Antonica, Filippo; Asabella, Artor Niccoli; Ferrari, Cristina; Rubini, Domenico; Notaristefano, Antonio; Nicoletti, Adriano; Altini, Corinna; Merenda, Nunzio; Mossa, Emilio; Guarini, Attilio; Rubini, Giuseppe
2014-01-01
In the last decade numerous attempts were considered to co-register and integrate different imaging data. Like PET/CT the integration of PET to MR showed great interest. PET/MR scanners are recently tested on different distrectual or systemic pathologies. Unfortunately PET/MR scanners are expensive and diagnostic protocols are still under studies and investigations. Nuclear Medicine imaging highlights functional and biometabolic information but has poor anatomic details. The aim of this study is to integrate MR and PET data to produce distrectual or whole body fused images acquired from different scanners even in different days. We propose an offline method to fuse PET with MR data using an open-source software that has to be inexpensive, reproducible and capable to exchange data over the network. We also evaluate global quality, alignment quality, and diagnostic confidence of fused PET-MR images. We selected PET/CT studies performed in our Nuclear Medicine unit, MR studies provided by patients on DICOM CD media or network received. We used Osirix 5.7 open source version. We aligned CT slices with the first MR slice, pointed and marked for co-registration using MR-T1 sequence and CT as reference and fused with PET to produce a PET-MR image. A total of 100 PET/CT studies were fused with the following MR studies: 20 head, 15 thorax, 24 abdomen, 31 pelvis, 10 whole body. An interval of no more than 15 days between PET and MR was the inclusion criteria. PET/CT, MR and fused studies were evaluated by two experienced radiologist and two experienced nuclear medicine physicians. Each one filled a five point based evaluation scoring scheme based on image quality, image artifacts, segmentation errors, fusion misalignment and diagnostic confidence. Our fusion method showed best results for head, thorax and pelvic districts in terms of global quality, alignment quality and diagnostic confidence,while for the abdomen and pelvis alignement quality and global quality resulted poor due to internal organs filling variation and time shifting beetwen examinations. PET/CT images with time of flight reconstruction and real attenuation correction were combined with anatomical detailed MRI images. We used Osirix, an image processing Open Source Software dedicated to DICOM images. No additional costs, to buy and upgrade proprietary software are required for combining data. No high technology or very expensive PET/MR scanner, that requires dedicated shielded room spaces and personnel to be employed or to be trained, are needed. Our method allows to share patient PET/MR fused data with different medical staff using dedicated networks. The proposed method may be applied to every MR sequence (MR-DWI and MR-STIR, magnet enhanced sequences) to characterize soft tissue alterations and improve discrimination diseases. It can be applied not only to PET with MR but virtually to every DICOM study.
Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter
2017-02-01
The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.
In Vivo Imaging of MDR1A Gene Expression
2004-12-01
Engineer PGK-neo and Renilla luciferase cassettes, already available, with appropriate loxP sites, into mdrla locus. Repeat for HSV-tk reporter. The...of the gene-targeting vector. under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated sequences of exon 2...between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the translated
SU-E-J-90: MRI-Based Treatment Simulation and Patient Setup for Radiation Therapy of Brain Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y; Cao, M; Han, F
2014-06-01
Purpose: Traditional radiation therapy of cancer is heavily dependent on CT. CT provides excellent depiction of the bones but lacks good soft tissue contrast, which makes contouring difficult. Often, MRIs are fused with CT to take advantage of its superior soft tissue contrast. Such an approach has drawbacks. It is desirable to perform treatment simulation entirely based on MRI. To achieve MR-based simulation for radiation therapy, bone imaging is an important challenge because of the low MR signal intensity from bone due to its ultra-short T2 and T1, which presents difficulty for both dose calculation and patient setup in termsmore » of digitally reconstructed radiograph (DRR) generation. Current solutions will either require manual bone contouring or multiple MR scans. We present a technique to generate DRR using MRI with an Ultra Short Echo Time (UTE) sequence which is applicable to both OBI and ExacTrac 2D patient setup. Methods: Seven brain cancer patients were scanned at 1.5 Tesla using a radial UTE sequence. The sequence acquires two images at two different echo times. The two images were processed using in-house software. The resultant bone images were subsequently loaded into commercial systems to generate DRRs. Simulation and patient clinical on-board images were used to evaluate 2D patient setup with MRI-DRRs. Results: The majority bones are well visualized in all patients. The fused image of patient CT with the MR bone image demonstrates the accuracy of automatic bone identification using our technique. The generated DRR is of good quality. Accuracy of 2D patient setup by using MRI-DRR is comparable to CT-based 2D patient setup. Conclusion: This study shows the potential of DRR generation with single MR sequence. Further work will be needed on MR sequence development and post-processing procedure to achieve robust MR bone imaging for other human sites in addition to brain.« less
Pixel-based image fusion with false color mapping
NASA Astrophysics Data System (ADS)
Zhao, Wei; Mao, Shiyi
2003-06-01
In this paper, we propose a pixel-based image fusion algorithm that combines the gray-level image fusion method with the false color mapping. This algorithm integrates two gray-level images presenting different sensor modalities or at different frequencies and produces a fused false-color image. The resulting image has higher information content than each of the original images. The objects in the fused color image are easy to be recognized. This algorithm has three steps: first, obtaining the fused gray-level image of two original images; second, giving the generalized high-boost filtering images between fused gray-level image and two source images respectively; third, generating the fused false-color image. We use the hybrid averaging and selection fusion method to obtain the fused gray-level image. The fused gray-level image will provide better details than two original images and reduce noise at the same time. But the fused gray-level image can't contain all detail information in two source images. At the same time, the details in gray-level image cannot be discerned as easy as in a color image. So a color fused image is necessary. In order to create color variation and enhance details in the final fusion image, we produce three generalized high-boost filtering images. These three images are displayed through red, green and blue channel respectively. A fused color image is produced finally. This method is used to fuse two SAR images acquired on the San Francisco area (California, USA). The result shows that fused false-color image enhances the visibility of certain details. The resolution of the final false-color image is the same as the resolution of the input images.
Shinkawa, Norihiro; Hirai, Toshinori; Nishii, Ryuichi; Yukawa, Nobuhiro
2017-06-01
To determine the feasibility of human identification through the two-dimensional (2D) fusion of postmortem computed tomography (PMCT) and antemortem chest radiography. The study population consisted of 15 subjects who had undergone chest radiography studies more than 12 months before death. Fused images in which a chest radiograph was fused with a PMCT image were obtained for those subjects using a workstation, and the minimum distance gaps between corresponding anatomical landmarks (located at soft tissue and bone sites) in the images obtained with the two modalities were calculated. For each fused image, the mean of all these minimum distance gaps was recorded as the mean distance gap (MDG). For each subject, the MDG obtained for the same-subject fused image (i.e., where both of the images that were fused derived from that subject) was compared with the MDGs for different-subject fused images (i.e., where only one of the images that were fused derived from that subject; the other image derived from a different subject) in order to determine whether same-subject fused images can be reliably distinguished from different-subject fused images. The MDGs of the same-subject fused images were found to be significantly smaller than the MDGs of the different-subject fused images (p < 0.01). When bone landmarks were used, the same-subject fused image was found to be the fused image with the lowest MDG for 33.3% of the subjects, the fused image with the lowest or second-lowest MDG for 73.3% of the subjects, and the fused image with the lowest, second-lowest, or third-lowest MDG for 86.7% of the subjects. The application of bone landmarks rather than soft-tissue landmarks made it significantly more likely that, for each subject, the same-subject fused image would have the lowest MDG (or one of the lowest MDGs) of all the fused images compared (p < 0.05). The 2D fusion of antemortem chest radiography and postmortem CT images may assist in human identification.
Translational regulation of sigma 32 synthesis: requirement for an internal control element.
Kamath-Loeb, A S; Gross, C A
1991-01-01
We have investigated the sequence requirements for the translational regulation of sigma 32 by examining the behavior of a new rpoH-lacZ protein fusion containing a short N-terminal fragment of sigma 32 fused to beta-galactosidase. Although the fusion retains rpoH translational initiation signals, it lacks translational regulation, implicating coding sequences within rpoH in this regulatory process. Images PMID:2050641
Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets
NASA Astrophysics Data System (ADS)
Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara
2004-05-01
This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%
Integrating Depth and Image Sequences for Planetary Rover Mapping Using Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Peng, M.; Wan, W.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Zhao, Q.; Teng, B.; Mao, X.
2018-04-01
RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of the proposed method.
New false color mapping for image fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Walraven, Jan
1996-03-01
A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).
Joint image registration and fusion method with a gradient strength regularization
NASA Astrophysics Data System (ADS)
Lidong, Huang; Wei, Zhao; Jun, Wang
2015-05-01
Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.
A novel chaos-based image encryption algorithm using DNA sequence operations
NASA Astrophysics Data System (ADS)
Chai, Xiuli; Chen, Yiran; Broyde, Lucie
2017-01-01
An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors.
Venisnik, Katy M; Olafsen, Tove; Loening, Andreas M; Iyer, Meera; Gambhir, Sanjiv S; Wu, Anna M
2006-10-01
An anti-carcinoembryonic antigen (CEA) antibody fragment, the anti-CEA diabody, was fused to the bioluminescence enzyme Renilla luciferase (RLuc) to generate a novel optical imaging probe. Native RLuc or one of two stabilized variants (RLucC124A, RLuc8) was used as the bioluminescent moiety. A bioluminescence ELISA showed that diabody-luciferase could simultaneously bind to CEA and emit light. In vivo optical imaging of tumor-bearing mice demonstrated specific targeting of diabody-RLuc8 to CEA-positive xenografts, with a tumor:background ratio of 6.0 +/- 0.8 at 6 h after intravenous injection, compared with antigen-negative tumors at 1.0 +/- 0.1 (P = 0.05). Targeting and distribution was also evaluated by microPET imaging using (124)I-diabody-RLuc8 and confirmed that the optical signal was due to antibody-mediated localization of luciferase. Renilla luciferase, fused to biospecific sequences such as engineered antibodies, can be administered systemically to provide a novel, sensitive method for optical imaging based on expression of cell surface receptors in living organisms.
A hybrid color mapping approach to fusing MODIS and Landsat images for forward prediction
USDA-ARS?s Scientific Manuscript database
We present a new, simple, and efficient approach to fusing MODIS and Landsat images. It is well known that MODIS images have high temporal resolution and low spatial resolution whereas Landsat images are just the opposite. Similar to earlier approaches, our goal is to fuse MODIS and Landsat images t...
Metric Scale Calculation for Visual Mapping Algorithms
NASA Astrophysics Data System (ADS)
Hanel, A.; Mitschke, A.; Boerner, R.; Van Opdenbosch, D.; Hoegner, L.; Brodie, D.; Stilla, U.
2018-05-01
Visual SLAM algorithms allow localizing the camera by mapping its environment by a point cloud based on visual cues. To obtain the camera locations in a metric coordinate system, the metric scale of the point cloud has to be known. This contribution describes a method to calculate the metric scale for a point cloud of an indoor environment, like a parking garage, by fusing multiple individual scale values. The individual scale values are calculated from structures and objects with a-priori known metric extension, which can be identified in the unscaled point cloud. Extensions of building structures, like the driving lane or the room height, are derived from density peaks in the point distribution. The extension of objects, like traffic signs with a known metric size, are derived using projections of their detections in images onto the point cloud. The method is tested with synthetic image sequences of a drive with a front-looking mono camera through a virtual 3D model of a parking garage. It has been shown, that each individual scale value improves either the robustness of the fused scale value or reduces its error. The error of the fused scale is comparable to other recent works.
Huang, Yan; Bi, Duyan; Wu, Dongpeng
2018-04-11
There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods.
Huang, Yan; Bi, Duyan; Wu, Dongpeng
2018-01-01
There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods. PMID:29641505
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
NASA Astrophysics Data System (ADS)
Li, Jun; Song, Minghui; Peng, Yuanxi
2018-03-01
Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Frank, S
Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGRmore » sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3.2±1.6mm in patients with no endorectal coil, 2.3±0.8mm in patients with 30cc-PFC-filled endorectal-coil and 5.0±1.8mm in patients with 50cc-PFC-filled endorectal-coil. Conclusion: An MR protocol to visualize positive-contrast Sirius markers to assist in the identification of negative-contrast seeds was demonstrated. S Frank is a co-founder of C4 Imaging LLC, the manufacturer of the MRI markers.« less
Integration of retinal image sequences
NASA Astrophysics Data System (ADS)
Ballerini, Lucia
1998-10-01
In this paper a method for noise reduction in ocular fundus image sequences is described. The eye is the only part of the human body where the capillary network can be observed along with the arterial and venous circulation using a non invasive technique. The study of the retinal vessels is very important both for the study of the local pathology (retinal disease) and for the large amount of information it offers on systematic haemodynamics, such as hypertension, arteriosclerosis, and diabetes. In this paper a method for image integration of ocular fundus image sequences is described. The procedure can be divided in two step: registration and fusion. First we describe an automatic alignment algorithm for registration of ocular fundus images. In order to enhance vessel structures, we used a spatially oriented bank of filters designed to match the properties of the objects of interest. To evaluate interframe misalignment we adopted a fast cross-correlation algorithm. The performances of the alignment method have been estimated by simulating shifts between image pairs and by using a cross-validation approach. Then we propose a temporal integration technique of image sequences so as to compute enhanced pictures of the overall capillary network. Image registration is combined with image enhancement by fusing subsequent frames of a same region. To evaluate the attainable results, the signal-to-noise ratio was estimated before and after integration. Experimental results on synthetic images of vessel-like structures with different kind of Gaussian additive noise as well as on real fundus images are reported.
Albumin Binding Domain Fusing R/K-X-X-R/K Sequence for Enhancing Tumor Delivery of Doxorubicin.
Liu, Liping; Zhang, Chun; Li, Zenglan; Wang, Chunyue; Bi, Jingxiu; Yin, Shuang; Wang, Qi; Yu, Rong; Liu, Yongdong; Su, Zhiguo
2017-11-06
For the purpose of improving the tumor delivery of doxorubicin (DOX), a kind of peptide-DOXO conjugate was designed and prepared, in which the peptide composed of an albumin-binding domain (ABD) and a tumor-specific internalizing sequence (RGDK or RPARPAR) was conjugated to a (6-maleimidocaproyl) hydrazone derivative of doxorubicin (DOXO-EMCH). The doxorubicin uptake by lung cancer cell line of A549 evidenced that the conjugates are capable of being internalized through a tumor-specific sequence mediated manner, and the intracellular imaging of distribution in A549 cell demonstrated that the conjugated doxorubicin can be delivered to the cell nucleus. The A549 cell cytotoxicity of peptide-DOXO conjugates was presented with IC 50 values and shown in the range of about 9-11 μM. Pharmacokinetics study revealed that both conjugates exhibited nearly 5.5 times longer half-time than DOX, and about 4 times than DOXO-EMCH. The in vivo growth inhibitions of the two peptide-DOXO conjugates on BALB/c nude mice bearing A549 tumor (47.78% for ABD-RGDK-DOXO and 47.09% for ABD-RPARPAR-DOXO) were much stronger than that of doxorubicin and DOXO-EMCH (24.28% and 25.67% respectively) at a doxorubicin equivalent dose. Besides, the in vivo fluorescence imaging study confirmed that the peptide markedly increased the payload accumulation in tumor tissues and indicated that albumin binding domain fusing tumor-specific sequence effectively enhanced the tumor delivery of doxorubicin and thus improved its therapeutic potency.
Enhanced image fusion using directional contrast rules in fuzzy transform domain.
Nandal, Amita; Rosales, Hamurabi Gamboa
2016-01-01
In this paper a novel image fusion algorithm based on directional contrast in fuzzy transform (FTR) domain is proposed. Input images to be fused are first divided into several non-overlapping blocks. The components of these sub-blocks are fused using directional contrast based fuzzy fusion rule in FTR domain. The fused sub-blocks are then transformed into original size blocks using inverse-FTR. Further, these inverse transformed blocks are fused according to select maximum based fusion rule for reconstructing the final fused image. The proposed fusion algorithm is both visually and quantitatively compared with other standard and recent fusion algorithms. Experimental results demonstrate that the proposed method generates better results than the other methods.
FFT-enhanced IHS transform method for fusing high-resolution satellite images
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2007-01-01
Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M
2017-01-01
Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored. PMID:29201580
Konakondla, Sanjay; Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M
2017-09-29
Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored.
Gao, Shun-Yu; Zhang, Xiao-Peng; Cui, Yong; Sun, Ying-Shi; Tang, Lei; Li, Xiao-Ting; Zhang, Xiao-Yan; Shan, Jun
2014-08-01
To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.
Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.
Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R
2011-01-01
Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.
Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A
2006-04-01
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao
2015-02-01
Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.
Fusion of infrared and visible images based on BEMD and NSDFB
NASA Astrophysics Data System (ADS)
Zhu, Pan; Huang, Zhanhua; Lei, Hai
2016-07-01
This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.
Image Fusion Algorithms Using Human Visual System in Transform Domain
NASA Astrophysics Data System (ADS)
Vadhi, Radhika; Swamy Kilari, Veera; Samayamantula, Srinivas Kumar
2017-08-01
The endeavor of digital image fusion is to combine the important visual parts from various sources to advance the visibility eminence of the image. The fused image has a more visual quality than any source images. In this paper, the Human Visual System (HVS) weights are used in the transform domain to select appropriate information from various source images and then to attain a fused image. In this process, mainly two steps are involved. First, apply the DWT to the registered source images. Later, identify qualitative sub-bands using HVS weights. Hence, qualitative sub-bands are selected from different sources to form high quality HVS based fused image. The quality of the HVS based fused image is evaluated with general fusion metrics. The results show the superiority among the state-of-the art resolution Transforms (MRT) such as Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Contourlet Transform (CT), and Non Sub Sampled Contourlet Transform (NSCT) using maximum selection fusion rule.
Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3.
Yasunaga, Mayu; Murotomi, Kazutoshi; Abe, Hiroko; Yamazaki, Tomomi; Nishii, Shigeaki; Ohbayashi, Tetsuya; Oshimura, Mitsuo; Noguchi, Takako; Niwa, Kazuki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro
2015-01-20
Reporter assays that use luciferases are widely employed for monitoring cellular events associated with gene expression in vitro and in vivo. To improve the response of the luciferase reporter to acute changes of gene expression, a destabilization sequence is frequently used to reduce the stability of luciferase protein in the cells, which results in an increase of sensitivity of the luciferase reporter assay. In this study, we identified a potent destabilization sequence (referred to as the C9 fragment) consisting of 42 amino acid residues from human calpain 3 (CAPN3). Whereas the half-life of Emerald Luc (ELuc) from the Brazilian click beetle Pyrearinus termitilluminans was reduced by fusing PEST (t1/2=9.8 to 2.8h), the half-life of C9-fused ELuc was significantly shorter (t1/2=1.0h) than that of PEST-fused ELuc when measurements were conducted at 37°C. In addition, firefly luciferase (luc2) was also markedly destabilized by the C9 fragment compared with the humanized PEST sequence. These results indicate that the C9 fragment from CAPN3 is a much more potent destabilization sequence than the PEST sequence. Furthermore, real-time bioluminescence recording of the activation kinetics of nuclear factor-κB after transient treatment with tumor necrosis factor α revealed that the response of C9-fused ELuc is significantly greater than that of PEST-fused ELuc, demonstrating that the use of the C9 fragment realizes a luciferase reporter assay that has faster response speed compared with that provided by the PEST sequence. Copyright © 2014 Elsevier B.V. All rights reserved.
Effective Multifocus Image Fusion Based on HVS and BP Neural Network
Yang, Yong
2014-01-01
The aim of multifocus image fusion is to fuse the images taken from the same scene with different focuses to obtain a resultant image with all objects in focus. In this paper, a novel multifocus image fusion method based on human visual system (HVS) and back propagation (BP) neural network is presented. Three features which reflect the clarity of a pixel are firstly extracted and used to train a BP neural network to determine which pixel is clearer. The clearer pixels are then used to construct the initial fused image. Thirdly, the focused regions are detected by measuring the similarity between the source images and the initial fused image followed by morphological opening and closing operations. Finally, the final fused image is obtained by a fusion rule for those focused regions. Experimental results show that the proposed method can provide better performance and outperform several existing popular fusion methods in terms of both objective and subjective evaluations. PMID:24683327
NASA Astrophysics Data System (ADS)
Paramanandham, Nirmala; Rajendiran, Kishore
2018-01-01
A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.
Fujimoto, Satoru; Sugano, Shigeo S.; Kuwata, Keiko; Osakabe, Keishi; Matsunaga, Sachihiro
2016-01-01
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms. PMID:27811079
Multi-Focus Image Fusion Based on NSCT and NSST
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen
2015-12-01
In this paper, a multi-focus image fusion algorithm based on the nonsubsampled contourlet transform (NSCT) and the nonsubsampled shearlet transform (NSST) is proposed. The source images are first decomposed by the NSCT and NSST into low frequency coefficients and high frequency coefficients. Then, the average method is used to fuse low frequency coefficient of the NSCT. To obtain more accurate salience measurement, the high frequency coefficients of the NSST and NSCT are combined to measure salience. The high frequency coefficients of the NSCT with larger salience are selected as fused high frequency coefficients. Finally, the fused image is reconstructed by the inverse NSCT. We adopt three metrics (Q AB/F , Q e and Q w ) to evaluate the quality of fused images. The experimental results demonstrate that the proposed method outperforms other methods. It retains highly detailed edges and contours.
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao
2015-12-01
The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
Development of a robust MRI fiducial system for automated fusion of MR-US abdominal images.
Favazza, Christopher P; Gorny, Krzysztof R; Callstrom, Matthew R; Kurup, Anil N; Washburn, Michael; Trester, Pamela S; Fowler, Charles L; Hangiandreou, Nicholas J
2018-05-21
We present the development of a two-component magnetic resonance (MR) fiducial system, that is, a fiducial marker device combined with an auto-segmentation algorithm, designed to be paired with existing ultrasound probe tracking and image fusion technology to automatically fuse MR and ultrasound (US) images. The fiducial device consisted of four ~6.4 mL cylindrical wells filled with 1 g/L copper sulfate solution. The algorithm was designed to automatically segment the device in clinical abdominal MR images. The algorithm's detection rate and repeatability were investigated through a phantom study and in human volunteers. The detection rate was 100% in all phantom and human images. The center-of-mass of the fiducial device was robustly identified with maximum variations of 2.9 mm in position and 0.9° in angular orientation. In volunteer images, average differences between algorithm-measured inter-marker spacings and actual separation distances were 0.53 ± 0.36 mm. "Proof-of-concept" automatic MR-US fusions were conducted with sets of images from both a phantom and volunteer using a commercial prototype system, which was built based on the above findings. Image fusion accuracy was measured to be within 5 mm for breath-hold scanning. These results demonstrate the capability of this approach to automatically fuse US and MR images acquired across a wide range of clinical abdominal pulse sequences. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Overlapped Fourier coding for optical aberration removal
Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei
2014-01-01
We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982
A robust color image fusion for low light level and infrared images
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Xiao-hui; Hu, Qing-ping; Chen, Yong-kang
2016-09-01
The low light level and infrared color fusion technology has achieved great success in the field of night vision, the technology is designed to make the hot target of fused image pop out with intenser colors, represent the background details with a nearest color appearance to nature, and improve the ability in target discovery, detection and identification. The low light level images have great noise under low illumination, and that the existing color fusion methods are easily to be influenced by low light level channel noise. To be explicit, when the low light level image noise is very large, the quality of the fused image decreases significantly, and even targets in infrared image would be submerged by the noise. This paper proposes an adaptive color night vision technology, the noise evaluation parameters of low light level image is introduced into fusion process, which improve the robustness of the color fusion. The color fuse results are still very good in low-light situations, which shows that this method can effectively improve the quality of low light level and infrared fused image under low illumination conditions.
NASA Astrophysics Data System (ADS)
Kong, J.; Ryu, Y.
2017-12-01
Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-01-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-03-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
NASA Astrophysics Data System (ADS)
Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan
2015-03-01
Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.
Faro, Alberto; Giordano, Daniela; Spampinato, Concetto
2008-06-01
This paper proposes a traffic monitoring architecture based on a high-speed communication network whose nodes are equipped with fuzzy processors and cellular neural network (CNN) embedded systems. It implements a real-time mobility information system where visual human perceptions sent by people working on the territory and video-sequences of traffic taken from webcams are jointly processed to evaluate the fundamental traffic parameters for every street of a metropolitan area. This paper presents the whole methodology for data collection and analysis and compares the accuracy and the processing time of the proposed soft computing techniques with other existing algorithms. Moreover, this paper discusses when and why it is recommended to fuse the visual perceptions of the traffic with the automated measurements taken from the webcams to compute the maximum traveling time that is likely needed to reach any destination in the traffic network.
Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images
Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong
2015-01-01
In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596
Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.
Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong
2015-12-12
In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.
Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan
2013-05-01
In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.
Research on fusion algorithm of polarization image in tetrolet domain
NASA Astrophysics Data System (ADS)
Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing
2015-12-01
Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
NASA Astrophysics Data System (ADS)
Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua
2017-05-01
The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.
Kocher, Katharina; Kowalski, Piotr; Kolokitha, Olga-Elpis; Katsaros, Christos; Fudalej, Piotr S
2016-05-01
To determine whether judgment of nasolabial esthetics in cleft lip and palate (CLP) is influenced by overall facial attractiveness. Experimental study. University of Bern, Switzerland. Seventy-two fused images (36 of boys, 36 of girls) were constructed. Each image comprised (1) the nasolabial region of a treated child with complete unilateral CLP (UCLP) and (2) the external facial features, i.e., the face with masked nasolabial region, of a noncleft child. Photographs of the nasolabial region of six boys and six girls with UCLP representing a wide range of esthetic outcomes, i.e., from very good to very poor appearance, were randomly chosen from a sample of 60 consecutively treated patients in whom nasolabial esthetics had been rated in a previous study. Photographs of external facial features of six boys and six girls without UCLP with various esthetics were randomly selected from patients' files. Eight lay raters evaluated the fused images using a 100-mm visual analogue scale. Method reliability was assessed by reevaluation of fused images after >1 month. A regression model was used to analyze which elements of facial esthetics influenced the perception of nasolabial appearance. Method reliability was good. A regression analysis demonstrated that only the appearance of the nasolabial area affected the esthetic scores of fused images (coefficient = -11.44; P < .001; R(2) = 0.464). The appearance of the external facial features did not influence perceptions of fused images. Cropping facial images for assessment of nasolabial appearance in CLP seems unnecessary. Instead, esthetic evaluation can be performed on images of full faces.
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
Nölte, Ingo S; Gerigk, Lars; Al-Zghloul, Mansour; Groden, Christoph; Kerl, Hans U
2012-03-01
Deep-brain stimulation (DBS) of the internal globus pallidus (GPi) has shown remarkable therapeutic benefits for treatment-resistant neurological disorders including dystonia and Parkinson's disease (PD). The success of the DBS is critically dependent on the reliable visualization of the GPi. The aim of the study was to evaluate promising 3.0 Tesla magnetic resonance imaging (MRI) methods for pre-stereotactic visualization of the GPi using a standard installation protocol. MRI at 3.0 T of nine healthy individuals and of one patient with PD was acquired (FLAIR, T1-MPRAGE, T2-SPACE, T2*-FLASH2D, susceptibility-weighted imaging mapping (SWI)). Image quality and visualization of the GPi for each sequence were assessed by two neuroradiologists independently using a 6-point scale. Axial, coronal, and sagittal planes of the T2*-FLASH2D images were compared. Inter-rater reliability, contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) for the GPi were determined. For illustration, axial T2*-FLASH2D images were fused with a section schema of the Schaltenbrand-Wahren stereotactic atlas. The GPi was best and reliably visualized in axial and to a lesser degree on coronal T2*-FLASH2D images. No major artifacts in the GPi were observed in any of the sequences. SWI offered a significantly higher CNR for the GPi compared to standard T2-weighted imaging using the standard parameters. The fusion of the axial T2*-FLASH2D images and the atlas projected the GPi clearly in the boundaries of the section schema. Using a standard installation protocol at 3.0 T T2*-FLASH2D imaging (particularly axial view) provides optimal and reliable delineation of the GPi.
Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E
2016-01-01
With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-05
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-01
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749
Raji Reddy, Chada; Kumaraswamy, Paridala; Singarapu, Kiran K
2014-09-05
An efficient approach for the construction of novel bicyclic fused cyclopentenones starting from Morita-Baylis-Hillman (MBH) acetates of acetylenic aldehydes with flexible scaffold diversity has been achieved using a two-step reaction sequence involving allylic substitution and the Pauson-Khand reaction. This strategy provided a facile access to various bicyclic cyclopentenones fused with either a carbocyclic or a heterocyclic ring system in good yield.
Genetically encoded fluorescent tags
Thorn, Kurt
2017-01-01
Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214
A comparative study of multi-focus image fusion validation metrics
NASA Astrophysics Data System (ADS)
Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael
2016-05-01
Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).
Lai, Charles P.; Kim, Edward Y.; Badr, Christian E.; Weissleder, Ralph; Mempel, Thorsten R.; Tannous, Bakhos A.; Breakefield, Xandra O.
2015-01-01
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. PMID:25967391
Balik Sanli, Fusun; Kurucu, Yusuf; Esetlili, Mustafa Tolga
2009-04-01
Rapid and unplanned urbanization and industrialization are the main reasons of environmental problems. If urban growth is not based on resource sustainability criteria and urban plans are not applied, natural and human resources are damaged dramatically. In this study, land use change and urban expansion in Edremit region of Turkey is determined by means of remote sensing techniques between 1971 and 2002. To improve the accuracy of land use/cover maps, the contribution of SAR images to optic images in defining land cover types was investigated. To determine the situation of land use/cover types in 2002 accurately, Landsat-5 images and Radarsat-1 images were fused, and the land use/cover types were defined from the fused images. Comparisons with the ground truth reveal that land use maps generated using the fuse technique are improved about 6% with an accuracy of 81.20%. To define land use types and urban expansion, screen digitizing and classification methods were used. The results of the study indicate that the urban areas have been increased 1,826 ha across the agricultural fields which are in land use capability classes of I and II, and significant environmental changes such as land degradation and degeneration of ground water quality occurred.
NASA Astrophysics Data System (ADS)
Panagiotopoulou, Antigoni; Bratsolis, Emmanuel; Charou, Eleni; Perantonis, Stavros
2017-10-01
The detailed three-dimensional modeling of buildings utilizing elevation data, such as those provided by light detection and ranging (LiDAR) airborne scanners, is increasingly demanded today. There are certain application requirements and available datasets to which any research effort has to be adapted. Our dataset includes aerial orthophotos, with a spatial resolution 20 cm, and a digital surface model generated from LiDAR, with a spatial resolution 1 m and an elevation resolution 20 cm, from an area of Athens, Greece. The aerial images are fused with LiDAR, and we classify these data with a multilayer feedforward neural network for building block extraction. The innovation of our approach lies in the preprocessing step in which the original LiDAR data are super-resolution (SR) reconstructed by means of a stochastic regularized technique before their fusion with the aerial images takes place. The Lorentzian estimator combined with the bilateral total variation regularization performs the SR reconstruction. We evaluate the performance of our approach against that of fusing unprocessed LiDAR data with aerial images. We present the classified images and the statistical measures confusion matrix, kappa coefficient, and overall accuracy. The results demonstrate that our approach predominates over that of fusing unprocessed LiDAR data with aerial images.
Tracking of "Moving" Fused Auditory Images by Children.
ERIC Educational Resources Information Center
Cranford, Jerry L.; And Others
1993-01-01
This study evaluated the ability of 30 normally developing children (ages 6-12) to report the perceived location of a stationary fused auditory image (FAI) or track a "moving" FAI. Although subjects performed at normal adult levels with the stationary sound measure, they exhibited a significant age-related trend with the moving sound…
Live-cell CRISPR imaging in plants reveals dynamic telomere movements.
Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas
2017-08-01
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu
2017-02-01
This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.
Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing
2012-04-01
This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.
Objective quality assessment for multiexposure multifocus image fusion.
Hassen, Rania; Wang, Zhou; Salama, Magdy M A
2015-09-01
There has been a growing interest in image fusion technologies, but how to objectively evaluate the quality of fused images has not been fully understood. Here, we propose a method for objective quality assessment of multiexposure multifocus image fusion based on the evaluation of three key factors of fused image quality: 1) contrast preservation; 2) sharpness; and 3) structure preservation. Subjective experiments are conducted to create an image fusion database, based on which, performance evaluation shows that the proposed fusion quality index correlates well with subjective scores, and gives a significant improvement over the existing fusion quality measures.
Diffuse prior monotonic likelihood ratio test for evaluation of fused image quality measures.
Wei, Chuanming; Kaplan, Lance M; Burks, Stephen D; Blum, Rick S
2011-02-01
This paper introduces a novel method to score how well proposed fused image quality measures (FIQMs) indicate the effectiveness of humans to detect targets in fused imagery. The human detection performance is measured via human perception experiments. A good FIQM should relate to perception results in a monotonic fashion. The method computes a new diffuse prior monotonic likelihood ratio (DPMLR) to facilitate the comparison of the H(1) hypothesis that the intrinsic human detection performance is related to the FIQM via a monotonic function against the null hypothesis that the detection and image quality relationship is random. The paper discusses many interesting properties of the DPMLR and demonstrates the effectiveness of the DPMLR test via Monte Carlo simulations. Finally, the DPMLR is used to score FIQMs with test cases considering over 35 scenes and various image fusion algorithms.
Retinal vessel segmentation on SLO image
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.
2010-01-01
A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149
Local contrast-enhanced MR images via high dynamic range processing.
Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart
2018-09-01
To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.
Small maritime target detection through false color fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Wu, Tirui
2008-04-01
We present an algorithm that produces a fused false color representation of a combined multiband IR and visual imaging system for maritime applications. Multispectral IR imaging techniques are increasingly deployed in maritime operations, to detect floating mines or to find small dinghies and swimmers during search and rescue operations. However, maritime backgrounds usually contain a large amount of clutter that severely hampers the detection of small targets. Our new algorithm deploys the correlation between the target signatures in two different IR frequency bands (3-5 and 8-12 μm) to construct a fused IR image with a reduced amount of clutter. The fused IR image is then combined with a visual image in a false color RGB representation for display to a human operator. The algorithm works as follows. First, both individual IR bands are filtered with a morphological opening top-hat transform to extract small details. Second, a common image is extracted from the two filtered IR bands, and assigned to the red channel of an RGB image. Regions of interest that appear in both IR bands remain in this common image, while most uncorrelated noise details are filtered out. Third, the visual band is assigned to the green channel and, after multiplication with a constant (typically 1.6) also to the blue channel. Fourth, the brightness and colors of this intermediate false color image are renormalized by adjusting its first order statistics to those of a representative reference scene. The result of these four steps is a fused color image, with naturalistic colors (bluish sky and grayish water), in which small targets are clearly visible.
Fused methods for visual saliency estimation
NASA Astrophysics Data System (ADS)
Danko, Amanda S.; Lyu, Siwei
2015-02-01
In this work, we present a new model of visual saliency by combing results from existing methods, improving upon their performance and accuracy. By fusing pre-attentive and context-aware methods, we highlight the abilities of state-of-the-art models while compensating for their deficiencies. We put this theory to the test in a series of experiments, comparatively evaluating the visual saliency maps and employing them for content-based image retrieval and thumbnail generation. We find that on average our model yields definitive improvements upon recall and f-measure metrics with comparable precisions. In addition, we find that all image searches using our fused method return more correct images and additionally rank them higher than the searches using the original methods alone.
