Science.gov

Sample records for furnace waste gas

  1. Furnace for treating industrial wastes

    SciTech Connect

    Nakamura, T.D.

    1982-08-31

    A furnace for treating sewage sludge, ash from municipal incinerators or other industrial wastes by melting the waste with a high-temperature bed formed from a combustible carbonaceous material for the reuse of the resulting molten product, for example, as aggregate. A gas for combustion is supplied to the bed at an intermediate portion between its upper and lower portions while causing the resulting combustion gas to flow through the bed dividedly upward and downward.

  2. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. PMID:26684056

  3. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel.

  4. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  5. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  6. Gas exhaust nozzle for ARC furnaces

    SciTech Connect

    Buhler, K.

    1984-10-09

    Arc furnace has a furnace shell, a furnace lid with lid ring and a lid lifting and swivelling means as well as a lid opening in the furnace lid for exhausting the flue gas from the interior of the furnace and a flue gas exhaust nozzle for removing the flue gases above the lid opening, the nozzle being supported on the furnace lid ring. By means of this design feature as well as a guide arrangement and a locking means the flue gas exhaust nozzle can be completely integrated into the operating steps of the arc furnace in a simple and economical fashion.

  7. Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report

    SciTech Connect

    Dosaj, V.D.

    1995-01-01

    The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

  8. Tubular furnace for performance of gas reactions

    SciTech Connect

    Bruck, H.

    1984-04-03

    There is described a furnace for the performance of gas reactions in a ceramic assembly of tubes in which the heating chambers, the recuperators and the flue gas-branch channel are arranged in a compact, energy saving type of construction. The furnace is especially suited for the production of hydrocyanic acid according to the BMA process (hydrocyanic acid-methane-ammonia process).

  9. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  10. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1996-12-31

    This publication contains technical papers published as they were presented at a recent specialty conference sponsored by the Air & Waste Management Association, titled Waste Combustion in Boilers and Industrial Furnaces, held March 26-27, 1996, in Kansas City, Missouri. Papers touch on compilance concerns for air pollution, air monitoring methodologies, risk assessment, and problems related to public anxiety. Separate abstracts have been indexed into the database from this proceedings.

  11. Cogeneration from glass furnace waste heat recovery

    SciTech Connect

    Hnat, J.G.; Cutting, J.C.; Patten, J.S.

    1982-06-01

    In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

  12. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  13. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  14. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect

    Batdorf, J.; Gillins, R. ); Anderson, G.L. )

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  15. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  16. Holden gas-fired furnace baseline data. Revision 1

    SciTech Connect

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs.

  17. Looking east at the basic oxygen furnace building with gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the basic oxygen furnace building with gas cleaning plants in foreground on the left and the right side of the furnace building. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  18. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  19. 24. LOOKING SOUTH AT CLEAN BLAST FURNACE GAS PIPE LEADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. LOOKING SOUTH AT CLEAN BLAST FURNACE GAS PIPE LEADING INTO THE EASTERN WALL OF THE CENTRAL BOILER HOUSE. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    PubMed

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere. PMID:12220825

  1. Gas flow analysis in melting furnaces

    SciTech Connect

    Kiss, L.I.; Bui, R.T.; Charette, A.; Bourgeois, T.

    1998-12-01

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects of the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.

  2. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  3. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  4. 16 CFR Appendix G1 to Part 305 - Furnaces-Gas

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305... RULEâ) Appendix G1 to Part 305—Furnaces—Gas Furnace type Range of annual fuel utilization efficiencies (AFUEs) Low High Gas Furnaces Manufactured Before the Compliance Date of DOE Regional...

  5. Electricity and Natural Gas Efficiency Improvements forResidential Gas Furnaces in the U.S.

    SciTech Connect

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-05-26

    This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78 percent annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80 percent AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81 percent AFUE) and condensing furnaces (90-96 percent AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80 percent. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90 percent or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current

  6. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  7. Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case

    SciTech Connect

    Vandecasteele, C. Wauters, G.; Arickx, S.; Jaspers, M.; Van Gerven, T.

    2007-07-01

    An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

  8. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  9. 16 CFR Appendix G4 to Part 305 - Mobile Home Furnaces-Gas

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Mobile Home Furnaces-Gas G4 Appendix G4 to... LABELING RULEâ) Appendix G4 to Part 305—Mobile Home Furnaces—Gas Type Range of annual fuel utilization efficiencies (AFUEs) Low High Mobile Home Gas Furnaces Manufactured Before the Compliance Date of DOE...

  10. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  11. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    SciTech Connect

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.; Hamilton, R.A.; Titus, C.H.; Wittle, J.K.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600{degrees}C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation.

  12. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    SciTech Connect

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich

    2009-07-15

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  13. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace

    SciTech Connect

    Ni Mingjiang; Xiao Hanxi; Chi Yong; Yan Jianhua; Buekens, Alfons; Jin Yuqi; Lu Shengyong

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The combustion efficiency of waste printed circuit boards (PCBs) depends on temperature, excess air factor, and high temperature zone residence time. Temperature has the most significant impact. Under the proposed condition, combustion of waste PCBs alone is quite complete within the furnace. Black-Right-Pointing-Pointer High temperature prompts a more complete bromine release and conversion. When temperature is high enough, 99.9% organobrominated compounds, the potential precursors for brominated dixoins formation, are destroyed efficiently and convert to inorganic bromine in flue gas, as HBr and Br{sub 2}. Black-Right-Pointing-Pointer Temperature has crucial influence over the inhibition of HBr conversion to Br{sub 2}, while the oxygen partial pressure plays a reverse role in the conversion to a very small extent. Increasing temperature will decrease the volume percentage ratio of Br{sub 2}/HBr in flue gas greatly. Black-Right-Pointing-Pointer The thermodynamic equilibrium approach of bromine conversion was investigated. The two forms of inorganic bromine in flue gas substantially reach thermodynamic equilibrium within 0.25 s. Under the proposed operating condition, the reaction of Br transfer and conversion finish. - Abstract: High temperature combustion experiments of waste printed circuit boards (PCBs) were conducted using a lab-scale system featuring a continuously-fed drop tube furnace. Combustion efficiency and the occurrence of inorganic bromine (HBr and Br{sub 2}) were systematically studied by monitoring the main combustion products continuously. The influence of furnace temperature (T) was studied from 800 to 1400 Degree-Sign C, the excess air factor (EAF) was varied from 1.2 to 1.9 and the residence time in the high temperature zone (RT{sub HT}) was set at 0.25, 0.5, or 0.75 s. Combustion efficiency depends on temperature, EAF and RT{sub HT}; temperature has the most significant effect. Conversion of organic

  14. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.

    PubMed

    Ma, Pan; Ma, Zengyi; Yan, Jianhua; Chi, Yong; Ni, Mingjiang; Cen, Kefa

    2011-10-01

    As one of the fastest developing countries, China is facing severe problems concerning hazardous waste treatment and disposal. This paper presents a new incineration technology and demonstration project in eastern China. The incineration system includes a rotary kiln, a grate furnace for burning out the kiln residue and a flue gas post-combustion chamber. Flue gas treatment and emission control is based on: a quench tower, followed by dry hydrated lime and activated carbon injection, a dual bag filter system, and a wet scrubber. It demonstrated that this incineration technology can effectively dispose of industrial hazardous waste with variable and complex characteristics. Gas emissions meet the demands of the Chinese Environmental Protection Association standard.

  15. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.

    PubMed

    Ma, Pan; Ma, Zengyi; Yan, Jianhua; Chi, Yong; Ni, Mingjiang; Cen, Kefa

    2011-10-01

    As one of the fastest developing countries, China is facing severe problems concerning hazardous waste treatment and disposal. This paper presents a new incineration technology and demonstration project in eastern China. The incineration system includes a rotary kiln, a grate furnace for burning out the kiln residue and a flue gas post-combustion chamber. Flue gas treatment and emission control is based on: a quench tower, followed by dry hydrated lime and activated carbon injection, a dual bag filter system, and a wet scrubber. It demonstrated that this incineration technology can effectively dispose of industrial hazardous waste with variable and complex characteristics. Gas emissions meet the demands of the Chinese Environmental Protection Association standard. PMID:21746756

  16. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  17. Waste form development for a DC arc furnace

    SciTech Connect

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  18. Numerical Study of the Gas Distribution in an Oxygen Blast Furnace. Part 1: Model Building and Basic Characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2015-09-01

    Based on multifluid theory, transport phenomena theory, metallurgical reaction kinetics, thermodynamics, and computational fluid dynamics, a multifluid model for an oxygen blast furnace was established to evaluate the gas distribution in a furnace. The uneven distribution of recycling gas in oxygen blast furnaces was found to be a severe problem. This uneven distribution resulted from injecting a large amount of recycling gas into the furnace shaft. Gas distribution substantially affects the energy and heat utilization of an oxygen blast furnace. Therefore, the basic characteristics of the gas distribution in an oxygen blast furnace are illustrated. The results show that in the top of the oxygen blast furnace, the concentration differences of the CO and CO2 between the center and edge reach 7.8% and 11.7%, respectively. The recycling gas from the shaft tuyere only penetrates to two thirds the length of the radius.

  19. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues.

    PubMed

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-10-01

    Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14%), batteries (0.5%), poly(vinyl chloride) (5.5%) and chromate-cupper-arsenate impregnated wood (11%). Materials were selected based on chemical composition and potential for being included or excluded from the waste mix. Critical elements in the waste materials were identified based on comparison with six experiments including 'as-large-as-possible' changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely ranges of element transfer coefficients were provided as the basis for sensitivity analysis of life-cycle assessment (LCA) results involving waste incinerator technologies.

  20. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues.

    PubMed

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-10-01

    Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14%), batteries (0.5%), poly(vinyl chloride) (5.5%) and chromate-cupper-arsenate impregnated wood (11%). Materials were selected based on chemical composition and potential for being included or excluded from the waste mix. Critical elements in the waste materials were identified based on comparison with six experiments including 'as-large-as-possible' changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely ranges of element transfer coefficients were provided as the basis for sensitivity analysis of life-cycle assessment (LCA) results involving waste incinerator technologies. PMID:21930520

  1. Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    SciTech Connect

    Rothgeb, S.; Brand, L.

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  2. Technology Solutions Case Study: Improving the Field Performance of Natural Gas Furnaces

    SciTech Connect

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  3. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    SciTech Connect

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  4. DC graphite arc furnace, a simple system to reduce mixed waste volume

    SciTech Connect

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  5. BPM Motors in Residential Gas Furnaces: What are theSavings?

    SciTech Connect

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-05-12

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

  6. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    SciTech Connect

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the life of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.

  7. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, L.

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  8. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, Larry

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit (PARR) team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  9. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.2 are subject to the standards for cadmium and lead, the standards for arsenic, beryllium, and... acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of Environment... Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are the standards for hydrochloric...

  10. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... hydrochloric acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of... Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are...

  11. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... hydrochloric acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of... Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are...

  12. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... hydrochloric acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of..., Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are the standards...

  13. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  14. Chromium stabilization chemistry of paint removal wastes in Portland cement and blast furnace slag

    SciTech Connect

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1995-12-31

    The use of cement based systems for solidification and stabilization of hazardous wastes has been proposed. The stabilization of Cr contaminated paint removal wastes in ordinary Portland cement and in a Portland cement and blast furnace slag matrix was investigated. A loading by volume of 75% waste and 25% cement (or cement + slag) was used. The expression of pore solution was utilized to determine the chemical environment encountered by the waste species in the cement matrix. The highly alkaline conditions of ordinary Portland cement determined the stability of the metal species, with Cr being highly soluble. The replacement of 25% of the Portland cement by blast furnace slag was found to decrease the [OH-] of the pore solution resulting in a decrease of the Cr concentration. For cement wastes forms hydrated for 28 days, the Cr concentration decreased in the expressed pore solution. During the TCLP tests the cement waste form and extraction solution were found to react, changing the chemistry of the extraction solution. The expression of pore solution was found to give a direct measure of the chemistry of the waste species in the cement matrix. This avoids the reaction of the TCLP extraction solution with the cement matrix which changes the solubility of the hazardous metals. 15 refs., 4 figs., 6 tabs.

  15. 16 CFR Appendix G1 to Part 305 - Furnaces-Gas

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Gas Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  16. 16 CFR Appendix G1 to Part 305 - Furnaces-Gas

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Gas Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  17. 16 CFR Appendix G1 to Part 305 - Furnaces-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Gas Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  18. 16 CFR Appendix G1 to Part 305 - Furnaces-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Furnaces-Gas G1 Appendix G1 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Gas Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  19. The dynamic wall and gas temperature distributions in a graphite furnace atomiser

    NASA Astrophysics Data System (ADS)

    Rademeyer, C. J.; Human, H. G. C.; Faure, P. K.

    A model is presented for calculation of the dynamic wall and gas temperature distribution of a heated graphite furnace used for analytical atomic absorption measurements. Numerical iterative procedures were used to obtain data for a furnace of specific dimensions (28 × 6 mm), as well as "shaped" variants of this bask design. Instrumental parameters such as the voltage applied and the resistivity of the graphite were measured accurately and the values used in the model so that the real situation on a commercial instrument was resembled well Results of absorbance-time measurements enabled the temperature distribution to be known at all stages of the evolution of the analyte absorbance pulse. It is shown that for shaped furnaces, the gas temperature at the centre of the furnace can be lower than that at some intermediate positions, as well as higher than the furnace wall temperature at the centre. Results for the gas temperature at tube centre agree reasonably well with that of another model put forward recently. Due to problems associated with experimental measurement of gas temperatures, such values do not compare well with the theoretically calculated ones.

  20. Gas-powder flow in blast furnace with different shapes of cohesive zone

    SciTech Connect

    Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P.

    2006-11-15

    With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

  1. Investigation of urtite as an analog of waste slag from a plasma shaft furnace

    SciTech Connect

    Dmitriev, S.A.; Stefanovsky, S.V.

    1996-08-01

    Mineralogical-geochemical investigation of a sample of nepheline syenite (urtite) as a natural analog of final radioactive waste form has been performed. The specimen of urtite consists of nepheline, alkali feldspar, pyroxene, sphene, apatite and minor magnetite and amphibole. As a first approximation, urtite simulates the mineral composition of waste slag produced in a plasma shaft furnace at SIA Radon. Determination of chemical compositions of the minerals by electron-probe microanalysis has shown that the main phases that hosted radionuclides and their geochemical analogs are as follows: nepheline (Rb and probably Cs), feldspar (Ba), sphene (Zr, Nb, REE, and actinides) and apatite (Sr, REE, and actinides).

  2. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  3. Natural gas applications in waste management

    SciTech Connect

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs.

  4. Investigation on Carbon-Deposition Behavior from Heating Cycle Gas in Oxygen Blast Furnace Process

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhou; Wang, Jingsong; She, Xuefeng; Zhang, Shiyang; Xue, Qingguo

    2015-02-01

    Among the different ways to study carbon deposition in the ironmaking process, not much attention was paid to that of heating the gas mixture, especially cycle gas in an oxygen blast furnace. In this work, the carbon-deposition characteristics of heating 100 pct CO, CO-H2 gas mixture, and cycle gas in the oxygen blast furnace process were, respectively, experimentally and theoretically investigated. First, the thermodynamics on carbon-deposition reactions were calculated. Then, the impacts of discharging operation temperature, the proportion of CO/H2 in heating the CO-H2 gas mixture, and the CO2 concentration in heating the cycle gas of an oxygen blast furnace on the carbon deposition were tested and investigated. Furthermore, the carbon-deposition behaviors in heating the CO-H2 gas mixture were compared with the thermodynamic calculation results for discussing the role of H2. In addition, carbon deposition in heating cycle gas includes CO decomposition and a carbon-deposition reaction by hybrid of CO and H2; the possible roles of each were analyzed by comparing thermodynamic calculation and experimental results. The deposited carbon was characterized by scanning electron microscope (SEM) to analyze the deposited carbon microstructure.

  5. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    SciTech Connect

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is provided by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.

  6. Modified Claus furnace

    SciTech Connect

    Reed, R.L.

    1986-03-11

    A Claus thermal conversion furnace is described comprising a primary furnace chamber, a burner in the primary furnace chamber, an oxidant containing gas supply inlet connected to the burner, a hydrogen sulfide containing gas supply conduit connected to the burner, an outlet extending from the furnace, a secondary reaction chamber in heat but not gas exchange relationship with the primary furnace chamber, the secondary reaction chamber extending through the length of the primary furnace chamber to a point in the outlet extending from the furnace, a hydrogen sulfide decomposing catalyst in the secondary reaction chamber, a hydrogen sulfide containing gas supply conduit connected to the secondary reaction chamber.

  7. Vaporization Rate of Cesium from Molten Slag in a Plasma Melting Furnace for the Treatment of Simulated Low-Level Radioactive Wastes

    SciTech Connect

    Yasui, Shinji; Amakawa, Tadashi

    2003-02-15

    The vaporization phenomena of cesium (Cs) from molten slag have been investigated in a plasma melting process for simulated radioactive waste materials. A direct current transfer-type plasma with a maximum output of 50 kW was used to melt carbon steel and granular oxide mixtures (Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, SiO{sub 2}, CaO, and MgO) containing nonradioactive cesium nitrate, to measure Cs vaporization. These materials are the main components of low-level miscellaneous solid wastes. The vaporization rate of Cs from the molten slag during the plasma melting was observed and was compared with the vaporization rate obtained in an electric resistance furnace. The apparent vaporization rate of Cs was found to follow the first-order rate equation with respect to the molten slag's Cs content, and its rate constant values varied (3.5 to 21.0) x 10{sup -6} m/s varying with the chemical composition of the miscellaneous solid wastes. These rate constants were about one order larger than those obtained in the electric resistant furnace and also the diffusion coefficients of basic elements in the molten slag. These results suggest that the vaporization rate of Cs is controlled by the vaporization step from the free molten slag furnace to the gas phase and depends predominantly on the thermodynamic properties of the molten slag.

  8. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  9. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired.

  10. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    SciTech Connect

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  11. Numerical Study of the Gas Distribution in an Oxygen Blast Furnace. Part 2: Effects of the Design and Operating Parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2015-09-01

    Gas distribution plays a significant role in an oxygen blast furnace. The uneven distribution of recycling gas from the shaft tuyere has been shown to affect the heat distribution and energy utilization in an oxygen blast furnace. Therefore, the optimal design and operating parameters beneficial to the gas distribution in an oxygen blast furnace should be determined. In total, three parameters and 22 different conditions in an oxygen blast furnace multifluid model were considered. The gas and heat distributions in an oxygen blast furnace under different conditions were simulated and compared. The study revealed that when the height of shaft tuyere decreased from 7.8 m to 3.8 m, the difference in top gas CO concentration between the center and edge decreased by 11.6%. When the recycling gas temperature increased from 1123 K to 1473 K, the difference in the top gas CO concentration between the center and edge decreased by 3.9%. As the allocation ratio increased from 0.90 to 1.94, the difference in the top gas CO concentration between the center and edge decreased by 3.0%. Considering both gas and heat distributions, a shaft tuyere height of 3.8 m to 4.8 m, a recycling gas temperature of 1473 K and an allocation ratio of 1.94 are recommended in practice under the conditions of this study.

  12. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    SciTech Connect

    Lekov, Alex; Franco, Victor; Meyers, Steve

    2010-05-14

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

  13. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  14. Measurements of alkali concentrations in an oxygen-natural gas-fired soda-lime-silica glass furnace

    SciTech Connect

    S. G. Buckley; P. M. Walsh; D. w. Hahn; R. J. Gallagher; M. K. Misra; J. T. Brown; F. Quan; K. Bhatia; V. I. Henry; R. D. Moore

    1999-10-18

    Sodium species vaporized from melting batch and molten glass in tank furnaces are the principal agents of corrosion of superstructure refractory and main contributors to emissions of particulate matter from glass melting. The use of oxygen in place of air for combustion of natural gas reduces particulate emissions, but is thought to accelerate corrosion in some melting tanks. Methods for measuring sodium are under investigation as means for identifying the volatilization, transport, and deposition mechanisms and developing strategies for control. Three separate methods were used to measure the concentrations of sodium species at various locations in an oxygen-natural gas-fired soda-lime-silica glass melting tank. Measurements were made inside the furnace using the absorption of visible light and in the flue duct using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements in both the furnace and flue were also made by withdrawing and analyzing samples of the furnace gas.

  15. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  16. Thermal-destruction products of coal in the blast-furnace gas-purification system

    SciTech Connect

    A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev

    2008-10-15

    The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

  17. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material.

    PubMed

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2014-10-01

    This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO x and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO x with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.

  18. Solidification/stabilisation of electric arc furnace waste using low grade MgO.

    PubMed

    Cubukcuoglu, B; Ouki, S K

    2012-02-01

    This study aims to evaluate the potential of low grade MgO (LGMgO) for the stabilisation/solidification (S/S) of heavy metals in steel electric arc furnace wastes. Relevant characteristics such as setting time, unconfined compressive strength (UCS) and leaching behaviour assessed by acid neutralisation capacity (ANC), monolithic and granular leaching tests were examined in light of the UK landfill Waste Acceptance Criteria (WAC) for disposal. The results demonstrated that all studied mix designs with Portland cement type 1 (CEM1) and LGMgO, CEM1-LGMgO 1:2 and 1:4 at 40% and 70% waste addition met the WAC requirements by means of UCS, initial and final setting times and consistence. Most of the ANC results met the WAC limits where the threshold pH values without acid additions were stable and between 11.9 and 12.2 at 28d. Granular leaching results indicate fixation of most of the metals at all mix ratios. An optimum ratio was obtained at CEM1-LGMgO 1:4 at 40% waste additions where none of the metals leaching exceeded the WAC limits and hence may be considered for landfill disposal. The monolithic leaching test results showed that LGMgO performed satisfactorily with respect to S/S of Zn, as the metal component present at the highest concentration level in the waste exhibited very little leaching and passed the leaching test requirement at all mix ratios studied. However, its performance with respect to Pb, Cd and Cr was less effective in reducing their leaching suggesting a higher cumulative rate under those leaching regimes.

  19. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  20. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  1. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    PubMed

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems.

  2. Heat treatment furnace

    SciTech Connect

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  3. Gas dynamics/furnace implosion problems validation and application of the EPRI program DUCSYS

    SciTech Connect

    Forrest, T.J.; Green, C.H.; Rea, J.

    1995-06-01

    Considerable Utility concern about power plant boiler implosion risks has recently resurfaced. This results largely from the current trend towards retrofitting environmental equipment to fossil fuel fired boilers, an action which is often accompanied by an increase in the risk faced, under fault conditions, from large negative pressure excursions in the furnace and its associated ductwork. Accompanying this trend has been a tightening of industry regulations with the publishing of new stricter guidelines on the prevention of furnace implosions and explosions by the National Fire Protection Association. The combined effect has been the need to assess boiler implosion risks as an integral part of fossil fuel fired boiler retro-fit design studies. The DUCSYS gas systems dynamics modelling system, which is currently being developed under contract by PowerGen, is EPRI`s response to this Utility demand. This paper describes briefly the physical processes involved in the implosion phenomenon, and discusses the main characteristics of the DUCSYS modeling system. Following this, the application of DUCSYS to study three power plant problems is discussed. The main study discusses the conversion of an existing Oil fired boiler to burn Orimulsion, a technology in which PowerGen leads the World. This application involves the retro-fitting of an electrostatic precipitator to the plant. DUCSYS is not however, purely a system for investigation of furnace implosion risks, but is currently being developed by PowerGen, on behalf of EPRI, as a general power plant has systems dynamics modeling system. The final two application studies consider the application of DUCSYS to two more general gas dynamics problems.

