthodontic stainless steel (SS) wires to relieve the stresses that result from their manipulation by orthodontists. The quality and thickness of the oxide films formed on the surface of heat-treated wires can vary, and it is believed that these oxide films can influence the properties of heat-treated wires. The aim of this study was to investigate the influence of heat treatment and cooling methods on the amount of metal ions released and to examine the cytotoxicity of heat-treated wires. In this study, four types of SS wires (Remanium, Permachrome, Colboloy and Orthos) with a cross-sectional area of 0.41 x 0.56 mm were investigated. These wires were heat-treated in a vacuum, air, or argon environment, and were cooled in either a furnace or a water bath. Four control groups and 24 experimental groups were classified according to the type of wires, heat treatment conditions and cooling methods. In each group, the amount of nickel released as well as its cytotoxicity was investigated. The concentration of dissolved nickel ions in artificial saliva was measured for a period of up to 12 weeks. In all groups, the concentration of dissolved nickel ions in artificial saliva was lowest for the vacuum heat treatment-furnace cooling group and a significant difference was shown compared with the other experimental groups. The concentration of dissolved nickel ions in artificial saliva was highest in the groups heat-treated in air (P < 0.05), while the amount of nickel released was highest in the Remanium and Colboloy (P < 0.05). The cytotoxicity was mild in all the experimental groups but the response index of the air groups was slightly higher than in the other groups. According to these results, SS wires retain their high corrosion resistance and low ion release rate when heat-treated in a vacuum and cooled in a furnace.
Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.
La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel
2017-12-15
Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental Performance of a Micromachined Heat Flux Sensor
NASA Technical Reports Server (NTRS)
Stefanescu, S.; DeAnna, R. G.; Mehregany, M.
1998-01-01
Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response.
Headridge, J B; Smith, D R
1971-03-01
An induction furnace coupled to a Unicam SP90 atomic-absorption spectrophotometer is described for the determination of traces of volatile elements in solutions and volatile matrices. The apparatus has been used to obtain calibration graphs for 1-20 and 50-750 ng of cadmium in microl-volumes of solution, the 228.8 and 326.2 nm resonance lines respectively being used, and to determine cadmium in 5-mg samples of zinc-base metals within the concentration range 5-400 microg g by using the less sensitive 326-2-nm line. A furnace temperature of 1,350 degrees was used. Data on accuracy and precision are presented. The apparatus could readily be used to determine trace elements in volatile materials at concentrations of 10-1000 ng/g .
Solar project description for Perl-Mack Enterprises' single family residences, Denver, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-08-21
The Perl-Mack Enterprises Co. solar energy system(s) are installed in a total of 25 single family dwellings located in Denver, Colorado. The 25 dwellings are of three different configurations. Two of the twenty-five dwellings have been fully instrumented for performance monitoring and evaluation since September 1977. All the solar systems are designed to provide approximately 69 percent of the space heating and energy requirements for each dwelling. Solar energy is collected by an array of flat plate collectors having a gross area of 470 square feet. A water-glycol mixture is used as the medium for delivering solar heat from themore » collection to the storage tank. The storage tank has a total capacity of 945 gallons. A liquid-to-liquid heat exchanger, within the storage tank, transfers the stored heat from the transfer medium to the domestic hot water tank of the house. Space heating demands are met by circulating heated water/glycol mixture from the storage tank through the heat exchanger coil installed downstream from the auxiliary furnace blower. The auxiliary gas-fired furnace is activated whenever room thermostat demands heat.« less
Environmental Compliance Assessment Army Reserve (ECAAR)
1993-09-01
and water Spent mixed acid Spent caustic Spent sulfuric acid Potential Consequences: Heat generation, violent reaction. Group 2-A Group 2-B Aluminum Any...methane reforming furnaces, pulping liquor recovery furnaces, combustion devices used in the recovery of sulfur values from spent sulfuric acid...Industry and USEPA Hazardous Waste Hazard No. Hazardous Waste Code* Generic FOO1 The spent halogenated solvents used in degreasing: Trichloroethylene, (t
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... furnaces and biomass boilers. We are approving local rules that regulate these emission sources under the.... Rule title Amended Submitted MDAQMD 1165 Glass Melting 08/12/08 12/23/08 Furnaces. YSAQMD 2.43 Biomass... emissions of NO X and CO from boilers that use biomass as fuel and that have a heat input rating of greater...
Method for curing polymers using variable-frequency microwave heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Themore » furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.« less
Method for curing polymers using variable-frequency microwave heating
Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.
1998-01-01
A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu
2016-08-01
In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.M.; Thurner, R.P.
1977-01-01
In considering the use of regenerative and recuperative heat exchangers for process-gas heat recovery general information regarding heat-exchanger effectiveness versus initial capital investment and operating costs is discussed. Specific examples for preheating combustion air for process furnaces and for using primary and secondary heat exchangers in conjunction with an air-pollution-control system for drying and curing ovens cover basic heat-exchanger design and application considerations as well as investment-payback factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golchert, B.; Shell, J.; Jones, S.
2006-09-06
The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation intomore » the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.« less
Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel
2004-05-15
Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.
NASA Astrophysics Data System (ADS)
Dutta, P. S.; Bhat, H. L.; Kumar, Vikram
1995-09-01
Numerical analysis has been carried out to determine the deviation of the growth rate from the ampoule lowering rate and the shape of the isotherms during the growth of gallium antimonide using the vertical Bridgman technique in a single-zone furnace. Electrical analogues have been used to model the thermal behaviour of the growth system. The standard circuit analysis technique has been used to calculate the temperature distribution in the growing crystal under various growth conditions. The effects of furnace temperature gradient near the melt-solid interface, the ampoule lowering rate, the ampoule geometry, the thermal conductivity of the melt, the mode of heat extraction from the tip of the ampoule and the extent of lateral heat loss from the side walls of the ampoule on the shape of isotherms in the crystal have been evaluated. The theoretical results presented here agree well with our previously obtained experimental results.
NASA Astrophysics Data System (ADS)
Holzweissig, Martin Joachim; Lackmann, Jan; Konrad, Stefan; Schaper, Mirko; Niendorf, Thomas
2015-07-01
The current work elucidates an improvement of the mechanical properties of tool-quenched low-alloy steel by employing extremely short austenitization durations utilizing a press heating arrangement. Specifically, the influence of different austenitization treatments—involving austenitization durations ranging from three to 15 seconds—on the mechanical properties of low-alloy steel in comparison to an industrial standard furnace process was examined. A thorough set of experiments was conducted to investigate the role of different austenitization durations and temperatures on the resulting mechanical properties such as hardness, bending angle, tensile strength, and strain at fracture. The most important finding is that the hardness, the bending angle as well as the tensile strength increase with shortened austenitization durations. Furthermore, the ductility of the steels exhibits almost no difference following the short austenitization durations and the standard furnace process. The enhancement of the mechanical properties imposed by the short heat treatments investigated, is related to a refinement of microstructural features as compared to the standard furnace process.
Induction furnace testing of the durability of prototype crucibles in a molten metal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonski, Paul D.
2005-09-01
Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off themore » heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.« less
Multipurpose electroslag remelting furnace for modern energy and heavy engineering industry
NASA Astrophysics Data System (ADS)
Dub, A. V.; Dub, V. S.; Kriger, Yu. N.; Levkov, L. Ya.; Shurygin, D. A.; Kissel'man, M. A.; Nekhamin, C. M.; Chernyak, A. I.; Bessonov, A. V.; Kamantsev, S. V.; Sokolov, S. O.
2012-12-01
In 2011, a unique complex based on a multipurpose unit-type electroslag remelting (ESR) furnace is created to meet the demand for large high-quality solid and hollow billets for the products of power, atomic, petrochemical, and heavy machine engineering. This complex has modern low-frequency power supplies with a new control level that ensure a high homogeneity and quality of the billets and an increase in the engineering-and-economical performance of the production. A unique pilot ESR furnace is erected to adjust technological conditions and the main control system elements.
Analysis of field test data on residential heating and cooling
NASA Astrophysics Data System (ADS)
Talbert, S. G.
1980-12-01
The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.
Method and apparatus for extracting tritium and preparing radioactive waste for disposal
Heung, Leung K.
1994-01-01
Apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused.
System and method for producing metallic iron
Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan
2014-07-29
A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.
Thermal stability of a modified sol-gel derived hydroxyapatite nanopowders
NASA Astrophysics Data System (ADS)
Herradi, S.; El Bali, B.; Khaldi, M.; Lachkar, M.
2017-03-01
Hydroxyapatite Ca10(PO4)6(OH)2 (HA) powder was successfully synthesized by a modified sol-gel method using a solution of calcium nitrate in ethanol, along with a solution of diammonium hydrogen phosphate in water and NH4OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The powder was subjected to furnace and microwave heating to compare the decomposition of HA and study the crystallite sizes. It was found that microwave heated powders were pure HAP up to 230°C with absence of secondary phases. However, XRD patterns show that furnace heated powders convert completely to β-TCP when treated at 750°C and 1000°C. This result was confirmed by the absence of hydroxyl bands in the FT-IR spectra for these temperatures.
THE FORMATION OF INORGANIC PARTICLES DURING SUSPENSION HEATING OF SIMULATED WASTES
Measurements of metal partitioning between the fine condensation aerosol and the larger particles produced during rapid heating of aqueous and organic solutions containing metal additives with widely varying volatilities were made in a laboratory-scale furnace operated over a ran...