Formulation of image fusion as a constrained least squares optimization problem
Dwork, Nicholas; Lasry, Eric M.; Pauly, John M.; Balbás, Jorge
2017-01-01
Abstract. Fusing a lower resolution color image with a higher resolution monochrome image is a common practice in medical imaging. By incorporating spatial context and/or improving the signal-to-noise ratio, it provides clinicians with a single frame of the most complete information for diagnosis. In this paper, image fusion is formulated as a convex optimization problem that avoids image decomposition and permits operations at the pixel level. This results in a highly efficient and embarrassingly parallelizable algorithm based on widely available robust and simple numerical methods that realizes the fused image as the global minimizer of the convex optimization problem. PMID:28331885
Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian
2014-03-21
This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Y; Medin, P; Yordy, J
2014-06-01
Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO,more » was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.« less
Lee, Sang-Soo; Lee, Hye Jin; Park, Jin-Mo; Hong, Young Bin; Park, Kee-Duk; Yoo, Jeong Hyun; Koo, Heasoo; Jung, Sung-Chul; Park, Hyung Soon; Lee, Ji Hyun; Lee, Min Goo; Hyun, Young Se; Nakhro, Khriezhanou; Chung, Ki Wha; Choi, Byung-Ok
2013-05-01
Hereditary motor and sensory neuropathy with proximal dominance (HMSN-P) has been reported as a rare type of autosomal dominant adult-onset Charcot-Marie-Tooth disease. HMSN-P has been described only in Japanese descendants since 1997, and the causative gene has not been found. To identify the genetic cause of HMSN-P in a Korean family and determine the pathogenic mechanism. Genetic and observational analysis. Translational research center for rare neurologic disease. Twenty-eight individuals (12 men and 16 women) from a Korean family with HMSN-P. Whole-exome sequencing, linkage analysis, and magnetic resonance imaging. Through whole-exome sequencing, we revealed that HMSN-P is caused by a mutation in the TRK-fused gene (TFG). Clinical heterogeneities were revealed in HMSN-P between Korean and Japanese patients. The patients in the present report showed faster progression of the disease compared with the Japanese patients, and sensory nerve action potentials of the sural nerve were lost in the early stages of the disease. Moreover, tremor and hyperlipidemia were frequently found. Magnetic resonance imaging of the lower extremity revealed a distinct proximal dominant and sequential pattern of muscular involvement with a clearly different pattern than patients with Charcot-Marie-Tooth disease type 1A. Particularly, endoneural blood vessels revealed marked narrowing of the lumen with swollen vesicular endothelial cells. The underlying cause of HMSN-P proves to be a mutation in TFG that lies on chromosome 3q13.2. This disease is not limited to Japanese descendants, and marked narrowing of endoneural blood vessels was noted in the present study. We believe that TFG can affect the peripheral nerve tissue.
Digital holographic image fusion for a larger size object using compressive sensing
NASA Astrophysics Data System (ADS)
Tian, Qiuhong; Yan, Liping; Chen, Benyong; Yao, Jiabao; Zhang, Shihua
2017-05-01
Digital holographic imaging fusion for a larger size object using compressive sensing is proposed. In this method, the high frequency component of the digital hologram under discrete wavelet transform is represented sparsely by using compressive sensing so that the data redundancy of digital holographic recording can be resolved validly, the low frequency component is retained totally to ensure the image quality, and multiple reconstructed images with different clear parts corresponding to a laser spot size are fused to realize the high quality reconstructed image of a larger size object. In addition, a filter combing high-pass and low-pass filters is designed to remove the zero-order term from a digital hologram effectively. The digital holographic experimental setup based on off-axis Fresnel digital holography was constructed. The feasible and comparative experiments were carried out. The fused image was evaluated by using the Tamura texture features. The experimental results demonstrated that the proposed method can improve the processing efficiency and visual characteristics of the fused image and enlarge the size of the measured object effectively.
Polarization-multiplexing ghost imaging
NASA Astrophysics Data System (ADS)
Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu
2018-03-01
A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.
Fusion of the 2nd maxillary molar with the impacted 3rd molar.
Strecha, J; Jurkovic, R; Siebert, T
2012-01-01
Subject matter: The dentist has to deal with complicated cases of fused molars, which are rather rare and morphologically very varied. A wrong or incomplete diagnosis can considerably complicate a planned therapy. The authors describe a case of apical periodontal complication of fused teeth that had to be removed surgically. The upper 2nd molar fused with the impacted 3rd molar and was diagnosed for extraction. Even a careful diagnostic procedure and X-ray image sometimes may not indicate the exact location and mutual position of the fused teeth. The authors make us aware of the possible occurrence of fused roots, and the necessity to inform the patient ahead of time about the course of endodontic or surgical interventions, possible complications and their removal. They describe the positive influence of PRP (platelet rich plasma) in wound healing. In order to establish the exact indication and therapy, they emphasize the importance of using CT imaging diagnostics or a 3D-CT examination (Fig. 7, Ref. 15).
Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents.
Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam
2017-01-13
The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions.
Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents
Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam
2017-01-01
The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions. PMID:28098797
Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei
2016-01-01
Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation. PMID:27649190
Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei
2016-09-15
Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation.
Fusion of infrared and visible images based on saliency scale-space in frequency domain
NASA Astrophysics Data System (ADS)
Chen, Yanfei; Sang, Nong; Dan, Zhiping
2015-12-01
A fusion algorithm of infrared and visible images based on saliency scale-space in the frequency domain was proposed. Focus of human attention is directed towards the salient targets which interpret the most important information in the image. For the given registered infrared and visible images, firstly, visual features are extracted to obtain the input hypercomplex matrix. Secondly, the Hypercomplex Fourier Transform (HFT) is used to obtain the salient regions of the infrared and visible images respectively, the convolution of the input hypercomplex matrix amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale which is equivalent to an image saliency detector are done. The saliency maps are obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. Thirdly, the salient regions are fused with the adoptive weighting fusion rules, and the nonsalient regions are fused with the rule based on region energy (RE) and region sharpness (RS), then the fused image is obtained. Experimental results show that the presented algorithm can hold high spectrum information of the visual image, and effectively get the thermal targets information at different scales of the infrared image.
NASA Technical Reports Server (NTRS)
Harston, Craig; Schumacher, Chris
1992-01-01
Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.
Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images
NASA Astrophysics Data System (ADS)
Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin
2016-10-01
Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.
White, J H; Johnson, A L; Lowndes, N F; Johnston, L H
1991-01-01
By fusing the CDC9 structural gene to the PGK upstream sequences and the CDC9 upstream to lacZ, we showed that the cell cycle expression of CDC9 is largely due to transcriptional regulation. To investigate the role of six ATGATT upstream repeats in CDC9 regulation, synthetic copies of the sequence were attached to a heterologous gene. The repeats stimulated transcription strongly and additively, but, unlike conventional yeast UAS elements, only when present in one orientation. Transcription driven by the repeats declines in cells held at START of the cell cycle or in stationary phase, as occurs with CDC9. However, the repeats by themselves cannot impart cell cycle regulation to a heterologous gene. CDC9 may therefore be controlled by an activating system operating through the repeats that is sensitive to cellular proliferation and a separate mechanism that governs the periodic expression in the cell cycle. Images PMID:1901644
Semantic image segmentation with fused CNN features
NASA Astrophysics Data System (ADS)
Geng, Hui-qiang; Zhang, Hua; Xue, Yan-bing; Zhou, Mian; Xu, Guang-ping; Gao, Zan
2017-09-01
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network (CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field (CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.
Robust video super-resolution with registration efficiency adaptation
NASA Astrophysics Data System (ADS)
Zhang, Xinfeng; Xiong, Ruiqin; Ma, Siwei; Zhang, Li; Gao, Wen
2010-07-01
Super-Resolution (SR) is a technique to construct a high-resolution (HR) frame by fusing a group of low-resolution (LR) frames describing the same scene. The effectiveness of the conventional super-resolution techniques, when applied on video sequences, strongly relies on the efficiency of motion alignment achieved by image registration. Unfortunately, such efficiency is limited by the motion complexity in the video and the capability of adopted motion model. In image regions with severe registration errors, annoying artifacts usually appear in the produced super-resolution video. This paper proposes a robust video super-resolution technique that adapts itself to the spatially-varying registration efficiency. The reliability of each reference pixel is measured by the corresponding registration error and incorporated into the optimization objective function of SR reconstruction. This makes the SR reconstruction highly immune to the registration errors, as outliers with higher registration errors are assigned lower weights in the objective function. In particular, we carefully design a mechanism to assign weights according to registration errors. The proposed superresolution scheme has been tested with various video sequences and experimental results clearly demonstrate the effectiveness of the proposed method.
Bindu, G; Semenov, S
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.
Cesium iodide crystals fused to vacuum tube faceplates
NASA Technical Reports Server (NTRS)
Fleck, H. G.
1964-01-01
A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.
Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889
DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C
2012-06-15
A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.
An Improved Pansharpening Method for Misaligned Panchromatic and Multispectral Data
Jing, Linhai; Tang, Yunwei; Ding, Haifeng
2018-01-01
Numerous pansharpening methods were proposed in recent decades for fusing low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic (PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing tasks. The effect of misregistration between MS and PAN bands on quality of fused products has gained much attention in recent years. An improved method for misaligned MS and PAN imagery is proposed, through two improvements made on a previously published method named RMI (reduce misalignment impact). The performance of the proposed method was assessed by comparing with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian pyramid. Experimental results show that the improved version can reduce spectral distortions of fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar quality indexes with the original RMI method. In addition, the proposed method was evaluated with respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed method is more robust to misalignments between MS and PAN bands than the other methods. PMID:29439502
An Improved Pansharpening Method for Misaligned Panchromatic and Multispectral Data.
Li, Hui; Jing, Linhai; Tang, Yunwei; Ding, Haifeng
2018-02-11
Numerous pansharpening methods were proposed in recent decades for fusing low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic (PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing tasks. The effect of misregistration between MS and PAN bands on quality of fused products has gained much attention in recent years. An improved method for misaligned MS and PAN imagery is proposed, through two improvements made on a previously published method named RMI (reduce misalignment impact). The performance of the proposed method was assessed by comparing with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian pyramid. Experimental results show that the improved version can reduce spectral distortions of fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar quality indexes with the original RMI method. In addition, the proposed method was evaluated with respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed method is more robust to misalignments between MS and PAN bands than the other methods.
A New Approach to Image Fusion Based on Cokriging
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; LeMoigne, Jacqueline; Mount, David M.; Morisette, Jeffrey T.
2005-01-01
We consider the image fusion problem involving remotely sensed data. We introduce cokriging as a method to perform fusion. We investigate the advantages of fusing Hyperion with ALI. The evaluation is performed by comparing the classification of the fused data with that of input images and by calculating well-chosen quantitative fusion quality metrics. We consider the Invasive Species Forecasting System (ISFS) project as our fusion application. The fusion of ALI with Hyperion data is studies using PCA and wavelet-based fusion. We then propose utilizing a geostatistical based interpolation method called cokriging as a new approach for image fusion.
The Study on Grinding Ratio in Form Grinding with White Fused Alumina (WA) Grinding Wheels
NASA Astrophysics Data System (ADS)
Junming, Wang; Jiong, Wang; Deyuan, Lou
2018-03-01
The study is carried out based on an experiment of form grinding spur rack with white fused alumina (WA) grinding wheels. In the experiment, SOV-3020A type tri-axial image mapper is utilized to measure the profile of the tooth space in the rack, and the curve equations between the sectional area of the tooth space and the tooth sequence under different grinding depths are established by nonlinear curve regress using software of origin8.0. Then, it deduces the prediction equations for current grinding ratio and cumulative grinding ratio under different grinding depths. The result shows that the grinding ratio is exponential decline relationship with the increase of the number of the tooth to be ground under the same grinding depth, and the decline speed is fast in the initial stage. With the increase of grinding depth, the grinding ratio increases gradually. The cumulative grinding ratio is about twice as high as the current grinding ratio. Thus, large grinding depth is generally used in rough grinding to improve grinding efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng
2018-01-01
Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.
Bindu, G.; Semenov, S.
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
DeKorver, Kyle A.; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C.
2012-01-01
A cascade of Pd-catalyzed N-to-C allyl transfer–intramolecular ketenimine–[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines. PMID:22667819
2015-07-27
remapped to obtain a dynamic image sequence with a natural color appearance (Hogervorst et al ., 2006 ; Hogervorst & Toet, 2010). 2.1.2 Motion...to enhance the visibility of low‐amplitude temporal (color or location) changes in a standard video sequences (Wadhwa et al ., 2013). The method...filter scheme, which is highly suitable to fuse multispectral imagery (Koren et al ., 1995; Liu et al ., 2001), it can in principle be incorporated into
Benchmarking image fusion system design parameters
NASA Astrophysics Data System (ADS)
Howell, Christopher L.
2013-06-01
A clear and absolute method for discriminating between image fusion algorithm performances is presented. This method can effectively be used to assist in the design and modeling of image fusion systems. Specifically, it is postulated that quantifying human task performance using image fusion should be benchmarked to whether the fusion algorithm, at a minimum, retained the performance benefit achievable by each independent spectral band being fused. The established benchmark would then clearly represent the threshold that a fusion system should surpass to be considered beneficial to a particular task. A genetic algorithm is employed to characterize the fused system parameters using a Matlab® implementation of NVThermIP as the objective function. By setting the problem up as a mixed-integer constraint optimization problem, one can effectively look backwards through the image acquisition process: optimizing fused system parameters by minimizing the difference between modeled task difficulty measure and the benchmark task difficulty measure. The results of an identification perception experiment are presented, where human observers were asked to identify a standard set of military targets, and used to demonstrate the effectiveness of the benchmarking process.
MO-FG-204-02: Reference Image Selection in the Presence of Multiple Scan Realizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, D; Dou, T; Thomas, D
Purpose: Fusing information from multiple correlated realizations (e.g., 4DCT) can improve image quality. This process often involves ill-conditioned and asymmetric nonlinear registration and the proper selection of a reference image is important. This work proposes to examine post-registration variation indirectly for such selection, and develops further insights to reduce the number of cross-registrations needed. Methods: We consider each individual scan as a noisy point in the vicinity of an image manifold, related by motion. Nonrigid registration “transports” a scan along the manifold to the reference neighborhood, and the residual is a surrogate for local variation. To test this conjecture, 10more » thoracic scans from the same session were reconstructed from a recently developed low-dose helical 4DCT protocol. Pairwise registration was repeated bi-directionally (81 times) and fusion was performed with each candidate reference. The fused image quality was assessed with SNR and CNR. Registration residuals in SSD, harmonic energy, and deformation Jacobian behavior were examined. The semi-symmetry is further utilized to reduce the number of registration needed. Results: The comparison of image quality between single image and fused ones identified reduction of local intensity variance as the major contributor of image quality, boosting SNR and CNR by 5 to 7 folds. This observation further suggests the criticality of good agreement across post-registration images. Triangle inequality on the SSD metric provides a proficient upper-bound and surrogate on such disagreement. Empirical observation also confirms that fused images with high residual SSD have lower SNR and CNR than the ones with low or intermediate SSDs. Registration SSD is structurally close enough to symmetry for reduced computation. Conclusion: Registration residual is shown to be a good predictor of post-fusion image quality and can be used to identify good reference centers. Semi-symmetry of the registration residual further reduces computation cost. Supported by in part by NIH R01 CA096679.« less
Demodulation Processes in Auditory Perception.
1992-08-15
not provide a fused image that the listener can process binaurally . 5 A type of dichotic profile has been developed for this study in which the stimulus...the component frequencies between the two ears may allow the i listener to develop a better fused image to be processed i binaurally than in the...listener was seated facing a 3 monitor and computer keyboard (Radio Shack Color Computer II). Signals were presented binaurally via Sennheiser HD414SL
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2018-02-13
In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.
[Experience of Fusion image guided system in endonasal endoscopic surgery].
Wen, Jingying; Zhen, Hongtao; Shi, Lili; Cao, Pingping; Cui, Yonghua
2015-08-01
To review endonasal endoscopic surgeries aided by Fusion image guided system, and to explore the application value of Fusion image guided system in endonasal endoscopic surgeries. Retrospective research. Sixty cases of endonasal endoscopic surgeries aided by Fusion image guided system were analysed including chronic rhinosinusitis with polyp (n = 10), fungus sinusitis (n = 5), endoscopic optic nerve decompression (n = 16), inverted papilloma of the paranasal sinus (n = 9), ossifying fibroma of sphenoid bone (n = 1), malignance of the paranasal sinus (n = 9), cerebrospinal fluid leak (n = 5), hemangioma of orbital apex (n = 2) and orbital reconstruction (n = 3). Sixty cases of endonasal endoscopic surgeries completed successfully without any complications. Fusion image guided system can help to identify the ostium of paranasal sinus, lamina papyracea and skull base. Fused CT-CTA images, or fused MR-MRA images can help to localize the optic nerve or internal carotid arteiy . Fused CT-MR images can help to detect the range of the tumor. It spent (7.13 ± 1.358) minutes for image guided system to do preoperative preparation and the surgical navigation accuracy reached less than 1mm after proficient. There was no device localization problem because of block or head set loosed. Fusion image guided system make endonasal endoscopic surgery to be a true microinvasive and exact surgery. It spends less preoperative preparation time, has high surgical navigation accuracy, improves the surgical safety and reduces the surgical complications.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin
2016-09-01
Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.
On Fusing Recursive Traversals of K-d Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less
ORGANIZATION OF THE nif GENES OF THE NONHETEROCYSTOUS CYANOBACTERIUM TRICHODESMIUM SP. IMS101.