  4. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  5. The Effect of Operational Parameters on the Characteristics of Gas-Solid Flow Inside the COREX Shaft Furnace

    NASA Astrophysics Data System (ADS)

    Kou, Mingyin; Wu, Shengli; Du, Kaiping; Shen, Wei; Ma, Xiaodong; Chen, Mao; Zhao, Baojun

    2015-02-01

    The COREX shaft furnace is of great importance to the whole C-3000 process. There are many problems with the operation of the COREX shaft furnace, especially with gas and burden distribution, that have as yet been little studied. The present work establishes a three-dimensional quarter model. After validation by operating data in Baosteel, the model is used to investigate the gas utilization rate and the metallization rate of the COREX shaft furnace. The parameters, including the reducing gas flow, the volume fraction of gas phase, and the multilayered burden, are systematically investigated. The results show that the reducing gas flow has a great influence on the gas utilization rate and the metallization rate, while the volume fraction of gas phase has a more significant effect on the metallization rate than on the gas utilization rate. In order to obtain a higher metallization rate, the reducing gas flow needs to be adjusted step by step and the volume fraction of gas phase needs to be increased. In addition, ore and coke need to be discharged separately in order to increase the solid metallization rate.

  6. Electromelt furnace evaluation

    SciTech Connect

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  7. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, B.R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 {mu}m in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  8. Performance of a flameless combustion furnace using biogas and natural gas.

    PubMed

    Colorado, A F; Herrera, B A; Amell, A A

    2010-04-01

    Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance when utilizing bio-fuels, which usually are obtained from biomass gasification and the excreta of animals in bio-digesters. The effect of using biogas on the performance of an experimental furnace equipped with a self-regenerative Flameless burner is reported in this paper. All the results were compared to the performance of the system fueled with natural gas. Results showed that temperature field and uniformity are similar for both fuels; although biogas temperatures were slightly lower due to the larger amount of inert gases (CO(2)) in its composition that cool down the reactions. Species patterns and pollutant emissions showed similar trends and values for both fuels, and the energy balance for biogas showed a minor reduction of the efficiency of the furnace; this confirms that Flameless combustion is highly flexible to burn conventional and diluted fuels. Important modifications on the burner were not necessary to run the system using biogas. Additionally, in order to highlight the advantages of the Flameless combustion regime, some comparisons of the burner performance working in Flameless mode and working in conventional mode are presented. PMID:19944602

  9. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Waste of oil and gas. 226.37 Section 226.37 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.37 Waste of oil and gas. Lessee shall conduct all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize...

  10. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Waste of oil and gas. 226.37 Section 226.37 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.37 Waste of oil and gas. Lessee shall conduct all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize...

  11. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Waste of oil and gas. 226.37 Section 226.37 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.37 Waste of oil and gas. Lessee shall conduct all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize...

  12. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Waste of oil and gas. 226.37 Section 226.37 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.37 Waste of oil and gas. Lessee shall conduct all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize...

  13. Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies.

    PubMed

    Kitahara, Yuki; Takahashi, Seiji; Kuramoto, Noriyuki; Sala, Martin; Tsugoshi, Takahisa; Sablier, Michel; Fujii, Toshihiro

    2009-04-15

    A well-established ion attachment mass spectrometer (IAMS) is combined with an in-house single-atom infrared image furnace (IIF) specifically for thermal analysis studies. Besides the detection of many chemical species at atmospheric pressure, including free radical intermediates, the ion attachment mass spectrometer can also be used for the analysis of products emanating from temperature-programmed pyrolysis. The performance and applicability of the IIF-IAMS is illustrated with poly(tetrafluoroethylene) (PTFE) samples. The potential of the system for the analysis of oxidative pyrolysis is also considered. Temperature-programmed decomposition of PTFE gave constant slopes of the plots of temperature versus signal intensity in a defined region and provided an apparent activation energy of 28.8 kcal/mol for the PTFE decomposition product (CF(2))(3). A brief comparison with a conventional pyrolysis gas chromatography/mass spectrometry system is also given.

  14. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  15. Waste gas combustion in a Hanford radioactive waste tank

    SciTech Connect

    Travis, J.R.; Fujita, R.K.; Spore, J.W.

    1994-07-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

  16. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    PubMed

    Liu, Chiung-Fang; Shih, Shin-Min

    2004-08-15

    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas.

  17. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    PubMed

    Liu, Chiung-Fang; Shih, Shin-Min

    2004-08-15

    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas. PMID:15382877

  18. Characteristics and settling behaviour of particles from blast furnace flue gas washing.

    PubMed

    Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha

    2016-05-01

    A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal.

  19. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    PubMed

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  20. 25 CFR 226.37 - Waste of oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Waste of oil and gas. 226.37 Section 226.37 Indians BUREAU... FOR OIL AND GAS MINING Requirements of Lessees § 226.37 Waste of oil and gas. Lessee shall conduct all operations in a manner that will prevent waste of oil and gas and shall not wastefully utilize oil or...

  1. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  2. Evaluation of alkali concentration in conditions relevant to oxygen/natural gas glass furnaces by laser-induced breakdown spectroscopy.

    SciTech Connect

    Walsh, Peter M.; Molina, Alejandro; Shaddix, Christopher R.; Blevins, Linda Gail; Sickafoose, Shane M.

    2005-01-01

    A number of industrial combustion systems are adopting oxygen-enhanced firing to improve heat transfer characteristics and reduce emissions. The exhaust gas from these systems is dominated by H2O and CO2 and therefore has substantially different gas properties from traditional combustion exhaust. In the past, laser-induced breakdown spectroscopy (LIBS) has been successfully used for the evaluation of alkali aerosol concentrations in air-based combustion systems. This paper presents results of LIBS measurements of alkali concentrations in a laboratory calibration setup and in an oxygen/natural gas container glass furnace. It shows how both gas conditions (composition and temperature) and the molecular form of the alkali species affect the LIBS signals. The paper proposes strategies for mitigating these effects in future applications of LIBS in oxygen-enhanced combustion systems.

  3. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  4. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities. PMID:19808731

  5. Study of dioxins formation in the basic oxygen furnace during organic waste disposal

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. N.; Volynkina, E. P.; Protopopov, E. V.

    2016-09-01

    Incineration is one of the most common methods used for organic waste utilization. However, there is a danger of the secondary generation of such supertoxicants as dioxins and furans. The results of the investigations of experimental and comparative converter meltings with the use of paper and plastic wastes under conditions of JSC “EVRAZ ZSMK” show the absence of influence of wastes on the concentration and isomeric profile of dioxins and furans in the converter gases.

  6. Crystal Furnace

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A "melt recharging" technique which eliminates the cooldown and heating periods in a crystal "growing" crucible, resulted from a Jet Propulsion Laboratory (JPL)/Kayex Corporation program. Previously, the cost of growing the silicon solar cells had been very high. The JPL/Kayex system improved productivity by serially growing crystals from the same crucible using a melt recharger which made it possible to add raw silicon to an operating crucible. An isolation value, developed by Kayex, allowed the hopper to be lowered into the crucible without disturbing the inert gas atmosphere. The resulting product, a CG6000 crystal growing furnace, has become the company's major product.

  7. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... purposes of this paragraph: (1) An analysis of each feed stream, including hazardous waste, other fuels... chapter, a quantitative analysis of the scrubber water (if any), ash residues, other residues, and... waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler,...

  8. Opportunities for natural gas in the dehumidification of blast furnace wind. Topical report

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Loreth, M.J.; Stevens, G.S.

    1996-06-01

    An economic evaluation is presented of a technology aimed to remove moisture from the blast in blast furnaces in order to decrease coke consumption and provide savings in the amount of steam and oxygen injected. Operators can obtain savings from $0.5 to more than $2.5 per ton simply by reducing blast moisture to seasonal average maxima.

  9. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 5, January--March 1993

    SciTech Connect

    Not Available

    1993-05-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. (1) Total station efficiency of at least 47 percent. (2) No more than: 0.15 lb NO{sub x} or 0.15 lb SO{sub x} or 0.0075 lb of particulates/10{sup 6} Btu fuel heat input. (3) All solid wastes must be benign. (4) Over 95 percent of the total heat input is ultimately from coal, with initial systems capable of using coal for at least 65 percent of the heat input. (5) Efficient and economic baseload power generation: Operation with a range of US coals, annual capacity factor of 65 percent, and load following with minimal degradation in efficiency. (6) 10-percent lower cost of electricity relative to a modern coal-fired plant conforming to NSPS. (7) Safety, reliability, and maintainability to meet or exceed conventional coal-fired power plants. (8) Amenable to construction using factory-assembled modular components based upon standard design. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

  10. Study of materials to resist corrosion in condensing gas fired furnaces. Annual report Oct 79-Oct 80

    SciTech Connect

    Lahtvee, T.; Khoo, S.W.; Schaus, O.O.

    1981-02-01

    Based on a thorough review of background information on the performance of materials in condensing gas-fired furnace heat exchangers and in similar corrosive environments, candidate materials were selected and tested on one of two identical test rigs built to provide the varying corrosive conditions encountered in an actual gas-fired condensing system heat exchanger. The 32 different materials tested in a one month screening test included: mild, low alloy, galvanized, solder coated and CaCO3 dipped galvanized steel, porcelain, epoxy, teflon and nylon coated and alonized mild steel; austenitic, ferritic, low interstitial Ti stabilized ferritic, and high alloy stainless steels; aluminum alloy anodized and porcelain coated aluminum; copper and cupronickel alloys, solder coated copper; and titanium.

  11. Field testing of an oxy-gas burner for electric arc furnaces. Annual report, December 1982-December 1983

    SciTech Connect

    Battles, D.D.; Battles, B.E.; Gitman, G.M.

    1984-06-01

    Electric-arc steelmaking is the fastest-growing segment of the entire industry. Electrical inputs to electric furnaces can be greatly reduced by heat inputs from natural gas-oxygen flames. The goal of this project is to construct a full-scale prototype based on a previously developed oxygen-gas burner design. This prototype would then be installed in an industrial facility and allowed to operate over a sustained period. The operation is to be analyzed for energy savings, melting cycle time reductions, and refractory/electrode consumption decreases. This installation is also to be analyzed for survivability of the design. The success of this system will create a large, new demand for gaseous fuels in the electric steelmaking industry.

  12. [Introduces a novel scavenger for waste anesthetic gas].

    PubMed

    Hu, Yan-dong; Liang, Jin-bing; Song, Jin-hua

    2009-01-01

    This article introduces a novel scavenger for waste anesthetic gas which makes use of negative pressure in operating room. This setting can scavenge the exhaust gas absolutely without affection the normal work of anaesthesia.

  13. Advanced steel reheat furnace

    SciTech Connect

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  14. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  15. Flammable Gas Diffusion from Waste Transfer Associated Structures

    SciTech Connect

    MEACHAM, J.E.

    2003-06-24

    This report assesses potential accumulation of flammable gases in interim isolated concrete waste transfer structures. A hypothetical scenario was analyzed in which flammable gas was generated by spilled waste on the transfer structure floor. Results showed that the flammable gas would safely diffuse out of the concrete structures and equilibrium concentrations were well below the lower flammability limit.

  16. Flammable Gas Diffusion from Waste Transfer Associated Structures

    SciTech Connect

    MEACHAM, J.E.; ESTEY, S.D.

    2002-11-20

    This report assesses potential accumulation of flammable gases in interim isolated concrete waste transfer structures. A hypothetical scenario was analyzed in which flammable gas was generated by spilled waste on the transfer structure floor. Results showed that the flammable gas would safely diffuse out of the concrete structures and equilibrium concentrations were orders of magnitude below the lower flammability limit.

  17. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  18. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  19. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

    SciTech Connect

    Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.; Rodriguez, Carmen P.; Schweiger, Michael J.

    2014-04-30

    In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform evolved gas analysis (EGA). Apart from identifying the gases evolved, we performed quantitative analysis relating the weighed sum of intensities of individual gases linearly proportional with the differential themogravimetry. The proportionality coefficients were obtained by three methods based on the stoichiometry, least squares, and calibration. The linearity was shown to be a good first-order approximation, in spite of the complicated overlapping reactions.

  20. Regularities of heat transfer in the gas layers of a steam boiler furnace flame. Part II. Gas layer radiation laws and the procedure for calculating heat transfer in furnaces, fire boxes, and combustion chambers developed on the basis of these laws

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-10-01

    The article presents the results stemming from the scientific discovery of laws relating to radiation from the gas layers generated during flame combustion of fuel and when electric arc burns in electric-arc steel-melting furnaces. The procedure for calculating heat transfer in electric-arc and torch furnaces, fire-boxes, and combustion chambers elaborated on the basis of this discovery is described.

  1. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... associated requirements for particulate matter, hydrogen chloride and chlorine gas, and non-mercury metals... finds necessary to determine whether to approve the trial burn plan in light of the purposes of this... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40...

  2. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... associated requirements for particulate matter, hydrogen chloride and chlorine gas, and non-mercury metals... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40 CFR... emissions of particulate matter, metals, or hydrogen chloride (HCl) and chlorine (Cl2), and...

  3. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated requirements for particulate matter, hydrogen chloride and chlorine gas, and non-mercury metals... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40 CFR... emissions of particulate matter, metals, or hydrogen chloride (HCl) and chlorine (Cl2), and...

  4. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-12-01

    Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively.

  5. Solid phase microextraction capillary gas chromatography combined with furnace atomization plasma emission spectrometry for speciation of mercury in fish tissues

    NASA Astrophysics Data System (ADS)

    Grinberg, Patricia; Campos, Reinaldo C.; Mester, Zoltan; Sturgeon, Ralph E.

    2003-03-01

    The use of solid phase microextraction in conjunction with tandem gas chromatography-furnace atomization plasma emission spectrometry (SPME-GC-FAPES) was evaluated for the determination of methylmercury and inorganic mercury in fish tissue. Samples were digested with methanolic potassium hydroxide, derivatized with sodium tetraethylborate and extracted by SPME. After the SPME extraction, species were separated by GC and detected by FAPES. All experimental parameters were optimized for best separation and analytical response. A repeatability precision of typically 2% can be achieved with long-term (3 months) reproducibility precision of 4.3%. Certified Reference Materials DORM-2, DOLT-2 and TORT-2 from the National Research Council of Canada were analyzed to verify the accuracy of this technique. Detection limits of 1.5 ng g -1 for methylmercury and 0.7 ng g -1 for inorganic mercury in biological tissues were obtained.

  6. Implementation results for automated gas-pulsed cleaning systems of TsKTI on petroleum-heating furnaces, heat-recovery boilers, and hot-water boilers

    NASA Astrophysics Data System (ADS)

    Pogrebnyak, A. P.; Kokorev, V. L.; Kokorev, A. L.; Moiseenko, I. O.; Gul'Tyaev, A. V.; Efimova, N. N.

    2012-03-01

    A description is given on the long-term positive experience of implementation of gas-pulsed cleaning (GPC) systems of TsKTI, development for heating surfaces of heat-exchange apparatuses for various purposes (steam and hot-water boilers, processing furnaces of petroleum refineries, etc.) against external soot-dust, ash, and condensed deposits formed during solid and fluid combustion.

  7. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow.

  8. Bio gas oil production from waste lard.

    PubMed

    Hancsók, Jeno; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al(2)O(3) catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280-380°C, P = 20-80 bar, LHSV = 0.75-3.0  h(-1) and H(2)/lard ratio: 600  Nm(3)/m(3)). In case of the isomerization at the favourable process parameters (T = 360-370°C, P = 40-50 bar, LHSV = 1.0  h(-1) and H(2)/hydrocarbon ratio: 400  Nm(3)/m(3)) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  9. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  10. An inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials

    NASA Astrophysics Data System (ADS)

    Haynes, R.; Paradowska, A. M.; Chowdhury, M. A. H.; Goodway, C. M.; Done, R.; Kirichek, O.; Oliver, E. C.

    2012-04-01

    The ENGIN-X beamline is a dedicated engineering science facility at ISIS optimized for the measurement of strain, and thus stress, deep within crystalline materials using the atomic lattice planes as an atomic ‘strain gauge’. Internal stresses in materials have a considerable effect on material properties including fatigue resistance, fracture toughness and strength. The growing interest in properties of materials at high temperatures may be attributed to the dynamic development in technologies where materials are exposed to a high-temperature environment for example in the aerospace industry or fission and fusion nuclear reactors. This article describes in detail the design and construction of a furnace for neutron scattering measurements of internal stress in engineering materials under mechanical load and in elevated temperature environments, designed to permit a range of gases to provide a non-oxidizing atmosphere for hot samples.

  11. Numerical simulation of coupled two-phase gas/liquid flow in an electric arc furnace

    SciTech Connect

    Tanski, J.

    1993-11-01

    The importance of an electric arc furnace (EAF) process in the production of steel has increased over the last decade. Currently, this process is used for 40 percent of the raw steel produced, and it accounts for the consumption of 20 TWhr of electrical energy. Furthermore, projections indicate that the EAF production process will account for 42 percent and 45 percent, respectively, of the total steel production in 1995 and 2000. The increasing cost of electricity, and the demand to produce higher quality grades of steel, mandate a closer inspection of the process. One issue that couple production quality and efficiency, and which is suitable for numerical simulation, is the effect of stirring on bath homogeneity.

  12. [Design of gas and electric rotary furnaces for the glass industry]. Quarterly progress report, September 20--December 20, 1997

    SciTech Connect

    Pochan, D.

    1997-12-31

    The authors have continually stressed that the two most critical material parameters for the success of the rotary furnace are the hearth plate and the molding release powder. Both of these issues have been solidly addressed in this quarter. They have tested the three best candidates for hearth plate material this quarter. Although they had to use the in-house gas furnaces for the testing, one of the materials combines the best heating efficiency with the least sticking tendency. This material will be used for the electric prototype. The molding release powder is mainly used for preventing the glass from adhering to the hearth plate while the glass is softening for pressing. They recently visited several companies in Japan who also repress glass. The release agent that they use is Boron Nitride. They have identified a supplier within New York state, but their concern is the very high price of this material. They are bringing in samples of different grades for experimentation, but the focus continues to be to eliminate the need for any powder. An additional area for material testing was addressed during this quarter. Once the glass is in the tool (mold) for pressing, the glass has the potential to adhere to the metal that the tool and die are made from (usually steel). Both the powder and a spraying of a carbon product are currently used to reduce this problem. Alternate materials for the tooling and/or surface coatings of the steel need to be identified and tested. During this quarter, they conducted some off-site test runs on two candidate coating materials: platinum and titanium.

  13. Onset of thermally induced gas convection in mine wastes

    USGS Publications Warehouse

    Lu, N.; Zhang, Y.

    1997-01-01

    A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.

  14. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect

    Eaton, W.C.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  15. Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology

    SciTech Connect

    Cox, Daryl

    2009-05-01

    The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted

  16. Development of an Energy Efficient High temperature Natural Gas Fired Furnace

    SciTech Connect

    Dr. Mark G. Stevens; Dr. H. Kenneth Staffin; DOE Project Officer - Keith Bennett

    2005-02-28

    The design concept is designated the ''Porous Wall Radiation Barrier'' heating mantle. In this design, combustion gas flows through a porous wall surrounding the retort, transferring its heat to the porous wall, which then radiates heat energy to the retort. Experiments demonstrate that heat transfer rates of 1.8-2.4 times conventional gas fired mantles are achievable in the temperature range of 1600-2350 degrees fahrenheit.

  17. Blast furnace injection symposium: Proceedings

    SciTech Connect

    1996-12-31

    These proceedings contain 14 papers related to blast furnace injection issues. Topics include coal quality, coal grinding, natural gas injection, stable operation of the blast furnace, oxygen enrichment, coal conveying, and performance at several steel companies. All papers have been processed separately for inclusion on the data base.

  18. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration.

    PubMed

    Li, Qinghai; Meng, Aihong; Jia, Jinyan; Zhang, Yanguo

    2010-01-01

    The impact of moisture on the partitioning of the heavy metals including Pb, Zn, Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace. A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results. Simulated waste, representative of typical MSW with and without chlorine compounds, was burned at the background temperature of 700 and 950 degrees C, respectively. In the absence of chlorine, the moisture content has no evident effect on the volatility of Pb, Zn and Cu at either 700 or 950 degrees C, however, as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700 degrees C and reduced at 950 degrees C, respectively. In the presence of chlorine, the flue gas moisture reduced the volatility of Pb, Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides, and the reduction became significant as chlorine content increase. For Cd, the chlorine promotes its volatility through the formation of more volatile CdCl2. As a result, the increased moisture content increases the Pb, Zn, Cu and Cd concentrations in the bottom ash, which limits the utilization of the bottom ash as a construction material. Therefore, in order to accumulate heavy metals into the fly ash, MSW should be dried before incineration. PMID:20608514

  19. ACCUMULATION OF FLAMMABLE GAS IN SEALED WASTE TRANSFER ASSOCIATED STRUCTURES

    SciTech Connect

    MEACHAM, J.E.

    2003-06-24

    This report assesses potential accumulation of flammable gases in sealed waste transfer structures. A hypothetical scenario was analyzed in which flammable gas was generated by spilled waste on the transfer structure floor. Results showed that the flammable gas concentration builds slowly and it would take decades to reach the lower flammability limit (LFL) in these hypothetical scenarios. Qualitative and quantitative analyses are used to provide a conservative assessment of the flammable gas hazard. This assessment includes steel transfer structures, transfer structures with external coatings (e.g., coatings applied during interim isolation), and internal coatings (e.g., polyurea that is being applied to active transfer structures as part of Project W-314).

  20. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... 40 Protection of Environment 12 2012-07-01 2011-07-01 true What are the standards for hydrochloric... Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are the standards for hydrochloric...

  1. Evaluation of Gas Retention in Waste Simulants: Tall Column Experiments

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Shimskey, Rick W.; Denslow, Kayte M.; Powell, Michael R.; Boeringa, Gregory K.; Bontha, Jagannadha R.; Karri, Naveen K.; Fifield, Leonard S.; Tran, Diana N.; Sande, Susan; Heldebrant, David J.; Meacham, Joseph E.; Smet, Dave; Bryan, Wesley E.; Calmus, Ronald B.

    2014-05-16

    Gas generation in Hanford’s underground waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which typically has hydrogen as the major component together with other flammable species, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge in a waste tank is undesirable and limits the amount of tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge may potentially result in an unacceptable release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. Rapid release of large amounts of flammable gases could endanger personnel and equipment near the tank. For this reason, a thorough understanding of the circumstances that can lead to a potentially problematic gas accumulation in sludge layers is needed. To respond to this need, the Deep Sludge Gas Release Event Program (DSGREP) was commissioned to examine gas release behavior in sludges.

  2. Implement proper furnace safety interlocks

    SciTech Connect

    Thomas, C.D.; Schoenmaker, G.J.W.

    1996-07-01

    Cracking furnaces are among some of the most complex operations in chemical process industries (CPI) plants. Consider, for example, the cracking furnaces in ethylene plants. Furnace explosions can occur during the light-off process or from accumulations of unburned fuel, incomplete combustion, or introduction of flammable products into the combustion spaces of the furnace. Over half of all furnace explosions occur during the initial light-off process for the furnace. The deficiencies that cause these events can be grouped into three broad categories: (1) human error; (2) incorrect or incomplete safety controls and equipment arrangement; and (3) equipment malfunction. This article presents a safety system that helps address all three of these categories for light-off events. No system is totally foolproof, but the use of a safety system, along with strict operating discipline, will reduce the number of furnace events encountered over the lifetime of the equipment. (Note that the controls typically referred to as ``combustion control,`` which include process temperature control, fuel-gas control, oxygen trim/draft control, and the like, are not part of the control described here.) Note also that although this system was developed for cracking furnaces in ethylene plants, it is equally applicable to other types of radiant-wall multiple-burner furnaces. It can be used for both new installations and retrofit situations. This safety system is not applicable to boilers or other devices with only one or two burners.