How to estimate recoverable heat energy in wood or bark fuels
P. J. Ince
1979-01-01
A reference source is provided for estimating the amount of heat energy that may be recovered using wood or bark fuel in typical furnace and boiler or hot air combustion heat recovery systems. A survey of reported data on higher heating values for various species of wood and bark fuels is provided. A set of formulas of a type commonly used by combustion technologists...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
..., blast furnaces, basic oxygen process furnace shops. Lead Production 331419 Primary lead smelting and.... Chapter 5, generally provides that rules may not take effect earlier than 30 days after they are published... behavior and prepare before the final rule takes effect. Because this final rule defers a reporting...
Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces
NASA Astrophysics Data System (ADS)
De Waard, H.; De Koning, W. L.
1990-03-01
In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.
Methods of steel manufacturing - The electric arc furnace
NASA Astrophysics Data System (ADS)
Dragna, E. C.; Ioana, A.; Constantin, N.
2018-01-01
Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.
Secondary Heating Under Quenching Cooling of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Tsukrov, S. L.; Ber, L. B.
2017-07-01
Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... water and fuel-burning installations that involve direct heat exchange. Fuel-burning installations, such... (British thermal unit) Btu per hour heat input or the sulfur content of the fuel. Since a ``furnace'' is usually direct heat exchange, the State of Maryland concludes that it should not be included in the...
Crystal growth and furnace analysis
NASA Technical Reports Server (NTRS)
Dakhoul, Youssef M.
1986-01-01
A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.
NASA Astrophysics Data System (ADS)
Schmid, F.; Khattak, C. P.
1980-03-01
Conditions for the growth of large, uniformly doped laser crystals by the heat exchanger method are explored. Determination of the melt point, selection of crucible material and establishment of furnace operating parameters are discussed. The melt point of ruby was found to be 2040 plus or minus 10 C. Molybdenum crucibles can be used to contain ruby in vacuum as well as under argon atmospheres at desired superheat temperatures over extended periods required for crystal growth. Thermodynamic analysis was conducted and vapor pressures of volatile species calculated. Experimentally, volatilization of chromium oxides was suppressed by using welded covers on crucibles and operating under an argon pressure in the furnace.
Trace Element Analysis of Biological Samples.
ERIC Educational Resources Information Center
Veillon, Claude
1986-01-01
Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…
Sloto, Ronald A.
2011-01-01
Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). The ore used at Hopewell Furnace was obtained from iron mines within 5 miles of the furnace. The iron-ore deposits were formed about 200 million years ago and contain abundant magnetite, the primary iron mineral, and accessory minerals enriched in arsenic, cobalt, copper, lead, and other metals. Hopewell Furnace, built by Mark Bird during 1770-71, was one of the last of the charcoal-burning, cold-blast iron furnaces operated in Pennsylvania. The most productive years for Hopewell Furnace were from 1830 to 1837. Castings were the most profitable product, especially the popular Hopewell Stove. More than 80,000 stoves were cast at Hopewell, which produced as many as 23 types and sizes of cooking and heating stoves. Beginning in the 1840s, the iron industry shifted to large-scale, steam-driven coke and anthracite furnaces. Independent rural enterprises like Hopewell could no longer compete when the iron and steel industries consolidated in urban manufacturing centers. The furnace ceased operation in 1883 (Kurjack, 1954). The U.S. Geological Survey (USGS), in cooperation with the National Park Service, completed a study at Hopewell Furnace National Historic Site (NHS) in Berks and Chester Counties, Pennsylvania, to determine the fate of toxic trace metals, such as arsenic, cobalt, and lead, released into the environment during historical iron-smelting operations. The results of the study, conducted during 2008-10, are presented in this fact sheet.
Royère, C
1999-03-01
The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.
Production of chlorine from chloride salts
Rohrmann, Charles A.
1981-01-01
A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.
Mathematical model of whole-process calculation for bottom-blowing copper smelting
NASA Astrophysics Data System (ADS)
Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song
2017-11-01
The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.
High temperature gradient cobalt based clad developed using microwave hybrid heating
NASA Astrophysics Data System (ADS)
Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy
2018-04-01
The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.
Heat storage in alloy transformations
NASA Technical Reports Server (NTRS)
Birchenall, C. E.
1980-01-01
The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.
Vertical feed stick wood fuel burning furnace system
Hill, Richard C.
1982-01-01
A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead... data or data that are less expensive to collect such as process data or material consumption data. For...)(1) Only annual anode consumption (No CEMS). F 98.66(f)(1) Only annual paste consumption (No CEMS). F...
Microwave furnace having microwave compatible dilatometer
Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.
1992-01-01
An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.
Microwave furnace having microwave compatible dilatometer
Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.
1992-03-24
An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.
Collender, Mark A; Doherty, Kevin A J; Stanton, Kenneth T
2017-01-01
Following a shooting incident where a vehicle is used to convey the culprits to and from the scene, both the getaway car and the firearm are often deliberately burned in an attempt to destroy any forensic evidence which may be subsequently recovered. Here we investigate the factors that influence the ability to make toolmark identifications on ammunition discharged from pistols recovered from such car fires. This work was carried out by conducting a number of controlled furnace tests in conjunction with real car fire tests in which three 9mm semi-automatic pistols were burned. Comparisons between pre-burn and post burn test fired ammunition discharged from these pistols were then performed to establish if identifications were still possible. The surfaces of the furnace heated samples and car fire samples were examined following heating/burning to establish what factors had influenced their surface morphology. The primary influence on the surfaces of the furnace heated and car fire samples was the formation of oxide layers. The car fire samples were altered to a greater extent than the furnace heated samples. Identifications were still possible between pre- and post-burn discharged cartridge cases, but this was not the case for the discharged bullets. It is suggested that the reason for this is a difference between the types of firearms discharge-generated toolmarks impressed onto the base of cartridge cases compared to those striated along the surfaces of bullets. It was also found that the temperatures recorded in the front foot wells were considerably less than those recorded on top of the rear seats during the car fires. These factors should be assessed by forensic firearms examiners when performing casework involving pistols recovered from car fires. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez-Grande, I.; Rivas, D.; de Pablo, V.
The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.
VIEW OF TRANSFER CAR (BATTERYELECTRIC POWERED) FROM BILLET YARD POSITIONED ...
VIEW OF TRANSFER CAR (BATTERY-ELECTRIC POWERED) FROM BILLET YARD POSITIONED FOR LOADING BILLETS INTO FURNACE; HEATER (BEHIND SCREEN IN CENTER) MOVES THE TRANSFER CAR INTO POSITION. BILLETS FROM THE TRANSFER CAR ARE PLACED ON HAND-OPERATED TURNTABLE. THE FURNACE IS NATURAL-GAS FIRED, WITH BILLETS HEATED AT NOT MORE THAN 2400 DEGREES FAHRENHEIT. - Cambria Iron Company, Gautier Works, 12" Mill, Clinton Street & Little Conemaugh River, Johnstown, Cambria County, PA
Method and apparatus for extracting tritium and preparing radioactive waste for disposal
Heung, L.K.
1994-03-29
Apparatus is described for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused. 4 figures.
Heat transfer simulation in a vertical Bridgman CdTe growth configuration
NASA Astrophysics Data System (ADS)
Martinez-Tomas, C.; Muñoz, V.; Triboulet, R.
1999-02-01
Modelling and numerical simulation of crystal growth processes have been shown to be powerful tools in order to understand the physical effects of different parameters on the growth conditions. In this study a finite difference/control volume technique for the study of heat transfer has been employed. This model takes into account the whole system: furnace temperature profile, air gap between furnace walls and ampoule, ampoule geometry, crucible coating if any, solid and liquid CdTe thermal properties, conduction, convection and radiation of heat and phase change. We have used the commercial code FLUENT for the numerical resolution that can be running on a personal computer. Results show that the temperature field is very sensitive to the charge and ampoule peculiarities. As a consequence, significant differences between the velocity of the ampoule and that of the isotherm determining the solid/liquid interface have been found at the onset of the growth.
Gold Sample Heating within the TEMPUS Electromagnetic Levitation Furnace
NASA Technical Reports Server (NTRS)
2003-01-01
A gold sample is heated by the TEMPUS electromagnetic levitation furnace on STS-94, 1997, MET:10/09:20 (approximate). The sequence shows the sample being positioned electromagnetically and starting to be heated to melting. TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (460KB, 14-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300190.html.
2013-08-01
SAR) 18. NUMBER OF PAGES 50 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified...26 7.0 COST ASSESSMENT ...................................................................................................... 29 7.1 COST MODEL ...12. Data set 7 – energy consumption of heat pump and furnace ................................ 22 Figure 13. Experimentally adjusted TRNSYS model
MECHANISMS OF INORGANIC PARTICLE FORMATION DURING SUSPENSION HEATING OF SIMULATED AQEOUS WASTES
The paper gives results of measurements of metal partitioning between the fine condensation aerosol and the larger particles produced during rapid heating of polydisperse droplet streams of aqueous solutions containing nitrates of Cd, Pb, and Ni in a laboratory scale furnace. rim...
Queen City Forging Revitalized by Oak Ridge National Lab Partnership – U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Rob; Blue, Craig
Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.
Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phongikaroon, Supathorn
The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantagesmore » of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.« less
Cupola Furnace Computer Process Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seymour Katz
2004-12-31
The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloymore » elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).« less
Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust
NASA Astrophysics Data System (ADS)
Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping
In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.
Queen City Forging Revitalized by Oak Ridge National Lab Partnership â U.S. Department of Energy
Mayer, Rob; Blue, Craig
2018-01-16
Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.
Optical/thermal analysis methodology for a space-qualifiable RTP furnace
NASA Technical Reports Server (NTRS)
Bugby, D.; Dardarian, S.; Cole, E.
1993-01-01
A methodology to predict the coupled optical/thermal performance of a reflective cavity heating system was developed and a laboratory test to verify the method was carried out. The procedure was utilized to design a rapid thermal processing (RTP) furnace for the Robot-Operated Material Processing in Space (ROMPS) Program which is a planned STS HH-G canister experiment involving robotics and material processing in microgravity. The laboratory test employed a tungsten-halogen reflector/lamp to heat thin, p-type silicon wafers. Measurements instrumentation consisted of 5-mil Pt/Pt-Rh thermocouples and an optical pyrometer. The predicted results, utilizing an optical ray-tracing program and a lumped-capacitance thermal analyzer, showed good agreement with the measured data for temperatures exceeding 1300 C.
Nouri-Borujerdi, Ali; Kazi, Salim Newaz
2014-01-01
In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site. PMID:25143981
Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman
2014-01-01
In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.
Ajtony, Zsolt; Laczai, Nikoletta; Dravecz, Gabriella; Szoboszlai, Norbert; Marosi, Áron; Marlok, Bence; Streli, Christina; Bencs, László
2016-12-15
HR-CS-GFAAS methods were developed for the fast determination of Cu in domestic and commercially available Hungarian distilled alcoholic beverages (called pálinka), in order to decide if their Cu content exceeds the permissible limit, as legislated by the WHO. Some microliters of samples were directly dispensed into the atomizer. Graphite furnace heating programs, effects/amounts of the Pd modifier, alternative wavelengths (e.g., Cu I 249.2146nm), external calibration and internal standardization methods were studied. Applying a fast graphite furnace heating program without any chemical modifier, the Cu content of a sample could be quantitated within 1.5min. The detection limit of the method is 0.03mg/L. Calibration curves are linear up to 10-15mg/L Cu. Spike-recoveries ranged from 89% to 119% with an average of 100.9±8.5%. Internal calibration could be applied with the assistance of Cr, Fe, and/or Rh standards. The accuracy of the GFAAS results was verified by TXRF analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan
2016-04-01
Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model calibration for the thermal diffusivity of corundum. Preliminary calibration tests suggest a very good correlation between the measured results compared with literature values of the thermal diffusivity of this standard material. However, more measurements on standard materials are needed to guarantee the accuracy of the presented technique for measuring the thermal diffusion of materials and apply this method to numerical models for relevant processes in geoscience.
Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenbauer, Ben; Bohac, Dave; McAlpine, Jack
This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loadsmore » for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.« less
Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenbauer, Ben; Bohac, Dave; McAlpine, Jake
This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loadsmore » for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.« less
Operation of the Chemical Agent Munitions Disposal System (CAMDS) at Tooele Army Depot, Utah.
1978-09-01
parts furnace where the container is opened to expose the agent; the agent is boiled out and burned ; and the residual container is heat treated for...fuze booster to expose the booster pellet so it will burn instead of detonate in the Deactivation Furnace. A portion of the solution in the coolant...demilitarization equipment exposed to agent GB will be chemically decontaminated to prepare for operations with burstered mustard projectiles. The
NASA Astrophysics Data System (ADS)
Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.
2015-12-01
The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.
Scaleable Clean Aluminum Melting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Q.; Das, S.K.
2008-02-15
The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. Themore » objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byong-chul Kim; Sushil Gupta; David French
Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffractionmore » (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.« less
An Overview of the Thermal Challenges of Designing Microgravity Furnaces
NASA Technical Reports Server (NTRS)
Westra, Douglas G.
2001-01-01
Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.
Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.
1977-01-01
Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities.
Laser Brazing of High Temperature Braze Alloy
NASA Technical Reports Server (NTRS)
Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.
2000-01-01
The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of the braze materials and tube substrate. Metallography of the laser braze joint was compared to the furnace braze. SEM Energy Disperse X-Ray Spectra (EDX) and back scattered imaging were used to analyze braze alloy segregation. Although all of the laser systems, CO2, ND:YAG, and direct diode laser produced good braze joint, the direct diode laser was selected for its system simplicity, compactness and portability. Excellent laser and braze alloy coupling is observed with powder alloy compared to braze alloy wire. Good wetting is found with different gold based braze alloys. The laser brazing process can be optimized so that the adverse affect on the parent materials can be eliminated. Metallography of the laser braze joint has shown that quality braze joint was produced with laser brazing process. Penetration of the laser braze to the substrate is at neglectable level. Zero penetration is observed. Microstructure examinations shown that no observable changes of the microstructure (grain structure and precipitation) in the HAZ area between laser braze and furnace braze. Wide gaps can be laser brazed with single pass for up to 0.024 inches. Finer dendritic structure is observed in laser brazing compared with equiaxial and coarser grain of the furnace brazing microstructure. Greater segregation is also found in the furnace braze. Higher hardness of the laser braze joint comparing to furnace braze is observed due to the fast cooling rate and Finer microstructure in the laser brazing. Laser braze joint properties meet or exceed the furnace joint properties. Direct diode laser for thin section tube brazing with high temperature braze alloys have been successfully demonstrated. The laser's high energy density and precise control has shown significant advantages in reducing process heat input to the substrates and provide high quality braze joints comparing to other localized braze process such as torch, TIG, and MPTA processes. Significant cost savings can be realized particularly with localized braze comparing to a full furnace braze cycle.
Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc; Hart, A. John
2013-01-01
Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes. PMID:24289435
Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Wessling, Francis C.
2000-01-01
The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass, volume, and possibly even time. Through the experimental and numerical results obtained, the power requirements and thermal response time of the breadboard furnace are quantified.
Development and Validation of a 3-Dimensional CFB Furnace Model
NASA Astrophysics Data System (ADS)
Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti
At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents CFB process analysis focused on combustion and NO profiles in pilot and industrial scale bituminous coal combustion.
Steam generation and pollution control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.H.
1979-02-13
The heat and flu gases which are ordinarily expelled through an emission stack of a conventional furnace are instead channeled through a heat exchanger to produce steam for power generation and are subsequently directed through a gas scrubber apparatus to remove all contaminates from the flu gas prior to expelling the gases into atmosphere.
Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-07-01
The Kaiser Aluminum plant in Sherman, Texas, adjusted controls and made repairs to a furnace for a simple payback of 1 month. Kaiser adopted DOE's Process Heating Assessment and Survey Tool (PHAST) software as the corporate diagnostic tool and has used it to evaluate process heating systems at five other aluminum plants.
Free suspension processing of oxides to form amorphous oxide materials, appendix B
NASA Technical Reports Server (NTRS)
Wouch, G.
1973-01-01
The processing of yttria, zirconia, and alumina under weightless conditions is discussed. The process consists of levitation or position control, heating and melting, superheating, and supercooling. The use of arc imaging furnaces, lasers, induction heating, microwave, and electron beam methods are analyzed to show the advantages and disadvantages of each.
NASA Astrophysics Data System (ADS)
Herradi, S.; Bouhazma, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M.
2018-03-01
A facile sol-gel method was used to synthesize either hydroxyapatite (HA) or beta-tricalcium phosphate (β-TCP) as the major phase. Herein, we report, on the one hand, the effect of a very low maturation temperature on the final powder composition after drying step, and on the other hand, we compare the effect of calcination of this powder by microwave or electric furnace. It was found that microwave heating has led to the formation of hydroxyapatite phase upon 180°C for 20 minutes, however, XRD patterns show that the powder becomes less crystallized upon 220°C and amorphous upon 230°C. In contrast, furnace heating at 600°C and 700°C converts the as-synthesized powder to β-TCP as the major phase together with HA as the minor phase. This work shows the possibility to obtain the as-prepared BCP at much lower maturation temperature; it also gives an insight into the role, of either microwave or conventional heating, in controlling the ratio between HA and β-TCP in the sintered powder.
Simulation of Gravity Effects on Bulk Crystal Growth with Effects on undercooling
NASA Astrophysics Data System (ADS)
Chuang, S.-H.; Lu, M.-F.
For the production of a perfect single crystal by Bridgman, it is important to acquire the correct information about the heat transfer mechanism and to control the heat transfer in the Bridgman furnace. Because the quality of the crystal is closely related to its thermal history and the transport phenomena in the furnace. Ma et al. (2004) presented that faceting simulation of bulk crystal growth with undercooling method. Lan et al. (2003) developed a new model to study heat flow and facet formation in Bridgman growth with the undercooling satisfied the given growth mechanism. Considering the gravity effects added kinetic undercooling is thus developed. Heat conduction, convection and radiation are considered and coupled with the two-dimensional transient undercooling simulation. The solidification interface temperature is related to the undercooling along the interface and the melting temperature. In this investigation, we are going to apply the developed model to simulate interface in vertical Bridgman crystal growth process for yttrium aluminum garnet subjected to the normal gravity to microgravity. Also, it discusses the effect upon the shape and the propagation of the solidification crystal front.