Dominic, Benny; Zani, Sabino; Chen, Yi-Bu; Mellon, Mark T; Zehr, Jonathan P
2000-08-26
An approximately 16-kb fragment of the Trichodesmium sp. IMS101 (a nonheterocystous filamentous cyanobacterium) "conventional"nif gene cluster was cloned and sequenced. The gene organization of the Trichodesmium and Anabaena variabilis vegetative (nif 2) nitrogenase gene clusters spanning the region from nif B to nif W are similar except for the absence of two open reading frames (ORF3 and ORF1) in Trichodesmium. The Trichodesmium nif EN genes encode a fused Nif EN polypeptide that does not appear to be processed into individual Nif E and Nif N polypeptides. Fused nif EN genes were previously found in the A. variabilis nif 2 genes, but we have found that fused nif EN genes are widespread in the nonheterocystous cyanobacteria. Although the gene organization of the nonheterocystous filamentous Trichodesmium nif gene cluster is very similar to that of the A. variabilis vegetative nif 2 gene cluster, phylogenetic analysis of nif sequences do not support close relatedness of Trichodesmium and A. variabilis vegetative (nif 2) nitrogenase genes.
Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori
2013-11-01
An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies. Copyright © 2013 Elsevier B.V. All rights reserved.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.
Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G
2013-12-01
To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.
UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)
2001-01-01
This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.
A multi-focus image fusion method via region mosaicking on Laplacian pyramids
Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong
2018-01-01
In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912
Dim target detection method based on salient graph fusion
NASA Astrophysics Data System (ADS)
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.
Maruri-López, Israel; Rodríguez-Kessler, Margarita; Rodríguez-Hernández, Aída Araceli; Becerra-Flora, Alicia; Olivares-Grajales, Juan Elías; Jiménez-Bremont, Juan Francisco
2014-05-01
Polyamines are low molecular weight aliphatic compounds involved in various biochemical, cellular and physiological processes in all organisms. In plants, genes involved in polyamine biosynthesis and catabolism are regulated at transcriptional, translational, and posttranslational level. In this research, we focused on the characterization of a PEST sequence (rich in proline, glutamic acid, serine, and threonine) of the maize spermine synthase 1 (ZmSPMS1). To this aim, 123 bp encoding 40 amino acids of the C-terminal region of the ZmSPMS1 enzyme containing the PEST sequence were fused to the GUS reporter gene. This fusion was evaluated in Arabidopsis thaliana transgenic lines and onion monolayers transient expression system. The ZmSPMS1 PEST sequence leads to specific degradation of the GUS reporter protein. It is suggested that the 26S proteasome may be involved in GUS::PEST fusion degradation in both onion and Arabidopsis. The PEST sequences appear to be present in plant spermine synthases, mainly in monocots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; Abdalla, Said
2011-06-10
Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of co-enriched receptor proteins immobilized on agarose beads also detected a high FRET efficiency of 24.0%. Taken together confocal FRET imaging revealed efficient heterodimerization of co-enriched and cellular AT1/B2R, and GRK-dependent co-internalization of the AT1/B2R heterodimer. Copyright © 2011 Elsevier Inc. All rights reserved.
Multispectral image fusion using neural networks
NASA Technical Reports Server (NTRS)
Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.
1990-01-01
A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.
A Remote Sensing Image Fusion Method based on adaptive dictionary learning
NASA Astrophysics Data System (ADS)
He, Tongdi; Che, Zongxi
2018-01-01
This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.
Fourier domain image fusion for differential X-ray phase-contrast breast imaging.
Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne
2017-04-01
X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.
Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M
2016-08-01
Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images
Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni
2018-01-01
Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images. PMID:29614745
Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.
Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni
2018-03-31
Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Li, Huafeng; Yu, Zhengtao; Kong, Yingchun
2015-07-01
An efficient multifocus image fusion scheme in nonsubsampled contourlet transform (NSCT) domain is proposed. Based on the property of optical imaging and the theory of defocused image, we present a selection principle for lowpass frequency coefficients and also investigate the connection between a low-frequency image and the defocused image. Generally, the NSCT algorithm decomposes detail image information indwells in different scales and different directions in the bandpass subband coefficient. In order to correctly pick out the prefused bandpass directional coefficients, we introduce multiscale curvature, which not only inherits the advantages of windows with different sizes, but also correctly recognizes the focused pixels from source images, and then develop a new fusion scheme of the bandpass subband coefficients. The fused image can be obtained by inverse NSCT with the different fused coefficients. Several multifocus image fusion methods are compared with the proposed scheme. The experimental results clearly indicate the validity and superiority of the proposed scheme in terms of both the visual qualities and the quantitative evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höhm, S.; Herzlieb, M.; Rosenfeld, A.
2013-12-16
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, K-H; Lee, D-W; Choe, B-Y
2015-06-15
Purpose: The objectives of this study are to develop an magnetic resonance imaging and spectroscopy (MRI-MRS) fused phantom along with the inserts for metabolite quantification and to conduct quantitative analysis and evaluation of the layered vials of brain-mimicking solution for quality assurance (QA) performance, according to the localization sequence. Methods: The outer cylindrical phantom body is made of acrylic materials. The section other than where the inner vials are located was filled with copper sulfate and diluted with water so as to reduce the T1 relaxation time. Sodium chloride was included to provide conductivity similar to the human body. Allmore » measurements of MRI and MRS were made using a 3.0 T scanner (Achiva Tx 3.0 T; Philips Medical Systems, Netherlands). The MRI scan parameters were as follows: (1) spin echo (SE) T1-weighted image: repetition time (TR), 500ms; echo time (TE), 20ms; matrix, 256×256; field of view (FOV), 250mm; gap, 1mm; number of signal averages (NSA), 1; (2) SE T2-weighted image: TR, 2,500 ms; TE, 80 ms; matrix, 256×256; FOV, 250mm; gap, 1mm; NSA, 1; 23 slice images were obtained with slice thickness of 5mm. The water signal of each volume of interest was suppressed by variable pulse power and optimized relaxation delays (VAPOR) applied before the scan. By applying a point-resolved spectroscopy sequence, the MRS scan parameters were as follows: voxel size, 0.8×0.8×0.8 cm{sup 3}; TR, 2,000ms; TE, 35ms; NSA, 128. Results: Using the fused phantom, the results of measuring MRI factors were: geometric distortion, <2% and ±2 mm; image intensity uniformity, 83.09±1.33%; percent-signal ghosting, 0.025±0.004; low-contrast object detectability, 27.85±0.80. In addition, the signal-to-noise ratio of N-acetyl-aspartate was consistently high (42.00±5.66). Conclusion: The MRI-MRS QA factors obtained simultaneously using the phantom can facilitate evaluation of both images and spectra, and provide guidelines for obtaining MRI and MRS QA factors simultaneously. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)« less
Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.
Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu
2017-11-24
The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.
Yokoo, Nozomi; Togashi, Takanari; Umetsu, Mitsuo; Tsumoto, Kouhei; Hattori, Takamitsu; Nakanishi, Takeshi; Ohara, Satoshi; Takami, Seiichi; Naka, Takashi; Abe, Hiroya; Kumagai, Izumi; Adschiri, Tadafumi
2010-01-14
Using an artificial peptide library, we have identified a peptide with affinity for ZnO materials that could be used to selectively accumulate ZnO particles on polypropylene-gold plates. In this study, we fused recombinant green fluorescent protein (GFP) with this ZnO-binding peptide (ZnOBP) and then selectively immobilized the fused protein on ZnO particles. We determined an appropriate condition for selective immobilization of recombinant GFP, and the ZnO-binding function of ZnOBP-fused GFP was examined by elongating the ZnOBP tag from a single amino acid to the intact sequence. The fusion of ZnOBP with GFP enabled specific adsorption of GFP on ZnO substrates in an appropriate solution, and thermodynamic studies showed a predominantly enthalpy-dependent electrostatic interaction between ZnOBP and the ZnO surface. The ZnOBP's binding affinity for the ZnO surface increased first in terms of material selectivity and then in terms of high affinity as the GFP-fused peptide was elongated from a single amino acid to intact ZnOBP. We concluded that the enthalpy-dependent interaction between ZnOBP and ZnO was influenced by the presence of not only charged amino acids but also their surrounding residues in the ZnOBP sequence.
Paisitkriangkrai, Sakrapee; Quek, Kelly; Nievergall, Eva; Jabbour, Anissa; Zannettino, Andrew; Kok, Chung Hoow
2018-06-07
Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing. Notably, Co-fuse is based on pattern mining and statistical analysis which enables the identification of hidden patterns of recurrent fusion genes. In this report, we show that Co-fuse can be used to identify 2 distinct groups within a set of 49 leukemic cell lines based on their recurrent fusion genes: a multiple myeloma (MM) samples-enriched cluster and an acute myeloid leukemia (AML) samples-enriched cluster. Our experimental results further demonstrate that Co-fuse can identify known driver fusion genes (e.g., IGH-MYC, IGH-WHSC1) in MM, when compared to AML samples, indicating the potential of Co-fuse to aid the discovery of yet unknown driver fusion genes through cohort comparisons. Additionally, using a 272 primary glioma sample RNA-seq dataset, Co-fuse was able to validate recurrent fusion genes, further demonstrating the power of this analysis tool to identify recurrent fusion genes. Taken together, Co-fuse is a powerful new analysis tool that can be readily applied to large RNA-seq datasets, and may lead to the discovery of new disease subgroups and potentially new driver genes, for which, targeted therapies could be developed. The Co-fuse R source code is publicly available at https://github.com/sakrapee/co-fuse .
[An improved medical image fusion algorithm and quality evaluation].
Chen, Meiling; Tao, Ling; Qian, Zhiyu
2009-08-01
Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.
Land mine detection using multispectral image fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-03-29
Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less
Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P
2004-11-01
Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.
Multifocus watermarking approach based on discrete cosine transform.
Waheed, Safa Riyadh; Alkawaz, Mohammed Hazim; Rehman, Amjad; Almazyad, Abdulaziz S; Saba, Tanzila
2016-05-01
Image fusion process consolidates data and information from various images of same sight into a solitary image. Each of the source images might speak to a fractional perspective of the scene, and contains both "pertinent" and "immaterial" information. In this study, a new image fusion method is proposed utilizing the Discrete Cosine Transform (DCT) to join the source image into a solitary minimized image containing more exact depiction of the sight than any of the individual source images. In addition, the fused image comes out with most ideal quality image without bending appearance or loss of data. DCT algorithm is considered efficient in image fusion. The proposed scheme is performed in five steps: (1) RGB colour image (input image) is split into three channels R, G, and B for source images. (2) DCT algorithm is applied to each channel (R, G, and B). (3) The variance values are computed for the corresponding 8 × 8 blocks of each channel. (4) Each block of R of source images is compared with each other based on the variance value and then the block with maximum variance value is selected to be the block in the new image. This process is repeated for all channels of source images. (5) Inverse discrete cosine transform is applied on each fused channel to convert coefficient values to pixel values, and then combined all the channels to generate the fused image. The proposed technique can potentially solve the problem of unwanted side effects such as blurring or blocking artifacts by reducing the quality of the subsequent image in image fusion process. The proposed approach is evaluated using three measurement units: the average of Q(abf), standard deviation, and peak Signal Noise Rate. The experimental results of this proposed technique have shown good results as compared with older techniques. © 2016 Wiley Periodicals, Inc.
High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)
2001-01-01
A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.
Murthy, S C; Bhat, G P; Thimmappaya, B
1985-01-01
A molecular dissection of the adenovirus EIIA early (E) promoter was undertaken to study the sequence elements required for transcription and to examine the nucleotide sequences, if any, specific for its trans-activation by the viral pre-early EIA gene product. A chimeric gene in which the EIIA-E promoter region fused to the coding sequences of the bacterial chloramphenicol acetyltransferase (CAT) gene was used in transient assays to identify the transcriptional control regions. Deletion mapping studies revealed that the upstream DNA sequences up to -86 were sufficient for the optimal basal level transcription in HeLa cells and also for the EIA-induced transcription. A series of linker-scanning (LS) mutants were constructed to precisely identify the nucleotide sequences that control transcription. Analysis of these LS mutants allowed us to identify two regions of the promoter that are critical for the EIIA-E transcription. These regions are located between -29 and -21 (region I) and between -82 and -66 (region II). Mutations in region I affected initiation and appeared functionally similar to the "TATA" sequence of the commonly studied promoters. To examine whether or not the EIIA-E promoter contained DNA sequences specific for the trans-activation by the EIA, the LS mutants were analyzed in a cotransfection assay containing a plasmid carrying the EIA gene. CAT activity of all of the LS mutants was induced by the EIA gene in this assay, suggesting that the induction of transcription of the EIIA-E promoter by the EIA gene is not sequence-specific. Images PMID:3857577
Bae, Y M; Holmgren, E; Crawford, I P
1989-01-01
We determined the DNA sequence of the Rhizobium meliloti gene encoding anthranilate synthase, the first enzyme of the tryptophan pathway. Sequences similar to those seen for the two subunits of the enzyme as found in all other procaryotic species studied are present in a single open reading frame of 729 codons. This apparent gene fusion joins the C terminus of the large subunit (TrpE) to the N terminus of the small subunit (TrpG) through a short connecting segment. We designate the fused gene trpE(G). The gene is flanked by a typical rho-independent terminator at the 3' end and a complex regulatory region at the 5' end resembling those of operons under transcriptional attenuation control. The location of the promoter was determined by S1 nuclease protection, using Rhizobium mRNA. Although this promoter was inactive in Escherichia coli, mutations eliciting activity were easily obtained. One of these was a C----T change at position -9 in the -10 region. The +1 position of the mRNA is the first base of the initiation codon of the leader peptide, implying that unlike trpE(G), which has a normal Shine-Dalgarno sequence, the leader peptide gene lacks a ribosome-binding site. Images PMID:2656657
Constancy and diversity in the flavivirus fusion peptide.
Seligman, Stephen J
2008-02-14
Flaviviruses include the mosquito-borne dengue, Japanese encephalitis, yellow fever and West Nile and the tick-borne encephalitis viruses. They are responsible for considerable world-wide morbidity and mortality. Viral entry is mediated by a conserved fusion peptide containing 16 amino acids located in domain II of the envelope protein E. Highly orchestrated conformational changes initiated by exposure to acidic pH accompany the fusion process and are important factors limiting amino acid changes in the fusion peptide that still permit fusion with host cell membranes in both arthropod and vertebrate hosts. The cell-fusing related agents, growing only in mosquitoes or insect cell lines, possess a different homologous peptide. Analysis of 46 named flaviviruses deposited in the Entrez Nucleotides database extended the constancy in the canonical fusion peptide sequences of mosquito-borne, tick-borne and viruses with no known vector to include more recently-sequenced viruses. The mosquito-borne signature amino acid, G104, was also found in flaviviruses with no known vector and with the cell-fusion related viruses. Despite the constancy in the canonical sequences in pathogenic flaviviruses, mutations were surprisingly frequent with a 27% prevalence of nonsynonymous mutations in yellow fever virus fusion peptide sequences, and 0 to 7.4% prevalence in the others. Six of seven yellow fever patients whose virus had fusion peptide mutations died. In the cell-fusing related agents, not enough sequences have been deposited to estimate reliably the prevalence of fusion peptide mutations. However, the canonical sequences homologous to the fusion peptide and the pattern of disulfide linkages in protein E differed significantly from the other flaviviruses. The constancy of the canonical fusion peptide sequences in the arthropod-borne flaviviruses contrasts with the high prevalence of mutations in most individual viruses. The discrepancy may be the result of a survival advantage accompanying sequence diversity (quasispecies) involving the fusion peptide. Limited clinical data with yellow fever virus suggest that the presence of fusion peptide mutants is not associated with a decreased case fatality rate. The cell-fusing related agents may have substantial differences from other flaviviruses in their mechanism of viral entry into the host cell.
Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair
Kaya, F.; Mannioui, A.; Chesneau, A.; Sekizar, S.; Maillard, E.; Ballagny, C.; Houel-Renault, L.; Du Pasquier, D.; Bronchain, O.; Holtzmann, I.; Desmazieres, A.; Thomas, J.-L.; Demeneix, B. A.; Brophy, P. J.; Zalc, B.; Mazabraud, A.
2012-01-01
Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the central nervous system (CNS). In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the E. coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous pro-drug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair. PMID:22973012
Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.
Warfield, Simon K; Haker, Steven J; Talos, Ion-Florin; Kemper, Corey A; Weisenfeld, Neil; Mewes, Andrea U J; Goldberg-Zimring, Daniel; Zou, Kelly H; Westin, Carl-Fredrik; Wells, William M; Tempany, Clare M C; Golby, Alexandra; Black, Peter M; Jolesz, Ferenc A; Kikinis, Ron
2005-04-01
During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women's Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy.
Clinical oncologic applications of PET/MRI: a new horizon
Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R
2014-01-01
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986
An integrated use of topography with RSI in gully mapping, Shandong Peninsula, China.
He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed.
An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China
He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed. PMID:25302333
Molzan, Manuela; Ottmann, Christian
2013-03-01
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.
Lee, Minsu; Shin, Su-Jin; Oh, Young Taik; Jung, Dae Chul; Cho, Nam Hoon; Choi, Young Deuk; Park, Sung Yoon
2017-09-01
To investigate the utility of fused high b value diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) for evaluating depth of invasion in bladder cancer. We included 62 patients with magnetic resonance imaging (MRI) and surgically confirmed urothelial carcinoma in the urinary bladder. An experienced genitourinary radiologist analysed the depth of invasion (T stage <2 or ≥2) using T2WI, DWI, T2WI plus DWI, and fused DWI and T2WI (fusion MRI). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were investigated. Area under the curve (AUC) was analysed to identify T stage ≥2. The rate of patients with surgically confirmed T stage ≥2 was 41.9% (26/62). Sensitivity, specificity, PPV, NPV and accuracy were 50.0%, 55.6%, 44.8%, 60.6% and 53.2%, respectively, with T2WI; 57.7%, 77.8%, 65.2%, 71.8% and 69.4%, respectively, with DWI; 65.4%, 80.6%, 70.8%, 76.3% and 74.2%, respectively, with T2WI plus DWI and 80.8%, 77.8%, 72.4%, 84.9% and 79.0%, respectively, with fusion MRI. AUC was 0.528 with T2WI, 0.677 with DWI, 0.730 with T2WI plus DWI and 0.793 with fusion MRI for T stage ≥2. Fused high b value DWI and T2WI may be a promising non-contrast MRI technique for assessing depth of invasion in bladder cancer. • Accuracy of fusion MRI was 79.0% for T stage ≥2 in bladder cancer. • AUC of fusion MRI was 0.793 for T stage ≥2 in bladder cancer. • Diagnostic performance of fusion MRI was comparable with T2WI plus DWI. • As a non-contrast MRI technique, fusion MRI is useful for bladder cancer.