  3. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  4. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    SciTech Connect

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  5. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  6. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  7. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  8. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  9. Direct current, closed furnace silicon technology

    SciTech Connect

    Dosaj, V.D.; May, J.B.; Arvidson, A.N.

    1994-05-01

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  10. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  11. Conversion of a Waste Gas to Liquid Natural Gas

    NASA Astrophysics Data System (ADS)

    Gongaware, D. F.; Barclay, M. A.; Barclay, J. A.; Skrzypkowski, M. P.

    2004-06-01

    The choice of liquefied natural gas (LNG) as a heavy-duty vehicular fuel is growing rapidly due to improved LNG economics, diesel price uncertainties caused by the dependence on imported crude oil, liabilities associated with environmental and health concerns, and governmental programs related to concerns over greenhouse gas emissions. However, vehicle owners who wish to use LNG are impeded by a lack of refueling infrastructure and reliable supply of inexpensive fuel. These barriers are being overcome by the development of innovative purifier/liquefier systems that economically convert a wide array of distributed, low cost methane gas sources into high quality LNG. This paper describes the engineering design, manufacture, installation, and initial operations of two such systems. One unit was a pilot-scale system using an innovative cryogenic freezing process to remove bulk concentrations of carbon dioxide from the landfill gas (LFG). The second unit converts stranded well gas containing ˜ 18% nitrogen gas into LNG. The paper closes with a summary of lessons learned from these two installations and directions for future improvements.

  12. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    SciTech Connect

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  13. Ammonia recovery from livestock waste using gas permeable membrane technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation shows new methods and systems being developed for reducing ammonia emissions from livestock waste and recovering concentrated liquid nitrogen that could be sold as fertilizer. These systems use gas-permeable membranes as components of new processes to capture and recover the ammoni...

  14. ETR WASTE GAS EXITED THE ETR COMPLEX FROM THE NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR WASTE GAS EXITED THE ETR COMPLEX FROM THE NORTH SIDE THROUGH A TUNNEL AND THEN TO A FILTER PIT. TUNNEL EXIT IS UNDER CONSTRUCTION WHILE CONTROL BUILDING IS BEING FORMED BEYOND. CAMERA FACING WEST. INL NEGATIVE NO. 56-1238. Jack L. Anderson, Photographer, 4/17/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  16. Combined biological and physicochemical waste-gas cleaning techniques.

    PubMed

    Rene, Eldon R; Veiga, María C; Kennes, Christian

    2012-01-01

    This review presents a general overview of physical, chemical and biological waste-gas treatment techniques such as adsorption, absorption, oxidation and biodegradation, focusing more extensively on combined processes. It is widely recognized that biological waste-gas treatment devices such as biofilters and biotrickling filters can show high performance, often reaching removal efficiencies above 90 % for pollutant concentrations below 5 g/m(3). However, for concentrations exceeding this limit and under transient shock-load conditions that are frequently encountered in industrial situations, a physicochemical gas cleaning process can sometimes be advantageously combined with a biological one. Besides improving the overall treatment efficiency, the non-biological, first-stage process could also serve as a load equalization system by reducing the pollutant load during periodic shock-loads, to levels that can easily be handled in the second-stage bioreactor. This article reviews the operational advantages of integrating different non-biological and biological processes, i.e., adsorption pre-treatment+bioreactor, bioreactor+adsorption post-treatment, absorption pre-treatment+bioreactor, UV pre-treatment+bioreactor, and bioreactor/bioreactor combinations, for waste-gas treatment, where different gas-phase pollutants have been tested.

  17. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  18. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  19. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    SciTech Connect

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  20. Flammable gas tank waste level reconciliation for 241-S-111

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.

    1997-06-23

    Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas

  1. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and trace metals in the blood of nonoccupationally exposed residents living in the vicinity of a municipal solid waste incinerator and electric arc furnace.

    PubMed

    Chen, Yan-Min; Lin, Yuan-Chung; Wu, Tzi-Yi; Chang-Chien, Guo-Ping; Ma, Wen-Feng

    2010-06-01

    This study examines levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and trace metals in the blood of the nonoccupationally exposed residents living in the vicinity of municipal solid waste incinerators (MSWIs) and electric arc furnaces (EAFs). The analysis found that older females had higher concentrations of PCDD/Fs and older males had higher body mass index (BMI) values and higher concentrations of PCDD/Fs. Moreover, sex appeared to affect the levels of PCDD/Fs because, overall, females showed higher levels of PCDD/Fs. The results of a principal component analysis indicated that the characteristics of the blood were more similar to the characteristics of the stack flux gas in MSWIs than those in EAFs. When sex, age, and BMI values were taken into consideration, none of the factors appeared to significantly affect PCDD/F and trace metal blood levels. However, when participants were divided into eight categories and analyzed, it was found that sex was the most important factor affecting levels of trace metals in blood and that males had higher concentrations of Pb, Al, Cd, and Cu.

  2. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view.

  3. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. PMID:27040089

  4. The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States.

    PubMed

    Lee, Seungtaek; Kim, Jonghoon; Chong, Wai K O

    2016-10-01

    The United States generated approximately 730kg of waste per capita in 2013, which is the highest amount of waste among OECD countries. The waste has adverse effects to human health and the environment. One of the most serious adverse effects is greenhouse gas emissions, especially methane (CH4), which causes global warming. However, the United States' amount of waste generation is not decreasing, and the recycling rate is only 26%, which is lower than other OECD countries. In order to decrease waste generation and greenhouse gas emissions, identifying the causality of the waste generation and greenhouse gas emissions from waste sector should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling of waste influences carbon dioxide emissions from the waste sector. Based on the results, critical insight and suggestions were offered to policymakers, which is the potential way to lower the solid waste and greenhouse gas emissions from the waste sector. This research used annually based U.S. data from 1990 to 2012, and these data were collected from various data sources. To verify the causal relationship, the Granger causality test was applied. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generate significantly increasing and decreasing greenhouse gas emissions from the waste sector, respectively. This implies that waste generation will not decrease even if GDP increases. And, if waste generation decreases or the recycling rate increases, greenhouse gas emission will decrease. Based on these results, increasing the recycling rate is first suggested. The second suggestion is to break the causal relationship between MSW and greenhouse gas emission from the waste sector. The third is that the U.S. government should benchmark a

  5. The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States.

    PubMed

    Lee, Seungtaek; Kim, Jonghoon; Chong, Wai K O

    2016-10-01

    The United States generated approximately 730kg of waste per capita in 2013, which is the highest amount of waste among OECD countries. The waste has adverse effects to human health and the environment. One of the most serious adverse effects is greenhouse gas emissions, especially methane (CH4), which causes global warming. However, the United States' amount of waste generation is not decreasing, and the recycling rate is only 26%, which is lower than other OECD countries. In order to decrease waste generation and greenhouse gas emissions, identifying the causality of the waste generation and greenhouse gas emissions from waste sector should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling of waste influences carbon dioxide emissions from the waste sector. Based on the results, critical insight and suggestions were offered to policymakers, which is the potential way to lower the solid waste and greenhouse gas emissions from the waste sector. This research used annually based U.S. data from 1990 to 2012, and these data were collected from various data sources. To verify the causal relationship, the Granger causality test was applied. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generate significantly increasing and decreasing greenhouse gas emissions from the waste sector, respectively. This implies that waste generation will not decrease even if GDP increases. And, if waste generation decreases or the recycling rate increases, greenhouse gas emission will decrease. Based on these results, increasing the recycling rate is first suggested. The second suggestion is to break the causal relationship between MSW and greenhouse gas emission from the waste sector. The third is that the U.S. government should benchmark a

  6. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    SciTech Connect

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

  7. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B. )

    1991-01-01

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  8. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B.

    1991-12-31

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  9. Waste drum gas generation sampling program at Rocky Flats during FY 1989

    SciTech Connect

    Roggenthen, D.K.; Nieweg, R.G.

    1990-10-01

    Rocky Flats Plant transuranic waste drums were sampled for gas composition. Glass, metal, graphite, and solidified inorganic sludge transuranic waste forms were sampled. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values were calculated for the waste drums. G(H{sub 2}) was below 0.6 and G(Total) was below 1.3 for all waste forms discussed in this report. 5 refs., 3 figs., 3 tabs.

  10. Gas cylinder disposal pit remediation waste minimization and management

    SciTech Connect

    Alas, C.A.; Solow, A.; Criswell, C.W.; Spengler, D.; Brannon, R.; Schwender, J.M.; Eckman, C.K.; Rusthoven, T.

    1995-02-01

    A remediation of a gas cylinder disposal pit at Sandia National Laboratories, New Mexico has recently been completed. The cleanup prevented possible spontaneous releases of hazardous gases from corroded cylinders that may have affected nearby active test areas at Sandia`s Technical Area III. Special waste management, safety, and quality plans were developed and strictly implemented for this project. The project was conceived from a waste management perspective, and waste minimization and management were built into the planning and implementation phases. The site layout was planned to accommodate light and heavy equipment, storage of large quantities of suspect soil, and special areas to stage and treat gases and reactive chemicals removed from the pit, as well as radiation protection areas. Excavation was a tightly controlled activity using experienced gas cylinder and reactive chemical specialists. Hazardous operations were conducted at night under lights, to allow nearby daytime operations to function unhindered. The quality assurance plan provided specific control of, and documentation for, critical decisions, as well as the record of daily operations. Both hand and heavy equipment excavation techniques were utilized. Hand excavation techniques were utilized. Hand excavation techniques allows sealed glass containers to be exhumed unharmed. In the end, several dozen thermal batteries; 5 pounds (2.3 kg) of lithium metal; 6.6 pounds (3.0 kg) of rubidium metal; several kilograms of unknown chemicals; 140 cubic yards (107 cubic meters) of thorium-contaminated soil; 270 cubic yards (205 cubic meters) of chromium-contaminated soil; and 450 gas cylinders, including 97 intact cylinders containing inert, flammable, toxic, corrosive, or oxidizing gases were removed and effectively managed to minimize waste.

  11. Cement solidification of simulated off-gas condensates from vitrification of low-level nuclear waste solutions.

    PubMed

    Katz, A; Brough, A R; Kirkpatrick, R J; Struble, L J; Sun, G K; Young, J F

    2001-01-01

    Solidification in a cementitious matrix is a viable alternative for low-level nuclear waste management; it is therefore important to understand the behavior and properties of such wasteforms. We have examined the cementitious solidification of simulated off-gas waste streams resulting from the vitrification of low-level nuclear waste. Different possible methods for scrubbing the off-gasses from a vitrifier give rise to three possible types of waste compositions: acidic (from aqueous dissolution of volatile NOx and POx carried over from the vitrifier), basic (from neutralizing the former with sodium hydroxide), and fully carbonated (arising from a direct-combustion vitrifier). Six binder compositions were tested in which ordinary Portland cement was replaced at different proportions by fly ash and/or ground granulated blast furnace slag. A high solution to binder ratio of 1l/1 kg was used to minimize the volume of the wasteform and 10% attapulgite clay was added to all mixes to ensure that the fresh mix did not segregate prior to setting. The 28-day compressive strengths decreased when a high proportion of cement was replaced with fly ash, but were increased significantly when the cement was replaced with slag. The heats of hydration at early age for the various solids compositions decreased when cement was replaced with either fly ash or slag; however, for the fly ash mix the low heat was also associated with a significant decrease in compressive strength. High curing temperature (60 degrees C) or the use of extra-fine slag did not significantly affect the compressive strength. Recommendations for choice of binder formulations and treatment of off-gas condensates are discussed.

  12. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  13. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  14. Combination gas producing and waste-water disposal well

    DOEpatents

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  15. Characterization of flue gas residues from municipal solid waste combustors

    SciTech Connect

    Forestier, L.L. |; Libourel, G. |

    1998-08-01

    Solid residues recovered from treatment of flue gas resulting from the combustion of municipal solid waste (MSW) are of particular concern because of ever-increasing worldwide production rates and their concentrations of potentially hazardous transition elements and heavy metals. Three main residue types have been studied in this study: electrostatic precipitator ashes, wet filter cakes, and semidry scrubber residues. Using a large number of residues from two French MSW combustion (MSWC) facilities, the aim of this work is to determine their chemistry and mineralogy in order to shed light on their potential toxicity. The authors find that pollutant concentrations are dependent not only on the composition of MSW but also on the size of particles and flue gas treatment process. Using a procedure based on leaching, grain-size, density, and magnetic separations, the authors present a detailed description of the mineralogy of MSWC solid residues. These residues consist of a very heterogeneous assemblage of glasses, metals, and other crystals in which polluting elements are distributed. The results of this characterization will therefore help to contribute to the development of adequate waste management strategies.

  16. Position paper on gas generation in the Waste Isolation Pilot Plant

    SciTech Connect

    Brush, L.H.

    1994-11-15

    Gas generation by transuranic (TRU) waste is a significant issue because gas will, if produced in significant quantities, affect the performance of the Waste Isolation Pilot Plant (WIPP) with respect to Environmental Protection Agency (EPA) regulations for the long-term isolation of radioactive and chemically hazardous waste. If significant gas production occurs, it will also affect, and will be affected by, other processes and parameters in WIPP disposal rooms. The processes that will produce gas in WIPP disposal rooms are corrosion, microbial activity and radiolysis. This position paper describes these processes and the models, assumptions and data used to predict gas generation in WIPP disposal rooms.

  17. Trash to Gas: Converting Space Waste into Useful Supply Products

    NASA Technical Reports Server (NTRS)

    Tsoras, Alexandra

    2013-01-01

    The cost of sending mass into space with current propulsion technology is very expensive, making every item a crucial element of the space mission. It is essential that all materials be used to their fullest potential. Items like food, packaging, clothing, paper towels, gloves, etc., normally become trash and take up space after use. These waste materials are currently either burned up upon reentry in earth's atmosphere or sent on cargo return vehicles back to earth: a very wasteful method. The purpose of this project was to utilize these materials and create useful products like water and methane gas, which is used for rocket fuel, to further supply a deep space mission. The system used was a thermal degradation reactor with the configuration of a down-draft gasifier. The reactor was loaded with approximately 100g of trash simulant and heated with two external ceramic heaters with separate temperature control in order to create pyrolysis and gasification in one zone and incineration iri a second zone simultaneously. Trash was loaded into the top half of the reactor to undergo pyrolysis while the downdraft gas experienced gasification or incineration to treat tars and maximize the production of carbon dioxide. Minor products included carbon monoxide, methane, and other hydrocarbons. The carbon dioxide produced can be sent to a Sabatier reactor to convert the gas into methane, which can be used as rocket propellant. In order to maximize the carbon dioxide and useful gases produced, and minimize the unwanted tars and leftover ashen material, multiple experiments were performed with altered parameters such as differing temperatures, flow rates, and location of inlet air flow. According to the data received from these experiments, the process will be further scaled up and optimized to ultimately create a system that reduces trash buildup while at the same time providing enough useful gases to potentially fill a methane tank that could fuel a lunar ascent vehicle or

  18. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  19. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  20. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  1. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 6, April--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

  2. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report 8, October--December 1993

    SciTech Connect

    Not Available

    1994-02-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

  3. Neural network models for biological waste-gas treatment systems.

    PubMed

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  4. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    SciTech Connect

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  5. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    SciTech Connect

    Bockreis, A. . E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I.

    2005-07-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

  6. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  7. Steel mill ORC turns waste gas into electricity

    SciTech Connect

    Not Available

    1984-05-01

    This article discusses the installation of a 14 MW ORC waste heat recovery plant at the Kimitsu Works of Nippon Steel Corporation. The recovery plant is composed of six basic components: a boiler, turbine, electric generator, condenser, condensate pump, and feed pump. The article describes operation of the plant in detail. According to figures released by the company, the total cost of operating the ORC on the steel mill's sintering unit is approximately 8.88 yen per HWH of electricity generated. The figure includes depreciation on the ORC, replacement parts, cost of cooling water for the exhaust gas, interest, tax, and insurance as well as cost for labor, and is computed on a rate of 230 yen to the dollar.

  8. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    SciTech Connect

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H.; Apperley, David C.; Kinoshita, Hajime; Provis, John L.

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  9. Thermal operation of the DSP-120 Consteel furnace in the Ashinsk metallurgical works

    NASA Astrophysics Data System (ADS)

    Evstratov, V. G.; Kiselev, A. D.; Zinurov, I. Yu.; Shakirov, Z. Kh.; Mamenko, Yu. F.; Shumakov, A. M.; Gindullin, M. T.

    2013-06-01

    The heat losses with waste gases in modern electric arc furnaces are 20-25%. Scrap heating by waste gases is performed in Fuchs Systemtechnik shaft furnaces and Consteel furnaces with conveyer charging. The results of balance heats conducted in the DSP-120 Consteel electric furnace located in the Ashinsk metallurgical works are presented, and measures for increasing the energy efficiency of its operation are proposed.

  10. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste.

    PubMed

    Clemens, J; Cuhls, C

    2003-06-01

    The mechanical and biological waste treatment (MBT) is an increasingly important technology for the treatment of municipal solid waste (MSW) before landfilling. This process includes composting of the material with intensive aeration in order to minimize the organic fraction that may induce methane and leachate emissions after landfilling. The exhaust air is treated by biofilters to remove odorous and volatile organic compounds. The emission of direct and indirect greenhouse gases, namely methane (CH4), carbon dioxide (CO2), ammonia (NH3), nitric (NO) and nitrous oxide (N2O) was studied in four existing treatment plants. All gases except NO were emitted from the composting material. The emission factors were 12 to 185 kg ton(-1) substrate for CO2, 6-12 x 10(3) g ton(-1) substrate for CH4, 1.44 to 378 g ton(-1) substrate for N2O and 18-1150 g ton(-1) for NH3. In general, emission factors increased with increasing treatment time. The biofilters had no net effect on CH4, but removed 13-89% of the NH3. For CO2 the biofilters were a small, for N2O a major and for NO the exclusive source. Approximately 26% of the NH3-N that was removed in the biofilter was transformed into N2O when NH3 was the exclusive nitrogen source. Assuming that all municipal waste was treated by MBT, the emissions would account for 0.3 to 5% of the N2O and for 0.1 to 3% of the CH4 emissions in Germany, respectively. Optimising aeration and removing NH3 before the exhaust gas enters the biofilter could lead to reduced greenhouse gas emissions.

  11. In situ rheology and gas volume in Hanford double-shell waste tanks

    SciTech Connect

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G.; Mendoza, R.E.

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the `hazard signature` of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior.

  12. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  13. A second-law analysis of the ``hot blast stove/gas turbine`` arrangement by applying the parameter ``usable exergy``

    SciTech Connect

    Bisio, G.

    1996-05-01

    The aim of this paper is first of all to examine a coupled arrangement, in which turbine waste gas is used as oxygen carrier for the combustion of the fuel gas in the hot blast stoves and preheaters of a blast furnace; in their turn, the blast furnace gas and the turbine waste gas are preheated by the combustion of blast furnace gas, in order to achieve the necessary combustion temperatures. The arrangement makes provision also for the utilization of external thermal energy. The coupled process is compared with a hot blast stove system and a gas turbine plant without waste thermal energy recovery, which operate separately. The paper uses the concept of usable exergy, a previously defined parameter, to compare the two configurations and reverses some of the results obtained by the first law analysis.

  14. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Huckaby, James L.; Meyer, Perry A.

    2002-12-18

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  15. Study of materials to resist corrosion in condensing gas-fired furnaces. Final report Oct 79-Dec 81

    SciTech Connect

    Lahtvee, T.; Schaus, O.O.

    1982-02-01

    Based on a thorough review of background information on the performance of materials in condensing gas-fired heat exchangers and similar corrosive environments, candidate materials were examined on test equipment built to provide the varying corrosive conditions encountered in actual gas-fired condensing system heat exchangers. The 32 different materials tested in a one month screening test included: mild, low alloy, galvanized, solder coated steel, porcelain, epoxy, teflon and nylon coated and alonized mild steel; austenitic, ferritic, low interstitial Ti stabilized ferritic, and high alloy stainless steels; aluminum alloys, anodized and porcelain coated aluminum; copper and cupronickel alloys, solder coated copper; and titanium.

  16. Process control techniques for the Sidmar blast furnaces

    SciTech Connect

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  17. Greenhouse gas dynamics of municipal solid waste alternatives.

    PubMed

    Eschenroeder, A

    2001-10-01

    Previous greenhouse gas studies comparing landfilling with combustion of municipal solid waste (MSW) are limited to examinations of the emissions weighted by their relative radiative activity. This paper adds another dimension by analyzing the atmospheric response to these emissions. The heart of the analysis is a time-dependent model using a perturbation analysis of the IS92a results of the Intergovernmental Panel on Climate Change (IPCC). Using as inputs the emissions from the two technologies, the model calculates atmospheric concentration histories. Scenarios for a landfill and a combustor envision each accepting 1000 Mg refuse/day for a 30-year operating period followed by a 70-year postclosure period. The baseline scenario examines the basic greenhouse impact of each technology. The other scenario adds active gas collection at the landfill and energy offset credits for avoided power plant carbon emissions. For both scenarios, CH4 and trace gases from the landfill persist in the atmosphere, and they are relatively potent at forcing IR heating. The combination of these features place the landfill much higher than previously expected on the greenhouse impact scale. For the baseline scenario, the time-integrated radiative forcing from landfilling is 115 times that of combustion, and this ratio is 45 for the second scenario. PMID:11686246

  18. Greenhouse gas dynamics of municipal solid waste alternatives.

    PubMed

    Eschenroeder, A

    2001-10-01

    Previous greenhouse gas studies comparing landfilling with combustion of municipal solid waste (MSW) are limited to examinations of the emissions weighted by their relative radiative activity. This paper adds another dimension by analyzing the atmospheric response to these emissions. The heart of the analysis is a time-dependent model using a perturbation analysis of the IS92a results of the Intergovernmental Panel on Climate Change (IPCC). Using as inputs the emissions from the two technologies, the model calculates atmospheric concentration histories. Scenarios for a landfill and a combustor envision each accepting 1000 Mg refuse/day for a 30-year operating period followed by a 70-year postclosure period. The baseline scenario examines the basic greenhouse impact of each technology. The other scenario adds active gas collection at the landfill and energy offset credits for avoided power plant carbon emissions. For both scenarios, CH4 and trace gases from the landfill persist in the atmosphere, and they are relatively potent at forcing IR heating. The combination of these features place the landfill much higher than previously expected on the greenhouse impact scale. For the baseline scenario, the time-integrated radiative forcing from landfilling is 115 times that of combustion, and this ratio is 45 for the second scenario.

  19. [White rot fungi biofilter treating waste gas containing chlorobenzene].

    PubMed

    Wang, Can; Xi, Jin-ying; Hu, Hong-ying; Yu, Yin; Wen, Xiang-hua

    2008-02-01

    A novel gas-solid phase bioreactor, using bamboo as support material, inoculated with white rot fungi Phanerochaete chrysosporium was established to treat waste gas containing chlorobenzene. The performance of P. chrysosporium bioreactor was examined under different conditions. Results showed that the maximum removal efficiency of nearly 80% (average removal efficiency of 50%) could be reached under the condition of chlorobenzene inlet concentration of 200-1500 mg/m3 and the empty bed retention time (EBRT) of 122 s. While the maximum chlorobenzene removal rate of 94 g/(m3 x h) [average removal efficiency o f 60 g/(m3 x h)] had been achieved within chlorobenzene inlet concentration of 500- 1500 mg/m3 and at the flow rate of 0.5 m3/h. Furthermore, the removal rates of the bioreactor at different flow rates were also examined, suggesting that the response of removal rate to the change of inlet loading was dependent on the flow rate. Lower flow rate could promote the extent of removal rate enhancement compared to the higher flow rate. Moreover, the profile of chlorobenzene concentration along the height of the biofilter showed a nonlinear decrease trend.