NASA Technical Reports Server (NTRS)
Fuss, T.; Ray, C. S.; Day, D. E.
2006-01-01
Crystallization kinetics for lithium disilicate, Li2O2SiO2, (LS2) glass has been studied extensively by nonisothermal methods, but only a few studies on the isothermal crystallization kinetics of LS2 are available. In the present research, isothermal crystallization experiments or the LS2 glass were conducted in a Trans Temp furnace between 600 and 635 C, and selected properties such as the activation energy for crystallization (E), crystal growth index or Avrami parameter (n), the concentration of quenched-in nuclei in the starting glass (Ni) and the crystal nucleation rate (I) were measured. The crystal nucleation rate (I) was measured at only one selected temperature of 452 C, at this time. This commercial furnace has a 13 cm long isothermal heating zone (+/- 1 C) that allows precise heat treatment of relatively large samples. By placing a thermocouple within approx. 2 mm of the sample, it was possible to detect the heat of crystallization in the form of an isothermal crystallization exotherm during isothermal heat treatment of the sample. The values of E (318 plus or minus 10 kJ/mol), n (3.6 plus or minus 0.l), and N(sub i) (1.6 x 10(exp l2) m(sup -3)) calculated by analyzing these isotherms using the standard Johnson-Mehl-Avrami (JMA) equation were reproducible and in agreement with the literature values. The value of I, 1.9 x 10(exp 10) m(sup -3) s(sup -1) at 452 C, is an order of magnitude higher than the reported value for LS2.
Characterization of Austempered Ferritic Ductile Iron
NASA Astrophysics Data System (ADS)
Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.
2018-04-01
The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.
Investigation of the martensitic transformation of (Cu-Zn-Ni) shape memory alloys
NASA Astrophysics Data System (ADS)
Naat, N. A.; Mohammed, M. A.
2017-02-01
(Cu-Zn-Ni) shape memory alloy with different percent have been prepared by using high frequency induction furnace under argon atmosphere. All of the specimens obtained from this alloys were heated in furnace for (15 minutes at 865°C) for homogenization and quenched in iced-water. Comparisons has been made with data obtained via differential scanning calorimetry (DSC) and energy-dispersive X-ray spectroscopy (EDS). The metallographic analyses were carried out by using optical microscopy (OM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anameric, B.; Kawatra, S.K.
Pig iron nuggets were produced in a laboratory-scale furnace at Michigan Technological University. The process was intended to replicate Kobe Steel's ITmk3 direct ironmaking process. These nuggets were produced from pellets that were made from a mixture of iron oxide, coal, flux and a binder and heated in a furnace with a chamber temperature of 1450{sup o}C. The pellets then self-reduced to produce a solid, high-density, highly metallized (96.5% Fe) pig iron. During the nugget production process, a separate liquid slag phase formed that cleanly separated from the molten metal. The physical and chemical properties of the pig iron nuggetsmore » were similar to pig iron produced by blast furnaces, which is distinct from direct reduced iron (DRI).« less
Ignition of an organic water-coal fuel droplet floating in a heated-air flow
NASA Astrophysics Data System (ADS)
Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.
2017-01-01
Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.
Residential Two-Stage Gas Furnaces - Do They Save Energy?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekov, Alex; Franco, Victor; Lutz, James
2006-05-12
Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in themore » DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.« less
Paired Straight Hearth Furnace - Transformational Ironmaking Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Kao; Debski, Paul
2014-11-19
The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitablemore » as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.« less
High-Temperature (940 °C) furnace in 18/20 T cold bore magnet
NASA Astrophysics Data System (ADS)
Wang, Ze; Hou, Yubin; Feng, Qiyuan; Dong, Hongliang; Lu, Qingyou
2018-01-01
We present a high-temperature furnace that can work continuously in an 18/20 T cold bore magnet. A specially designed liquid nitrogen (LN2) jacket is between the high-temperature parts of the furnace and the liquid helium in the magnet Dewar. With LN2 serving as the cooling medium, the calculated value of radiation received by the liquid helium (LHe) is as low as 0.004 W. The furnace can be put into LHe Dewar directly. Together with the magnet, the furnace can provide experimental conditions of a strong static magnetic field and temperatures up to 940 °C. A cobalt oxide synthesis in solution was carried out at 200 °C with and without a 15 T magnetic field for 8 h. Differences in material structure with the applied field were observed in transmission electron micrographs of the products. A Co film sample was treated at 900 °C with and without a 6.8 T magnetic field for 30 min. The scanning electron micrographs of the treated samples show that magnetic field had a clear effect on the heat treatment process. These two applications confirmed the performance of the furnace both in high magnetic field and at high temperature.
Mathematical model of the stack region of a commercial lead blast furnace
NASA Astrophysics Data System (ADS)
Hussain, Mansoor M.; Morris, David R.
1989-02-01
A mathematical model of the stack region of a commercial lead blast furnace is presented. The mass and heat balance equations were solved in conjunction with the kinetic expression for the rate of re-duction of the solids based upon the grain model, utilizing the measured structural parameters of the sinter feed and the measured kinetic parameters. Satisfactory agreement has been achieved between the computed and experimental axial profiles of gas and solids temperature, pressure, gas composi-tion, and condensed phases composition. The model is used to predict the effects of changes of bed voidage, physical properties, and chemical constitution of the sinter and the effects of gas and solids flow maldistribution on the operation of the furnace. In particular, it is noted that for a sinter with the typical physical properties of a commercial sinter, improved conversion in the upper reaches of the furnace is predicted when lead is in the form of lead oxide rather than as the relatively unreac-tive lead calcium silicates. The improved conversion is accompanied by better utilization of carbon monoxide. Further, the model suggests that the formation of scaffolds in the furnace may be due to flow maldistribution causing high temperatures in the vicinity of the furnace wall.
Determination of initial conditions for heat exchanger placed in furnace by burning pellets
NASA Astrophysics Data System (ADS)
Durčanský, Peter; Jandačka, Jozef; Kapjor, Andrej
2014-08-01
Objective of the experimental facility and subsequent measurements is generally determine whether the expected physical properties of the verification, identification of the real behavior of the proposed system, or part thereof. For the design of heat exchanger for combined energy machine is required to identify and verify a large number of parameters. One of these are the boundary conditions of heat exchanger and pellets burner.
NASA Astrophysics Data System (ADS)
Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness
2017-09-01
Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.
Induced electric fields in workers near low-frequency induction heating machines.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2014-04-01
Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. © 2013 Wiley Periodicals, Inc.
Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC
2008-05-27
A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.
System using electric furnace exhaust gas to preheat scrap for steelmaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, K.; Iwasaki, K.
1987-09-08
A method is described for clean preheating of scrap contaminated with oil and organic matter, for steelmaking, using heat from exhaust gas flow from an electric furnace. It consists of: burning any combustibles present in the exhaust gas flow and simultanously separating out dust particles from the exhaust gas flow; heating a predetermined amount of the scrap by heat exchange with a predetermined portion of the exhaust gas flow; removing and collecting dust from the exhaust gas flow after preheating of scrap thereby; sensing the temperature of the exhaust flow; scrubbing the exhaust gas flow with an aqueous solution ofmore » a deodorant solvent flowing at a rate regulated to be in a predetermined relationship related to the exhaust gas temperature sensed prior to scrubbing, thereby generating saturated vapor and reducing the temperature of the exhaust gas flow by a predetermined amount; and electrostatically precipitating out oil mist attached to saturated water vapor and liquid droplets in the exhaust gas flow.« less
Improved Blackbody Temperature Sensors for a Vacuum Furnace
NASA Technical Reports Server (NTRS)
Farmer, Jeff; Coppens, Chris; O'Dell, J. Scott; McKechnie, Timothy N.; Schofield, Elizabeth
2009-01-01
Some improvements have been made in the design and fabrication of blackbody sensors (BBSs) used to measure the temperature of a heater core in a vacuum furnace. Each BBS consists of a ring of thermally conductive, high-melting-temperature material with two tantalum-sheathed thermocouples attached at diametrically opposite points. The name "blackbody sensor" reflects the basic principle of operation. Heat is transferred between the ring and the furnace heater core primarily by blackbody radiation, heat is conducted through the ring to the thermocouples, and the temperature of the ring (and, hence, the temperature of the heater core) is measured by use of the thermocouples. Two main requirements have guided the development of these BBSs: (1) The rings should have as high an emissivity as possible in order to maximize the heat-transfer rate and thereby maximize temperature-monitoring performance and (2) the thermocouples must be joined to the rings in such a way as to ensure long-term, reliable intimate thermal contact. The problem of fabricating a BBS to satisfy these requirements is complicated by an application-specific prohibition against overheating and thereby damaging nearby instrumentation leads through the use of conventional furnace brazing or any other technique that involves heating the entire BBS and its surroundings. The problem is further complicated by another application-specific prohibition against damaging the thin tantalum thermocouple sheaths through the use of conventional welding to join the thermocouples to the ring. The first BBS rings were made of graphite. The tantalum-sheathed thermocouples were attached to the graphite rings by use of high-temperature graphite cements. The ring/thermocouple bonds thus formed were found to be weak and unreliable, and so graphite rings and graphite cements were abandoned. Now, each BBS ring is made from one of two materials: either tantalum or a molybdenum/titanium/zirconium alloy. The tantalum-sheathed thermocouples are bonded to the ring by laser brazing. The primary advantage of laser brazing over furnace brazing is that in laser brazing, it is possible to form a brazed connection locally, without heating nearby parts to the flow temperature of the brazing material. Hence, it is possible to comply with the prohibition against overheating nearby instrumentation leads. Also, in laser brazing, unlike in furnace brazing, it is possible to exert control over the thermal energy to such a high degree that it becomes possible to braze the thermocouples to the ring without burning through the thin tantalum sheaths on the thermocouples. The brazing material used in the laser brazing process is a titanium-boron paste. This brazing material can withstand use at temperatures up to about 1,400 C. In thermal-cycling tests performed thus far, no debonding between the rings and thermocouples has been observed. Emissivity coatings about 0.001 in. (.0.025 mm) thick applied to the interior surfaces of the rings have been found to improve the performance of the BBS sensors by raising the apparent emissivities of the rings. In thermal-cycling tests, the coatings were found to adhere well to the rings.