Image-fusion of MR spectroscopic images for treatment planning of gliomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Jenghwa; Thakur, Sunitha; Perera, Gerard
2006-01-15
{sup 1}H magnetic resonance spectroscopic imaging (MRSI) can improve the accuracy of target delineation for gliomas, but it lacks the anatomic resolution needed for image fusion. This paper presents a simple protocol for fusing simulation computer tomography (CT) and MRSI images for glioma intensity-modulated radiotherapy (IMRT), including a retrospective study of 12 patients. Each patient first underwent whole-brain axial fluid-attenuated-inversion-recovery (FLAIR) MRI (3 mm slice thickness, no spacing), followed by three-dimensional (3D) MRSI measurements (TE/TR: 144/1000 ms) of a user-specified volume encompassing the extent of the tumor. The nominal voxel size of MRSI ranged from 8x8x10 mm{sup 3} to 12x12x10more » mm{sup 3}. A system was developed to grade the tumor using the choline-to-creatine (Cho/Cr) ratios from each MRSI voxel. The merged MRSI images were then generated by replacing the Cho/Cr value of each MRSI voxel with intensities according to the Cho/Cr grades, and resampling the poorer-resolution Cho/Cr map into the higher-resolution FLAIR image space. The FUNCTOOL processing software was also used to create the screen-dumped MRSI images in which these data were overlaid with each FLAIR MRI image. The screen-dumped MRSI images were manually translated and fused with the FLAIR MRI images. Since the merged MRSI images were intrinsically fused with the FLAIR MRI images, they were also registered with the screen-dumped MRSI images. The position of the MRSI volume on the merged MRSI images was compared with that of the screen-dumped MRSI images and was shifted until agreement was within a predetermined tolerance. Three clinical target volumes (CTVs) were then contoured on the FLAIR MRI images corresponding to the Cho/Cr grades. Finally, the FLAIR MRI images were fused with the simulation CT images using a mutual-information algorithm, yielding an IMRT plan that simultaneously delivers three different dose levels to the three CTVs. The image-fusion protocol was tested on 12 (six high-grade and six low-grade) glioma patients. The average agreement of the MRSI volume position on the screen-dumped MRSI images and the merged MRSI images was 0.29 mm with a standard deviation of 0.07 mm. Of all the voxels with Cho/Cr grade one or above, the distribution of Cho/Cr grade was found to correlate with the glioma grade from pathologic finding and is consistent with literature results indicating Cho/Cr elevation as a marker for malignancy. In conclusion, an image-fusion protocol was developed that successfully incorporates MRSI information into the IMRT treatment plan for glioma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzibak, A; Loblaw, A; Morton, G
Purpose: To investigate the usefulness of metal artifact reduction in CT images of patients with bilateral hip prostheses (BHP) for contouring the prostate and determine if the inclusion of MR images provides additional benefits. Methods: Five patients with BHP were CT scanned using our clinical protocol (140kV, 300mAs, 3mm slices, 1.5mm increment, Philips Medical Systems, OH). Images were reconstructed with the orthopaedic metal artifact reduction (O-MAR) algorithm. MRI scanning was then performed (1.5T, GE Healthcare, WI) with a flat table-top (T{sub 2}-weighted, inherent body coil, FRFSE, 3mm slices with 0mm gap). All images were transferred to Pinnacle (Version 9.2, Philipsmore » Medical Systems). For each patient, two data sets were produced: one containing the O-MAR-corrected CT images and another containing fused MRI and O-MAR-corrected CT images. Four genito-urinary radiation oncologists contoured the prostate of each patient on the O-MAR-corrected CT data. Two weeks later, they contoured the prostate on the fused data set, blinded to all other contours. During each contouring session, the oncologists reported their confidence in the contours (1=very confident, 3=not confident) and the contouring difficulty that they experienced (1=really easy, 4=very challenging). Prostate volumes were computed from the contours and the conformity index was used to evaluate inter-observer variability. Results: Larger prostate volumes were found on the O-MAR-corrected CT set than on the fused set (p< 0.05, median=36.9cm{sup 3} vs. 26.63 cm{sup 3}). No significant differences were noted in the inter-observer variability between the two data sets (p=0.3). Contouring difficulty decreased with the addition of MRI (p<0.05) while the radiation oncologists reported more confidence in their contours when MRI was fused with the O-MAR-corrected CT data (p<0.05). Conclusion: This preliminary work demonstrated that, while O-MAR correction to CT images improves visualization of anatomy, the addition of MRI enhanced the oncologists’ confidence in contouring the prostate in patients with BHP.« less
A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface.
Buser, Dominik P; Schleicher, Kai D; Prescianotto-Baschong, Cristina; Spiess, Martin
2018-06-18
Retrograde transport of membranes and proteins from the cell surface to the Golgi and beyond is essential to maintain homeostasis, compartment identity, and physiological functions. To study retrograde traffic biochemically, by live-cell imaging or by electron microscopy, we engineered functionalized anti-GFP nanobodies (camelid VHH antibody domains) to be bacterially expressed and purified. Tyrosine sulfation consensus sequences were fused to the nanobody for biochemical detection of trans -Golgi arrival, fluorophores for fluorescence microscopy and live imaging, and APEX2 (ascorbate peroxidase 2) for electron microscopy and compartment ablation. These functionalized nanobodies are specifically captured by GFP-modified reporter proteins at the cell surface and transported piggyback to the reporters' homing compartments. As an application of this tool, we have used it to determine the contribution of adaptor protein-1/clathrin in retrograde transport kinetics of the mannose-6-phosphate receptors from endosomes back to the trans -Golgi network. Our experiments establish functionalized nanobodies as a powerful tool to demonstrate and quantify retrograde transport pathways.
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
NASA Astrophysics Data System (ADS)
Liu, Zhanwen; Feng, Yan; Chen, Hang; Jiao, Licheng
2017-10-01
A novel and effective image fusion method is proposed for creating a highly informative and smooth surface of fused image through merging visible and infrared images. Firstly, a two-scale non-subsampled shearlet transform (NSST) is employed to decompose the visible and infrared images into detail layers and one base layer. Then, phase congruency is adopted to extract the saliency maps from the detail layers and a guided filtering is proposed to compute the filtering output of base layer and saliency maps. Next, a novel weighted average technique is used to make full use of scene consistency for fusion and obtaining coefficients map. Finally the fusion image was acquired by taking inverse NSST of the fused coefficients map. Experiments show that the proposed approach can achieve better performance than other methods in terms of subjective visual effect and objective assessment.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
Single molecule FRET investigation of pressure-driven unfolding of cold shock protein A
NASA Astrophysics Data System (ADS)
Schneider, Sven; Paulsen, Hauke; Reiter, Kim Colin; Hinze, Erik; Schiene-Fischer, Cordelia; Hübner, Christian G.
2018-03-01
We demonstrate that fused silica capillaries are suitable for single molecule fluorescence resonance energy transfer (smFRET) measurements at high pressure with an optical quality comparable to the measurement on microscope coverslips. Therefore, we optimized the imaging conditions in a standard square fused silica capillary with an adapted arrangement and evaluated the performance by imaging the focal volume, fluorescence correlation spectroscopy benchmarks, and FRET measurements. We demonstrate single molecule FRET measurements of cold shock protein A unfolding at a pressure up to 2000 bars and show that the unfolded state exhibits an expansion almost independent of pressure.
A new fusion protein platform for quantitatively measuring activity of multiple proteases
2014-01-01
Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity. PMID:24649897
Gene network inference by fusing data from diverse distributions
Žitnik, Marinka; Zupan, Blaž
2015-01-01
Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequencing, often violates this assumption. Furthermore, when collected data arise from multiple related but otherwise nonidentical distributions, their underlying networks are likely to have common features. New principled statistical approaches are needed that can deal with different data distributions and jointly consider collections of datasets. Results: We present FuseNet, a Markov network formulation that infers networks from a collection of nonidentically distributed datasets. Our approach is computationally efficient and general: given any number of distributions from an exponential family, FuseNet represents model parameters through shared latent factors that define neighborhoods of network nodes. In a simulation study, we demonstrate good predictive performance of FuseNet in comparison to several popular graphical models. We show its effectiveness in an application to breast cancer RNA-sequencing and somatic mutation data, a novel application of graphical models. Fusion of datasets offers substantial gains relative to inference of separate networks for each dataset. Our results demonstrate that network inference methods for non-Gaussian data can help in accurate modeling of the data generated by emergent high-throughput technologies. Availability and implementation: Source code is at https://github.com/marinkaz/fusenet. Contact: blaz.zupan@fri.uni-lj.si Supplementary information: Supplementary information is available at Bioinformatics online. PMID:26072487
Multispectral image fusion for detecting land mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-04-01
This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less
PET-CT image fusion using random forest and à-trous wavelet transform.
Seal, Ayan; Bhattacharjee, Debotosh; Nasipuri, Mita; Rodríguez-Esparragón, Dionisio; Menasalvas, Ernestina; Gonzalo-Martin, Consuelo
2018-03-01
New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. Copyright © 2017 John Wiley & Sons, Ltd.
Image Fusion of CT and MR with Sparse Representation in NSST Domain
Qiu, Chenhui; Wang, Yuanyuan; Zhang, Huan
2017-01-01
Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST) domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR-) based approach. And the dynamic group sparsity recovery (DGSR) algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation. PMID:29250134
Image Fusion of CT and MR with Sparse Representation in NSST Domain.
Qiu, Chenhui; Wang, Yuanyuan; Zhang, Huan; Xia, Shunren
2017-01-01
Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST) domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR-) based approach. And the dynamic group sparsity recovery (DGSR) algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation.
Means for limiting and ameliorating electrode shorting
Van Konynenburg, Richard A.; Farmer, Joseph C.
1999-01-01
A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.
Ilk, Nicola; Völlenkle, Christine; Egelseer, Eva M.; Breitwieser, Andreas; Sleytr, Uwe B.; Sára, Margit
2002-01-01
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices. PMID:12089001
Song, Kyu-Ho; Kim, Sang-Young; Lee, Do-Wan; Jung, Jin-Young; Lee, Jung-Hoon; Baek, Hyeon-Man; Choe, Bo-Young
2015-11-30
Magnetic resonance imaging and spectroscopy (MRI-MRS) is a useful tool for the identification and evaluation of chemical changes in anatomical regions. Quality assurance (QA) is performed in either images or spectra using QA phantom. Therefore, consistent and uniform technical MRI-MRS QA is crucial. Here we developed an MRI-MRS fused phantom along with the inserts for metabolite quantification to simultaneously optimize QA parameters for both MRI and MRS. T1- and T2-weighted images were obtained and MRS was performed with point-resolved spectroscopy. Using the fused phantom, the results of measuring MRI factors were: geometric distortion, <2% and ± 2 mm; image intensity uniformity, 83.09 ± 1.33%; percent-signal ghosting, 0.025 ± 0.004; low-contrast object detectability, 27.85 ± 0.80. In addition, the signal-to-noise ratio of N-acetyl-aspartate was consistently high (42.00 ± 5.66). In previous studies, MR phantoms could not obtain information from both images and spectra in the MR scanner simultaneously. Here we designed and developed a phantom for accurate and consistent QA within the acceptance range. It is important to take into account variations in the QA value using the MRI-MRS phantom, when comparing to other clinical or research MR scanners. The MRI-MRS QA factors obtained simultaneously using the phantom can facilitate evaluation of both images and spectra, and provide guidelines for obtaining MRI and MRS QA factors simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical Performance Modeling of FUSE Telescope Mirror
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren
2000-01-01
We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence systems or Legendre-Fourier polynomials for grazing incidence systems. It removes low order terms from the metrology data, calculates statistical ACV or PSD functions, and fits these data to OSAC models for the scatter analysis. In this paper we briefly describe the laboratory image testing of FUSE spare mirror performed in the near and vacuum ultraviolet at John Hopkins University and OSAC modeling of the test setup performed at NASA/GSFC. The test setup is a double-pass configuration consisting of a Hg discharge source, the FUSE off-axis parabolic mirror under test, an autocollimating flat mirror, and a tomographic imaging detector. Two additional, small fold flats are used in the optical train to accommodate the light source and the detector. The modeling is based on Zernike fitting and PSD analysis of surface metrology data measured by both the mirror vendor (Tinsley) and JHU. The results of our models agree well with the laboratory imaging data, thus validating our theoretical model. Finally, we predict the imaging performance of FUSE mirrors in their flight configuration at far-ultraviolet wavelengths.
Designed Proteins as Novel Imaging Reagents in Living Escherichia coli.
Pratt, Susan E; Speltz, Elizabeth B; Mochrie, Simon G J; Regan, Lynne
2016-09-02
Fluorescence imaging is a powerful tool to study protein function in living cells. Here, we introduce a novel imaging strategy that is fully genetically encodable, does not require the use of exogenous substrates, and adds a minimally disruptive tag to the protein of interest (POI). Our method was based on a set of designed tetratricopeptide repeat affinity proteins (TRAPs) that specifically and reversibly interact with a short, extended peptide tag. We co-expressed the TRAPs fused to fluorescent proteins (FPs) and the peptide tags fused to the POIs. We illustrated the method using the Escherichia coli protein FtsZ and showed that our system could track distinct FtsZ structures under both low and high expression conditions in live cells. We anticipate that our imaging strategy will be a useful tool for imaging the subcellular localization of many proteins, especially those recalcitrant to imaging by direct tagging with FPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C
2006-01-01
Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340
Ultrasound- and MRI-Guided Prostate Biopsy
... which the MR images are fused with the real-time ultrasound images — an approach known as MRI/TRUS ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...
Breast imaging with ultrasound tomography: update on a comparative study with MR
NASA Astrophysics Data System (ADS)
Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa
2011-03-01
The objective of this study is to present imaging parameters and display thresholds of an ultrasound tomography (UST) prototype in order to demonstrate analogous visualization of overall breast anatomy and lesions relative to magnetic resonance (MR). Thirty-six women were imaged with MR and our UST prototype. The UST scan generated sound speed, attenuation, and reflection images and were subjected to variable thresholds then fused together into a single UST image. Qualitative and quantitative comparisons of MR and UST images were utilized to identify anatomical similarities and mass characteristics. Overall, UST demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MR without the use of IV contrast. For optimal visualization, fused images utilized thresholds of 1.46+/-0.1 km/s for sound speed to represent architectural features of the breast including parenchyma. An arithmetic combination of images using the logical .AND. and .OR. operators, along with thresholds of 1.52+/-0.03 km/s for sound speed and 0.16+/-0.04 dB/cm for attenuation, allowed for mass detection and characterization similar to MR.
Engineered proteins with PUF scaffold to manipulate RNA metabolism
Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.
2013-01-01
Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364
Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R
1988-01-01
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343
NASA Astrophysics Data System (ADS)
Mu, Wei; Qi, Jin; Lu, Hong; Schabath, Matthew; Balagurunathan, Yoganand; Tunali, Ilke; Gillies, Robert James
2018-02-01
Purpose: Investigate the ability of using complementary information provided by the fusion of PET/CT images to predict immunotherapy response in non-small cell lung cancer (NSCLC) patients. Materials and methods: We collected 64 patients diagnosed with primary NSCLC treated with anti PD-1 checkpoint blockade. Using PET/CT images, fused images were created following multiple methodologies, resulting in up to 7 different images for the tumor region. Quantitative image features were extracted from the primary image (PET/CT) and the fused images, which included 195 from primary images and 1235 features from the fusion images. Three clinical characteristics were also analyzed. We then used support vector machine (SVM) classification models to identify discriminant features that predict immunotherapy response at baseline. Results: A SVM built with 87 fusion features and 13 primary PET/CT features on validation dataset had an accuracy and area under the ROC curve (AUROC) of 87.5% and 0.82, respectively, compared to a model built with 113 original PET/CT features on validation dataset 78.12% and 0.68. Conclusion: The fusion features shows better ability to predict immunotherapy response prediction compared to individual image features.
NASA Astrophysics Data System (ADS)
Kim, Jongyoun; Hogue, Terri S.
2012-01-01
The current study investigates a method to provide land surface parameters [i.e., land surface temperature (LST) and normalized difference vegetation index (NDVI)] at a high spatial (˜30 and 60 m) and temporal (daily and 8-day) resolution by combining advantages from Landsat and moderate-resolution imaging spectroradiometer (MODIS) satellites. We adopt a previously developed subtraction method that merges the spatial detail of higher-resolution imagery (Landsat) with the temporal change observed in coarser or moderate-resolution imagery (MODIS). Applying the temporal difference between MODIS images observed at two different dates to a higher-resolution Landsat image allows prediction of a combined or fused image (Landsat+MODIS) at a future date. Evaluation of the resultant merged products is undertaken within the Southeastern Arizona region where data is available from a range of flux tower sites. The Landsat+MODIS fused products capture the raw Landsat values and also reflect the MODIS temporal variation. The predicted Landsat+MODIS LST improves mean absolute error around 5°C at the more heterogeneous sites compared to the original satellite products. The fused Landsat+MODIS NDVI product also shows good correlation to ground-based data and is relatively consistent except during the acute (monsoon) growing season. The sensitivity of the fused product relative to temporal gaps in Landsat data appears to be more affected by uncertainty associated with regional precipitation and green-up, than the length of the gap associated with Landsat viewing, suggesting the potential to use a minimal number of original Landsat images during relatively stable land surface and climate conditions. Our extensive validation yields insight on the ability of the proposed method to integrate multiscale platforms and the potential for reducing costs associated with high-resolution satellite systems (e.g., SPOT, QuickBird, IKONOS).