  20. WASTE CHARACTERIZATION OF POLYMERIC COMPONENTS EXPOSED TO TRITIUM GAS

    SciTech Connect

    Clark, E

    2008-02-15

    A recent independent review led to uncertainty about the technical basis for characterizing the residual amount of tritium in polymer components used in the Savannah River Site Tritium Facilities that are sent for waste disposal. A review of a paper published in the open literature firmly establishes the basis of the currently used characterization, 10 Ci/cc. Information provided in that paper about exposure experiments performed at the DOE Mound Laboratory allows the calculation of the currently used characterization. These experiments involved exposure of high density polyethylene (HD-PE) to initially 1 atm tritium gas. In addition, a review of recent research at the Savannah River Site not only further substantiates this characterization, but also establishes its use for ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon{reg_sign}), and Vespel{reg_sign} polyimide. 10 Ci/cc tritium is a representative characterization for any type of polymer components exposed at ambient temperature and at approximately 1 atm. tritium gas.

  1. Method for treating reactive metals in a vacuum furnace

    DOEpatents

    Hulsey, W.J.

    1975-10-28

    The invention is directed to a method for reducing the contamination of reactive metal melts in vacuum furnaces due to the presence of residual gaseous contaminants in the furnace atmosphere. This reduction is achieved by injecting a stream of inert gas directly over the metal confined in a substantially closed crucible with the flow of the gas being sufficient to establish a pressure differential between the interior of the crucible and the furnace atmosphere.

  2. Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Asai, N.; Kataura, H.; Achiba, Y.

    2007-07-01

    The formation of single-wall carbon nanotubes (SWNTs) by using laser vaporization technique in different ambient gas atmosphere was investigated. SWNTs were prepared with Rh/Pd (1.2/1.2 atom%)-carbon composite rod in Ar and nitrogen gas atmosphere, respectively. Raman spectra of raw carbon materials including SWNTs and photoluminescence mapping of dispersed SWNTs in a surfactant solution demonstrate that the diameter distribution of SWNTs prepared in Ar atmosphere is narrower than those obtained by using CVD technique (e.g. HiPco nanotube), even when the ambient temperature is as high as 1150 ?C. It was also found that nitrogen atmosphere gives wider diameter distribution of SWNTs than that obtained with Ar atmosphere. Furthermore, the relative yield of fullerenes (obtained as byproducts) is investigated by using HPLC (high-performance liquid chromatography) technique. It was found that the relative yield of higher fullerenes becomes lower, when nitrogen is used as an ambient gas atmosphere. Based on these experimental findings, a plausible formation mechanism of SWNTs is discussed.

  3. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  4. Contamination of furnace-drawn silica fibers.

    PubMed

    Kaiser, P

    1977-03-01

    Contamination originating in an electric resistance furnace was found to increase substantially the losses of unclad and plastic-clad silica fibers. In contrast, the losses of doped silica fibers with sufficient cladding thickness were unaffected by impure drawing conditions. Operating the furnace without muffle tube and protecting the preform with a pure, inert gas injected via a counter-flow resulted in practically contamination-free operation and unclad-fiber losses as low as 3 dB/km. The removal of the muffle tube significantly simplified the furnace operation and reduced the cycling time from many hours to a few minutes. PMID:20168565

  5. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    SciTech Connect

    Nick Soelberg

    2005-09-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

  6. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  7. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  8. THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES

    EPA Science Inventory

    Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...

  9. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... production furnace becomes subject to RCRA permit requirements after October 12, 2005, or when an owner...

  10. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... production furnace becomes subject to RCRA permit requirements after October 12, 2005, or when an owner...

  11. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  12. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces

    NASA Astrophysics Data System (ADS)

    Zahirović, Selma; Scharler, Robert; Kilpinen, Pia; Obernberger, Ingwald

    2010-12-01

    While reasonably accurate in simulating gas phase combustion in biomass grate furnaces, CFD tools based on simple turbulence-chemistry interaction models and global reaction mechanisms have been shown to lack in reliability regarding the prediction of NOx formation. Coupling detailed NOx reaction kinetics with advanced turbulence-chemistry interaction models is a promising alternative, yet computationally inefficient for engineering purposes. In the present work, a model is proposed to overcome these difficulties. The model is based on the Realizable k-ɛ model for turbulence, Eddy Dissipation Concept for turbulence-chemistry interaction and the HK97 reaction mechanism. The assessment of the sub-models in terms of accuracy and computational effort was carried out on three laboratory-scale turbulent jet flames in comparison with the experimental data. Without taking NOx formation into account, the accuracy of turbulence modelling and turbulence-chemistry interaction modelling was systematically examined on Sandia Flame D and Sandia CO/H2/N2 Flame B to support the choice of the associated models. As revealed by the Large Eddy Simulations of the former flame, the shortcomings of turbulence modelling by the Reynolds averaged Navier-Stokes (RANS) approach considerably influence the prediction of the mixing-dominated combustion process. This reduced the sensitivity of the RANS results to the variations of turbulence-chemistry interaction models and combustion kinetics. Issues related to the NOx formation with a focus on fuel bound nitrogen sources were investigated on a NH3-doped syngas flame. The experimentally observed trend in NOx yield from NH3 was correctly reproduced by HK97, whereas the replacement of its combustion subset by that of a detailed reaction scheme led to a more accurate agreement, but at increased computational costs. Moreover, based on results of simulations with HK97, the main features of the local course of the NOx formation processes were

  13. Laboratory and bin-scale tests of gas generation for the Waste Isolation Pilot Plant

    SciTech Connect

    Brush, L.H.; Molecke, M.A.; Lappin, A.R. ); Westerman, R.E. ); Tong, X.; Black, J.N.P.; Grbic-Galic, D. . Dept. of Civil Engineering); Vreeland, R.E. . Dept. of Biology); Reed, D.T. (Argonne National Lab., IL (United Stat

    1991-01-01

    The design-basis, defense-related, transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) could, if sufficient H{sub 2}O and nutrients were present, produce as much as 1,500 moles of gas per drum of waste. Anoxic corrosion of Fe and Fe-base alloys and microbial degradation of cellulosics are the processes of greatest concern, but radiolysis of brine could also be important. 19 refs., 1 fig., 1 tab.

  14. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles.

  15. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. PMID:27236164

  16. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P.

    2009-03-15

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  17. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    SciTech Connect

    Not Available

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  18. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. PMID:27118738

  19. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods.

  20. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong

    2015-11-01

    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  1. LIFE-CYCLE EVALUATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...

  2. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect

    Vainikka, Pasi; Tsupari, Eemeli; Sipilae, Kai; Hupa, Mikko

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  3. Sealed rotary hearth furnace with central bearing support

    SciTech Connect

    Docherty, J.P.; Johnson, B.E.; Beri, J.

    1989-05-30

    This patent describes a rotary hearth furnace. It comprises a stationary furnace wall with connecting roof and floor defining a closed furnace chamber therein; a rotatable hearth within the furnace chamber having a gas perforate surface for supporting a charge material thereon and having an open center region; a vertical cylindrical conduit supporting the hearth and communicating with the open center region thereof, the vertical cylindrical conduit extending from the hearth downwardly through an opening formed in the furnace floor and the vertical cylindrical conduit supported for rotation on bearing means positioned beneath the furnace floor; sealing means associated with the vertical cylindrical conduit and the furnace floor to seal off the opening therebetween; drive means for rotating the vertical cylindrical conduit and the hearth, feed means extending into the furnace chamber for charging particulate material onto the hearth, means for supplying hot gases to the furnace chamber between the hearth and the floor; means for withdrawing spent gas from the furnace chamber above the hearth; rabble means for moving the charge material across the hearth for discharge into the open enter region and the vertical cylindrical conduit.

  4. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  5. Measuring Furnace/Sample Heat-Transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

    1993-01-01

    Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

  6. Increasing blast furnace productivity. Is there a universal solution for all blast furnaces?

    SciTech Connect

    Chaubal, P.C.; Ranade, M.G.

    1997-12-31

    In the past few years there has been a major effort in the integrated plants in the US to increase blast furnace productivity. Record production levels have been reported by AK Steel using direct reduced/hot briquetted iron (DRI/HBI) and high levels of natural gas (NG)-oxygen injection at their Middletown blast furnace. Similarly, US Steel-Gary No. 13 reported high productivity levels with PCI and oxygen enrichment. A productivity of 6 NTHM/day/100 ft{sup 3}WV was the norm in the past, but today levels higher than 11 NTHM/day/100ft{sup 3}WV have been reached on a sustained basis. These high productivity levels have been an important aspect of facility rationalization efforts, as companies seek to maximize their throughput while reducing costs. Hot metal demand in a particular plant depends on downstream capabilities in converting hot metal to saleable steel. Single vs. multi-furnace plants may have different production requirements for each facility. Business cycles may influence productivity requirements from different furnaces of a multiple furnace plant, more so for those considered as swing furnaces. Therefore, the production requirement for individual blast furnaces is different for different plants. In an effort to understand productivity improvement methods, calculations were made for a typical 8 m hearth diameter furnace using data and experience gathered on Inland`s operation. Here the authors present the results obtained in the study.

  7. EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  8. Waste drum gas generation sampling program at Rocky Flats during FY 1988

    SciTech Connect

    Roggenthen, D.K.; McFeeters, T.L.; Nieweg, R.G.

    1991-02-11

    Rocky Flats Plant Transuranic Waste Drums were sampled for gas composition. Combustibles, plastics, Raschig rings, solidified organic sludge, and solidified inorganic sludge transuranic waste forms were sampled. Plastic bag material and waste samples were also taken from some solidified sludge waste drums. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values (gas generation) were calculated for the waste drums. Analytical results indicate that very low concentrations of potentially flammable or corrosive gas mixtures will be found in vented drums. G(H{sub 2}) was usually below 1.6, while G(Total) was below 4.0. Hydrogen permeability tests on different types of plastic waste bags used at Rocky Flats were also conducted. Polyvinylchloride was slightly more permeable to hydrogen than polyethylene for new or creased material. Permeability of aged material to hydrogen was slightly higher than for new material. Solidified organic and inorganic sludges were sampled for volatile organics. The analytical results from two drums of solidified organic sludges showed concentrations were above detection limits for four of the 36 volatile organics analyzed. The analytical results for four of the five solidified inorganic sludges show that concentrations were below detection limits for all volatile organics analyzed. 3 refs., 5 figs., 2 tabs.

  9. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source...

  10. A biological process effective for the conversion of CO-containing industrial waste gas to acetate.

    PubMed

    Kim, Tae Wan; Bae, Seung Seob; Lee, Jin Woo; Lee, Sung-Mok; Lee, Jung-Hyun; Lee, Hyun Sook; Kang, Sung Gyun

    2016-07-01

    Acetogens have often been observed to be inhibited by CO above an inhibition threshold concentration. In this study, a two-stage culture consisting of carboxydotrophic archaea and homoacetogenic bacteria is found to be effective in converting industrial waste gas derived from a steel mill process. In the first stage, Thermococcus onnurineus could grow on the Linz-Donawitz converter gas (LDG) containing ca. 56% CO as a sole energy source, converting the CO into H2 and CO2. Then, in the second stage, Thermoanaerobacter kivui could grow on the off-gas from the first stage culture, consuming the H2 and CO in the off-gas completely and producing acetate as a main product. T. kivui alone could not grow on the LDG gas. This work represents the first demonstration of acetate production using steel mill waste gas by a two-stage culture of carboxydotrophic hydrogenogenic microbes and homoacetogenic bacteria.

  11. Method of and apparatus for operating industrial furnace systems

    SciTech Connect

    Rohrbach, H.

    1980-04-15

    A method and apparatus for operating an industrial furnace system for treating materials are disclosed, characterized in that the heat which is applied to the material to be treated is partially derived from the combustion of a mixture of waste fuel and water such as sewage slurry. Waste heat generated at the outer surface of the furnace and waste heat generated from the cooling of the treated material is further applied to the slurry to partially dry the waste fuel prior to and during the combustion thereof.

  12. Waste anesthetic gas exposures to veterinarians and animal technicians

    SciTech Connect

    Wingfield, W.E.; Ruby, D.L.; Buchan, R.M.; Gunther, B.J.

    1981-02-15

    A survey of veterinarians was conducted in an 11-county region of eastern Colorado to determine the extent of usage of inhalation anesthetics and to measure exposures of veterinarians and their assistants to waste anesthetic gases. The survey indicated that inhalation anesthetics were used in 80.8% of the 210 practices. Exposures to waste anesthetics in veterinary practices were far less than reported in human hospitals. Waste anesthetic concentrations were affected by size of the patient, type of breathing system, and use of scavenging systems. Dilution ventilation had no effect on breathing zone concentrations. The endotracheal tube and occasionally the anesthetic machine were the major sources of leakage of anesthetic gases.

  13. Ultraclean Radiant Furnace

    NASA Technical Reports Server (NTRS)

    Blair, David W.

    1989-01-01

    Relatively-inexpensive radiant furnace brings specimen in controlled atmosphere to temperature higher than previously attainable - nearly as high as maximum operating temperature of heating element. Heating element made of refractory material like tungsten, molybdenum, graphite, or silicon carbide, or consists of plasma or electric arcs. Furnace distributes heat fairly uniformly over surface of specimen.

  14. A new gasification and melting incineration process of MSW with co-current shaft furnace.

    PubMed

    Zhao, Wei; Wang, Qi; Zou, Zongshu; Liu, Haixiao; Zheng, Hongxia; Zhang, Lei

    2009-01-01

    In all the municipal solid waste (MSW) disposal technology, incineration with gasification and melting has been taken as a environmentally sound and zero emission technology owing to avoiding second-pollution of heavy metals and dioxin. In this background, a new direct gasification and melting incineration process with co-current shaft furnace is put forward. In this process, MSW and combustion-supporting air are co-current from top to bottom in a shaft furnace. Fuel gas from pyrolysis and gasification burns completely in the bottom in order to offer energy for slag melting. The simulation experiment of the co-current shaft furnace has been done. The results of simulation experiment show that the temperature on the condition of co-current is much higher than on the condition of countercurrent at the bottom of reaction tube and so is the CO2 quantity discharged from reaction tube. It can be concluded that the co-current shaft furnace is more suitable for direct gasification and melting incineration process. PMID:25084404

  15. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    SciTech Connect

    Bedient, P.B.

    1995-01-16

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  16. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries. PMID:15811669

  17. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  18. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  19. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer. PMID:25985667

  20. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  1. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  2. Regulatory Off-Gas Analysis from the Evaporator of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Calloway, T.B.

    2002-08-21

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, remaining low activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation prior to being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile and pesticide compounds, and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River Technology Center. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using EPA SW-846 Methods.

  3. Waste management options to reduce greenhouse gas emissions from paper in Australia

    NASA Astrophysics Data System (ADS)

    Pickin, J. G.; Yuen, S. T. S.; Hennings, H.

    A lifecycle assessment to estimate greenhouse gas emissions in Australia from the paper cycle is summarised. The greenhouse gas emissions from paper in Australia in 1999/2000 were estimated to be 12.1 million tonnes (Mt) of CO 2 equivalent. Nearly half of this amount consisted of CH 4 emissions from landfilled waste paper. Various waste management options were modelled to investigate the greenhouse impact of a tonne of paper over its whole lifecycle. Options that keep paper out of landfills significantly reduce greenhouse emissions, waste-to-energy recovery being most effective. Recycling is also beneficial, and is of particular interest from a management perspective because it can be controlled by the pulp and paper industry. These findings can be extended to other wood-based and organic wastes.

  4. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  5. Treatment of waste gas containing diethyldisulphide (DEDS) in a bench scale biofilter.

    PubMed

    Pandey, R A; Mudliar, S N; Borgaokar, S

    2009-01-01

    Waste gas containing diethyldisulphide (DEDS) is generated from various industries including pulp and paper, refinery, rayon and molasses based distilleries, etc. DEDS has odour threshold detection with an average concentration of 10(-9)mg/m(3) at 25 degrees C. DEDS is toxic to bacteria, fungus and also to mammals when exposed for a long period. Waste gas containing DEDS require proper treatment prior to discharge into the environment. DEDS containing waste gas was treated in a biofilter, packed with compost along with wooden chips and enriched with DEDS degrading microorganisms. The biofilter could remove DEDS to the extent of 94+/-5% at a loading of 1.60 g/m(3)/h with an empty bed retention time of 150s. At optimal operating conditions, the average moisture content required by the biofilter was in the range of 60-65%. The biodegradative products of DEDS were thiosulphate and sulphate.

  6. Treatment of waste gas containing diethyldisulphide (DEDS) in a bench scale biofilter.

    PubMed

    Pandey, R A; Mudliar, S N; Borgaokar, S

    2009-01-01

    Waste gas containing diethyldisulphide (DEDS) is generated from various industries including pulp and paper, refinery, rayon and molasses based distilleries, etc. DEDS has odour threshold detection with an average concentration of 10(-9)mg/m(3) at 25 degrees C. DEDS is toxic to bacteria, fungus and also to mammals when exposed for a long period. Waste gas containing DEDS require proper treatment prior to discharge into the environment. DEDS containing waste gas was treated in a biofilter, packed with compost along with wooden chips and enriched with DEDS degrading microorganisms. The biofilter could remove DEDS to the extent of 94+/-5% at a loading of 1.60 g/m(3)/h with an empty bed retention time of 150s. At optimal operating conditions, the average moisture content required by the biofilter was in the range of 60-65%. The biodegradative products of DEDS were thiosulphate and sulphate. PMID:18603425

  7. Regulatory Off-Gas Analysis from the Evaporation of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Saito, H.H.

    2001-03-28

    The purposes of this work were to: (1) develop preliminary operating data such as expected concentration endpoints for flow sheet development and evaporator design, and (2) examine the regulatory off-gas emission impacts from the evaporation of relatively organic-rich Hanford Tank 241-AN-107 Envelope C waste simulant containing 14 volatile, semi-volatile and pesticide organic compounds potentially present in actual Hanford RPP waste.

  8. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%.

  9. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. PMID:26873911

  10. Gas Retention and Release from Hanford Site Sludge Waste Tanks

    SciTech Connect

    Meacham, Joseph E.; Follett, Jordan R.; Gauglitz, Phillip A.; Wells, Beric E.; Schonewill, Philip P.

    2015-02-18

    Radioactive wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. Solid wastes can be divided into saltcake (mostly precipitated soluble sodium nitrate and nitrite salts with some interstitial liquid consisting of concentrated salt solutions) and sludge (mostly low solubility aluminum and iron compounds with relatively dilute interstitial liquid). Waste generates hydrogen through the radiolysis of water and organic compounds, radio-thermolytic decomposition of organic compounds, and corrosion of a tank’s carbon steel walls. Nonflammable gases, such as nitrous oxide and nitrogen, are also produced. Additional flammable gases (e.g., ammonia and methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks.

  11. Simultaneous stack-gas scrubbing and waste water treatment

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  12. Nuclear Waste Disposal: A Cautionary Tale for Shale Gas Development

    NASA Astrophysics Data System (ADS)

    Alley, William M.; Cherry, John A.; Parker, Beth L.; Ryan, M. Cathryn

    2014-07-01

    Nuclear energy and shale gas development each began with the promise of cheap, abundant energy and prospects for national energy independence. Nuclear energy was touted as "too cheap to meter," and shale gas promised jobs and other economic benefits during a recession.

  13. General purpose rocket furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1979-01-01

    A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.

  14. Continuous ring furnaces

    SciTech Connect

    De Stefani, G.; Genevois, J.L.; Paolo, P.

    1981-01-06

    A smoke conducting apparatus for use particularly with continuous ring furnaces (e.g., Hoffman furnaces) wherein each furnace chamber is connected to the smoke channel, the latter being a metal pipe inclined slightly from horizontal and provided with one or more traps along the length of its bottom surface, each trap containing a removable receptacle, and heating means being disposed along the bottom of the channel to fluidize tarry deposits of combustion products so that such deposits will flow by gravity into the removable receptacle.

  15. Flammable Gas Safety Program: actual waste organic analysis FY 1996 progress report; Flammable Gas Safety Program: actual waste organic analysis FY 1996 progress report

    SciTech Connect

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Rau, J.; Steele, R.; Wahl, K.H.

    1996-09-01

    This report describes the status of optimizing analytical methods to account for the organic components in Hanford waste tanks, with emphasis on tanks assigned to the Flammable Gas Watch List. The methods developed are illustrated by their application to samples from Tanks 241-SY-103 and 241-S-102. Capability to account for organic carbon in Tank SY-101 was improved significantly by improving techniques for isolating organic constituents relatively free from radioactive contamination and by improving derivatization methodology. The methodology was extended to samples from Tank SY-103 and results documented in this report. Results from analyzing heated and irradiated SY-103 samples (Gas Generation Task) and evaluating methods for analyzing tank waste directly for chelators and chelator fragments are also discussed.

  16. Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Hintze, Paul. E.; Caraccio, Anne J.; Anthony, Stephen M.; Tsoras, Alexandra N.; Nur, Monoita; Devor, Robert; Captain, James G.

    2013-01-01

    Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed.

  17. Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Caraccio, A. J.; Anthony, S. M.; Tsoras, A. N.; Devor, Robert; Captain, James G.; Nur, Mononita

    2013-01-01

    Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed

  18. Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing

    SciTech Connect

    Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao; Chang, Shih-Ger

    2002-05-14

    This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.

  19. Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

    NASA Technical Reports Server (NTRS)

    Fisher, J. W.; Pisharody, S.; Moran, M. J.; Wignarajah, K.; Shi, Y.

    2002-01-01

    This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO(sub x) and SO(sub 2) contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO(sub x) and SO(sub 2) in activated carbon made from biomass. Conversion of adsorbed NO(sub x) to nitrogen has also been observed.

  20. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  1. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  2. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  3. 11. GASFIRED CRUCIBLE FURNACES WERE USED TO MELT SMALL, BATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GAS-FIRED CRUCIBLE FURNACES WERE USED TO MELT SMALL, BATCH QUANTITIES OF BRONZE IN STOCKHAM'S BRASS FOUNDRY FOR THE PRODUCTION OF BRONZE VALVES, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. Space station furnace facility

    NASA Astrophysics Data System (ADS)

    Cobb, Sharon D.; Lehoczky, Sandor L.

    1996-07-01

    The Space Shuttle Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity environment of the International Space Station. The facility is divided into the Core System and two Instrument Racks. The core system provides the common electrical and mechanical support equipment required to operate experiment modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first instrument rack include a high temperature gradient furnace with quench, and a low temperature gradient furnace. A new EM is planned to be developed every two years.

  6. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  7. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  8. A study of tritium in municipal solid waste leachate and gas

    SciTech Connect

    Mutch Jr, R. D.; Mahony, J. D.

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPA MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)

  9. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    SciTech Connect

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  10. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  11. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... Under the Public Utility Regulatory Policies Act of 1978 § 2.400 Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities....

  12. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  13. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  15. [Treatment of organic waste gas by adsorption rotor].

    PubMed

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  16. Regulatory Off-Gas Analysis from the Evaporation of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Calloway, T.B. Jr.

    2003-10-23

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, remaining low activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation prior to being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile and pesticide compounds, and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River Technology Center. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using EPA SW-846 Methods. Volatile and light semi-volatile organic compounds in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate and off-gas streams with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI ESP model is constrained by available literature data.

  17. Exergy analysis in the assessment of the sustainability of waste gas treatment systems.

    PubMed

    Dewulf, J; Van Langenhove, H; Dirckx, J

    2001-06-12

    This study focuses on the sustainability of different technological options for the treatment of waste gases from a waste water treatment plant loaded with volatile organic compounds. The options considered are biofiltration, active carbon adsorption and catalytic and thermal oxidation. The amount of resources and utilities to construct and operate each system have been investigated from the point of view of the Second Law of thermodynamics. The unit in which all resources are treated is Joules of exergy. It was concluded that biofiltration was the most exergetically efficient system. The cumulative exergy consumption of the resources and utilities for construction and operation have been quantified in exergy terms. Further on, the requirements for the abatement of emissions generated by operating the waste gas treatment systems and the amount of renewables have been taken into account in the assessment of the sustainability of the waste gas treatment technologies. Finally, a comparison between exergy analysis and life cycle analysis in assessing the sustainability of the waste gas treatment options, is presented.