A comparison of microwave versus direct solar heating for lunar brick production
NASA Technical Reports Server (NTRS)
Yankee, S. J.; Strenski, D. G.; Pletka, B. J.; Patil, D. S.; Mutsuddy, B. C.
1990-01-01
Two processing techniques considered suitable for producing bricks from lunar regolith are examined: direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various sizes. Microwave heating was shown to be significantly faster than solar heating for rapid production of realistic-size bricks. However, the relative simplicity of the solar collector(s) used for the solar furnace compared to the equipment necessary for microwave generation may present an economic tradeoff.
Dilute Oxygen Combustion Phase IV Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.F.
2003-04-30
Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the costmore » of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.« less
Gradient Heating Facility. Experiment cartridges. Description and general specifications
NASA Technical Reports Server (NTRS)
Breton, J.
1982-01-01
Specifications that define experiment cartridges that are compatible with the furnace of the gradient heating facility on board the Spacelab are presented. They establish a standard cartridge design independent of the type of experiment to be conducted. By using them, experimenters can design, construct, and test the hot section of the cartridge, known as the high temperature nacelle.
Code of Federal Regulations, 2013 CFR
2013-01-01
... heat. Also keep this insulation away from exhaust flues of furnaces, water heaters, space heaters, or other heat-producing devices. To be sure that insulation is kept away from light fixtures and flues, use... PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION § 1404.4...
Acoustical-Levitation Chamber for Metallurgy
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.
1983-01-01
Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.
Energy Efficiency Model for Induction Furnace
NASA Astrophysics Data System (ADS)
Dey, Asit Kr
2018-01-01
In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.
Improving the growth of CZT crystals for radiation detectors: a modeling perspective
NASA Astrophysics Data System (ADS)
Derby, Jeffrey J.; Zhang, Nan; Yeckel, Andrew
2012-10-01
The availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties is key to improving the performance of gamma radiation detectors fabricated from them. Towards this goal, we discuss results obtained by computational models that provide a deeper understanding of crystal growth processes and how the growth of CZT can be improved. In particular, we discuss methods that may be implemented to lessen the deleterious interactions between the ampoule wall and the growing crystal via engineering a convex solidification interface. For vertical Bridgman growth, a novel, bell-curve furnace temperature profile is predicted to achieve macroscopically convex solid-liquid interface shapes during melt growth of CZT in a multiple-zone furnace. This approach represents a significant advance over traditional gradient-freeze profiles, which always yield concave interface shapes, and static heat transfer designs, such as pedestal design, that achieve convex interfaces over only a small portion of the growth run. Importantly, this strategy may be applied to any Bridgman configuration that utilizes multiple, controllable heating zones. Realizing a convex solidification interface via this adaptive bell-curve furnace profile is postulated to result in better crystallinity and higher yields than conventional CZT growth techniques.
Unexpected Anomaly of GHF (Gradient Heating Furnace) On-Board
NASA Astrophysics Data System (ADS)
Kobayashi, Ryoji
2013-09-01
GHF (Gradient Heating Furnace) is vacuum furnace that enables to raise temperature up to 1600 degree Celsius. GHF consumes large amount of power (about 4 kW), contains pressure vessel and has interface with vacuum line. Therefore, GHF has hazardous function in nature. JAXA performed safety analysis thoroughly, identified all causes and set appropriate safety controls to meet safety requirements. JAXA launched GHF in January of 2011 and operates in Kibo laboratory of ISS (International Space Station). JAXA encountered unexpected anomalies during operations on-board. They did not give safety degradation actually since safety devices inherent to GHF worked, but some of anomalies were unexpected.This paper presents one of the "unexpected" anomaly happened on-board, and how it relates with safety and how it is controlled not to lead to safety accident.It is pretty hard to find out "root cause" for some of anomalies due to limited telemetry information and crew resources. In addition, most of engineers designing GHF have gone. This paper also introduces agency level efforts to struggle to find out causes and to set appropriate countermeasure.Finally, this paper summaries lessons and learned from anomaly JAXA encountered.
Heat-transfer measurements of the 1983 Kilauea lava flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardee, H.C.
1983-10-07
Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.
Heat transfer measurements of the 1983 kilauea lava flow.
Hardee, H C
1983-10-07
Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.
Numerical simulation of heat and mass transport during space crystal growth with MEPHISTO
NASA Technical Reports Server (NTRS)
Yao, Minwu; Raman, Raghu; Degroh, Henry C., III
1995-01-01
The MEPHISTO space experiments are collaborative United States and French investigations aimed at understanding the fundamentals of crystal growth. Microgravity experiments were conducted aboard the USMP-1 and -2 missions on STS-52 and 62 in October 1992 and March 1994 respectively. MEPHISTO is a French designed and built Bridgman type furnace which uses the Seebeck technique to monitor the solid/liquid interface temperature and Peltier pulsing to mark the location and shape of the solid/liquid interface. In this paper the Bridgman growth of Sn-Bi and Bi-Sn under terrestrial and microgravity conditions is modeled using the finite element code, FIDAP*. The numerical model considers fully coupled heat and mass transport, fluid motion and solid/liquid phase changes in the crystal growth process. The primary goals of this work are: to provide a quantitative study of the thermal buoyancy-induced convection in the melt for the two flight experiments; to compare the vertical and horizontal growth configurations and systematically evaluate the effects of various gravity levels on the solute segregation. Numerical results of the vertical and horizontal Bridgman growth configurations are presented.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1996-01-01
A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Pinto, Brian
2017-12-01
Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.
Void Management in MEPHISTO and Other Space Experiments
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Johnston, J. Christopher; Wei, Bingbo
1998-01-01
The second flight of NASA's Shuttle Flight experiment program known as MEPHISTO suffered from a void in the liquid portion of the sample, even though a piston arrangement was in place to keep the ampoule filled. In preparations for the next flight of the MEPHISTO furnace an animated computer program, called MEPHISTO Volume Visualizer (MVV), was written to help avoid the formation of unwanted voids. A piston system on MEPHISTO has the ability to move approximately 5 mm in compression, to accommodate expansion of the solid during heating; then from the completely compressed position, the piston can move up to 25 mm in towards the sample, effectively making the ampoule smaller and hopefully eliminating any voids. Due to the nature of the piston design and ampoule and sample arrangement, the piston has gotten stuck during normal directional solidification; this creates the risk of a void. To eliminate such a void, the liquid in the hot zones of the furnace can be heated, thereby expanding the liquid and consuming any void. The problem with this approach is that if the liquid is heated too much an overpressure could result, breaking the ampoule and ending the experiment catastrophically. The MVV has been found to be a useful tool in the assessment of the risks associated with the formation of a void and the additional heating of the liquid in the hot zone of this Bridgman type furnace. The MVV software will be discussed and copies available; it is written in the Delphi 2 programming language and runs under Windows 95 and NT. The strategies used in other flight experiments, such as the Isothermal Dendritic Growth Experiment, will also be presented.
Postcombustion and its influences in 135 MWe CFB boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaohua Li; Hairui Yang; Hai Zhang
2009-09-15
In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile,more » and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.« less
Mercurio, Vittorio; Venturelli, Chiara; Paganelli, Daniele
2014-12-01
As regards the incineration process of the urban solid waste, the composition correct management allows not only the valorization of precise civil and industrial groups of waste as alternative fuels but also a considerable increase of the furnace work temperature leading to a remarkable improvement of the related energy efficiency. In this sense, the study of the melting behavior of ashes deriving from several kinds of fuels that have to be processed to heat treatment is really important. This approach, indeed, ensures to know in depth the features defining the melting behavior of these analyzed samples, and as a consequence, gives us the necessary data in order to identify the best mixture of components to be incinerated as a function of the specific working temperatures of the power plant. Firstly, this study aims to find a way to establish the softening and melting temperatures of the ashes because they are those parameters that strongly influence the use of fuels. For this reason, in this work, the fusibility of waste-derived ashes with different composition has been investigated by means of the heating microscope. This instrument is fundamental to prove the strict dependence of the ashes fusion temperature on the heating rate that the samples experienced during the thermal cycle. In addition, in this work, another technological feature of the instrument has been used allowing to set an instantaneous heating directly on the sample in order to accurately reproduce the industrial conditions which characterize the incineration plants. The comparison between the final results shows that, in effect, the achievement of the best performances of the furnace is due to the a priori study of the melting behavior of the single available components.