Hua, Yun; Shun, Tong Ying; Strock, Christopher J.
2014-01-01
Abstract The androgen receptor–transcriptional intermediary factor 2 (AR-TIF2) positional protein–protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) “prey” and TIF2-green fluorescent protein (GFP) “bait” components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active Compounds (LOPAC) set for compounds that inhibited AR-TIF2 PPI formation or disrupted preexisting complexes. Eleven modulators of steroid family nuclear receptors (NRs) and 6 non-NR ligands inhibited AR-TIF2 PPI formation, and 10 disrupted preexisting complexes. The hits appear to be either AR antagonists or nonspecific inhibitors of NR activation and trafficking. Given that the LOPAC set represents such a small and restricted biological and chemical diversity, it is anticipated that screening a much larger and more diverse compound library will be required to find AR-TIF2 PPI inhibitors/disruptors. The AR-TIF2 protein–protein interaction biosensor (PPIB) approach offers significant promise for identifying molecules with potential to modulate AR transcriptional activity in a cell-specific manner that is distinct from the existing antiandrogen drugs that target AR binding or production. Small molecules that disrupt AR signaling at the level of AR-TIF2 PPIs may also overcome the development of resistance and progression to castration-resistant prostate cancer. PMID:25181412
Time efficient Gabor fused master slave optical coherence tomography
NASA Astrophysics Data System (ADS)
Cernat, Ramona; Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian
2018-02-01
In this paper the benefits in terms of operation time that Master/Slave (MS) implementation of optical coherence tomography can bring in comparison to Gabor fused (GF) employing conventional fast Fourier transform based OCT are presented. The Gabor Fusion/Master Slave Optical Coherence Tomography architecture proposed here does not need any data stitching. Instead, a subset of en-face images is produced for each focus position inside the sample to be imaged, using a reduced number of theoretically inferred Master masks. These en-face images are then assembled into a final volume. When the channelled spectra are digitized into 1024 sampling points, and more than 4 focus positions are required to produce the final volume, the Master Slave implementation of the instrument is faster than the conventional fast Fourier transform based procedure.
Blind image fusion for hyperspectral imaging with the directional total variation
NASA Astrophysics Data System (ADS)
Bungert, Leon; Coomes, David A.; Ehrhardt, Matthias J.; Rasch, Jennifer; Reisenhofer, Rafael; Schönlieb, Carola-Bibiane
2018-04-01
Hyperspectral imaging is a cutting-edge type of remote sensing used for mapping vegetation properties, rock minerals and other materials. A major drawback of hyperspectral imaging devices is their intrinsic low spatial resolution. In this paper, we propose a method for increasing the spatial resolution of a hyperspectral image by fusing it with an image of higher spatial resolution that was obtained with a different imaging modality. This is accomplished by solving a variational problem in which the regularization functional is the directional total variation. To accommodate for possible mis-registrations between the two images, we consider a non-convex blind super-resolution problem where both a fused image and the corresponding convolution kernel are estimated. Using this approach, our model can realign the given images if needed. Our experimental results indicate that the non-convexity is negligible in practice and that reliable solutions can be computed using a variety of different optimization algorithms. Numerical results on real remote sensing data from plant sciences and urban monitoring show the potential of the proposed method and suggests that it is robust with respect to the regularization parameters, mis-registration and the shape of the kernel.
Enhanced Monocular Visual Odometry Integrated with Laser Distance Meter for Astronaut Navigation
Wu, Kai; Di, Kaichang; Sun, Xun; Wan, Wenhui; Liu, Zhaoqin
2014-01-01
Visual odometry provides astronauts with accurate knowledge of their position and orientation. Wearable astronaut navigation systems should be simple and compact. Therefore, monocular vision methods are preferred over stereo vision systems, commonly used in mobile robots. However, the projective nature of monocular visual odometry causes a scale ambiguity problem. In this paper, we focus on the integration of a monocular camera with a laser distance meter to solve this problem. The most remarkable advantage of the system is its ability to recover a global trajectory for monocular image sequences by incorporating direct distance measurements. First, we propose a robust and easy-to-use extrinsic calibration method between camera and laser distance meter. Second, we present a navigation scheme that fuses distance measurements with monocular sequences to correct the scale drift. In particular, we explain in detail how to match the projection of the invisible laser pointer on other frames. Our proposed integration architecture is examined using a live dataset collected in a simulated lunar surface environment. The experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:24618780
Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and panchromatic (PAN) images.
Jung, Hyung-Sup; Park, Sung-Whan
2014-12-18
Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN) and thermal infrared (TIR) images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.
Assessment of SPOT-6 optical remote sensing data against GF-1 using NNDiffuse image fusion algorithm
NASA Astrophysics Data System (ADS)
Zhao, Jinling; Guo, Junjie; Cheng, Wenjie; Xu, Chao; Huang, Linsheng
2017-07-01
A cross-comparison method was used to assess the SPOT-6 optical satellite imagery against Chinese GF-1 imagery using three types of indicators: spectral and color quality, fusion effect and identification potential. More specifically, spectral response function (SRF) curves were used to compare the two imagery, showing that the SRF curve shape of SPOT-6 is more like a rectangle compared to GF-1 in blue, green, red and near-infrared bands. NNDiffuse image fusion algorithm was used to evaluate the capability of information conservation in comparison with wavelet transform (WT) and principal component (PC) algorithms. The results show that NNDiffuse fused image has extremely similar entropy vales than original image (1.849 versus 1.852) and better color quality. In addition, the object-oriented classification toolset (ENVI EX) was used to identify greenlands for comparing the effect of self-fusion image of SPOT-6 and inter-fusion image between SPOT-6 and GF-1 based on the NNDiffuse algorithm. The overall accuracy is 97.27% and 76.88%, respectively, showing that self-fused image of SPOT-6 has better identification capability.
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Visualization of aging-associated chromatin alterations with an engineered TALE system
Ren, Ruotong; Deng, Liping; Xue, Yanhong; Suzuki, Keiichiro; Zhang, Weiqi; Yu, Yang; Wu, Jun; Sun, Liang; Gong, Xiaojun; Luan, Huiqin; Yang, Fan; Ju, Zhenyu; Ren, Xiaoqing; Wang, Si; Tang, Hong; Geng, Lingling; Zhang, Weizhou; Li, Jian; Qiao, Jie; Xu, Tao; Qu, Jing; Liu, Guang-Hui
2017-01-01
Visualization of specific genomic loci in live cells is a prerequisite for the investigation of dynamic changes in chromatin architecture during diverse biological processes, such as cellular aging. However, current precision genomic imaging methods are hampered by the lack of fluorescent probes with high specificity and signal-to-noise contrast. We find that conventional transcription activator-like effectors (TALEs) tend to form protein aggregates, thereby compromising their performance in imaging applications. Through screening, we found that fusing thioredoxin with TALEs prevented aggregate formation, unlocking the full power of TALE-based genomic imaging. Using thioredoxin-fused TALEs (TTALEs), we achieved high-quality imaging at various genomic loci and observed aging-associated (epi) genomic alterations at telomeres and centromeres in human and mouse premature aging models. Importantly, we identified attrition of ribosomal DNA repeats as a molecular marker for human aging. Our study establishes a simple and robust imaging method for precisely monitoring chromatin dynamics in vitro and in vivo. PMID:28139645
Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae.
Stone, D E; Craig, E A
1990-01-01
To determine whether the 70-kilodalton heat shock proteins of Saccharomyces cerevisiae play a role in regulating their own synthesis, we studied the effect of overexpressing the SSA1 protein on the activity of the SSA1 5'-regulatory region. The constitutive level of Ssa1p was increased by fusing the SSA1 structural gene to the GAL1 promoter. A reporter vector consisting of an SSA1-lacZ translational fusion was used to assess SSA1 promoter activity. In a strain producing approximately 10-fold the normal heat shock level of Ssa1p, induction of beta-galactosidase activity by heat shock was almost entirely blocked. Expression of a transcriptional fusion vector in which the CYC1 upstream activating sequence of a CYC1-lacZ chimera was replaced by a sequence containing a heat shock upstream activating sequence (heat shock element 2) from the 5'-regulatory region of SSA1 was inhibited by excess Ssa1p. The repression of an SSA1 upstream activating sequence by the SSA1 protein indicates that SSA1 self-regulation is at least partially mediated at the transcriptional level. The expression of another transcriptional fusion vector, containing heat shock element 2 and a lesser amount of flanking sequence, is not inhibited when Ssa1p is overexpressed. This suggests the existence of an element, proximal to or overlapping heat shock element 2, that confers sensitivity to the SSA1 protein. Images PMID:2181281
ERIC Educational Resources Information Center
Smith, Hester Camilla
2010-01-01
This article examines a group of five ink, pen and wash drawings produced by the Anglo-Swiss artist Henry Fuseli in the mid-eighteenth century in Zurich. The drawings were produced for a "Narrenbuch" (Book of Fools) uniting visual images of folly with humorous slogans. The drawings are significant in that they imitate sixteenth-century…
Development of a large peptoid-DOTA combinatorial library.
Singh, Jaspal; Lopes, Daniel; Gomika Udugamasooriya, D
2016-09-01
Conventional one-bead one-compound (OBOC) library synthesis is typically used to identify molecules with therapeutic value. The design and synthesis of OBOC libraries that contain molecules with imaging or even potentially therapeutic and diagnostic capacities (e.g. theranostic agents) has been overlooked. The development of a therapeutically active molecule with a built-in imaging component for a certain target is a daunting task, and structure-based rational design might not be the best approach. We hypothesize to develop a combinatorial library with potentially therapeutic and imaging components fused together in each molecule. Such molecules in the library can be used to screen, identify, and validate as direct theranostic candidates against targets of interest. As the first step in achieving that aim, we developed an on-bead library of 153,600 Peptoid-DOTA compounds in which the peptoids are the target-recognizing and potentially therapeutic components and the DOTA is the imaging component. We attached the DOTA scaffold to TentaGel beads using one of the four arms of DOTA, and we built a diversified 6-mer peptoid library on the remaining three arms. We evaluated both the synthesis and the mass spectrometric sequencing capacities of the test compounds and of the final library. The compounds displayed unique ionization patterns including direct breakages of the DOTA scaffold into two units, allowing clear decoding of the sequences. Our approach provides a facile synthesis method for the complete on-bead development of large peptidomimetic-DOTA libraries for screening against biological targets for the identification of potential theranostic agents in the future. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 673-684, 2016. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc.
Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A
2011-03-29
During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.
Dong, Xiangrong; Wang, Yanping; Yang, Fengyuan; Zhao, Shanshan; Tian, Bing; Li, Tao
2017-01-01
Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress. Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g -1 dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain. The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.
An efficient multiple exposure image fusion in JPEG domain
NASA Astrophysics Data System (ADS)
Hebbalaguppe, Ramya; Kakarala, Ramakrishna
2012-01-01
In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.
Quantitative image fusion in infrared radiometry
NASA Astrophysics Data System (ADS)
Romm, Iliya; Cukurel, Beni
2018-05-01
Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.
Standardizing Quality Assessment of Fused Remotely Sensed Images
NASA Astrophysics Data System (ADS)
Pohl, C.; Moellmann, J.; Fries, K.
2017-09-01
The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.
NASA Astrophysics Data System (ADS)
Cardille, J. A.; Crowley, M.; Fortin, J. A.; Lee, J.; Perez, E.; Sleeter, B. M.; Thau, D.
2016-12-01
With the opening of the Landsat archive, researchers have a vast new data source teeming with imagery and potential. Beyond Landsat, data from other sensors is newly available as well: these include ALOS/PALSAR, Sentinel-1 and -2, MERIS, and many more. Google Earth Engine, developed to organize and provide analysis tools for these immense data sets, is an ideal platform for researchers trying to sift through huge image stacks. It offers nearly unlimited processing power and storage with a straightforward programming interface. Yet labeling land-cover change through time remains challenging given the current state of the art for interpreting remote sensing image sequences. Moreover, combining data from very different image platforms remains quite difficult. To address these challenges, we developed the BULC algorithm (Bayesian Updating of Land Cover), designed for the continuous updating of land-cover classifications through time in large data sets. The algorithm ingests data from any of the wide variety of earth-resources sensors; it maintains a running estimate of land-cover probabilities and the most probable class at all time points along a sequence of events. Here we compare BULC results from two study sites that witnessed considerable forest change in the last 40 years: the Pacific Northwest of the United States and the Mato Grosso region of Brazil. In Brazil, we incorporated rough classifications from more than 100 images of varying quality, mixing imagery from more than 10 different sensors. In the Pacific Northwest, we used BULC to identify forest changes due to logging and urbanization from 1973 to the present. Both regions had classification sequences that were better than many of the component days, effectively ignoring clouds and other unwanted noise while fusing the information contained on several platforms. As we leave remote sensing's data-poor era and enter a period with multiple looks at Earth's surface from multiple sensors over a short period of time, the BULC algorithm can help to sift through images of varying quality in Google Earth Engine to extract the most useful information for mapping the state and history of Earth's land cover.
NASA Astrophysics Data System (ADS)
Cardille, J. A.
2015-12-01
With the opening of the Landsat archive, researchers have a vast new data source teeming with imagery and potential. Beyond Landsat, data from other sensors is newly available as well: these include ALOS/PALSAR, Sentinel-1 and -2, MERIS, and many more. Google Earth Engine, developed to organize and provide analysis tools for these immense data sets, is an ideal platform for researchers trying to sift through huge image stacks. It offers nearly unlimited processing power and storage with a straightforward programming interface. Yet labeling forest change through time remains challenging given the current state of the art for interpreting remote sensing image sequences. Moreover, combining data from very different image platforms remains quite difficult. To address these challenges, we developed the BULC algorithm (Bayesian Updating of Land Cover), designed for the continuous updating of land-cover classifications through time in large data sets. The algorithm ingests data from any of the wide variety of earth-resources sensors; it maintains a running estimate of land-cover probabilities and the most probable class at all time points along a sequence of events. Here we compare BULC results from two study sites that witnessed considerable forest change in the last 40 years: the Pacific Northwest of the United States and the Mato Grosso region of Brazil. In Brazil, we incorporated rough classifications from more than 100 images of varying quality, mixing imagery from more than 10 different sensors. In the Pacific Northwest, we used BULC to identify forest changes due to logging and urbanization from 1973 to the present. Both regions had classification sequences that were better than many of the component days, effectively ignoring clouds and other unwanted signal while fusing the information contained on several platforms. As we leave remote sensing's data-poor era and enter a period with multiple looks at Earth's surface from multiple sensors over a short period of time, this algorithm may help to sift through images of varying quality in Google Earth Engine to extract the most useful information for mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Kamrava, M; Yang, Y
Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI wasmore » acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.« less
Qiu, Chenhui; Wang, Yuanyuan; Guo, Yanen; Xia, Shunren
2018-03-14
Image fusion techniques can integrate the information from different imaging modalities to get a composite image which is more suitable for human visual perception and further image processing tasks. Fusing green fluorescent protein (GFP) and phase contrast images is very important for subcellular localization, functional analysis of protein and genome expression. The fusion method of GFP and phase contrast images based on complex shearlet transform (CST) is proposed in this paper. Firstly the GFP image is converted to IHS model and its intensity component is obtained. Secondly the CST is performed on the intensity component and the phase contrast image to acquire the low-frequency subbands and the high-frequency subbands. Then the high-frequency subbands are merged by the absolute-maximum rule while the low-frequency subbands are merged by the proposed Haar wavelet-based energy (HWE) rule. Finally the fused image is obtained by performing the inverse CST on the merged subbands and conducting IHS-to-RGB conversion. The proposed fusion method is tested on a number of GFP and phase contrast images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation. © 2018 Wiley Periodicals, Inc.
An adaptive block-based fusion method with LUE-SSIM for multi-focus images
NASA Astrophysics Data System (ADS)
Zheng, Jianing; Guo, Yongcai; Huang, Yukun
2016-09-01
Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.
NASA Technical Reports Server (NTRS)
Peyghambarian, Nasser (Inventor); Hendrickx, Eric (Inventor); Volodin, Boris (Inventor); Marder, Seth R. (Inventor); Kippelen, Bernard (Inventor)
2000-01-01
Fused ring bridge, ring locked dyes that form thermally stable photorfractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.
Thermally stable molecules with large dipole moments and polarizabilities and applications thereof
NASA Technical Reports Server (NTRS)
Marder, Seth R. (Inventor); Peyghambarian, Nasser (Inventor); Kippelen, Bernard (Inventor); Volodin, Boris (Inventor); Hendrickx, Eric (Inventor)
2002-01-01
Disclosed are fused ring bridge, ring-locked dyes that form thermally stable photorefractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.
Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine
2014-01-01
Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331
NASA Astrophysics Data System (ADS)
Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin
2018-04-01
Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.
Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock.
Gerke, Kirill M; Karsanina, Marina V; Mallants, Dirk
2015-11-02
Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing.
Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock
Gerke, Kirill M.; Karsanina, Marina V.; Mallants, Dirk
2015-01-01
Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing. PMID:26522938
Liu, Yankai; Nappi, Manuel; Escudero-Adán, Eduardo C; Melchiorre, Paolo
2012-03-02
Expanding upon the recently developed aminocatalytic asymmetric indole-2,3-quinodimethane strategy, a straightforward synthesis of structurally and stereochemically complex tetrahydrocarbazoles has been devised. The chemistry's complexity-generating power was further harnessed by designing a multicatalytic, one-pot Diels-Alder/benzoin reaction sequence to stereoselectively access trans-fused tetracyclic indole-based compounds having four stereogenic centers with very high fidelity. © 2012 American Chemical Society
A survey of infrared and visual image fusion methods
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian
2017-09-01
Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.