  18. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    EPA Science Inventory

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  19. Co-processing of agricultural plastic waste and switchgrass via tail gas reactive pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of agricultural plastic waste in the form of polyethylene hay bale covers (PE) (4-37%) and switchgrass were investigated using the US Department of Agriculture’s tail gas reactive pyrolysis (TGRP) at different temperatures (400-570 deg C). TGRP of switchgrass and plastic mixtures significan...

  20. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  1. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  2. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  3. A new approach for biological online testing of stack gas condensate from municipal waste incinerators.

    PubMed

    Elsner, Dorothea; Fomin, Anette

    2002-01-01

    A biological testing system for the monitoring of stack gas condensates of municipal waste incinerators has been developed using Euglena gracilis as a test organism. The motility, velocity and cellular form of the organisms were the endpoints, calculated by an image analysis system. All endpoints showed statistically significant changes in a short time when organisms were exposed to samples collected during combustion situations with increased pollutant concentrations. The velocity of the organisms proved to be the most appropriate endpoint. A semi-continuous system with E. gracilis for monitoring stack gas condensate is proposed, which could result in an online system for testing stack gas condensates in the future.

  4. ASEF solid-waste-to-methane gas, Pompano Beach, Florida, refCOM

    NASA Astrophysics Data System (ADS)

    Mooij, H. P.

    1983-01-01

    Five graphs are presented to document solid waste to methane experiments. The first simply shows the number of hours spent running in relation to the number of tons of material fed into the digester. The second shows the relationship between tonnage fed and subsequent gas production. Tonnage is further broken down into moisture, dry, and volatile fractions. The third graph shows the relationship between methane and carbon dioxide in the off gas. The fourth graph shows the pH, alkalinity, and volatile acids in the digester slurry environment, Nutrient levels of the effluent are shown in the fifth graph. Finally, materials analysis and gas production data are tabulated.

  5. Production of Renewable Natural Gas from Waste Biomass

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  6. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  7. Experimental research on the characteristics of softening and melting of iron ores as significant factor of influence on gas permeability of blast furnace charge

    NASA Astrophysics Data System (ADS)

    Branescu, E.; Blajan, A. O.; Constantin, N.

    2015-06-01

    It is widely accepted as a cohesive zone is directly influenced by softening and melting properties of iron ores, preparations (crowded, pellets, which represents about 90%, of the loads with metal furnace intake), or uncooked (raw ores ranked). Important results can be obtained through the study of behavior of ferrous materials at temperatures above 1000 ° C. Starting from research methods presented in the literature, this paper presents itself in carrying out their own laboratory experiments, conducted with the aim of analysing the softening and melting properties of sinter iron cores.

  8. Gas Releases During Saltcake Dissolution for Retrieval of Single-Shell Tank Waste, Rev. 1

    SciTech Connect

    Stewart, Charles W.

    2001-12-28

    It is possible to retrieve a large fraction of soluble waste from the Hanford single-shell waste tanks (SSTs) by dissolving it with water. This retrieval method will be demonstrated in Tanks U-107 and S-112 in the next few years. If saltcake dissolution proves practical and effective, many of the saltcake SSTs may be retrieved by this method. Many of the SSTs retain flammable gas that will be released into the tank headspace as the waste dissolves. This report describes the physical processes that control dissolution and gas release. Calculation results are shown and describe how the headspace hydrogen concentration evolves during dissolution. The observed spontaneous and induced gas releases from SSTs are summarized, and the dissolution of the crust layer in SY-101 is discussed as a recent example of full-scale dissolution of saltcake containing a large volume of retained gas. The report concludes that the dissolution rate is self-limiting and that gas release rates are relatively low.

  9. Gas Releases During Saltcake Dissolution for Retrieval of Single-Shell Tank Waste

    SciTech Connect

    Stewart, Charles W.

    2001-07-31

    It is possible to retrieve a large fraction of soluble waste from the Hanford single-shell waste tanks (SST) by dissolving it with water. This retrieval method will be demonstrated in U-107 and S-112 in the next few years. If saltcake dissolution proves practical and effective, many of the saltcake SSTs may be retrieved by this method. Many of the SSTs retain a large volume of flammable gas that will be released into the tank headspace as the waste dissolves. This report describes the physical processes that control dissolution and gas release. Calculation results are shown describing the headspace hydrogen concentration transient during dissolution. The observed spontaneous and induced gas releases from SSTs is summarized and the dissolution of the crust layer in SY-101 is discussed as a recent example of full-scale dissolution of saltcake containing a very large volume of retained gas. The report concludes that the dissolution rate is self limiting and gas release rates are relatively low.

  10. Gas retention and release behavior in Hanford single-shell waste tanks

    SciTech Connect

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  11. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    PubMed

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland. PMID:20681425

  12. Rebuilding and modernization of blast furnace B'' at Cockerill-Sambre Ougree

    SciTech Connect

    Neuville, J.; Lecomte, P.; Massin, J.P.; Drimmer, D. )

    1993-01-01

    Blown in for the first time in 1962, the B blast furnace of Cockerill-Sambre was relined for the fourth time in 1989. The furnace produced 8,649,000 tons during the last campaign (1980 - 1989). Gunning repairs were carried out in 1985 and 1987. The blast furnace was blow down on June 30 and the burden level was lowered to the tuyere level. Afterwards a salamander of 350 tons was cast in open ladles. The relining of the blast furnace was performed on schedule and the furnace was blown in on the 4th of December 1989. The paper describes the relining goals and the main modifications. The specifications of the blast furnace are listed. Then the paper describes the modifications to the following systems: the charging computer system; the cooling system; the refractory materials; the hot stoves; blast furnace gas system; instrumentation and regulation; the blast furnace computer system; the pollution control equipment; and the cast floor.

  13. Reclamation of elemental sulfur from flue gas biodesulfurization waste sludge.

    PubMed

    Wang, Chengwen; Wang, Yujue; Zhang, Yanqi; Zhao, Qi; Wang, Ran

    2010-05-01

    Perchloroethylene (PCE) extraction was used to reclaim elemental sulfur from flue gas biodesulfurization sludge. The sludge was generated from a biodesulfurization system that concurrently treated the flue gas scrubbing solution and wastewater of citric acid production. The sludge contained approximately 40-60% elemental sulfur; other components included flue gas dust, biomass, inorganic salts, and flocculants. The sulfur was extracted with PCE at 80 degrees C, and then separated from the sludge by hot filtration. The elemental sulfur was then recovered from the PCE solution by recrystallization and centrifugation. When the dried sludge with particle size less than 0.2 mm was used in the PCE extraction, more than 90% of the elemental sulfur in the sludge could be recovered with a contact time of 15 min and a PCE-to-sludge ratio of 5 mL PCE/g sludge. The recovered sulfur generally had purities of 98-99.9% and could be directly used in many industries. Reuse of the PCE solvent in the extraction protocol through four cycles did not adversely influence the sulfur recovery efficiency. The results indicated that the PCE extraction was an effective method for the sulfur recovery from the biodesulfurization sludge.

  14. Greenhouse gas emissions from home composting of organic household waste.

    PubMed

    Andersen, J K; Boldrin, A; Christensen, T H; Scheutz, C

    2010-12-01

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week(-1) and the temperature inside the composting units was in all cases only a few degrees (2-10 °C) higher than the ambient temperature. The emissions of methane (CH(4)) and nitrous oxide (N(2)O) were quantified as 0.4-4.2 kg CH(4)Mg(-1) input wet waste (ww) and 0.30-0.55 kg N(2)OMg(-1)ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH(4) and N(2)O emissions) of 100-239 kg CO(2)-eq.Mg(-1)ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH(4) during mixing which was estimated to 8-12% of the total CH(4) emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg(-1)ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO(2)-eq.Mg(-1)ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

  15. Natural Gas Residual Fluids: Sources, Endpoints, and Organic Chemical Composition after Centralized Waste Treatment in Pennsylvania.

    PubMed

    Getzinger, Gordon J; O'Connor, Megan P; Hoelzer, Kathrin; Drollette, Brian D; Karatum, Osman; Deshusses, Marc A; Ferguson, P Lee; Elsner, Martin; Plata, Desiree L

    2015-07-21

    Volumes of natural gas extraction-derived wastewaters have increased sharply over the past decade, but the ultimate fate of those waste streams is poorly characterized. Here, we sought to (a) quantify natural gas residual fluid sources and endpoints to bound the scope of potential waste stream impacts and (b) describe the organic pollutants discharged to surface waters following treatment, a route of likely ecological exposure. Our findings indicate that centralized waste treatment facilities (CWTF) received 9.5% (8.5 × 10(8) L) of natural gas residual fluids in 2013, with some facilities discharging all effluent to surface waters. In dry months, discharged water volumes were on the order of the receiving body flows for some plants, indicating that surface waters can become waste-dominated in summer. As disclosed organic compounds used in high volume hydraulic fracturing (HVHF) vary greatly in physicochemical properties, we deployed a suite of analytical techniques to characterize CWTF effluents, covering 90.5% of disclosed compounds. Results revealed that, of nearly 1000 disclosed organic compounds used in HVHF, only petroleum distillates and alcohol polyethoxylates were present. Few analytes targeted by regulatory agencies (e.g., benzene or toluene) were observed, highlighting the need for expanded and improved monitoring efforts at CWTFs.

  16. Natural Gas Residual Fluids: Sources, Endpoints, and Organic Chemical Composition after Centralized Waste Treatment in Pennsylvania.

    PubMed

    Getzinger, Gordon J; O'Connor, Megan P; Hoelzer, Kathrin; Drollette, Brian D; Karatum, Osman; Deshusses, Marc A; Ferguson, P Lee; Elsner, Martin; Plata, Desiree L

    2015-07-21

    Volumes of natural gas extraction-derived wastewaters have increased sharply over the past decade, but the ultimate fate of those waste streams is poorly characterized. Here, we sought to (a) quantify natural gas residual fluid sources and endpoints to bound the scope of potential waste stream impacts and (b) describe the organic pollutants discharged to surface waters following treatment, a route of likely ecological exposure. Our findings indicate that centralized waste treatment facilities (CWTF) received 9.5% (8.5 × 10(8) L) of natural gas residual fluids in 2013, with some facilities discharging all effluent to surface waters. In dry months, discharged water volumes were on the order of the receiving body flows for some plants, indicating that surface waters can become waste-dominated in summer. As disclosed organic compounds used in high volume hydraulic fracturing (HVHF) vary greatly in physicochemical properties, we deployed a suite of analytical techniques to characterize CWTF effluents, covering 90.5% of disclosed compounds. Results revealed that, of nearly 1000 disclosed organic compounds used in HVHF, only petroleum distillates and alcohol polyethoxylates were present. Few analytes targeted by regulatory agencies (e.g., benzene or toluene) were observed, highlighting the need for expanded and improved monitoring efforts at CWTFs. PMID:26147419

  17. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.

    PubMed

    Brinck, Kim; Poulsen, Tjalfe G; Skov, Henrik

    2011-10-01

    Energy and greenhouse gas balances for a waste incineration plant (Reno-Nord I/S, Aalborg, Denmark) as a function of time over a 45-year period beginning 1960 are presented. The quantity of energy recovered from the waste increased over time due to increasing waste production, increasing lower heating value of the waste and implementation of improved energy recovery technology at the incineration plant. Greenhouse gas (GHG) balances indicated progressively increasing GHG savings during the time period investigated as a result of the increasing energy production. The GHG balances show that the Reno-Nord incineration plant has changed from a net annual GHG emission of 30 kg CO(2)-eq person(-1) year(-1) to a net annual GHG saving of 770 kg CO(2)-eq person(-1) year(-1) which is equivalent to approximately 8% of the annual emission of GHG from an average Danish person (including emissions from industry and transport). The CO(2) emissions associated with combustion of the fossil carbon contained in the waste accounted for about two-thirds of the GHG turnover when no energy recovery is applied but its contribution reduces to between 10 and 15% when energy recovery is implemented. The reason being that energy recovery is associated with a large CO(2) saving (negative emission).

  18. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production.

    PubMed

    Hilal, M A; Attallah, M F; Mohamed, Gehan Y; Fayez-Hassan, M

    2014-10-01

    In this study, a potential radiation hazard from TENORM sludge wastes generated during exploration and extraction processes of oil and gas was evaluated. The activity concentration of natural radionuclides (238)U, (226)Ra and (232)Th were determined in TENORM sludge waste. It was found that sludge waste from oil and gas industry is one of the major sources of (226)Ra in the environment. Therefore, some preliminary chemical treatment of sludge waste using Triton X-100 was also investigated to reduce the radioactivity content as well as the risk of radiation hazard from TENORM wastes. The activity concentrations of (226)Ra and (228)Ra in petroleum sludge materials before and after chemical treatment were measured using gamma-ray spectrometry. The average values of the activity concentrations of (226)Ra and (228)Ra measured in the original samples were found as 8908 Bq kg(-1) and 933 Bq kg(-1), respectively. After chemical treatment of TENORM samples, the average values of the activity concentrations of (226)Ra and (228)Ra measured in the samples were found as 7835 Bq kg(-1) and 574 Bq kg(-1), respectively. Activity concentration index, internal index, absorbed gamma dose rate and the corresponding effective dose rate were estimated for untreated and treated samples. PMID:24949581

  19. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production.

    PubMed

    Hilal, M A; Attallah, M F; Mohamed, Gehan Y; Fayez-Hassan, M

    2014-10-01

    In this study, a potential radiation hazard from TENORM sludge wastes generated during exploration and extraction processes of oil and gas was evaluated. The activity concentration of natural radionuclides (238)U, (226)Ra and (232)Th were determined in TENORM sludge waste. It was found that sludge waste from oil and gas industry is one of the major sources of (226)Ra in the environment. Therefore, some preliminary chemical treatment of sludge waste using Triton X-100 was also investigated to reduce the radioactivity content as well as the risk of radiation hazard from TENORM wastes. The activity concentrations of (226)Ra and (228)Ra in petroleum sludge materials before and after chemical treatment were measured using gamma-ray spectrometry. The average values of the activity concentrations of (226)Ra and (228)Ra measured in the original samples were found as 8908 Bq kg(-1) and 933 Bq kg(-1), respectively. After chemical treatment of TENORM samples, the average values of the activity concentrations of (226)Ra and (228)Ra measured in the samples were found as 7835 Bq kg(-1) and 574 Bq kg(-1), respectively. Activity concentration index, internal index, absorbed gamma dose rate and the corresponding effective dose rate were estimated for untreated and treated samples.

  20. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  1. Test container design/fabrication/function for the Waste Isolation Pilot Plant gas generation experiment glovebox

    SciTech Connect

    Knight, C.J.; Russell, N.E.; Benjamin, W.W.; Rosenberg, K.E.; Michelbacher, J.A.

    1997-09-01

    The gas generation experiments (GGE) are being conducted at Argonne National Laboratory-West (ANL0W) with contact handled transuranic (CH-TRU) waste in support of the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The purpose of the GGE is to determine the different quantities and types of gases that would be produced and the gas-generation rates that would develop if brine were introduced to CH-TRU waste under post-closure WIPP disposal room conditions. The experiment requires that a prescribed matrix of CH-TRU waste be placed in a 7.5 liter test container. After loaded with the CH-TRU waste, brine and inoculum mixtures (consisting of salt and microbes indigenous to the Carlsbad, New Mexico region) are added to the waste. The test will run for an anticipated time period of three to five years. The test container itself is an ASME rated pressure vessel constructed from Hastelloy C276 to eliminate corrosion that might contaminate the experimental results. The test container is required to maintain a maximum 10% head space with a maximum working pressure of 17.25 MPa (2,500 psia). The test container is designed to provide a gas sample of the head space without the removal of brine. Assembly of the test container lid and process valves is performed inside an inert atmosphere glovebox. Glovebox mockup activities were utilized from the beginning of the design phase to ensure the test container and associated process valves were designed for remote handling. In addition, test container processes (including brine addition, sparging, leak detection, and test container pressurization) are conducted inside the glovebox.

  2. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A. Spangler, L.R.

    1995-12-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. The EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is unnecessary. A test program was conducted to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative.

  3. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  4. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  5. Spray nozzles reduce furnace emissions

    SciTech Connect

    Not Available

    1993-10-01

    When the US Environmental Protection Agency (EPA) told an Illinois wood pallet manufacturer to reduce emissions of heavy smoke from its twice-weekly incineration of old pallets, the company didn't find many options. The company applied spray nozzles to enhance the efficiency of the furnaces, and scrub the smoke and gas, removing toxins and particulates before they could reach the furnace chimney and be emitted into the atmosphere. Three types of spray nozzles were installed in the incinerator. Six UniJet air blow-off nozzles, fed by a compressed air line, were installed in the fire box. These nozzles target a flat spray of pressured air to intensify the heat of the fire. As a result, the pallets burn more efficiently and completely. Eight standard FullJet nozzles also were installed in the fire box. Since the smoke concentration is heaviest in this area, the nozzles provide the large drops and the heavy spray distribution needed to clean carbon particulates from the smoke.

  6. 30 CFR 202.556 - How do I determine the value of avoidably lost, wasted, or drained gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., wasted, or drained gas? 202.556 Section 202.556 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT ROYALTIES Gas Production From Indian Leases § 202.556 How... compensatory royalty is due, then you must determine the value of that volume of gas under 30 CFR part 206....

  7. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  8. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  9. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    PubMed

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  10. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    PubMed

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results. PMID:12423043

  11. Greenhouse gas emissions from waste management--assessment of quantification methods.

    PubMed

    Mohareb, Eugene A; MacLean, Heather L; Kennedy, Christopher A

    2011-05-01

    Of the many sources of urban greenhouse gas (GHG) emissions, solid waste is the only one for which management decisions are undertaken primarily by municipal governments themselves and is hence often the largest component of cities' corporate inventories. It is essential that decision-makers select an appropriate quantification methodology and have an appreciation of methodological strengths and shortcomings. This work compares four different waste emissions quantification methods, including Intergovernmental Panel on Climate Change (IPCC) 1996 guidelines, IPCC 2006 guidelines, U.S. Environmental Protection Agency (EPA) Waste Reduction Model (WARM), and the Federation of Canadian Municipalities-Partners for Climate Protection (FCM-PCP) quantification tool. Waste disposal data for the greater Toronto area (GTA) in 2005 are used for all methodologies; treatment options (including landfill, incineration, compost, and anaerobic digestion) are examined where available in methodologies. Landfill was shown to be the greatest source of GHG emissions, contributing more than three-quarters of total emissions associated with waste management. Results from the different landfill gas (LFG) quantification approaches ranged from an emissions source of 557 kt carbon dioxide equivalents (CO2e) (FCM-PCP) to a carbon sink of -53 kt CO2e (EPA WARM). Similar values were obtained between IPCC approaches. The IPCC 2006 method was found to be more appropriate for inventorying applications because it uses a waste-in-place (WIP) approach, rather than a methane commitment (MC) approach, despite perceived onerous data requirements for WIP. MC approaches were found to be useful from a planning standpoint; however, uncertainty associated with their projections of future parameter values limits their applicability for GHG inventorying. MC and WIP methods provided similar results in this case study; however, this is case specific because of similarity in assumptions of present and future landfill

  12. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  13. Greenhouse gas emissions from home composting of organic household waste

    SciTech Connect

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C.

    2010-12-15

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

  14. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  15. Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact.

    PubMed

    Papageorgiou, Asterios; Karagiannidis, Avraam; Barton, John R; Kalogirou, Efstratios

    2009-11-01

    Disposal of municipal solid waste in sanitary landfills is still the main waste management method in the Attica region, as in most regions of Greece. Nevertheless, diversion from landfilling is being promoted by regional plans, in which the perspectives of new waste treatment technologies are being evaluated. The present study aimed to assess the greenhouse gas (GHG) emissions impact of different municipal solid waste treatment technologies currently under assessment in the new regional plan for Attica. These technologies are mechanical-biological treatment, mass-burn incineration and mechanical treatment and have been assessed in the context of different scenarios. The present study utilized existing methodologies and emission factors for the quantification of GHG emissions from the waste management process and found that all technologies under assessment could provide GHG emission savings. However, the performance and ranking of these technologies is strongly dependent on the existence of end markets for the waste-derived fuels produced by the mechanical-biological treatment processes. In the absence of these markets the disposal of these fuels would be necessary and thus significant GHG savings would be lost. PMID:19837710

  16. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    PubMed

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  17. Regeneration of sodium wastes from flue gas desulfurization processes

    SciTech Connect

    Haynes, H.W. Jr.; Ukidwe, A.A.

    1995-12-31

    The damaging effects that sulfur dioxide emissions are having on the environment are well documented and acknowledged by most scientists, policy makers, and the public at large. These emissions stem primarily from electric utilities and industrial plants with relatively little contribution from the transportation sector. In order to prevent additional environmental damage, clean air legislation has been passed by Congress culminating in the Clean Air Act Amendments of 1990. Ultimately, this legislation will cut sulfur dioxide emissions in half from 1980 levels, and substantially reduce nitrogen oxides emissions from electric utility plants. This legislation should therefore result in a cleaner environment than we have today. Title IV of the Clean Air Act sets as its primary goal the reduction of annual SO{sub 2} emissions by 10 million tons below 1980 levels. Phase I of the program, which begins this year, will affect 110 utility plants in mostly Midwestern and eastern states. Phase II, which begins in the year 2000, tightens the annual emissions allowances on these large, higher emitting plants and also sets controls on smaller units with capacities of greater than 25 megawatts and on all new utility plants. It is estimated that 2,200 plants nationwide will be affected by Phase II. In many cases, Phase I compliance can be met by coupling allowance trading with the blending of low sulfur western coals and regional coals. But there will be other cases in which stack gas cleanup will be the economically most attractive option. Phase II compliance will require virtually all utilities to install some form of flue gas desulfurization equipment. Retrofitting will therefore become of increasing importance as Phase II is implemented.

  18. Landfill gas effects on groundwater samples at a municipal solid waste facility.

    PubMed

    Kerfoot, H B

    1994-11-01

    A study was performed to determine the source of low concentrations of volatile organic compounds (VOCs) detected in groundwater samples at a solid waste management facility. The affected wells were identified as hydraulically upgradient of an old unlined facility, but downgradient of a new clay-lined landfill. These monitoring wells are close to both sites. Subsurface landfill gas migration was identified after a low permeability cap was installed on the older site. Subsurface gas pressure was monitored to identify horizontal landfill gas migration. Monitoring well headspace gases were evaluated to identify depressed oxygen concentrations and methane because of landfill gas migration into the well. Monitoring well headspace gas VOC concentrations were compared to groundwater VOC concentrations to determine the direction of phase transfer. A ratio above 1.0 of the observed well headspace gas concentration of a VOC to the concentration that would be in equilibrium with the groundwater concentration indicates gas-to-water phase transfer within the well. For the major gas-phase and aqueous-phase VOC, cis-1,2-dichloroethene, gas-to-water phase transfer is clearly indicated from the data for two of the four wells. Fifteen other VOCs were detected in monitoring well headspace gases but not in groundwater samples from the four wells studied. Only one compound in one well was detected in the groundwater sample but not in the headspace gases, and only one compound in one well was detected in both matrices at concentrations that suggested water-to-gas phase transfer. This study suggests that if landfill gas is suspected as the source of detected VOCs, monitoring well construction and stratigraphy are important considerations when attempting to differentiate between groundwater contamination by landfill gas and contamination from other sources.