CFD-based Analysis of Non-Premixed Combustion Model in Biomass Grate Furnaces
NASA Astrophysics Data System (ADS)
Hafiz, M.; Nelwan, L. O.; Yulianto, M.
2018-05-01
Biomass grate furnace is widely used as heat source for various uses including grain drying. In this study, a CFD simulation using Fluent 18.0 academic was performed on a biomass ladder grate furnace, which can be used later to improve the design as well as the operation technique of the furnace. A downscaled overfeed type furnace with size of 15 x 30 x 50 cm was built to validate the model. The turbulence model used in this study was k-epsilon while the combustion model of non-premixed combustion was used. The simulation was performed with the biomass feed rate of 4 kg/h and air flow velocity of 7.5 m/s at 3.81 cm inlet diameter. The simulation result at outlet temperature was 673 °C and inside temperature were 775 and 717 °C, while the composition of gases was 0.18 for CO, 0.2 for CO2, 0.001 for CH4, 0.09 for H2O, 0.51 for N2 and 0.029 for other gases. Test results from a biomass ladder grate furnace were used to validate the model and the results are 646 °C for the outlet temperature, 712 and 582 °C for inside temperature. Comparison between simulation and measurement results shows good value with average percentage of deviation 12.12%.
NASA Technical Reports Server (NTRS)
Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie
2001-01-01
A compliant, thermal interface material is tested to evaluate its thermal behavior at elevated temperatures, in vacuum conditions, and under varying levels of compression. Preliminary results indicate that the thermal performance of this polymer fiber-based, felt-like material is sufficient to meet thermal extraction requirements for the Quench Module Insert, a Bridgman furnace for microgravity material science investigation. This paper discusses testing and modeling approaches employed, gives of a status of characterization activities and provides preliminary test results.
Corrosion of SiC by Molten Salt
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Smialek, James L.
1987-01-01
Advanced ceramic materials considered for wide range of applications as in gas turbine engines and heat exchangers. In such applications, materials may be in corrosive environments that include molten salts. Very corrosive to alloys. In order to determine extent of problem for ceramic materials, corrosion of SiC by molten salts studied in both jet fuel burners and laboratory furnaces. Surface of silicon carbide corroded by exposure to flame seeded with 4 parts per million of sodium. Strength of silicon carbide decreased by corrosion in flame and tube-furnace tests.
Development of a Hot Working Steel Based on a Controlled Gas-Metal-Reaction
NASA Astrophysics Data System (ADS)
Ritzenhoff, Roman; Gharbi, Mohammad Malekipour
As a result of cost sensitiveness, the demand on hot working steels with advanced characteristics and properties are ascending. We have used a controlled gas-metal-reaction in a P-ESR furnace to produce high quality hot working steel. These types of materials are also known as High Nitrogen Steels (HNS). An overview of the development in a pressurized induction furnace to the final industrial scale using P-ESR will be provided. Different heat treatment strategies are conducted and their effect on mechanical properties is investigated.
Cho, Bum Hwi; Oh, Youn Jun; Mun, Sang Mi; Ko, Weon Bae
2012-07-01
Zinc oxide (ZnO) nanoparticles were synthesized sonochemically by applying ultrasonic irradiation to a mixed aqueous-alcoholic solution of zinc nitrate with sodium hydroxide at room temperature. The morphology and optical properties of the ZnO nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis spectroscopy. The C60(O)n nanoparticles were synthesized by heating a mixture of C60 and 3-chloroperoxybenzoic acid in a benzene solvent under the reflux system. The heated C60(O)n-ZnO nanocomposite was synthesized in an electric furnace at 700 degrees C for two hours. The heated C60(O)n-ZnO nanocomposite was characterized by XRD, SEM, and TEM, and examined as a catalyst in the photocatalytic degradation of organic dyes by UV-vis spectroscopy. The photocatalytic effect of the heated C60(O)n-ZnO nanocomposite was evaluated by a comparison with that of unheated C60(O)n nanoparticles, heated C60(O)n nanoparticles, and unheated C60(O)n-ZnO in organic dyes, such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 365 nm.
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less
The role of silver in self-lubricating coatings for use at extreme temperatures
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1985-01-01
The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.
The use of silver in self-lubricating coatings for extreme temperatures
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1986-01-01
The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, Thomas A.
Direct biomass combustion for the production of heat is a broad field of technology which ranges from residential wood stoves to commercial and industrial boilers and furnaces. Fuels typically include pellets, chips and cord wood. Over the past decade, as a result of fuel price advantages and other benefits, wood burning has seen a significant growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Jeff; Wei, Max; Leventis, Greg
The report offers several use cases and case studies of electrification in buildings and industry: air source heat pumps for space heating, zero net energy buildings, electric water heaters and demand response, electric arc furnaces, and electric boilers. Finally, the report suggests several areas for further research to better understand and advance beneficial electrification.
40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... generating unit (EGU) covered by subpart UUUUU of this part. (b) A recovery boiler or furnace covered by... vessels. This does not include units that provide heat or steam to a process at a research and development... the average annual heat input during any 3 consecutive calendar years to the boiler or process heater...
40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... generating unit (EGU) covered by subpart UUUUU of this part. (b) A recovery boiler or furnace covered by... vessels. This does not include units that provide heat or steam to a process at a research and development... the average annual heat input during any 3 consecutive calendar years to the boiler or process heater...
NASA Technical Reports Server (NTRS)
Katter, L. B.; Peterson, D. J.
1978-01-01
The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.
Experiment and ANSYS simulation analysis for metal aluminum solid and fluid conversion
NASA Astrophysics Data System (ADS)
Wang, Y.-Y.; Guo, P.; Wu, Y.; Zhang, Z.-L.; Jiang, S.-M.
2017-11-01
In this paper, study on metal aluminum solid and fluid conversion was carried out by using crucible resistance furnace, and observing the phenomenon of metal aluminum solid and fluid conversion. In the experiment, the same shape aluminum block was kept under the same heating rate and heated by the resistance furnace. The experimental results show that the melting point of metal aluminum is between 650°C and 660°C, and after the melting point, the metal aluminum began to melt when it maintained for a long period of time, however, when the temperature is higher than the melting point, the aluminum will melt very quickly. In addition, in ANSYS simulation, the solid aluminum melted completely at 670°C in 5430 seconds, much longer than the actual experiment, it due to the heating rate was faster, not in an ideal experimental environment and there is heat exchange with the outside world and convection, at the same time, the aluminum block may contain impurities, so the actual melting time could be shorter than the simulation. In this paper, it was explored for the liquid and solid conversion in depth, and had a certain actual value.
Investigation of gaseous nuclear rocket technology
NASA Technical Reports Server (NTRS)
Kendall, J. S.
1972-01-01
The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.
2015-03-01
contemporary heat seeking missiles are rather flying computers—they cannot be fooled easily but can see the target in fog and clouds and even...usually not protected. Obviously, the IR countermeasure development is a step behind the heat seeking missile development, which means...horizontal reactor customized for low pressure operation (Fig. 3). The 3-inch diameter quartz tube was heated in a 3-zone resistive furnace. Quartz boat
NASA Astrophysics Data System (ADS)
Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi
2018-03-01
In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.
Combustion of Coal/Oil/Water Slurries
NASA Technical Reports Server (NTRS)
Kushida, R. O.
1982-01-01
Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.
1959-08-20
A hot jet research facility, used extensively in the design and development of the reentry heat shield on the Project Mercury spacecraft. The electrically-heated arc jet simulates the friction heating encountered by a space vehicle as it returns to the earth's atmosphere at high velocities. The arc jet was located in Langley's Structures Research Laboratory. It was capable of heating the air stream to about 9,000 degrees F. -- Published in Taken from an October 5, 1961 press release entitled: Hot Jet Research Facility used in Reentry Studies will be demonstrated at NASA Open House, October 7.
NASA Astrophysics Data System (ADS)
Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.
2002-12-01
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.
2017-11-01
The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.
Design and Development of Tilting Rotary Furnace
NASA Astrophysics Data System (ADS)
Sai Varun, V.; Tejesh, P.; Prashanth, B. N.
2018-02-01
Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken in manufacturing. The furnace is provided with a rotation motion to the base which helps in providing a uniform distribution of molten metal to various moulds and can be used to fill a number of moulds with minimal wastage of the molten material. Due to the tilting action provided to the combustion chamber, the flow of metal can be controlled easily during pouring of molten metal into the moulds.
Inertial impaction air sampling device
Dewhurst, Katharine H.
1990-01-01
An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.
Inertial impaction air sampling device
Dewhurst, K.H.
1987-12-10
An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.
Chen, J; Tong, W; Cao, Y; Feng, J; Zhang, X
1997-01-01
The purpose of this study was to evaluate the effect of atmosphere on the phase transformation in hydroxyapatite (HA) coatings during heat treatment by varying the atmosphere in the furnace pipe. Heat treatment always increased the crystallinity of HA coatings regardless of the kind of atmosphere. Water molecules in atmosphere further promoted HA recrystallization during heat treatment. In a dry atmosphere, tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) were more stable than HA, so heat treatment could not convert them into HA. However, in a humid atmosphere, heat treatment would transform TCP and TTCP into HA by hydrolytic reactions.