High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors
Kim, Sungho
2015-01-01
This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448
A quantitative assay for mitochondrial fusion using Renilla luciferase complementation
Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A.
2010-01-01
Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. PMID:20488258
Damerla, V Surendra Babu; Tulluri, Chiranjeevi; Gundla, Rambabu; Naviri, Lava; Adepally, Uma; Iyer, Pravin S; Murthy, Y L N; Prabhakar, Nampally; Sen, Subhabrata
2012-10-01
Herein, we report a diversity-oriented-synthesis (DOS) approach for the synthesis of biologically relevant molecular scaffolds. Our methodology enables the facile synthesis of fused N-heterocycles, spirooxoindolones, tetrahydroquinolines, and fused N-heterocycles. The two-step sequence starts with a chiral-bicyclic-lactam-directed enolate-addition/substitution step. This step is followed by a ring-closure onto the built-in scaffold electrophile, thereby leading to stereoselective carbocycle- and spirocycle-formation. We used in silico tools to calibrate our compounds with respect to chemical diversity and selected drug-like properties. We evaluated the biological significance of our scaffolds by screening them in two cancer cell-lines. In summary, our DOS methodology affords new, diverse scaffolds, thereby resulting in compounds that may have significance in medicinal chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensor fusion for synthetic vision
NASA Technical Reports Server (NTRS)
Pavel, M.; Larimer, J.; Ahumada, A.
1991-01-01
Display methodologies are explored for fusing images gathered by millimeter wave sensors with images rendered from an on-board terrain data base to facilitate visually guided flight and ground operations in low visibility conditions. An approach to fusion based on multiresolution image representation and processing is described which facilitates fusion of images differing in resolution within and between images. To investigate possible fusion methods, a workstation-based simulation environment is being developed.
NASA Astrophysics Data System (ADS)
Zabarylo, U.; Minet, O.
2010-01-01
Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.
Central Stars of Planetary Nebulae in the LMC
NASA Technical Reports Server (NTRS)
Bianchi, Luciana
2004-01-01
In FUSE cycle 2's program B001 we studied Central Stars of Planetary Nebulae (CSPN) in the Large Magellanic Could. All FUSE observations have been successfully completed and have been reduced, analyzed and published. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.2.2). The flux of these LMC post-AGB objects is at the threshold of FUSE's sensitivity, and thus special care in the background subtraction was needed during the reduction. Because of their faintness, the targets required many orbit-long exposures, each of which typically had low (target) count-rates. Each calibrated extracted sequence was checked for unacceptable count-rate variations (a sign of detector drift), misplaced extraction windows, and other anomalies. All the good calibrated exposures were combined using FUSE pipeline routines. The default FUSE pipeline attempts to model the background measured off-target and subtracts it from the target spectrum. We found that, for these faint objects, the background appeared to be over-estimated by this method, particularly at shorter wavelengths (i.e., < 1000 A). We therefore tried two other reductions. In the first method, subtraction of the measured background is turned off and and the background is taken to be the model scattered-light scaled by the exposure time. In the second one, the first few steps of the pipeline were run on the individual exposures (correcting for effects unique to each exposure such as Doppler shift, grating motions, etc). Then the photon lists from the individual exposures were combined, and the remaining steps of the pipeline run on the combined file. Thus, more total counts for both the target and background allowed for a better extraction.
NASA Astrophysics Data System (ADS)
Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing
2016-04-01
In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.
Case retrieval in medical databases by fusing heterogeneous information.
Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice
2011-01-01
A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.
Wafer-fused semiconductor radiation detector
Lee, Edwin Y.; James, Ralph B.
2002-01-01
Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.
Nuclear targeting of the maize R protein requires two nuclear localization sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, M.W.; Raikhel, N.V.; Wessler, S.R.
1993-02-01
Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is foundmore » in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.« less
Ellmauthaler, Andreas; Pagliari, Carla L; da Silva, Eduardo A B
2013-03-01
Multiscale transforms are among the most popular techniques in the field of pixel-level image fusion. However, the fusion performance of these methods often deteriorates for images derived from different sensor modalities. In this paper, we demonstrate that for such images, results can be improved using a novel undecimated wavelet transform (UWT)-based fusion scheme, which splits the image decomposition process into two successive filtering operations using spectral factorization of the analysis filters. The actual fusion takes place after convolution with the first filter pair. Its significantly smaller support size leads to the minimization of the unwanted spreading of coefficient values around overlapping image singularities. This usually complicates the feature selection process and may lead to the introduction of reconstruction errors in the fused image. Moreover, we will show that the nonsubsampled nature of the UWT allows the design of nonorthogonal filter banks, which are more robust to artifacts introduced during fusion, additionally improving the obtained results. The combination of these techniques leads to a fusion framework, which provides clear advantages over traditional multiscale fusion approaches, independent of the underlying fusion rule, and reduces unwanted side effects such as ringing artifacts in the fused reconstruction.
In Vivo Imaging of mdrla Gene Expression
2005-06-01
svImJ mouse strain, compatible with the ES cells used in our Transgenic Mouse Facility. b. Engineer PGK-neo and Renilla luciferase cassettes...inserted between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the...sites: B, BamHI; E, EcoRI; S, ScaI. PGK-neo: neo under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated
Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul
2015-02-01
Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P < 0.0005) and segmental image quality (2.42 ± 0.99 vs. 1.93 ± 1.18, P < 0.005) compared to unfused 3D acquisitions. Levels achieved were closer to scores for 2D contrast images (CNR: 9.04 ± 2.21, P = 0.6; segmental image quality: 2.91 ± 0.37, P < 0.005). WMSI calculated from fused 3D volumes did not differ significantly from those obtained from 2D contrast echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.
Investigation of automated feature extraction using multiple data sources
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.
2003-04-01
An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.
Feature-Motivated Simplified Adaptive PCNN-Based Medical Image Fusion Algorithm in NSST Domain.
Ganasala, Padma; Kumar, Vinod
2016-02-01
Multimodality medical image fusion plays a vital role in diagnosis, treatment planning, and follow-up studies of various diseases. It provides a composite image containing critical information of source images required for better localization and definition of different organs and lesions. In the state-of-the-art image fusion methods based on nonsubsampled shearlet transform (NSST) and pulse-coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing both low-frequency (LF) and high-frequency (HF) sub-bands. This makes the fused image blurred and decreases its contrast. The main objective of this work is to design an image fusion method that gives the fused image with better contrast, more detail information, and suitable for clinical use. We propose a novel image fusion method utilizing feature-motivated adaptive PCNN in NSST domain for fusion of anatomical images. The basic PCNN model is simplified, and adaptive-linking strength is used. Different features are used to motivate the PCNN-processing LF and HF sub-bands. The proposed method is extended for fusion of functional image with an anatomical image in improved nonlinear intensity hue and saturation (INIHS) color model. Extensive fusion experiments have been performed on CT-MRI and SPECT-MRI datasets. Visual and quantitative analysis of experimental results proved that the proposed method provides satisfactory fusion outcome compared to other image fusion methods.
PANAGOPOULOS, IOANNIS; GORUNOVA, LUDMILA; BJERKEHAGEN, BODIL; LOBMAIER, INGVILD; HEIM, SVERRE
2015-01-01
Lipomas are the most common soft tissue tumors in adults. They often carry chromosome aberrations involving 12q13~15 leading to rearrangements of the HMGA2 gene in 12q14.3, with breakpoints occurring within or outside of the gene. Here, we present eleven lipomas and one osteochondrolipoma with a novel recurrent chromosome aberration, t(12;18) (q14~15;q12~21). Molecular studies on eight of the tumors showed that full-length HMGA2 transcript was expressed in three and a chimeric HMGA2 transcript in five of them. In three lipomas and in the osteochondrolipoma, exons 1–3 of HMGA2 were fused to a sequence of SETBP1 on 18q12.3 or an intragenic sequence from 18q12.3 circa 10 kbp distal to SETBP1. In another lipoma, exons 1–4 of HMGA2 were fused to an intronic sequence of GRIP1 which maps to chromosome band 12q14.3, distal to HMGA2. The ensuing HMGA2 fusion transcripts code for putative proteins which contain amino acid residues of HMGA2 corresponding to exons 1–3 (or exons 1–4 in one case) followed by amino acid residues corresponding to the fused sequences. Thus, the pattern is similar to the rearrangements of HMGA2 found in other lipomas, i.e., disruption of the HMGA2 locus leaves intact exons 1–3 which encode the AT-hooks domains and separates them from the 3′-terminal part of the gene. The fact that the examined osteochondrolipoma had a t(12;18) and a HMGA2-SETBP1 fusion identical to the findings in the much more common ordinary lipomas, underscores the close developmental relationship between the two tumor types. PMID:26202160
Transmission of 100-MHz-range ultrasound through a fused quartz fiber.
Irie, Takasuke; Tagawa, Norio; Tanabe, Masayuki; Moriya, Tadashi; Yoshizawa, Masasumi; Iijima, Takashi; Itoh, Kouichi; Yokoyama, Taku; Kumagai, Hideki; Taniguchi, Nobuyuki
2011-07-01
This paper describes an investigation into direct observation of microscopic images of tissue using a thin acoustic wave guide. First, the characteristics of the ultrasonic wave propagated in a fused quartz fiber were measured using the reflection method in order to study the insertion loss and the frequency shift of the ultrasonic wave transmitted from the transducer. Next, a receiving transducer was placed close to the end of the fiber, and the characteristics of the ultrasonic waves propagated through the acoustic coupling medium were measured using the penetration method in order to study the insertion loss and the frequency-dependent attenuation of the penetrated waves. Finally, a C-mode image was obtained by optimizing the measuring conditions using the results of the above measurements and scanning the ultrasonic beams on a target (coin) in water. A reflected wave with a peak frequency of approximately 220 MHz was obtained from the end of the fiber. The transmitted ultrasonic waves propagated through the acoustic coupling medium were detected with a frequency range of approximately 125-170 MHz, and the maximum detectable distance of the waves was approximately 1.2 mm within the 100-MHz frequency range. Finally, a high-frequency C-mode image of a coin in water was obtained using a tapered fused quartz fiber. The results suggest that it is necessary to improve the signal-to-noise ratio and reduce the insertion loss in the experimental system in order to make it possible to obtain microscopic images of tissue.
Chavan, Satishkumar S; Mahajan, Abhishek; Talbar, Sanjay N; Desai, Subhash; Thakur, Meenakshi; D'cruz, Anil
2017-02-01
Neurocysticercosis (NCC) is a parasite infection caused by the tapeworm Taenia solium in its larvae stage which affects the central nervous system of the human body (a definite host). It results in the formation of multiple lesions in the brain at different locations during its various stages. During diagnosis of such symptomatic patients, these lesions can be better visualized using a feature based fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This paper presents a novel approach to Multimodality Medical Image Fusion (MMIF) used for the analysis of the lesions for the diagnostic purpose and post treatment review of NCC. The MMIF presented here is a technique of combining CT and MRI data of the same patient into a new slice using a Nonsubsampled Rotated Complex Wavelet Transform (NSRCxWT). The forward NSRCxWT is applied on both the source modalities separately to extract the complementary and the edge related features. These features are then combined to form a composite spectral plane using average and maximum value selection fusion rules. The inverse transformation on this composite plane results into a new, visually better, and enriched fused image. The proposed technique is tested on the pilot study data sets of patients infected with NCC. The quality of these fused images is measured using objective and subjective evaluation metrics. Objective evaluation is performed by estimating the fusion parameters like entropy, fusion factor, image quality index, edge quality measure, mean structural similarity index measure, etc. The fused images are also evaluated for their visual quality using subjective analysis with the help of three expert radiologists. The experimental results on 43 image data sets of 17 patients are promising and superior when compared with the state of the art wavelet based fusion algorithms. The proposed algorithm can be a part of computer-aided detection and diagnosis (CADD) system which assists the radiologists in clinical practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian
2017-05-01
A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.
SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi-Ardekani, A; Wronski, M; Kim, A
2015-06-15
Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode priormore » to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.« less
Multi exposure image fusion algorithm based on YCbCr space
NASA Astrophysics Data System (ADS)
Yang, T. T.; Fang, P. Y.
2018-05-01
To solve the problem that scene details and visual effects are difficult to be optimized in high dynamic image synthesis, we proposes a multi exposure image fusion algorithm for processing low dynamic range images in YCbCr space, and weighted blending of luminance and chromatic aberration components respectively. The experimental results show that the method can retain color effect of the fused image while balancing details of the bright and dark regions of the high dynamic image.
Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi
2017-05-15
Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.
Hu, Guohang; Zhao, Yuanan; Liu, Xiaofeng; Li, Dawei; Xiao, Qiling; Yi, Kui; Shao, Jianda
2013-08-01
A reliable method, combining a wet etch process and real-time damage event imaging during a raster scan laser damage test, has been developed to directly determine the most dangerous precursor inducing low-density laser damage at 355 nm in fused silica. It is revealed that ~16% of laser damage sites were initiated at the place of the scratches, ~49% initiated at the digs, and ~35% initiated at invisible defects. The morphologies of dangerous scratches and digs were compared with those of moderate ones. It is found that local sharp variation at the edge, twist, or inside of a subsurface defect is the most dangerous laser damage precursor.
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
Left Ventricular Endocardium Tracking by Fusion of Biomechanical and Deformable Models
Gu, Jason
2014-01-01
This paper presents a framework for tracking left ventricular (LV) endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM) model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing themto a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle. PMID:24587814
Chow, C M; Yagüe, E; Raguz, S; Wood, D A; Thurston, C F
1994-01-01
A 52-kDa protein, CEL3, has been separated from the culture filtrate of Agaricus bisporus during growth on cellulose. A PCR-derived probe was made, with a degenerate oligodeoxynucleotide derived from the amino acid sequence of a CEL3 CNBr cleavage product and was used to select cel3 cDNA clones from an A. bisporus cDNA library. Two allelic cDNAs were isolated. They showed 98.8% identity of their nucleotide sequences. The deduced amino acid sequence and domain architecture of CEL3 showed a high degree of similarity to those of cellobiohydrolase II of Trichoderma reesei. Functional expression of cel3 cDNA in Saccharomyces cerevisiae was achieved by placing it under the control of a constitutive promoter and fusing it to the yeast invertase signal sequence. Recombinant CEL3 secreted by yeast showed enzymatic activity towards crystalline cellulose. At long reaction times, CEL3 was also able to degrade carboxymethyl cellulose. Northern (RNA) analysis showed that cel3 gene expression was induced by cellulose and repressed by glucose, fructose, 2-deoxyglucose, and lactose. Glycerol, mannitol, sorbitol, and maltose were neutral carbon sources. Nuclear run-on analysis showed that the rate of synthesis of cel3 mRNA in cellulose-grown cultures was 13 times higher than that in glucose-grown cultures. A low basal rate of cel3 mRNA synthesis was observed in the nuclei isolated from glucose-grown mycelia. Images PMID:8085821
Bahaji, Abdellatif; Ovecka, Miroslav; Bárány, Ivett; Risueño, María Carmen; Muñoz, Francisco José; Baroja-Fernández, Edurne; Montero, Manuel; Li, Jun; Hidalgo, Maite; Sesma, María Teresa; Ezquer, Ignacio; Testillano, Pilar S; Pozueta-Romero, Javier
2011-04-01
Zea mays and Arabidopsis thaliana Brittle 1 (ZmBT1 and AtBT1, respectively) are members of the mitochondrial carrier family. Although they are presumed to be exclusively localized in the envelope membranes of plastids, confocal fluorescence microscopy analyses of potato, Arabidopsis and maize plants stably expressing green fluorescent protein (GFP) fusions of ZmBT1 and AtBT1 revealed that the two proteins have dual localization to plastids and mitochondria. The patterns of GFP fluorescence distribution observed in plants stably expressing GFP fusions of ZmBT1 and AtBT1 N-terminal extensions were fully congruent with that of plants expressing a plastidial marker fused to GFP. Furthermore, the patterns of GFP fluorescence distribution and motility observed in plants expressing the mature proteins fused to GFP were identical to those observed in plants expressing a mitochondrial marker fused to GFP. Electron microscopic immunocytochemical analyses of maize endosperms using anti-ZmBT1 antibodies further confirmed that ZmBT1 occurs in both plastids and mitochondria. The overall data showed that (i) ZmBT1 and AtBT1 are dually targeted to mitochondria and plastids; (ii) AtBT1 and ZmBT1 N-terminal extensions comprise targeting sequences exclusively recognized by the plastidial compartment; and (iii) targeting sequences to mitochondria are localized within the mature part of the BT1 proteins.
confFuse: High-Confidence Fusion Gene Detection across Tumor Entities.
Huang, Zhiqin; Jones, David T W; Wu, Yonghe; Lichter, Peter; Zapatka, Marc
2017-01-01
Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
Fusing MRI and Mechanical Imaging for Improved Prostate Cancer Diagnosis
2016-10-01
Western Reserve University. - PI is participating weekly Prostate Imaging Reporting and Data System meeting in the Department of Radiology, Case Medical...Literary Guild (LG) seminar, Case Western Reserve University. Hosted by PI’s mentor. - PI is participating the majority of Imaging Hour meeting...Ernest Feleppa4, Dean Barratt2, Lee Ponsky5, Anant Madabhushi1 1 Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve
Airborne Infrared and Visible Image Fusion Combined with Region Segmentation
Zuo, Yujia; Liu, Jinghong; Bai, Guanbing; Wang, Xuan; Sun, Mingchao
2017-01-01
This paper proposes an infrared (IR) and visible image fusion method introducing region segmentation into the dual-tree complex wavelet transform (DTCWT) region. This method should effectively improve both the target indication and scene spectrum features of fusion images, and the target identification and tracking reliability of fusion system, on an airborne photoelectric platform. The method involves segmenting the region in an IR image by significance, and identifying the target region and the background region; then, fusing the low-frequency components in the DTCWT region according to the region segmentation result. For high-frequency components, the region weights need to be assigned by the information richness of region details to conduct fusion based on both weights and adaptive phases, and then introducing a shrinkage function to suppress noise; Finally, the fused low-frequency and high-frequency components are reconstructed to obtain the fusion image. The experimental results show that the proposed method can fully extract complementary information from the source images to obtain a fusion image with good target indication and rich information on scene details. They also give a fusion result superior to existing popular fusion methods, based on eithers subjective or objective evaluation. With good stability and high fusion accuracy, this method can meet the fusion requirements of IR-visible image fusion systems. PMID:28505137
Airborne Infrared and Visible Image Fusion Combined with Region Segmentation.