  19. Toward a Full Simulation of the Basic Oxygen Furnace: Deformation of the Bath Free Surface and Coupled Transfer Processes Associated with the Post-Combustion in the Gas Region

    NASA Astrophysics Data System (ADS)

    Doh, Y.; Chapelle, P.; Jardy, A.; Djambazov, G.; Pericleous, K.; Ghazal, G.; Gardin, P.

    2013-06-01

    The present article treats different phenomena taking place in a steelmaking converter through the development of two separate models. The first model describes the cavity produced at the free surface of the metal bath by the high-speed impinging oxygen jet. The model is based on a zonal approach, where gas compressibility effects are taken into account only in the high velocity jet region, while elsewhere the gas is treated as incompressible. The volume of fluid (VOF) method is employed to follow the deformation of the bath free surface. Calculations are presented for two- and three-phase systems and compared against experimental data obtained in a cold model experiment presented in the literature. The influence on the size and shape of the cavity of various parameters and models (including the jet inlet boundary conditions, the VOF advection scheme, and the turbulence model) is studied. Next, the model is used to simulate the interaction of a supersonic oxygen jet with the surface of a liquid steel bath in a pilot-scale converter. The second model concentrates on fluid flow, heat transfer, and the post-combustion reaction in the gas phase above the metal bath. The model uses the simple chemical reaction scheme approach to describe the transport of the chemical species and takes into account the consumption of oxygen by the bath and thermal radiative transfer. The model predictions are in reasonable agreement with measurements collected in a laboratory experiment and in a pilot-scale furnace.

  20. Room closure response to gas generation and mechanical strength of different waste forms in a bedded salt repository

    SciTech Connect

    Mendenhall, F.T.; Stone, C.M.

    1993-05-01

    Finite element calculations of the porosity history of a nuclear waste disposal room in a bedded salt formation have been completed. The analyses include an elastic/secondary creep model for the host halite and a nonlinear consolidation model for the crushed salt backfill. Separate gas generation and constitutive models were used for three distinct waste forms, (1) unaltered defense related CH-TRU waste, (2) shredded and cemented CH-TRU waste, and (3) incinerated and vitrified CH-TRU waste. Solutions were determined for a 2000 year time period starting from the decommissioning of the repository. The resulting room porosities varied from roughly 55% to less than 10%.

  1. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    PubMed

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill. PMID:27397800

  2. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    PubMed

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill.

  3. Suppression of formation of dioxins in combustion gas of municipal waste incinerators by spray water injection.

    PubMed

    Kubota, Eiji; Shigechi, Toru; Takemasa, Takehiro; Momoki, Satoru; Arizono, Koji

    2007-01-01

    Dioxins in the combustion gas of municipal solid waste incinerators (MSWIs) are resynthesized when the combustion gas passes from the outlet exaust gas boiler to the outlet gas duct. The objective of the study was to estimate if the suppression of the formation of dioxins depends on the inlet gas temperature and diameter and/or temperature of droplet spray water using an actual incinerator operation data. The dioxin formation and/or the quenching temperature is revealed using the Altwicker theory equation with the information of inlet gas temperature and droplet spray water. The evaporation rate of a spray water droplet also can be estimated using the Mizutani theory. The highest dioxin formation was found at 350 degrees C; thereafter, it decreased quickly. When an area of 500 microm for droplet-formed dioxins is defined as 100%, the values of formed dioxins for 400, 300, 200 and 100 microm droplet areas are estimated as 71, 41, 25 and 18%, respectively. It is revealed that the smaller size of droplet spray water and lower inlet gas temperature enable the decrease in dioxin formation. The decreased dioxin formation and/or the lower quenching temperature is revealed using the Altwicker theory equation with the information of inlet gas temperature and droplet spray water size.

  4. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials

    SciTech Connect

    Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

    2001-03-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs’ needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

  5. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  6. Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

    SciTech Connect

    Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.; Pohl, Phillip Isabio; Hughes, Robert Clark; Wang, Yifeng; McGrath, Lucas K.; Ho, Clifford Kuofei; Gao, Huizhen

    2004-09-01

    Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring

  7. Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces

    SciTech Connect

    Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu; Nakagome, Michiru; Kuze, Toshisuke; Imuta, Akira

    1997-12-31

    Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

  8. Waste-to-energy sector and the mitigation of greenhouse gas emissions

    SciTech Connect

    Fotis, S.C.; Sussman, D.

    1997-12-01

    The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in the United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.

  9. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  10. Plasma technology for waste treatment

    SciTech Connect

    Cohn, D.R.

    1995-04-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing ({approximately}10,000{degrees}C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300{degrees}C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams.

  11. Analysis of Induced Gas Released During Retrieval of Hanford Double-Shell Tank Waste

    SciTech Connect

    Wells, Beric E. ); Cuta, Judith M. ); Hartley, Stacey A. ); Mahoney, Lenna A. ); Meyer, Perry A. ); Stewart, Charles W. )

    2002-03-20

    Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105 and AW-101 to the vitrification plant beginning about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both of these operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernate decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated.

  12. Analysis of Induced Gas Releases During Retrieval of Hanford Double-Shell Tank Waste

    SciTech Connect

    Wells, Beric E. ); Cuta, Judith M. ); Hartley, Stacey A. ); Mahoney, Lenna A. ); Meyer, Perry A. ); Stewart, Charles W. )

    2002-09-25

    Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105, and AW-101 to the vitrification plant beginning about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both of these operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernatant decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated.

  13. Analysis of Induced Gas Releases During Retrieval of Hanford Double-Shell Tank Waste

    SciTech Connect

    Wells, Beric E.

    2003-02-19

    Checklist for Technical Peer Review for PNNL-13782 Rev. 1 as requested to ensure that software used to support the DSA is compliant with software QA requirements. Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105 and AW-101 and transferred to the vitrification plant beginning in about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to a level very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernatant decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated.

  14. GAS-GENERATION EXPERIMENTS FOR LONG-TERM STORAGE OF TRU WASTES AT WIPP

    SciTech Connect

    Felicione, F.S.; Carney, K.P.; Dwight, C.C.; Cummings, D.G.; Foulkrod, L.E.

    2003-02-27

    An experimental investigation was conducted for gas generation in contact-handled transuranic (CH-TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH-TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750-ml headspace was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure expected in the repository were it inundated. The temperature was maintained at the expected 30 C. The test program objective was to measure the quantities and species of gases generate d by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6-1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. One vessel measured over 4.2% hydrogen, by volume. Two other vessels generated well over 1% hydrogen, and another was at nearly 1%. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in tests containing carbon steel. Average corrosion penetration rates in carbon-steel of up to 2.3 microns per year were deduced. Conversion of

  15. Predicting Peak Hydrogen Concentrations from Spontaneous Gas Releases in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Hartley, Stacey A.; Meyer, Perry A.; Wells, Beric E.

    2005-07-15

    Buoyant displacement gas release events (BDGRE) are spontaneous gas releases that occur in a few of the Hanford radioactive waste storage tanks when gas accumulation makes the sediment layer buoyant with respect to the liquid. BDGREs are assumed to be likely if the ratio of the predicted sediment gas fraction and neutral buoyancy gas fraction, or buoyancy ratio, exceeds unity. Based on the observation that the buoyancy ratio is also an empirical indicator of BDGRE size, a new methodology is derived that formally correlates the buoyancy ratio and the peak headspace hydrogen concentration resulting from BDGREs. The available data on the six historic BDGRE tanks, AN-103, AN-104, AN-105, AW-101, SY-103, and SY-101, are studied in detail to describe both the waste state and the corresponding distribution of BDGREs. The range of applicability of the buoyancy ratio-based models is assessed based on the modeling assumptions and availability of tank data. Recommendations are given for extending the range of the models applicability.

  16. Hot waste-to-energy flue gas treatment using an integrated fluidised bed reactor.

    PubMed

    Bianchini, A; Pellegrini, M; Saccani, C

    2009-04-01

    This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forlì, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution.

  17. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  18. Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.

    PubMed

    Yi, Sora; Yang, Heewon; Lee, Seung Hoon; An, Kyoung-Jin

    2014-06-01

    A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons CO2 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m(3), and public water supplies of 0.067 kg CO2 eq./m(3). Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement.

  19. Partitioning gas tracer tests for measurement of water in municipal solid waste.

    PubMed

    Imhoff, Paul T; Jakubowitch, Andrew; Briening, Michele L; Chiu, Pei C

    2003-11-01

    A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper. PMID:14649759

  20. Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment.

    PubMed

    Kong, Dung; Shan, Jilei; Iacoboni, Mario; Maguin, Stephen R

    2012-08-01

    Efforts to divert organics away from landfills are viewed by many as an important measure to significantly reduce the climate change impacts of municipal solid waste management. However, the actual greenhouse gas (GHG) impacts of organics diversion from landfills have yet to be thoroughly evaluated and whether such a diversion provides significant environmental benefits in terms of GHG impacts must be answered. This study, using California-specific information, aimed to analyse the GHG impacts of organics diversion through a life-cycle assessment (LCA). This LCA considered all aspects of organics management including transportation, materials handling, GHG emissions, landfill gas capture/utilization, energy impacts, and carbon sequestration. The LCA study evaluated overall GHG impacts of landfilling, and alternative management options such as composting and anaerobic digestion for diverted organic waste. The LCA analysis resulted in net GHG reductions of 0.093, 0.048, 0.065 and 0.073 tonnes carbon equivalent per tonne organic waste for landfilling, windrow composting, aerated static pile composting, and anaerobic digestion, respectively. This study confirms that all three options for organics management result in net reductions of GHG emissions, but it also shows that organics landfilling, when well-managed, generates greater GHG reductions. The LCA provides scientific insight with regards to the environmental impacts of organics management options, which should be considered in decision and policy-making. The study also highlights the importance of how site and case-specific conditions influence project outcomes when considering organic waste management options.

  1. Removal and speciation of mercury compounds in flue gas from a waste incinerator.

    PubMed

    Hwang, In-Hee; Minoya, Hiroshi; Matsuo, Takayuki; Matsuto, Toshihiko; Tojo, Yasumasa

    2016-11-01

    The management and control of mercury emissions from waste incinerators have become more significant, because waste incinerators are sinks to treat mercury-containing consumer products. This study investigated the effects of mercury concentrations and waste incineration temperatures on mercury speciation using a lab-scale experimental instrument. The removal characteristics of different mercury species were also investigated using an apparatus to simulate the fabric filter with a thin layer of additives such as Ca(OH)2 and NaHCO3, activated carbon (AC), and fly ash. HgCl2 generation rates peaked at 800°C for initial Hg(0) concentrations of 0.08-3.61 mg/Nm(3) in the presence of 400 ppm HCl. A linear relationship was established between the generation rate of HgCl2 and the logarithmic value of initial mercury concentration. Fly ash proved highly efficient in mercury removal, being equal or superior to AC. On the other hand, Ca(OH)2 and NaHCO3 were shown to have no effects on mercury removal. In the dry-scrubbing process, alkali agent is often sprayed in amounts beyond those stoichiometrically required to aid acidic gas removal. The research suggests, however, that this may hinder mercury removal from the flue gas of solid waste incinerators. PMID:27031438

  2. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement...), 270.10(l), 270.32(b)(2), and 270.32(b)(3). (a) Trial burns—(1) General. Except as provided...

  3. MUZO flight experience with the programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Lockowandt, Christian; Loth, Kenneth

    1993-01-01

    The Multi-Zone (MUZO) furnace has been developed for growing germanium (Ge) crystals under microgravity in a Get Away Special (GAS) payload. The MUZO furnace was launched with STS-47 Endeavour in September 1992. The payload worked as planned during the flight and a Ge sample was successfully processed. The experiment has given valuable scientific information. The design and functionality of the payload together with flight experience is reported.

  4. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    SciTech Connect

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  5. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  6. The role of bioremediation in the treatment of gas industry wastes

    SciTech Connect

    Paterek, J.R.

    1993-12-31

    Bioremediation is a technology that integrates microbiology, ecology, chemistry, geology, and engineering in order to solve a major problem in today`s society, restoration of our environment This is not a collection of abstract disciplines, but a new and functional technology based on processes with a long, successful history, that is, biological waste treatment. Sewage and wastewater treatment, composting, and landfills are mature sources and starting points of this technology, but the complexity of manmade or man-released hazardous wastes in the heterogeneous matrices of contaminated water, soil, and sediment requires diligent research and development for successful application of bioremediation. The technology is being applied to various sites contaminated by organic and inorganic toxic compounds or elements, and these processes, techniques, and data can be tested and applied to the gas industry`s contaminated environments. An immediate opportunity for the application of this technology is manufactured town gas sites. Ongoing research into the remediation of polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and cyanides - which are common gas industry associated wastes - is leading to an awareness of limitations of biodegradation of these compounds and to possible technical and engineering paradigms required to overcome or minimize them. Future research in microbiology, ecology, and engineering of bioremediation should lead to effective remediation technologies for present and future challenges facing this industry.

  7. Copyrolysis of coal and waste plastics under coke-oven gas

    SciTech Connect

    Liao, H.; Li, B.; Zhang, B.

    1998-12-31

    A way for increasing oil and decreasing water (IODW) in copyrolysis of coal with coke-oven gas (COG) by adding waste plastics was suggested and the effects of pressure, heating rate and final temperature on the yields of char, oil and water obtained from copyrolysis of coal and waste plastics under COG were investigated in detail. Copyrolysis of Chinese Xianfeng lignite and waste plastics under COG were carried out in a 10g fixed-bed reactor under pressures of 0.1--3MPa, heating rate from 5--25 K/min and final temperatures of 723--923K. The results indicated that by adding 5% of high-density polyethylene (HDPE), the oil yield increased 4.5% (excluding the oil yield from HDPE pyrolysis) more than that of coal pyrolysis without HDPE, and water decreased about 2.2%. The yields of increased oil and decreased water accounted for 21.2% and 13% of Xianfeng lignite pyrolysis alone, respectively. With increasing pressure and final temperature, the total conversion, oil yields and water increased in varying degrees. Decreasing heating rate is beneficial to improve oil yield and reduce water. Adding waste plastics in copyrolysis of coal with COG not only improves the economic interest but also creates a way for high effective treatment of waste plastics.

  8. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    PubMed

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting.

  9. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    PubMed

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. PMID:26300422

  10. Ash melting treatment by rotating type surface melting furnace

    SciTech Connect

    Abe, Seiichi; Kambayashi, Fumiaki; Okada, Masaharu

    1996-12-31

    Results of melting treatment of fly ash from municipal solid waste incinerators are described, and safety and an effective use of slag discharged from the melting treatment are studied. The fly ash has an average particle size of 22 {micro}m and a melting fluidity point of 1280--1330 C and was able to be melted by using a Kubota melting furnace without any additives. Eighty-eight percent of the fly ash was turned to slag and 12% to dust, which contained a lot of heavy metals such as Pb and Zn. Dioxins in the supplied fly ash were 10 ng TEQ/g, originally, and 99.98% was decomposed by the melting treatment. Dioxin concentrations of slag, fly ash and flue gas from the melting treatment were 0.00, 0.00 and 0.25 ng TEQ/m{sup 3} N, respectively. A leaching test was conducted to confirm the safety of slag. Leaching level of heavy metals from slag was significantly lower than compared to those of bottom and fly ashes from municipal solid waste (MSW) incinerators. It was found that leaching is influenced by pH and the specific surface area of the materials. Furthermore, using slag as a ceramic material, slag was ground and burned at a relatively low temperature (900--1100 C) into a ceramic with strength equal to or more than that of general ceramic tiles.

  11. The physical properties and chemical composition of the gas within the free volume of canistered waste forms

    SciTech Connect

    Harbour, J.R.; Miller, T.J.; Whitaker, M.J.

    1990-11-01

    The DWPF must meet Waste Acceptance Preliminary Specifications (WAPS) for acceptance of the DWPF canistered waste forms. A number of these specifications deal with the exclusion of non-wasteglass (or foreign) materials within the canistered waste forms. Those material which are specifically excluded include the following: Free Liquids, Free Gases, other than cover or radiogenic gases, Explosives, Pyrophorics and Combustibles, and Organics. This report documents the results obtained by carrying out an assigned task as described in three task plans. The task plans cover the determination of pressure, gas composition and relative humidity of SRL canistered waste forms; and organic and inorganic analysis of volatilized and condensed species within SRL canistered waste forms. These results provide evidence to demonstrate compliance with these specifications and will be included in the Waste Form Qualification Report (WQR). In all, four canistered waste forms, produced during the Scale Glass Melter (SGM) campaigns, were examined. The internal gas pressure, dewpoint temperature and gas composition were determined for each canistered waste form. The experience gained in these experiments will be used to generate procedures for obtaining the same information on canistered waste forms produced during the Integrated Cold Runs (ICR). 10 refs., 2 figs., 1 tab.

  12. Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces

    SciTech Connect

    Arvind Atreya

    2007-02-16

    This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

  13. Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico

    SciTech Connect

    McVey, M.D.; Goering, T.J.; Peace, J.L.

    1996-02-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

  14. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  15. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    PubMed

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation.

  16. In situ Gas Measurements in Five Experimental Waste Rock Piles, Antamina Mine, Peru

    NASA Astrophysics Data System (ADS)

    Singurindy, O.; Blackmore, S. R.; Wild, A.; Mayer, K. U.; Beckie, R. D.; Smith, L.

    2009-12-01

    At the Antamina mine (Peru), a skarn deposit consisting of a quartz-monzonite porphyry hosted in limestone is mined for copper, zinc, lead, and molybdenum. Five (5) experimental waste rock piles were constructed at Antamina and instrumented to evaluate processes controlling metal release under neutral-pH drainage conditions. The piles were built over a 3-year period and each contains approximately 25,000 tonnes of waste rock classified as ‘slightly reactive’ (Pile 1 -2007), ‘reactive’ (Pile 2 and 3 - 2008), or a combination of rock of variable reactivity (Pile 4 and 5 - 2009). All waste rock, reactive to non-reactive, contains variable amounts of sulphide and carbonate minerals. Oxidation of sulphide minerals consumes O2 and generates low-pH conditions, which promotes carbonate dissolution and elevates CO2 concentrations. Sampling of the piles’ 64 in situ gas lines, using a portable gas analyzing system, revealed numerous CO2-enriched and O2-depleted zones. Piles constructed of the most reactive and fine-grained rock (Pile 2 and 3) show the highest CO¬2 concentrations (≥ 20,000 ppm), with Piles 1, 4 and 5 showing lower maximum concentrations of 1,600 ppm, 1,100 ppm, 2,900 ppm, respectively. The highest CO2 concentrations are located in the interior and near the bottom of the piles. Of the gas lines sampled from Pile 2 and 3, 88% and 95%, respectively are CO2-enriched (defined as > 2 x ambient values). The younger and less reactive piles (Pile 4 and 5) show CO2-enriched values in 3% and 17% of gas lines measured. The exothermic reaction of sulphide oxidation is also monitored by 12 in situ thermistors. Pile 2 and 3 temperatures are the highest at 9 - 10 oC. These temperatures are significantly warmer than ambient conditions (i.e., ~ 6 oC, June average) and correlate well with pockets of high CO2 concentrations. The gradational decline of CO2 concentrations with depth supports the notion that gas transport is dominated by vertical movement, while

  17. Blast furnace stove control

    SciTech Connect

    Muske, K.R.; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  18. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    NASA Astrophysics Data System (ADS)

    Wołkowycki, Grzegorz

    2016-03-01

    The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators' matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  19. [Removal of Waste Gas Containing Mixed Chlorinated Hydrocarbons by the Biotrickling Filter].

    PubMed

    Chen, Dong-zhi; Miao, Xiao-ping; Ouyang, Du-juan; Ye, Jie-xu; Chen, Jian-meng

    2015-09-01

    An experimental investigation on purification of waste gas contaminated with a mixture of dichloromethane (DCM) and dichloroethane(1,2-DCA) was conducted in a biotrickling filter (BTF) inoculated with activated sludge of pharmaceuticals industry. Stable removal efficiency(RE) above 80% for DCM and above 75% for 1,2-DCA were achieved after 35 days, indicating that biofilm was developed. The best elimination capacity (EC) of DCM and 1,2-DCA were 13 g.(m3.h)-1 and 10 g.(m3.h)-1 respectively. And there was a linear relationship between the production of CO2 and mixed gas EC, the maximum mineralization rate of mixed gas stabled at 61. 2%. The interaction test indicated that DCM and 1,2-DCA would inhibit with each other. The changing of biomass of BTF during the operation process was also been studied.

  20. [Removal of Waste Gas Containing Mixed Chlorinated Hydrocarbons by the Biotrickling Filter].

    PubMed

    Chen, Dong-zhi; Miao, Xiao-ping; Ouyang, Du-juan; Ye, Jie-xu; Chen, Jian-meng

    2015-09-01

    An experimental investigation on purification of waste gas contaminated with a mixture of dichloromethane (DCM) and dichloroethane(1,2-DCA) was conducted in a biotrickling filter (BTF) inoculated with activated sludge of pharmaceuticals industry. Stable removal efficiency(RE) above 80% for DCM and above 75% for 1,2-DCA were achieved after 35 days, indicating that biofilm was developed. The best elimination capacity (EC) of DCM and 1,2-DCA were 13 g.(m3.h)-1 and 10 g.(m3.h)-1 respectively. And there was a linear relationship between the production of CO2 and mixed gas EC, the maximum mineralization rate of mixed gas stabled at 61. 2%. The interaction test indicated that DCM and 1,2-DCA would inhibit with each other. The changing of biomass of BTF during the operation process was also been studied. PMID:26717675

  1. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  2. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  3. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  4. Application of AI techniques to blast furnace operations

    SciTech Connect

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  5. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  6. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results.

  7. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. PMID:26951719

  8. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  9. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  10. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    SciTech Connect

    Scheutz, Charlotte; Fredenslund, Anders M.; Nedenskov, Jonas; Samuelsson, Jerker

    2011-05-15

    AV Miljo is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH{sub 4}) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH{sub 4} (70%) and carbon dioxide (CO{sub 2}) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH{sub 4} (27%) and nitrogen (N{sub 2}) (71%), containing no CO{sub 2}. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH{sub 4} mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH{sub 4} generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH{sub 4} emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH{sub 4} emission from the disposal site was found to be 820 {+-} 202 kg CH{sub 4} d

  11. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  12. Developments in odour control and waste gas treatment biotechnology: a review.

    PubMed

    Burgess, J E; Parsons, S A; Stuetz, R M

    2001-02-01

    Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as scrubbing, adsorption, condensation, and oxidation, however, biological treatment of waste gases has gained support as an effective and economical option in the past few decades. One emergent technique for biological waste gas treatment is the use of existing activated sludge plants as bioscrubbers, thus treating the foul air generated by other process units of the wastewater treatment system on site, with no requirement for additional units or for interruption of wastewater treatment. Limited data are available regarding the performance of activated sludge diffusion of odorous air in spite of numerous positive reports from full-scale applications in North America. This review argues that the information available is insufficient for precise process design and optimization, and simultaneous activated sludge treatment of wastewater and airborne odours could be adopted worldwide.

  13. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis. PMID:26709050

  14. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    PubMed

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  15. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.

  16. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  17. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  18. DEMONSTRATION BULLETIN: THE PLASMA CENTRIFUGAL FURNACE RETECH, INC.

    EPA Science Inventory

    The plasma centrifugal furnace is a thermal technology which uses the heat generated from a plasma torch to decontaminate metal and organic contaminated waste. This is accomplished by melting metal-bearing solids and, in the process, thermally destroying organic contaminants. The...