Compact low power infrared tube furnace for in situ X-ray powder diffraction
NASA Astrophysics Data System (ADS)
Doran, A.; Schlicker, L.; Beavers, C. M.; Bhat, S.; Bekheet, M. F.; Gurlo, A.
2017-01-01
We describe the development and implementation of a compact, low power, infrared heated tube furnace for in situ powder X-ray diffraction experiments. Our silicon carbide (SiC) based furnace design exhibits outstanding thermal performance in terms of accuracy control and temperature ramping rates while simultaneously being easy to use, robust to abuse and, due to its small size and low power, producing minimal impact on surrounding equipment. Temperatures in air in excess of 1100 °C can be controlled at an accuracy of better than 1%, with temperature ramping rates up to 100 °C/s. The complete "add-in" device, minus power supply, fits in a cylindrical volume approximately 15 cm long and 6 cm in diameter and resides as close as 1 cm from other sensitive components of our experimental synchrotron endstation without adverse effects.
NASA Astrophysics Data System (ADS)
Maryam, M.; Shamsudin, M. S.; Rusop, M.
2017-09-01
A new structure of carbon nanotube was produced from the Single furnace Aerosol-assisted Catalytic CVD (SFAACVD) method using Palm Oil (PO) as the precursor and Ferrocene (Fe) as the catalyst. A nephelium mutabile blume (rambutan)-like structure of CNTs was found from the black substance collected from the Alumina boat substrate placed inside the furnace. Temperature of furnace which was heated at 600 °C - 800 °C plays an important role in determining the formation of structure. The formation rambutan-like structure of CNTs was optimized at 700 °C and the samples collected were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to obtain the surface morphologies. Raman Spectroscopy (RS) and Thermogravimetric Analysis (TGA) were then used to further study the Raman Spectra and purity of samples.
Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori
2016-01-15
Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.
2012-02-01
Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2011 CFR
2011-07-01
... pyrolysis or combustion units located at a plastics or rubber recycling unit as specified under § 62.15020(h... furnace (for example, radiant heat transfer section) of the combustion unit. Yard waste means grass, grass...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2010 CFR
2010-07-01
... pyrolysis or combustion units located at a plastics or rubber recycling unit as specified under § 62.15020(h... furnace (for example, radiant heat transfer section) of the combustion unit. Yard waste means grass, grass...
Willford, Wayne A.; Hesselberg, Robert J.; Bergman, Harold L.
1973-01-01
Total mercury in a variety of substances is determined rapidly and precisely by direct sample combustion, collection of released mercury by amalgamation, and photometric measurement of mercury volatilized from the heated amalgam. Up to 0.2 g fish tissue is heated in a stream of O2 (1.2 L/min) for 3.5 min in 1 tube of a 2-tube induction furnace. The released mercury vapor and combustion products are carried by the stream of O2 through a series of traps (6% NaOH scrubber, water condenser, and Mg(CIO4)2 drying tube) and the mercury is collected in a 10 mm diameter column of 24 gauge gold wire (8 g) cut into 3 mm lengths. The resulting amalgam is heated in the second tube of the induction furnace and the volatilized mercury is measured with a mercury vapor meter equipped with a recorder-integrator. Total analysis time is approximately 8 min/sample. The detection limit is less than 0.002 μg and the system is easily converted for use with other biological materials, water, and sediments.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
NASA Astrophysics Data System (ADS)
Srikant, S. S.; Mukherjee, P. S.; Bhima Rao, R.
2015-04-01
This paper deals with the main objective to observe the effect of microwave heat treatment for the production of Titania rich slag and pig iron from placer ilmenite. The experiments carried out in the present investigation on the oxidized ilmenite sample for microwave heat treatment in microwave sintering furnace reveals that a product can be obtained containing Titania rich slag and metalized iron. The in-depth characterisation of these products using SEM-EDAX shows that around 75-85 % of titanium dioxide is formed in terms of titania rich slag by using microwave sintering furnace after reduction of oxidized ilmenite with proper stoichiometric graphitic carbon and silicon carbide (SiC) susceptor. The titania rich slag is considered to be better input material for production of pigment grade titanium dioxide. On the other hand, the pig iron obtained as by product from titania rich slag is also important for automobile and steel industries application.
Fuel and oxygen addition for metal smelting or refining process
Schlichting, Mark R.
1994-01-01
A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.
Fuel and oxygen addition for metal smelting or refining process
Schlichting, M.R.
1994-11-22
A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figs.
The role of primary and secondary air on wood combustion in cookstoves
NASA Astrophysics Data System (ADS)
Kirch, Thomas; Birzer, Cristian H.; Medwell, Paul R.; Holden, Liam
2018-03-01
A two-stage solid fuel research furnace was used to examine the claim that through forced draught greater mixing and more complete combustion could be achieved. By varying the primary air (PA) and secondary air (SA) flow the influence on the combustion process was investigated. In the first part of the combustion, when the release of volatile compounds predominates, the variation of neither PA nor SA had a significant influence. In the second part when mainly char is oxidised an increase in both PA and SA lead to a rising nominal combustion efficiency (?)), with a greater impact observed with SA. Furthermore higher air flows caused the heat transfer, to a pot above the furnace, to decline. Therefore forced draught does lead to greater mixing and mitigation of emissions, but in the presented configuration a trade-off between a higher NCE and a lower heat transfer needs consideration.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
East Europe Report, Economic and Industrial Affairs, No. 2448.
1983-09-14
investment was postponed); equipment for the food processing industry—refrigerators, production lines for soups, tomato puree and the like; mining equipment...processes based primarily on components derived from pyrolysis and reformation fractions which currently are still not used on a wide scale. 11,023...chemical processes, coking and pyrolysis furnace gases, combustible wastes from raw and other materials, physical heat from processes, heat from
Process for growing silicon carbide whiskers by undercooling
Shalek, Peter D.
1987-01-01
A method of growing silicon carbide whiskers, especially in the .beta. form, using a heating schedule wherein the temperature of the atmosphere in the growth zone of a furnace is first heated to or beyond the growth temperature and then is cooled to or below the growth temperature to induce nucleation of whiskers at catalyst sites at a desired point in time which results in the selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-07-01
This case study describes how the Kaiser Aluminum plant in Sherman, Texas, achieved annual savings of $360,000 and 45,000 MMBtu, and improved furnace energy intensity by 11.1% after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.
High Yield Magnetic Nanoparticles Filled Multiwalled Carbon Nanotubes Using Pulsed Laser Deposition
2008-12-01
exposing silica structures to a mixture of ferrocene and xylene at 770 oC for 10 min. The furnace is pumped down to ~200 mtorr in argon bleed and then...heated to the temperature of 770 oC. The solution of ferrocene dissolved in xylene (~0.01g/ml) is pre-heated in a bubbler to 175 oC and then passed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelli Kazuberns; Sushil Gupta; Mihaela Grigore
Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearingmore » but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.« less
DC graphite arc furnace, a simple system to reduce mixed waste volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittle, J.K.; Hamilton, R.A.; Trescot, J.
1995-12-31
The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less
NASA Astrophysics Data System (ADS)
Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu
2018-07-01
In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.
NASA Astrophysics Data System (ADS)
Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu
2018-03-01
In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.
Apparatus for Hot Impact Testing of Material Specimens
NASA Technical Reports Server (NTRS)
Pawlik, Ralph J.; Choi, Sung R.
2006-01-01
An apparatus for positioning and holding material specimens is a major subsystem of a system for impact testing of the specimens at temperatures up to 1,500 C. This apparatus and the rest of the system are designed especially for hot impact testing of advanced ceramics, composites, and coating materials. The apparatus includes a retaining fixture on a rotating stage on a vertically movable cross support driven by a linear actuator. These components are located below a furnace wherein the hot impact tests are performed (see Figure 1). In preparation for a test, a specimen is mounted on the retaining fixture, then the cross support is moved upward to raise the specimen, through an opening in the bottom of the furnace, to the test position inside the furnace. On one side of the furnace there is another, relatively small opening on a direct line to the specimen. Once the specimen has become heated to the test temperature, the test is performed by using an instrumented external pressurized-gas-driven gun to shoot a projectile through the side opening at the specimen.
Reactor for producing large particles of materials from gases
NASA Technical Reports Server (NTRS)
Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)
1987-01-01
A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.
Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process
NASA Astrophysics Data System (ADS)
Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng
2017-07-01
As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.
Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
Leckner, Bo
2015-03-01
The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Graphite furnace atomic absorption elemental analysis of ecstasy tablets.
French, Holly E; Went, Michael J; Gibson, Stuart J
2013-09-10
Six metals (copper, magnesium, barium, nickel, chromium and lead) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 parts per million (ppm) and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly higher 3,4-methylenedioxy-N-methamphetamine (MDMA) content than batch 2, barium was the only element which discriminated between the two ecstasy seizures (batch 1: 0.19-0.66 ppm, batch 2: 3.77-5.47 ppm). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Anal, Jasha Momo H.