  19. Mathematical model and software for control of commissioning blast furnace

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  20. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  1. A pressurized drop-tube furnace for coal reactivity studies

    NASA Astrophysics Data System (ADS)

    Ouyang, Shan; Yeasmin, Hasina; Mathews, Joseph

    1998-08-01

    The design and characterization of a pressurized drop-tube furnace for investigation of coal devolatilization, gasification, and combustion are presented. The furnace is designed for high-temperature, isothermal operation in a developing laminar flow regime. It can be operated at pressures up to 1600 kPa, and temperatures up to 1673 K, with variable reaction time, particle feeding rate, and with inert and various oxidizing atmospheres. Particle residence times can be varied between ˜0.02 and ˜10 s depending upon operating conditions and positions of injection and sampling probes. Observations ports are available for sample collections and for optical investigation of the reactions or temperature measurements. Characterization of gas temperature in the furnace shows that, although the gas temperature profile in the furnace is affected by the water-cooled injection probe, the furnace is able to achieve isothermal operation in a developing laminar flow regime. Results from a series of brown coal devolatilization tests demonstrated the suitability of the furnace for experiments in coal research.

  2. Partial reline of Inland`s No. 7 blast furnace

    SciTech Connect

    Lowrance, K.F. II; Johansson, J.; Carter, W.L.

    1995-10-01

    The background for the decision to partially reline No. 7 blast furnace that would achieve the same results as a complete reline is discussed. This approach was designed to reduce actual downtime on the furnace at a critical production period. Areas of work included the hearth, stack, stoves, gas cleaning and furnace top. Highlights of the project execution were: schedules; blowdown; salamander tap; quench; dig out/descale; scaffolding used; and brick installation. The furnace was blown-in 29 days after the blowdown and producing in excess of 9,000 tons/day after 12 days of operation. Inland has adopted a new definition for establishing campaign life based on refractory wear that includes a hearth monitoring system.

  3. Inland Steel's No. 7 blast furnace third reline

    SciTech Connect

    Lowrance, K.F. II ); Johansson, J.; Carter, W.L. )

    1994-09-01

    The background information, investigation and benchmarking that led to a decision by Inland Steel to partially reline No. 7 blast furnace is covered. This approach reduced actual downtime on the furnace and extended the current campaign. This alternative allowed for the rebalancing of the physical plant of No. 7 blast furnace. Areas of scope covered are hearth, stack, stoves, gas cleaning and furnace top. Included are highlights of the execution of the project including schedules, blowdown, salamander tap, quench, dig out/descale, scaffolding used and brick installation. A summary of the actual results of the work is presented along with information on production planned, blow-in and the first 20 days of production.

  4. Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace

    SciTech Connect

    Lewis, F.M.

    1983-07-05

    The present invention relates to a method for efficiently incinerating waste material, particularly dewatered sludge, in a multiple hearth furnace by controlling the temperature of the individual hearths of the furnace within certain prescribed limits by modulating the amount of combustion air, and controlling the temperature of the afterburner or combustion hearths to within certain prescribed limits by splitting the feed sludge between the first two upper waste material handling hearths.

  5. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  6. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    NASA Astrophysics Data System (ADS)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  7. Equipment design guidance document for flammable gas waste storage tank new equipment

    SciTech Connect

    Smet, D.B.

    1996-04-11

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

  8. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  9. Physiologically available cyanide (PAC) in manufactured gas plant waste and soil samples

    SciTech Connect

    Magee, B.; Taft, A.; Ratliff, W.; Kelley, J.; Sullivan, J.; Pancorbo, O.

    1995-12-31

    Iron-complexed cyanide compounds, such as ferri-ferrocyanide (Prussian Blue), are wastes associated with former manufactured gas plant (MGP) facilities. When tested for total cyanide, these wastes often show a high total cyanide content. Because simple cyanide salts are acutely toxic, cyanide compounds can be the subject of concern. However, Prussian Blue and related species are known to have a low order of human and animal toxicity. Toxicology data on complexed cyanides will be presented. Another issue regarding Prussian Blue and related species is that the total cyanide method does not accurately represent the amount of free cyanide released from these cyanide species. The method involves boiling the sample in an acidic solution under vacuum to force the formation of HCN gas. Thus, Prussian Blue, which is known to be low in toxicity, cannot be properly evaluated with current methods. The Massachusetts Natural Gas Council initiated a program with the Massachusetts Department of Environmental Protection to develop a method that would define the amount of cyanide that is able to be converted into hydrogen cyanide under the pH conditions of the stomach. It is demonstrated that less than 1% of the cyanide present in Prussian Blue samples and soils from MGP sites can be converted to HCN under the conditions of the human stomach. The physiologically available cyanide method has been designed to be executed at a higher temperature for one hour. It is shown that physiologically available cyanide in MGP samples is < 5--15% of total cyanide.

  10. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  11. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOEpatents

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  12. Support and control system of the Waste Isolation Pilot Plant gas generation experiment glovebox

    SciTech Connect

    Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.; Rosenberg, K.E.

    1997-09-01

    A glovebox was designed and fabricated to house test containers loaded with contact handled transuranic (CH-TRU) waste. The test containers were designed to simulate the environmental characteristics of the caverns at the Waste Isolation Pilot Plant (WIPP). The support and control systems used to operate and maintain the Gas Generation Experiment (GGE) include the following: glovebox atmosphere and pressure control, test container support, glovebox operation support, and gas supply and exhaust systems. The glovebox atmosphere and pressure control systems consist of various components used to control both the pressure and quality of the argon atmosphere inside the glovebox. The glovebox pressure is maintained by three separate pressure control systems. The primary pressure control system is designed to maintain the glovebox at a negative pressure with the other two control systems serving as redundant safety backups. The quality of the argon atmosphere is controlled using a purifying bed system that removes oxygen and moisture. Glovebox atmosphere contaminants that are monitored on a continuous or periodic basis include moisture, oxygen, and nitrogen. The gas generation experiment requires the test containers to be filled with brine, leak tested, maintained at a constant temperature, and the gas head space of the test container sampled on a periodic basis. Test container support systems consisting of a brine addition system, leak test system, heating system, and gas sampling system were designed and implemented. A rupture disk system was constructed to provide pressure relief to the test containers. Operational requirements stipulated that test container temperature and pressure be monitored and collected on a continuous basis. A data acquisition system (DAS) was specifically designed to meet these requirements.

  13. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.

    PubMed

    Chang, Cheng-Yuan; Wang, Chu-Fang; Mui, D T; Cheng, Man-Ting; Chiang, Hung-Lung

    2009-06-15

    Incineration, one of the most effective methods used to treat solid wastes, reduces the volume of solid wastes significantly and enables recovery of thermal energy. However, during this waste treatment, a small amount of heavy metals can be present in the form of fly ash or vapor in the flue gas, becoming a threat to human health and other living organisms once emitted into the environment. This study focuses on the characteristics and behavior of elements contained in the combustion residues and their impact on various wastes at Taiwan's municipal solid waste incinerator (MSWI). Three kinds of waste, municipal solid waste (MSW), industrial waste (IW), and biomass waste (BM), were analyzed to obtain their physical properties and elemental composition before incineration. The combustion residues were collected with a sampler at various locations such as the furnace bottom, a heat economizer, a semi-dry scrubber, a bag-house filter and a gas stack. Twenty-one elements were determined to establish the actual mass fraction and to estimate the possible impact on the environment. Owing to its volatility, Cd was found in high concentrations in bag-house filter ash. In addition, the mass fraction of Zn, As, Pb, Sb and V in bag-house filter ash was found greater than 20% for the three kinds of wastes. Iron (Fe) content was found to be high in MSW, S, Cd, Ni, Pb and Sb content were high in IW and Se content was high in BW. PMID:19046804

  14. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.

    PubMed

    Chang, Cheng-Yuan; Wang, Chu-Fang; Mui, D T; Cheng, Man-Ting; Chiang, Hung-Lung

    2009-06-15

    Incineration, one of the most effective methods used to treat solid wastes, reduces the volume of solid wastes significantly and enables recovery of thermal energy. However, during this waste treatment, a small amount of heavy metals can be present in the form of fly ash or vapor in the flue gas, becoming a threat to human health and other living organisms once emitted into the environment. This study focuses on the characteristics and behavior of elements contained in the combustion residues and their impact on various wastes at Taiwan's municipal solid waste incinerator (MSWI). Three kinds of waste, municipal solid waste (MSW), industrial waste (IW), and biomass waste (BM), were analyzed to obtain their physical properties and elemental composition before incineration. The combustion residues were collected with a sampler at various locations such as the furnace bottom, a heat economizer, a semi-dry scrubber, a bag-house filter and a gas stack. Twenty-one elements were determined to establish the actual mass fraction and to estimate the possible impact on the environment. Owing to its volatility, Cd was found in high concentrations in bag-house filter ash. In addition, the mass fraction of Zn, As, Pb, Sb and V in bag-house filter ash was found greater than 20% for the three kinds of wastes. Iron (Fe) content was found to be high in MSW, S, Cd, Ni, Pb and Sb content were high in IW and Se content was high in BW.

  15. Multi-zone furnace system

    SciTech Connect

    Orbeck, G.A.

    1986-05-06

    A multi-zone furnace is described which consists of: a furnace chamber having at least one heat zone and at least one zone adjacent to the heat zone and disposed along the length of the furnace chamber; the heat zone having a hearth at a level different from the hearth level of the adjacent zone; a walking beam conveyor disposed in the furnace chamber and operative in a short stroke mode to convey a product along the hearth of the heat zone, and in a long stroke mode to convey a product from the heat zone to the adjacent zone.

  16. Mechanisms of gas generation from simulated SY tank farm wastes: FY 1995 progress report

    SciTech Connect

    Barefield, E.K.; Boatright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1996-07-01

    The objective of this work is to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants such as HEDTA and sodium glycolate in simulated SY tank farm waste mixtures. This report summarizes the results of work done at the Georgia Institute of Technology in fiscal year 1995. Topics discussed are (1) long-term studies of the decomposition of HEDTA in simulated waste mixtures under an argon atmosphere at 90 and 120{degrees}C, including time profiles for disappearance of HEDTA and appearance of products and the quantitative analysis of the kinetic behavior; (2) considerations of hydroxylamine as an intermediate in the production of nitrogen containing gases by HEDTA decomposition; (3) some thoughts on the revision of the global mechanism for thermal decomposition of HEDTA under argon; (4) preliminary long-term studies of the decomposition of HEDTA in simulated waste under an oxygen atmosphere at 120{degrees}C; (5) estimation of the amount of NH{sub 3} in the gas phase above HEDTA reaction mixtures; and (6) further, examination of the interaction of aluminum with nitrite ion using {sup 27}Al NMR spectroscopy. Section 2 of this report describes the work conducted over the last three years at GIT. Section 3 contains a discussion of the kinetic behavior of HEDTA under argon; Section 4 discusses the role of hydroxylamine. Thermal decomposition of HEDTA to ED3A is the subject of Section 5, and decomposition of HEDTA in simulated waste mixtures under oxygen is covered in Section 6. In Section 7 we estimate ammonia in the gas phase; the role of aluminum is discussed in Section 8.

  17. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2015-11-01

    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential.

  18. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2015-11-01

    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential. PMID:26444147

  19. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  20. Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992

    SciTech Connect

    Helton, J.C.; Bean, J.E.; Butcher, B.M.; Garner, J.W.; Vaughn, P.; Schreiber, J.D.; Swift, P.N.

    1993-08-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability.

  1. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  2. Exothermic furnace module

    NASA Technical Reports Server (NTRS)

    Poorman, R. M. (Inventor)

    1982-01-01

    An exothermic furnace module is disclosed for processing materials in space which includes an insulated casing and a sample support, carried within the casing which supports a sample container. An exothermic heat source includes a plurality of segments of exothermic material stacked one upon another to produce a desired temperature profile when ignited. The exothermic material segments are constructed in the form of an annular element having a recess opening which defines an open central core throughout the vertical axis of the stacked exothermic material. The sample container is arranged within the core of the stacked exothermic heating material.

  3. Radiantly heated furnace

    SciTech Connect

    Pargeter, J.K.

    1987-06-30

    This patent describes a travelling hearth furnace comprising at least one impermeable hearth member adapted to travel generally horizontally along a path from a first locus to a second locus, means to cause the hearth member to travel along the path. Means directs radiant hat toward the upper surface of the hearth member. Means at the first locus positions a thin layer of objects on the upper surface of the hearth member. Means at the second locus removes objects from the hearth member. Means, positioned intermediate the first locus and the second locus, positions additional objects on the thin layer of objects on the upper surface of the hearth member.

  4. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  5. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    SciTech Connect

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  6. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  7. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  8. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    PubMed

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  9. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models;  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36

  10. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  11. Investigation of the effects of beam scattering and beam wandering on laser beams passing thorough the off-gas duct of an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Alikhanzadeh, Amirhossein

    The project sets to determine the effects of scattering and beam wandering on light that passes through the off-gas of EAF. The effects of light scattering from metallic dust and beam wandering due to temperature gradient and turbulence in the medium are investigated. Using Matlab, a model was developed based on Mie theory to calculate light transmission when the optical properties are known; most importantly refractive index of the dust as well as incident wavelength, particle size and concentration of the particles per cm 3 of the gas. The model was validated and was used to show that as the particle size parameter increases, the scattering losses decreases. Turbulence and temperature gradients in the air cause the laser beam to change shape. Using a big collection lens can minimize the signal fluctuation caused by the beam wandering. A thorough understanding of these phenomena helps in designing optical sensors in the industry.

  12. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  13. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  14. Greenhouse gas emissions from two-stage landfilling of municipal solid waste

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Yue, Dongbei; Nie, Yongfeng

    2012-08-01

    Simulations were conducted to investigate greenhouse gas emissions from aerobic pretreatment and subsequent landfilling. The flows in carbon balance, such as gas, leachate, and solid phases, were considered in the simulations. The total amount of CO2 eq. decreased as organic removal efficiency (ORE) increased. At ORE values of 0, 0.30, 0.41, and 0.54, the total amounts of CO2 eq. were 2614, 2326, 2075, and 1572 kg CO2 eq. per one ton dry matter, respectively; gas accounted for the main contribution to the total amount. The reduction in CO2 eq. from leachate was the primary positive contribution, accounting for 356%, 174%, and 100% of total reduction at ORE values of 0.30, 0.41, and 0.54, respectively. The CO2 eq. from energy consumption was the negative contribution to total reduction, but this contribution is considerably lower than that from gas. Aerobic pretreatment shortened the lag time of biogas production by 74.1-97.0%, and facilitated the transfer of organic carbon in solid waste from uncontrolled biogas and highly polluting leachate to aerobically generated CO2.

  15. Summary of 1988 WIPP (Waste Isolation Pilot Plant) Facility horizon gas flow measurements

    SciTech Connect

    Stormont, J.C.

    1990-11-01

    Numerous gas flow measurements have been made at the Waste Isolation Pilot Plant (WIPP) Facility horizon during 1988. All tests have been pressure decay or constant pressure tests from single boreholes drilled from the underground excavations. The test fluid has been nitrogen. The data have been interpreted as permeabilities and porosities by means of a transient numerical solution method. A closed-form steady-state approximation provides a reasonable order-of-magnitude permeability estimate. The effective resolution of the measurement system is less than 10{sup {minus}20} m{sup 2}. Results indicate that beyond 1 to 5 m from an excavation, the gas flow is very small and the corresponding permeability is below the system resolution. Within the first meter of an excavation, the interpreted permeabilities can be 5 orders of magnitude greater than the undisturbed or far-field permeability. The interpreted permeabilities in the region between the undisturbed region and the first meter from an excavation are in the range of 10{sup {minus}16} to 10{sup {minus}20} m{sup 2}. Measurable gas flow occurs to a greater depth into the roof above WIPP excavations of different sizes and ages than into the ribs and floor. The gas flows into the formation surrounding the smallest excavation tested are consistently lower than those at similar locations surrounding larger excavations of comparable age. Gas flow measured in the interbed layers near the WIPP excavations is highly variable. Generally, immediately above and below excavations, relatively large gas flow is measured in the interbed layers. These results are consistent with previous measurements and indicate a limited disturbed zone surrounding WIPP excavations. 31 refs., 99 figs., 5 tabs.

  16. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty. PMID:26241377

  17. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  18. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  19. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOEpatents

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  20. Effect of waste anesthetic gas and vapor exposure on reproductive outcome in veterinary personnel

    SciTech Connect

    Johnson, J.A.

    1986-01-01

    This study was designed to investigate potential adverse reproductive outcome in veterinary personnel who are exposed to waste anesthetic gas and vapor at levels near the NIOSH recommended standards. Subjects for this case-control study of births with congenital abnormalities and spontaneous abortion, selected from the American Veterinary Medical Association roster, were contacted by mail and asked to complete a screening questionnaire regarding reproductive history. Crude prevalence rates for spontaneous abortion, births with congenital abnormalities and stillbirths, determined on the basis of the responses to the screening questionnaire, showed no excess rates when compared with national statistics. All pregnancies resulting in spontaneous abortion, stillbirth, or birth with congenital abnormality were selected as cases. Controls were selected from the reported normal births on a stratified random basis to match maternal age and pregnancy number for cases. Occupational exposure to waste anesthetic gas and vapor in general was not found to be significantly associated with adverse reproductive outcome when adjustment was made for radiation exposure. For nitrous oxide exposure, however, an odds ratio significantly greater than one was found for spontaneous abortion among female veterinary assistants and wives of exposed male veterinarians. Use of diagnostic x-rays in veterinary practice was associated with spontaneous abortion in exposed females with a statistically significant dose response effect observed in female veterinarians.

  1. The existence of a biological equilibrium in a trickling filter for waste gas purification

    SciTech Connect

    Diks, R.M.M.; Ottengraf, S.P.P.; Vrijland, S. . Dept. of Chemical Process Engineering)

    1994-12-01

    Clogging is a well-known phenomenon in the application of a biological trickling filter for both waste gas and wastewater treatment. Nevertheless, no such observations or even significant changes in pressure drop have ever been recorded during the long-term processing of a waste gas containing dichloromethane (DCM) as a sole carbon source. To obtain more information about this phenomenon, a detailed investigation into the carbon balance of this system has been performed. During a period of operation of about 200 days the rate of DCM elimination and the overall rate of CO[sub 2] production in a continuously operating filter were therefore recorded daily, thus allowing an evaluation of the overall conversion process. Furthermore pseudo-steady-state measurements were carried out on a regular basis. These experiments reveal more detailed information on the actual DCM conversion by Hyphomicrobium GJ21 within the biofilm. The combined results of the experiments described in this article show that on an overall basis a so-called biological equilibrium, i.e., a situation of no net biomass accumulation, is obtained in the course of time. It appeared that the overall rate of CO[sub 2] production slowly increased until, after some 200 days, it finally counter-balanced the conversion rate of DCM on a molar basis. As opposed to this result, all pseudo-steady-state experiments indicated that about 60% of the eliminated primary carbon source is converted into biomass.

  2. Investigation of Flammable Gas Releases from High Level Waste Tanks during Periodic Mixing

    SciTech Connect

    Swingle, R.F.

    1999-01-07

    The Savannah River Site processes high-level radioactive waste through precipitation by the addition of sodium tetraphenylborate in a large (approximately 1.3 million gallon) High Level Waste Tank. Radiolysis of water produces a significant amount of hydrogen gas in this slurry. During quiescent periods the tetraphenylborate slurry retains large amounts of hydrogen as dissolved gas and small bubbles. When mixing pumps start, large amounts of hydrogen release due to agitation of the slurry. Flammability concerns necessitate an understanding of the hydrogen retention mechanism in the slurry and a model of how the hydrogen releases from the slurry during pump operation. Hydrogen concentration data collected from the slurry tank confirmed this behavior in the full-scale system. These measurements also provide mass transfer results for the hydrogen release during operation. The authors compared these data to an existing literature model for mass transfer in small, agitated reactors and developed factors to scale this existing model to the 1.3 million gallon tanks in use at the Savannah River Site. The information provides guidance for facility operations.

  3. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions

    NASA Astrophysics Data System (ADS)

    Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B.

    2016-02-01

    Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US (ref. ). The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill--open and actively receiving waste or closed--was the most significant predictor of collection system performance. Gas collection systems at closed landfills were statistically significantly more efficient (p < 0.001) and on average 17 percentage points more efficient than those at open landfills, but open landfills were found to represent 91% of all landfill methane emissions. These results demonstrate the clear need to target open landfills to achieve significant near-term methane emission reductions. This observation is underscored by landfill disposal rates in the US significantly exceeding previously reported national estimates, with this study reporting 262 million tonnes in the year 2012 compared with 122 million tonnes in 2012 as estimated by the US Environmental Protection Agency.

  4. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    PubMed

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  5. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L. ); Johnson, B.M.; Lemon, D.K.; Strachan, D.M. )

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  6. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    PubMed

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. PMID:24018116

  7. Preliminary results from screening tests of commercial catalysts with potential use in gas turbine combustors. I - Furnace studies of catalyst activity

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Thirty commercially produced monolith and pellet catalysts were tested as part of a screening process to select catalysts suitable for use in a gas turbine combustor. The catalysts were contained in a 1.8 centimeter diameter quartz tube and heated to temperatures varying between 300 and 1200 K while a mixture of propane and air passed through the bed at space velocities of 44,000 to 70,000 per hour. The amount of propane oxidized was measured as a function of catalyst temperature. Of the samples tested, the most effective catalysts proved to be noble metal catalysts on monolith substrates.

  8. Preliminary results from screening tests of commercial catalysts with potential use in gas turbine combustors. Part 1: Furnace studies of catalyst activity

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Thirty commercially produced monolith and pellet catalysts were tested as part of a screening process to select catalysts suitable for use in a gas turbine combustor. The catalysts were contained in a 1.8 centimeter diameter quartz tube and heated to temperatures varying between 300 and 1,200 K while a mixture of propane and air passed through the bed at space velocities of 44,000 to 70,000/hour. The amount of propane oxidized was measured as a function of catalyst temperature. Of the samples tested, the most effective catalysts proved to be noble metal catalysts on monolith substrates.

  9. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.

    PubMed

    Babel, Sandhya; Vilaysouk, Xaysackda

    2016-01-01

    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill.

  10. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.

    PubMed

    Babel, Sandhya; Vilaysouk, Xaysackda

    2016-01-01

    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. PMID:26608899

  11. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  12. Mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2014-03-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  13. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  14. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  15. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  16. Laboratory Evaluation of Residential Furnace BlowerPerformance

    SciTech Connect

    Walker, Iain S.; Lutz, Jim D.

    2005-09-01

    A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

  17. Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption

    SciTech Connect

    Redondas, V.; Gomez, X.; Garcia, S.; Pevida, C.; Rubiera, F.; Moran, A.; Pis, J.J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H

  18. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect

    Yang Na; Zhang Hua; Chen Miao; Shao Liming; He Pinjing

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  19. Heat treatment of nuclear reactor pump part in integrated furnace facility

    SciTech Connect

    Not Available

    1983-08-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators.

  20. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating

  1. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    PubMed

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe.

  2. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    PubMed

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. PMID:24846797

  3. A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes

    SciTech Connect

    Kasten, J.L.

    1991-01-01

    The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

  4. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  5. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  6. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  7. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  8. Apparatus for recovering energy and useful products from plantain wastes

    SciTech Connect

    Quame, B.A.

    1983-08-16

    Energy and useful products are recovered from plantain wastes in a self-contained waste treatment plant wherein the raw material waste is charged into a boiler where the same is combusted to produce flue gases containing several organic compounds and dry ash containing residue mineral salts. The flue gas heats water in a water reservoir to generate steam which drives a turbine generator to produce electricity, the flue gas then being collected and at least partially condensed to form a pyroligneous acid solution from which alcohols and the like can be recovered. The dry ash containing residue mineral salt is mixed with other minerals or reagents with the resulting mass being supplied into continuously stirred fusion furnace situated within the boiler to which heat is supplied by the flue gas to produce commercially useful products, such as zeolites, dolomite or other related products.

  9. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  10. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.

    PubMed

    Ayalon, O; Avnimelech, Y; Shechter, M

    2001-05-01

    The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.

  11. Utilization of the waste heat of a steel work

    NASA Astrophysics Data System (ADS)

    Kaier, U.; Breymayer, W.

    1982-08-01

    The use of waste heat of a Siemens-Martin furnace for the production of high pressure steam for a brewery and for a domestic heating network was evaluated. A review of the different possible uses of the high pressure steam, e.g., for heating, for electricity generating, or for cooling, and the actual cost of electricity and fuel and of the domestic heating cost of the already existing network, was made. Cost of the production of steam is calculated, and due to the possible breakdown or maintenance stopping of the Siemens-Martin furnace, cost of the equipment of the boiler with oil or gas burners was evaluated. It is proved that the economical justification for the use of this waste heat doesn't exist.

  12. Marble-type glass based on blast furnace slag

    SciTech Connect

    Sarkisov, P.D.; Smirnov, V.G.; Trifonova, T.E.; Sergeev, Yu.N.

    1987-01-01

    This paper discusses the recovery and use of blast furnace wastes as coloring agents in the manufacture of imitation marble glass. The slags consist of a series of metal oxides each of which is tested for the color it generates when reacted and annealed with the molten glass. Comparative tests were also run against non-waste coloring agents and it was found that the waste-derived colorants were equal or superior both in process behavior and in generating the appropriate optical properties in the finished glass.

  13. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  14. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3). PMID:24729565

  15. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3).

  16. Characterization of gas produced by the anaerobic digestion of municipal solid waste

    SciTech Connect

    Gerrish, H.P.; Daly, E.L.; Lascarro, J.F.; Nemerow, N.; Sengupta, S.; Wong, K.F.

    1980-12-01

    A large-scale proof-of-concept facility has been constructed in Pompano, Florida, to evaluate the feasibility of producing methane-rich gas from the anaerobic digestion of municipal solid waste. The University of Miami together with the AMES Research Laboratory are participating in the environmental source assessment of that technology. The ultimate goal is to determine if the products are environmentally acceptable or are of less environmental consequence (with or without controls) than if generated in an unprocessed landfill. This paper describes the gas analysis procedure and the gas composition as determined to date for unstable, lower mesophilic (30/sup 0/-40/sup 0/C) digester conditions and with the plant operating at only 15% of its design capacity. It is observed that the composition of the biogas from the large-scale facility is quite similar, with the possible exception of H/sub 2/S and NH/sub 3/, to that produced by small-scale digesters and in landfills. The CH/sub 4/ and CO/sub 2/ levels varied significantly about mean values of 55% and 45% respectively. At this stage of the evaluation, it appears that the potential environmental concern might be from the odorous components of the biogas.

  17. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

  18. A dynamic simulation of a lead blast furnace

    NASA Astrophysics Data System (ADS)

    Chao, John T.

    1981-06-01

    A dynamic model has been developed to simulate the operation of the stack zone of a lead blast furnace. The mathematical formulation of the governing equations of change leads to a system of 2nd order partial differential equations, which is solved by finite difference methods. A reduction model of ash-layer diffusion controlled mechanism, which allows the stepwise reduction to the lowest oxide or metal thermodynamically possible for the local gas composition within the sinter, is employed in this model. The surface reaction and the internal diffusion in the porous solid particles are taken into account in the coke gasification reaction. The profiles of the temperatures of gases and solids, solid compositions, and gas compositions and pressure in both radial and axial directions are predicted by the model. The results provide a good representation of the experimental data obtained for the blast furnace at Brunswick Mining and Smelting Corp., Ltd., New Brunswick, Canada and also of the less extensive data available for the Cominco blast furnace at Trail, British Columbia, Canada. In addition to the modelling of the stack, a mass and energy balance for the bosh zone is also included in the present calculation. The improvement of coke efficiency due to oxygen enrichment in the blast air for the Brunswick Furnace were interpreted semiquantitatively. The effect of sinter size distribution on the furnace performance has also been studied.

  19. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses.

    PubMed

    Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste

  20. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste

  1. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste

  2. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 3. Final report

    SciTech Connect

    1996-05-01

    Testing of an atmospheric circulating bed pyrolyzer was done at Southern Illinois University. A variety of experiments have been conducted in a laboratory scale pyrolyzer with coal input flow rates from 2 to 6 lb/h. three feed coal particle sizes, corresponding to a nominal -40 mesh, -30 mesh and -18 mesh were used. The limestone used in the tests was a Genstar limestone. Parameters investigated in the tests include the influence of superficial velocity, temperature and coal-air mass ratios. Char particle size distributions under various test conditions have been measured and the char composition determined. Fuel gas composition, yields and heating values have been investigated. Char morphology has been studied using scanning electron microscopy. Char reactivity for selected samples has been measures, and the influence of feed coal size, bed temperature and superficial velocity has been determined. Material balance calculations have been performed and found to be in very good agreement. Energy audit calculations for the process have been made to investigate the flow of energy and to estimate the losses during the process. Full details of the data, results obtained and conclusions drawn are presented.

  3. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 4. Final report

    SciTech Connect

    1996-05-01

    An outgrowth of our studies of the FWDC coal-fired high performance power systems (HIPPS) concept was the development of a concept for the repowering of existing boilers. The initial analysis of this concept indicates that it will be both technically and economically viable. A unique feature of our greenfields HIPPS concept is that it integrates the operation of a pressurized pyrolyzer and a pulverized fuel-fired boiler/air heater. Once this type of operation is achieved, there are a few different applications of this core technology. Two greenfields plant options are the base case plant and a plant where ceramic air heaters are used to extend the limit of air heating in the HITAF. The greenfields designs can be used for repowering in the conventional sense which involves replacing almost everything in the plant except the steam turbine and accessories. Another option is to keep the existing boiler and add a pyrolyzer and gas turbine to the plant. The study was done on an Eastern utility plant. The owner is currently considering replacing two units with atmospheric fluidized bed boilers, but is interested in a comparison with HIPPS technology. After repowering, the emissions levels need to be 0.25 lb SO{sub x}/MMBtu and 0.15 lb NO{sub x}/MMBtu.

  4. Coke quality for blast furnaces with coal-dust fuel

    SciTech Connect

    Y.A. Zolotukhin; N.S. Andreichikov

    2009-07-01

    Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

  5. Treatment of flue gas containing noxious gases

    SciTech Connect

    Dvirka, M.; Psihos, G.J.; Cosulich, J.J.

    1987-07-21

    A method is described of reducing the noxious gases such as chlorides including hydrogen chloride and chlorine from the flue gases derived from the incineration of solid waste materials in a furnace with a combustion chamber and a combustion zone to substantially reduce the formation of dioxins for a cleaner effluent gas to the atmosphere, comprising: introducing sodium bicarbonate into the flue gas of a furnace incinerating the waste materials, positioning introduction of sodium bicarbonate for at least one location along the path of the flue gas at a temperature below about 1564/sup 0/F but not below about 518/sup 0/F, heating the sodium bicarbonate in the flue gas for a time sufficient to drive off the water and carbon dioxide from the sodium bicarbonate, forming sodium carbonate particle during the heating of the sodium bicarbonate, the sodium carbonate having a higher porosity to produce a greater reaction area on the surface of the particles, contacting the porous sodium carbonate with chlorides in the flue gases for a sufficient time and temperature to react and produce sodium chloride and prevent their formation of dioxins; and separating the sodium chloride from the flue gas to produce a cleaner gas for exit to the atmosphere.

  6. A computational study of heterogeneous char reactions in a full-scale furnace

    SciTech Connect

    Mann, A.P.; Kent, J.H. . Dept. of Mechanical Engineering)

    1994-10-01

    Driven by the need for more efficient means of power generation, computational simulation of furnace operation has assumed an increasingly important role. Computational tools make it possible to predict trends in furnace performance characteristics, such carbon burnout, with reasonable accuracy. Char burnout in a furnace occurs primarily by reaction with molecular oxygen in the surrounding gas. Consequently, most models of carbon burnout used in furnace codes only consider the char-O[sub 2] reaction. However, char reactions with other gas phase species, such as carbon dioxide and water become important where oxygen concentrations are low. Using a numerical model of a full-scale tangentially fired furnace, this work quantifies the relative importance of these reactions.

  7. An Integrated Model of Coal/Coke Combustion in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Y. S.; Guo, B. Y.; Yu, A. B.; Austin, P.; Zulli, P.

    2010-03-01

    A three-dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance-blowpipe-tuyere-raceway-coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe-tuyere-raceway-coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition, respectively. The comprehensive in-furnace phenomena are simulated in the raceway and coke bed, in terms of flow, temperature, gas composition, and coal burning characteristics. In addition, underlying mechanisms for the in-furnace phenomena are analyzed. The model provides a cost-effective tool for understanding and optimizing the in-furnace flow-thermo-chemical characteristics of the PCI process in full-scale blast furnaces.

  8. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect

    HU, T.A.

    2003-09-30

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail

  9. Greenhouse gas emission and its potential mitigation process from the waste sector in a large-scale exhibition.

    PubMed

    Lou, Ziyang; Bilitewski, Bernd; Zhu, Nanwen; Chai, Xiaoli; Li, Bing; Zhao, Youcai; Otieno, Peter

    2015-05-01

    As one of the largest human activities, World Expo is an important source of anthropogenic Greenhouse Gas emission (GHG), and the GHG emission and other environmental impacts of the Expo Shanghai 2010, where around 59,397 tons of waste was generated during 184 Expo running days, were assessed by life cycle assessment (LCA). Two scenarios, i.e., the actual and expected figures of the waste sector, were assessed and compared, and 124.01 kg CO2-equivalent (CO2-eq.), 4.43 kg SO2-eq., 4.88 kg NO3--eq., and 3509 m3 water per ton tourist waste were found to be released in terms of global warming (GW), acidification (AC), nutrient enrichment (NE) and spoiled groundwater resources (SGWR), respectively. The total GHG emission was around 3499 ton CO2-eq. from the waste sector in Expo Park, among which 86.47% was generated during the waste landfilling at the rate of 107.24 kg CO2-eq., and CH4, CO and other hydrocarbons (HC) were the main contributors. If the waste sorting process had been implemented according to the plan scenario, around 497 ton CO2-eq. savings could have been attained. Unlike municipal solid waste, with more organic matter content, an incineration plant is more suitable for tourist waste disposal due to its high heating value, from the GHG reduction perspective. PMID:25968257

  10. Greenhouse gas emission and its potential mitigation process from the waste sector in a large-scale exhibition.

    PubMed

    Lou, Ziyang; Bilitewski, Bernd; Zhu, Nanwen; Chai, Xiaoli; Li, Bing; Zhao, Youcai; Otieno, Peter

    2015-05-01

    As one of the largest human activities, World Expo is an important source of anthropogenic Greenhouse Gas emission (GHG), and the GHG emission and other environmental impacts of the Expo Shanghai 2010, where around 59,397 tons of waste was generated during 184 Expo running days, were assessed by life cycle assessment (LCA). Two scenarios, i.e., the actual and expected figures of the waste sector, were assessed and compared, and 124.01 kg CO2-equivalent (CO2-eq.), 4.43 kg SO2-eq., 4.88 kg NO3--eq., and 3509 m3 water per ton tourist waste were found to be released in terms of global warming (GW), acidification (AC), nutrient enrichment (NE) and spoiled groundwater resources (SGWR), respectively. The total GHG emission was around 3499 ton CO2-eq. from the waste sector in Expo Park, among which 86.47% was generated during the waste landfilling at the rate of 107.24 kg CO2-eq., and CH4, CO and other hydrocarbons (HC) were the main contributors. If the waste sorting process had been implemented according to the plan scenario, around 497 ton CO2-eq. savings could have been attained. Unlike municipal solid waste, with more organic matter content, an incineration plant is more suitable for tourist waste disposal due to its high heating value, from the GHG reduction perspective.

  11. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    PubMed

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. PMID:26292776

  12. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    PubMed

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process.

  13. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes.

  14. Combustion furnace and burner

    SciTech Connect

    McElroy, J. G.

    1985-12-03

    The combustion system includes a hearth lined with refractory, a combustion chamber formed in the refractory, an air manifold mounted on the hearth, a plurality of gas manifold extending through the air manifold and into the combustion chamber, and a diffuser mounted on the manifolds to cause turbulence in the air/gas mixture. The gas manifolds include aspirating means for combining the air and gas. The combustion chamber is elongated and has an elongated neck with a flue gas exit slot over which the work piece passes. The flue gas from the combustion of the air/gas mixture in the combustion chamber increases in velocity as the flue gas passes through the elongated neck and exits the flue gas exit slot. The slot has a length sufficient to permit the work piece to rotate 360/sup 0/ as the work piece rotates and travels through the hearth. This causes the work piece to be uniformly heated over every square inch of its surface.

  15. Evaluation of Gas Retention in Waste Simulants: Intermediate-Scale Column and Open-Channel-Depth Tests

    SciTech Connect

    Powell, Michael R.; Gauglitz, Phillip A.; Denslow, Kayte M.; Fischer, Christopher M.; Heldebrant, David J.; Prowant, Matthew S.; Sande, Susan; Davis, James M.; Telander, Monty R.

    2014-02-14

    Gas generation in Hanford’s radioactive waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which may be hazardous and/or flammable, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge increases the sludge-layer volume, which decreases the available tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge can potentially result in a relatively rapid release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. The potential for rapid release of large amounts of hazardous and/or flammable gases is a safety hazard that needs to be managed. Accordingly, a thorough understanding is needed of the circumstances that can lead to problematic gas accumulation in sludge layers. The Deep-Sludge Gas Release Event Project (DSGREP) is tasked with developing an improved understanding of these gas release events.

  16. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    PubMed

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor.

  17. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions

    SciTech Connect

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose

    2013-01-21

    Batches made with a variety of precursors were subjected to thermo-gravimetric analysis. The baseline modifications included all-nitrate batch with sucrose addition, all-carbonate batch, and batches with different sources of alumina. All batches were formulated for a single glass composition (a vitrified simulated high-alumina high-level waste). Batch samples were heated from the ambient temperature to 1200°C at constant heating rates ranging from 1 K/min to 50 K/min. Major gas evolving reactions began at temperatures just above 100°C and were virtually complete by 650°C. Activation energies for major reactions were obtained with the Kissinger’s method. A rough model for the overall kinetics of the batch-conversion was developed to be eventually applied to a mathematical model of the cold cap.

  18. Conversion of tomato, peach and honeydew solid waste into methane gas

    SciTech Connect

    Hills, D.J.; Roberts, D.W.

    1982-01-01

    Results from a laboratory investigation on the title conversion and seasonal operation of a pilot-plant size digester are presented. For 4-L laboratory digesters operating at 35 degrees, the respective optimal loading rates and retention times for tomato, honeydew, and peach residues, were 5, 3, and 1 kg volatile solids (VS)/cubic meter-day and 25, 20, and 15 days. Under these operating conditions 33, 83, and 86% of VS were destroyed for tomato, honeydew and peach residues, respectively, and the corresponding gas productions at 0 degrees and 1 atm. were 0.43, 2.45, and 1.15 vol./digester vol-day. Operation of the 22-cubic meter pilot plant generally confirmed the laboratory data for tomato solid waste.

  19. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas’s Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  20. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  1. Glass Furnace Model Version 2

    2003-05-06

    GFM2.0 is a derivative of the GFM code with substantially altered and enhanced capabilities. Like its predecessor, it is a fully three-dimensional, furnace simulation model that provides a more accurate representation of the entire furnace, and specifically, the glass melting process, by coupling the combustion space directly to the glass batch and glass melt via rigorous radiation heat transport models for both the combustion space and the glass melt. No assumptions are made with regardmore » to interfacial parameters of heat, flux, temperature distribution, and batch coverage as must be done using other applicable codes available. These critical parameters are calculated. GFM2.0 contains a processor structured to facilitate use of the code, including the entry of teh furnace geometry and operating conditions, the execution of the program, and display of the computational results. Furnace simulations can therefore be created in a straightforward manner.« less

  2. Factors controlling the concentration of methane and other volatiles in groundwater and soil-gas around a waste site

    NASA Astrophysics Data System (ADS)

    Barber, C.; Davis, G. B.; Briegel, D.; Ward, J. K.

    1990-01-01

    The concentration of methane in groundwater and soil-gas in the vicinity of a waste landfill on an unconfined sand aquifer has been investigated in detail. These data have been used to evaluate techniques which use volatile organic compounds in soil-gas as indicators of groundwater contamination. Simple one-dimensional models of gas advection and diffusion have been adapted for use in the study. Lateral advection of gas in the unsaturated sand was found to be seasonal and was most noticeable in winter when the profile was wet; a mean velocity of 1 m d - was measured from breakthrough of a helium tracer in an injection test. The effects of advection on trace concentrations of methane in soil-gas were limited to within 150-200m from the waste site and resulted from pressure gradients brought about by positive gas pressures in the landfill, and also as a result of ebullition (gas bubbling) from contaminated groundwater. The distribution of methane in soil-gas at shallow (2m) depth gave a general indication of the direction of movement of contaminants with groundwater in close proximity to the landfill. Outside this zone, diffusional transport of methane from groundwater to soil-gas occurred and methane in soil-gas sampled close to the water table was found to be a useful indicator of contaminated groundwater. Modelling the exchange of volatiles between aqueous and gas phases indicates that a wide range of organic compounds, particularly those with Henry's Law constants greater than 2.5 × 10 t-2 kPam 3mol -1, would have potential for use as indicators of pollution, if these were present in groundwater and they behaved relatively conservatively. In general, the principal factors controlling the concentration of these volatiles in soil-gas were the concentration gradient at the water table and capillary fringe and the ratio of diffusion coefficients in the saturated and unsaturated zones.

  3. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption.

    PubMed

    Redondas, V; Gómez, X; García, S; Pevida, C; Rubiera, F; Morán, A; Pis, J J

    2012-01-01

    The production of H(2) by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H(2) streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO(2) from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H(2) yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H(2) producing microflora leading to a reduction in specific H(2) production. Adsorption of CO(2) from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H(2)S onto the activated carbon also took place, there being no evidence of H(2)S present in the bio-H(2) exiting the column. Nevertheless, the concentration of H(2)S was very low, and this co-adsorption did not affect the CO(2) capture capacity of the activated carbon.

  4. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA

    NASA Astrophysics Data System (ADS)

    Lindberg, S. E.; Wallschläger, D.; Prestbo, E. M.; Bloom, N. S.; Price, J.; Reinhart, D.

    Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m 3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg 0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m 3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m 3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.

  5. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass

    SciTech Connect

    Laurenzis, A.; Heits, H.; Wuebker, S.M.; Heinze, U.; Friedrich, C.; Werner, U.

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m{sub pb}{sup 3}). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m{sub pb}{sup {minus}3} h{sup {minus}1} at a load of 150 g of toluene m{sub pb}{sup {minus}3} h{sup {minus}1}. Such a removal rate with a trickle-bed reactor was not reported before.

  6. [Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid].

    PubMed

    Yi, Yuan-Rong; Han, Min-Fang

    2012-07-01

    The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.

  7. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  8. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1).

  9. Neural network analysis on the effect of heat fluxes on greenhouse gas emissions from anaerobic swine waste treatment lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes) that potentially affect greenhouse gas (GHG) emissions from swine waste lagoon. GHG concentrations (methane, carbon dioxide, and nitrous oxide) were monitored using a photoacous...

  10. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY...

  11. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY...

  12. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Statement of interpretation of waste concerning natural gas as the primary energy source for qualifying small power production facilities. 2.400 Section 2.400 Conservation of Power and Water Resources FEDERAL ENERGY...

  13. Computer simulation of processes in the dead-end furnace

    NASA Astrophysics Data System (ADS)

    Zavorin, A. S.; Khaustov, S. A.; Zaharushkin, Russia N. A.

    2014-10-01

    We study turbulent combustion of natural gas in the reverse flame of fire-tube boiler simulated with the ANSYS Fluent 12.1.4 engineering simulation software. Aerodynamic structure and volumetric pressure fields of the flame were calculated. The results are presented in graphical form. The effect of the twist parameter for a drag coefficient of dead-end furnace was estimated. Finite element method was used for simulating the following processes: the combustion of methane in air oxygen, radiant and convective heat transfer, turbulence. Complete geometric model of the dead-end furnace based on boiler drawings was considered.

  14. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  15. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005

    SciTech Connect

    Soupos, V.; Zelepouga, S.; Rue, D.

    2005-06-30

    GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

  17. Greenhouse Gas Emission Reduction Due to Improvement of Biodegradable Waste Management System

    NASA Astrophysics Data System (ADS)

    Bendere, R.; Teibe, I.; Arina, D.; Lapsa, J.

    2014-12-01

    To reduce emissions of greenhouse gas (GHG) from landfills, the European Union (EU) Landfill Directive 1999/31/EC requires that there be a progressive decrease in the municipal biodegradable waste disposal. The main problem of waste management (WM) in Latvia is its heavy dependence on the waste disposal at landfills. The poorly developed system for the sorted municipal waste collection and the promotion of landfilling as a major treatment option led to the disposal of 84% of the total collected municipal waste in 2012, with a high biodegradable fraction. In Latvia, the volume of emissions due to activities of the WM branch was 5.23% (632.6 CO2 eq.) of the total GHG emissions produced in the National economy in 2010 (12 097 Gg CO2 eq., except the land use, land-use change and forestry). Having revised the current situation in the management of biodegradable waste in Latvia, the authors propose improvements in this area. In the work, analysis of environmental impact was carried out using Waste Management Planning System (WAMPS) software in the WM modelling scenarios. The software computes the emissions, energy and turnover of waste streams for the processes within the WM system such as waste collection and transportation, composting, anaerobic digestion, and the final disposal (landfilling or incineration). The results of WAMPS modelling are presented in four categories associated with the environmental impact: acidification, global warming, eutrophication and photo-oxidant formation, each characterised by a particular emission. These categories cover an integrated WM system, starting with the point when products turn to waste which is then thrown into the bin for waste at its generation source, and ending with the point where the waste transforms either into useful material (recycled material, biogas or compost) or contributes to emissions into environment after the final disposal at a landfill or an incineration plant Rakstā veikts pašvaldības bioloģiski no

  18. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  19. Plumbrook Hypersonic Tunnel Facility Graphite Furnace Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1999-01-01

    A recent rebuild revealed extensive degradation to the large graphite induction furnace in the Hypersonic Tunnel Facility (HTF). This damage to the graphite blocks and insulating felt is examined and modeled with thermochemical equilibrium codes. The primary reactions appear to be with water vapor and the nitrogen purge gas. Based on these conclusions, several changes are recommended. An inert purge gas (e.g. argon or helium) and controlling and monitoring water vapor to about 10 ppm should decrease the damage substantially.

  20. Cyanide in MGP (manufactured gas plant) wastes: Investigation of analytical methods. Topical report, January 1988-June 1989

    SciTech Connect

    Gould, J.E.; Theis, T.L.; Luthy, R.G.

    1989-06-01

    Wastes associated with manufactured gas plant (MGP) sites are known to contain various cyanide complexes. Problems exist relative to evaluating the true cyanide content of these solid wastes. These problems are, in general, related to lack of standard laboratory methods for extracting and analyzing leachate or distillates from solid samples. Samples of MGP purifier wastes were analyzed by two university laboratories under carefully controlled conditions to establish absolute levels of total cyanide in the samples. Duplicate samples were submitted to several commercial laboratories for analysis of total cyanide. Results from the university studies and commercial laboratories were compared. Based on the study, an extraction method can be defined that will provide more accurate and reproducible results for total cyanide contained in solid samples. A high alkaline extraction is recommended when analyzing MGP samples for cyanide. When disposing of cyanide-containing wastes, maintaining the natural acidic pH will control leaching of cyanide.