2014-01-01
Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430
Wang, J; Levendis, Y A; Richter, H; Howard, J B; Carlson, J
2001-09-01
A study is presented on laboratory-scale combustion of polystyrene (PS) to identify staged-combustion conditions that minimize emissions. Batch combustion of shredded PS was conducted in fixed beds placed in a bench-scale electrically heated horizontal muffle furnace. In most cases, combustion of the samples occurred by forming gaseous diffusion flames in atmospheric pressure air. The combustion effluent was mixed with additional air, and it was channeled to a second muffle furnace (afterburner) placed in series. Further reactions took place in the secondary furnace at a residence time of 0.7 s. The gas temperature of the primary furnace was varied in the range of 500-1,000 degrees C, while that of the secondary furnace was kept fixed at 1,000 degrees C. Sampling for CO, CO2, O2, soot, and unburned hydrocarbon emissions (volatile and semivolatile, by GC-MS) was performed at the exits of the two furnaces. Results showed that the temperature of the primary furnace, where PS gasifies, is of paramount importance to the formation and subsequent emissions of organic species and soot. Atthe lowesttemperatures explored, mostly styrene oligomers were identified at the outlet of the primary furnace, but they did not survive the treatment in the secondary furnace. The formation and emission of polycyclic aromatic hydrocarbons (PAH) and soot were suppressed. As the temperature in the first furnace was raised, increasing amounts of a wide range of both unsubstituted and substituted PAH containing up to at least seven condensed aromatic rings were detected. A similar trend was observed for total particulate yields. The secondary furnace treatment reduced the yields of total PAH, but it had an ambiguous effect on individual species. While most low molecular mass PAH were reduced in the secondary furnace, concentrations of some larger PAH increased under certain conditions. Thus, care in the selection of operating conditions of both the primary furnace (gasifier/ burner) and the secondary furnace (afterburner) must be exercised to minimize the emission of hazardous pollutants. The emissions of soot were also reduced in the afterburner but not drastically. This indicates that soot is indeed resistant to oxidation; thus, it would be best to avoid its formation in the first place. An oxidative pyrolysis temperature of PS in the vicinity of 600 degrees C appears to accomplish exactly that. An additional afterburner treatment at a sufficiently high temperature (1,000 degrees C) may be a suitable setting for minimization of most pollutants. To obtain deeper understanding of chemical processes, the experimental results were qualitatively compared with preliminary predictions of a detailed kinetic model that describes formation and destruction pathways of chemical species including most PAH observed in the present work. The modeling was performed forthe secondary furnace assuming plug-flow conditions therein. The experimentally determined chemical composition at the outlet of the primary furnace was part of the input parameters of the model calculation.
Exothermic furnace module development. [space processing
NASA Technical Reports Server (NTRS)
Darnell, R. R.; Poorman, R. M.
1982-01-01
An exothermic furnace module was developed to rapidly heat and cool a 0.820-in. (2.1 cm) diameter by 2.75-in. (7.0 cm) long TZM molybdenum alloy crucible. The crucible contains copper, oxygen, and carbon for processing in a low-g environment. Peak temperatures of 1270 C were obtainable 3.5 min after start of ignition, and cooling below 950 C some 4.5 min later. These time-temperature relationships were conditioned for a foam-copper experiment, Space Processing Applications Rocket experiment 77-9, in a sounding rocket having a low-g period of 5 min.
Halogen lamp experiment, HALEX
NASA Technical Reports Server (NTRS)
Schmitt, G.; Stapelmann, J.
1986-01-01
The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.
Fabrication of Large Bulk High Temperature Superconducting Articles
NASA Technical Reports Server (NTRS)
Koczor, Ronald (Inventor); Hiser, Robert A. (Inventor)
2003-01-01
A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.
NASA Technical Reports Server (NTRS)
Latham, T. S.; Rodgers, R. J.
1972-01-01
Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.
NASA Technical Reports Server (NTRS)
1983-01-01
Experimental work in support of stress studies in high speed silicon sheet growth has been emphasized in this quarter. Creep experiments utilizing four-point bending have been made in the temperature range from 1000 C to 1360 C in CZ silicon as well as on EFG ribbon. A method to measure residual stress over large areas using laser interferometry to map strain distributions under load is under development. A fiber optics sensor to measure ribbon temperature profiles has been constructed and is being tested in a ribbon growth furnace environment. Stress and temperature field modeling work has been directed toward improving various aspects of the finite element computing schemes. Difficulties in computing stress distributions with a very high creep intensity and with non-zero interface stress have been encountered and additional development of the numerical schemes to cope with these problems is required. Temperature field modeling has been extended to include the study of heat transfer effects in the die and meniscus regions.
Mapping 1995 global anthropogenic emissions of mercury
NASA Astrophysics Data System (ADS)
Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon
This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.
Sahlberg, Martin; Andersson, Yvonne
2009-03-01
Scandium magnesium gallide, Sc(2)MgGa(2), and yttrium magnesium gallide, Y(2)MgGa(2), were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo(2)FeB(2)-type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc(2)MgGa(2 )was determined from single-crystal diffraction intensities and the isostructural Y(2)MgGa(2) was identified from powder diffraction data.
View looking southwest at rollup ports of no. 1 billet ...
View looking southwest at roll-up ports of no. 1 billet heating furnace for no. 1 seamless line. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA
The use of fluidized sand bed as an innovative technique for heat treating aluminum based castings
NASA Astrophysics Data System (ADS)
Ragab, Khaled
The current study was carried out to arrive at a better understanding of the influences of the fluidized sand bed heat treatment on the tensile properties and quality indices of A356.2 and B319.2 casting alloys. For the purposes of validating the use of fluidized sand bed furnaces in industrial applications for heat treatment of 356 and 319 castings, the tensile properties and the quality indices of these alloys were correlated with the most common metallurgical parameters, such as strontium modification, grain refining, solutionizing time, aging parameters and quenching media. Traditional heat treatment technology, employing circulating air convection furnaces, was used to establish a relevant comparison with fluidized sand beds for the heat treatment of the alloys investigated, employing T6 continuous aging cycles or multi-temperature aging cycles. Quality charts were used to predict and/or select the best heat treatment conditions and techniques to be applied in industry in order to obtain the optimum properties required for particular engineering applications. The results revealed that the strength values achieved in T6-tempered 319 and 356 alloys are more responsive to fluidized bed (FB) heat treatment than to conventional convection furnace (CF) treatment for solution treatment times of up to 8 hours. Beyond this solution time, no noticeable difference in properties is observed with the two techniques. A significant increase in strength is observed in the FB heat-treated samples after short aging times of 0.5 and 1 hour, the trend continuing up to 5 hours. The 319 alloys show signs of overaging after 8 hours of aging using a conventional furnace, whereas with a fluidized bed, overaging occurs after 12 hours. Analysis of the tensile properties in terms of quality index charts showed that both modified and non-modified 319 and 356 alloys display the same, or better, quality, after only a 2-hr treatment in an FB compared to 10 hours when using a CF. The quality values of the 356 alloys are more responsive to the FB technique than 319 alloys through long aging times of up to 5 hours. The 319 alloys heat-treated in an FB, however, show better quality values after 0.5 hour of aging and for solution treatment times of up to 5 hours than those treated using a CF. With regard to the quality charts of 319 alloys, heat-treated samples show that increasing the aging time up to peak-strength, i.e. 8 and 12 hours in a CF and an FB, respectively, results in increasing in the alloy strength with a decrease in the quality values, for each of the solution heat treatment times used. The statistical analysis of the results reveals that modification and heating rate of the heat treatment technique have the greatest positive effects on the quality values of the 356 alloys. The use of a fluidized sand bed for the direct quenching-aging treatment of A356.2 and B319.2 casting alloys yields greater UTS and YS values compared to conventional furnace quenched alloys. The strength values of T6 tempered A356 and B319 alloys are greater when quenched in water compared to those quenched in an FB or CF. For the same aging conditions (170°C/4h), the fluidized bed quenched-aged 319 and 356 alloys show nearly the same or better strength values than those quenched in water and then aged in a CF or an FB. Based on the quality charts developed for alloys subjected to different quenching media, higher quality index values are obtained by water-quenched T6-tempered A356 alloys, and conventional furnace quenched-aged T6-tempered B319 alloys, respectively. The modification factor has the most significant effect on the quality results of the alloys investigated, for all heat treatment cycles, as compared to other metallurgical parameters. The results of alloys subjected to multi-temperature aging cycles reveal that the strength results obtained after the T6 continuous aging treatment of A356 alloys are not improved by means of multi-temperature aging cycles, indicating therefore that the optimum properties are obtained using a T6 aging treatment. The optimum strength properties of B319.2 alloys, however, is obtained by applying multi-temperature aging cycles such as, for example, 230°C/2h followed by 180°C/8h, rather than T6 aging treatment. In the case of multi-temperature aging cycles, the modification factor has the most significant role in improving the quality index values of 356 and 319 alloys. The FB heat-treated alloys have the highest strength values for all heat treatment cycles compared to CF heat-treated alloys; however, the FB has no significant effect on the quality values of 319 alloys compared to the CF. Regarding the interaction plots for multi-temperature aging cycles, the most significant factors that have a positive effect on the quality values of 356 alloys are modification and the 230°C/2h + 180°C/8h multi-temperature aging cycle. (Abstract shortened by UMI.)
Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir
2008-10-01
The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.
NASA Astrophysics Data System (ADS)
Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping
2012-06-01
The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.
Foaming of aluminium-silicon alloy using concentrated solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.
2010-06-15
Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mouldmore » design. (author)« less