Zuo, Yujia; Liu, Jinghong; Bai, Guanbing; Wang, Xuan; Sun, Mingchao
2017-05-15
This paper proposes an infrared (IR) and visible image fusion method introducing region segmentation into the dual-tree complex wavelet transform (DTCWT) region. This method should effectively improve both the target indication and scene spectrum features of fusion images, and the target identification and tracking reliability of fusion system, on an airborne photoelectric platform. The method involves segmenting the region in an IR image by significance, and identifying the target region and the background region; then, fusing the low-frequency components in the DTCWT region according to the region segmentation result. For high-frequency components, the region weights need to be assigned by the information richness of region details to conduct fusion based on both weights and adaptive phases, and then introducing a shrinkage function to suppress noise; Finally, the fused low-frequency and high-frequency components are reconstructed to obtain the fusion image. The experimental results show that the proposed method can fully extract complementary information from the source images to obtain a fusion image with good target indication and rich information on scene details. They also give a fusion result superior to existing popular fusion methods, based on eithers subjective or objective evaluation. With good stability and high fusion accuracy, this method can meet the fusion requirements of IR-visible image fusion systems.
Operational data fusion framework for building frequent Landsat-like imagery in a cloudy region
USDA-ARS?s Scientific Manuscript database
An operational data fusion framework is built to generate dense time-series Landsat-like images for a cloudy region by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) data products and Landsat imagery. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is integrated in ...
Functional expression of plant acetolactate synthase genes in Escherichia coli
Smith, Julie K.; Schloss, John V.; Mazur, Barbara J.
1989-01-01
Acetolactate synthase (ALS; EC 4.1.3.18) is the first common enzyme in the biosynthetic pathways leading to leucine, isoleucine, and valine. It is the target enzyme for three classes of structurally unrelated herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. A cloned ALS gene from the small cruciferous plant Arabidopsis thaliana has been fused to bacterial transcription/translation signals and the resulting plasmid has been used to transform Escherichia coli. The cloned plant gene, which includes sequences encoding the chloroplast transit peptide, is functionally expressed in the bacteria. It is able to complement genetically a strain of E. coli that lacks endogenous ALS activity. An ALS gene cloned from a line of Arabidopsis previously shown to be resistant to sulfonylurea herbicides has been similarly expressed in E. coli. The herbicide-resistance phenotype is expressed in the bacteria, as assayed by both enzyme activity and the ability to grow in the presence of herbicides. This system has been useful for purifying substantial amounts of the plant enzyme, for studying the sequence parameters involved in subcellular protein localization, and for characterizing the interactions that occur between ALS and its various inhibitors. Images PMID:16594052
Towards accurate localization: long- and short-term correlation filters for tracking
NASA Astrophysics Data System (ADS)
Li, Minglangjun; Tian, Chunna
2018-04-01
Visual tracking is a challenging problem, especially using a single model. In this paper, we propose a discriminative correlation filter (DCF) based tracking approach that exploits both the long-term and short-term information of the target, named LSTDCF, to improve the tracking performance. In addition to a long-term filter learned through the whole sequence, a short-term filter is trained using only features extracted from most recent frames. The long-term filter tends to capture more semantics of the target as more frames are used for training. However, since the target may undergo large appearance changes, features extracted around the target in non-recent frames prevent the long-term filter from locating the target in the current frame accurately. In contrast, the short-term filter learns more spatial details of the target from recent frames but gets over-fitting easily. Thus the short-term filter is less robust to handle cluttered background and prone to drift. We take the advantage of both filters and fuse their response maps to make the final estimation. We evaluate our approach on a widely-used benchmark with 100 image sequences and achieve state-of-the-art results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankovich, N.J.; Lambert, T.; Zrimec, T.
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. The authors have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (pseudo-MRA/pseudo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic.more » The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model`s lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.« less
Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.
1995-05-01
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.
NASA Astrophysics Data System (ADS)
Cheung, Carling L.; Looi, Thomas; Drake, James; Kim, Peter C. W.
2012-02-01
The development of image guided robotic and mechatronic platforms for medical applications requires a phantom model for initial testing. Finding an appropriate phantom becomes challenging when the targeted patient population is pediatrics, particularly infants, neonates or fetuses. Our group is currently developing a pediatricsized surgical robot that operates under fused MRI and laparoscopic video guidance. To support this work, we describe a method for designing and manufacturing silicone rubber organ phantoms for the purpose of testing the robotics and the image fusion system. A surface model of the organ is obtained and converted into a mold that is then rapid-prototyped using a 3D printer. The mold is filled with a solution containing a particular ratio of silicone rubber to slacker additive to achieve a specific set of tactile and imaging characteristics in the phantom. The expected MRI relaxation times of different ratios of silicone rubber to slacker additive are experimentally quantified so that the imaging properties of the phantom can be matched to those of the organ that it represents. Samples of silicone rubber and slacker additive mixed in ratios ranging from 1:0 to 1:1.5 were prepared and scanned using inversion recovery and spin echo sequences with varying TI and TE, respectively, in order to fit curves to calculate the expected T1 and T2 relaxation times of each ratio. A set of infantsized abdominal organs was prepared, which were successfully sutured by the robot and imaged using different modalities.
Engineering workstation: Sensor modeling
NASA Technical Reports Server (NTRS)
Pavel, M; Sweet, B.
1993-01-01
The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.
Sensor feature fusion for detecting buried objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-04-01
Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less
LIU, Yuxiu; SATO, Hiroki; HAMANA, Masahiro; MOONAN, Navita Anisia; YONEDA, Misako; XIA, Xianzhu; KAI, Chieko
2014-01-01
ABSTRACT Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo. PMID:24898077
Liu, Yuxiu; Sato, Hiroki; Hamana, Masahiro; Moonan, Navita Anisia; Yoneda, Misako; Xia, Xianzhu; Kai, Chieko
2014-09-01
Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo.
Covert photo classification by fusing image features and visual attributes.
Lang, Haitao; Ling, Haibin
2015-10-01
In this paper, we study a novel problem of classifying covert photos, whose acquisition processes are intentionally concealed from the subjects being photographed. Covert photos are often privacy invasive and, if distributed over Internet, can cause serious consequences. Automatic identification of such photos, therefore, serves as an important initial step toward further privacy protection operations. The problem is, however, very challenging due to the large semantic similarity between covert and noncovert photos, the enormous diversity in the photographing process and environment of cover photos, and the difficulty to collect an effective data set for the study. Attacking these challenges, we make three consecutive contributions. First, we collect a large data set containing 2500 covert photos, each of them is verified rigorously and carefully. Second, we conduct a user study on how humans distinguish covert photos from noncovert ones. The user study not only provides an important evaluation baseline, but also suggests fusing heterogeneous information for an automatic solution. Our third contribution is a covert photo classification algorithm that fuses various image features and visual attributes in the multiple kernel learning framework. We evaluate the proposed approach on the collected data set in comparison with other modern image classifiers. The results show that our approach achieves an average classification rate (1-EER) of 0.8940, which significantly outperforms other competitors as well as human's performance.
NASA Astrophysics Data System (ADS)
Giannini, Valentina; Vignati, Anna; Mazzetti, Simone; De Luca, Massimo; Bracco, Christian; Stasi, Michele; Russo, Filippo; Armando, Enrico; Regge, Daniele
2013-02-01
Prostate specific antigen (PSA)-based screening reduces the rate of death from prostate cancer (PCa) by 31%, but this benefit is associated with a high risk of overdiagnosis and overtreatment. As prostate transrectal ultrasound-guided biopsy, the standard procedure for prostate histological sampling, has a sensitivity of 77% with a considerable false-negative rate, more accurate methods need to be found to detect or rule out significant disease. Prostate magnetic resonance imaging has the potential to improve the specificity of PSA-based screening scenarios as a non-invasive detection tool, in particular exploiting the combination of anatomical and functional information in a multiparametric framework. The purpose of this study was to describe a computer aided diagnosis (CAD) method that automatically produces a malignancy likelihood map by combining information from dynamic contrast enhanced MR images and diffusion weighted images. The CAD system consists of multiple sequential stages, from a preliminary registration of images of different sequences, in order to correct for susceptibility deformation and/or movement artifacts, to a Bayesian classifier, which fused all the extracted features into a probability map. The promising results (AUROC=0.87) should be validated on a larger dataset, but they suggest that the discrimination on a voxel basis between benign and malignant tissues is feasible with good performances. This method can be of benefit to improve the diagnostic accuracy of the radiologist, reduce reader variability and speed up the reading time, automatically highlighting probably cancer suspicious regions.
Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer
NASA Astrophysics Data System (ADS)
Wang, Ge; Cong, Wenxiang; Yang, Qingsong; Pian, Qi; Zhu, Shouping; Liang, Jimin; Barroso, Margarida; Intes, Xavier
2016-10-01
For early detection and targeted therapy, receptor expression profiling is instrumental to classifying breast cancer into sub-groups. In particular, human epidermal growth factor receptor 2 (HER2) expression has been shown to have both prognostic and predictive values. Recently, an increasingly more complex view of HER2 in breast cancer has emerged from genome sequencing that highlights the role of inter- and intra-tumor heterogeneity in therapy resistance. Studies on such heterogeneity demand high-content, high-resolution functional and molecular imaging in vivo, which cannot be achieved using any single imaging tool. Clearly, there is a critical need to develop a multimodality approach for breast cancer imaging. Since 2006, grating-based x-ray imaging has been developed for much-improved x-ray images. In 2014, the demonstration of fluorescence molecular tomography (FMT) guided by x-ray grating-based micro-CT was reported with encouraging results and major drawbacks. In this paper, we propose to integrate grating-based x-ray tomography (GXT) and high-dimensional optical tomography (HOT) into the first-of-its-kind truly-fused GXT-HOT (pronounced as "Get Hot") system for imaging of breast tumor heterogeneity, HER2 expression and dimerization, and therapeutic response. The primary innovation lies in developing a brand-new high-content, high-throughput x-ray optical imager based on several contemporary techniques to have MRI-type soft tissue contrast, PET-like sensitivity and specificity, and micro-CT-equivalent resolution. This system consists of two orthogonal x-ray Talbot-Lau interferometric imaging chains and a hyperspectral time-resolved single-pixel optical imager. Both the system design and pilot results will be reported in this paper, along with relevant issues under further investigation.
Competitive Advantage of PET/MRI
Jadvar, Hossein; Colletti, Patrick M.
2013-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129
Competitive advantage of PET/MRI.
Jadvar, Hossein; Colletti, Patrick M
2014-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Determining protein function and interaction from genome analysis
Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.
2004-08-03
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Assigning protein functions by comparative genome analysis protein phylogenetic profiles
Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.
2003-05-13
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Using consumer-grade devices for multi-imager non-contact imaging photoplethysmography
NASA Astrophysics Data System (ADS)
Blackford, Ethan B.; Estepp, Justin R.
2017-02-01
Imaging photoplethysmography is a technique through which the morphology of the blood volume pulse can be obtained through non-contact video recordings of exposed skin with superficial vasculature. The acceptance of such a convenient modality for use in everyday applications may well depend upon the availability of consumer-grade imagers that facilitate ease-of-adoption. Multiple imagers have been used previously in concept demonstrations, showing improvements in quality of the extracted blood volume pulse signal. However, the use of multi-imager sensors requires synchronization of the frame exposures between the individual imagers, a capability that has only recently been available without creating custom solutions. In this work, we consider the use of multiple, commercially-available, synchronous imagers for use in imaging photoplethysmography. A commercially-available solution for adopting multi-imager synchronization was analyzed for 21 stationary, seated participants while ground-truth physiological signals were simultaneously measured. A total of three imagers were used, facilitating a comparison between fused data from all three imagers versus data from the single, central imager in the array. The within-subjects design included analyses of pulse rate and pulse signal-to-noise ratio. Using the fused data from the triple-imager array, mean absolute error in pulse rate measurement was reduced to 3.8 as compared to 7.4 beats per minute with the single imager. While this represents an overall improvement in the multi-imager case, it is also noted that these errors are substantially higher than those obtained in comparable studies. We further discuss these results and their implications for using readily-available commercial imaging solutions for imaging photoplethysmography applications.
Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.
2002-10-15
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Imaging the spectral reflectance properties of bipolar radiofrequency-fused bowel tissue
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Arya, Shobhit; Stoyanov, Danail; Du, Xiaofei; Hanna, George B.; Elson, Daniel S.
2015-07-01
Delivery of radiofrequency (RF) electrical energy is used during surgery to heat and seal tissue, such as vessels, allowing resection without blood loss. Recent work has suggested that this approach may be extended to allow surgical attachment of larger tissue segments for applications such as bowel anastomosis. In a large series of porcine surgical procedures bipolar RF energy was used to resect and re-seal the small bowel in vivo with a commercial tissue fusion device (Ligasure; Covidien PLC, USA). The tissue was then imaged with a multispectral imaging laparoscope to obtain a spectral datacube comprising both fused and healthy tissue. Maps of blood volume, oxygen saturation and scattering power were derived from the measured reflectance spectra using an optimised light-tissue interaction model. A 60% increase in reflectance of visible light (460-700 nm) was observed after fusion, with the tissue taking on a white appearance. Despite this the distinctive shape of the haemoglobin absorption spectrum was still noticeable in the 460-600 nm wavelength range. Scattering power increased in the fused region in comparison to normal serosa, while blood volume and oxygen saturation decreased. Observed fusion-induced changes in the reflectance spectrum are consistent with the biophysical changes induced through tissue denaturation and increased collagen cross-linking. The multispectral imager allows mapping of the spatial extent of these changes and classification of the zone of damaged tissue. Further analysis of the spectral data in parallel with histopathological examination of excised specimens will allow correlation of the optical property changes with microscopic alterations in tissue structure.
... need include: Osteotomy : Removing part of the bone. Fusion or arthrodesis : Two or more bones are fused ... Patient Instructions Preventing falls Surgical wound care - open Images Clubfoot repair - series References Kelly DM. Congenital anomalies ...
NASA Astrophysics Data System (ADS)
Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun
2018-06-01
The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.
Textured digital elevation model formation from low-cost UAV LADAR/digital image data
NASA Astrophysics Data System (ADS)
Bybee, Taylor C.; Budge, Scott E.
2015-05-01
Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k) UAV system fitted with ladar and electro-optical (EO) sensors. A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image. This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.
FUSE Cycle 3 Program CO22: Chromospheric Activity in Population II Giants
NASA Technical Reports Server (NTRS)
Harper, Graham M.
2004-01-01
One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly(beta) emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, a Boo has yet to be observed with FUSE.
A quantitative assay for mitochondrial fusion using Renilla luciferase complementation.
Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A
2010-08-01
Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.
Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo
2013-01-01
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574
Remote sensing fusion based on guided image filtering
NASA Astrophysics Data System (ADS)
Zhao, Wenfei; Dai, Qinling; Wang, Leiguang
2015-12-01
In this paper, we propose a novel remote sensing fusion approach based on guided image filtering. The fused images can well preserve the spectral features of the original multispectral (MS) images, meanwhile, enhance the spatial details information. Four quality assessment indexes are also introduced to evaluate the fusion effect when compared with other fusion methods. Experiments carried out on Gaofen-2, QuickBird, WorldView-2 and Landsat-8 images. And the results show an excellent performance of the proposed method.
ERIC Educational Resources Information Center
Busey, Thomas; Yu, Chen; Wyatte, Dean; Vanderkolk, John
2013-01-01
Perceptual tasks such as object matching, mammogram interpretation, mental rotation, and satellite imagery change detection often require the assignment of correspondences to fuse information across views. We apply techniques developed for machine translation to the gaze data recorded from a complex perceptual matching task modeled after…
Schumacher, Kirstin; Matz, Magnus; Brüning, Dennis; Baumann, Knut; Rustenbeck, Ingo
2015-05-01
The pre-exocytotic behavior of insulin granules was studied against the background of the entirety of submembrane granules in MIN6 cells, and the characteristics were compared with the macroscopic secretion pattern and the cytosolic Ca(2+) concentration of MIN6 pseudo-islets at 22°C, 32°C and 37°C. The mobility of granules labeled by insulin-EGFP and the fusion events were assessed by TIRF microscopy utilizing an observer-independent algorithm. In the z-dimension, 40 mm K(+) or 30 mm glucose increased the granule turnover. The effect of high K(+) was quickly reversible. The increase by glucose was more sustained and modified the efficacy of a subsequent K(+) stimulus. The effect size of glucose increased with physiological temperature whereas that of high K(+) did not. The mobility in the x/y-dimension and the fusion rates were little affected by the stimuli, in contrast to secretion. Fusion and secretion, however, had the same temperature dependence. Granules that appeared and fused within one image sequence had significantly larger caging diameters than pre-existent granules that underwent fusion. These in turn had a different mobility than residence-matched non-fusing granules. In conclusion, delivery to the membrane, tethering and fusion of granules are differently affected by insulinotropic stimuli. Fusion rates and secretion do not appear to be tightly coupled. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fusing Image Data for Calculating Position of an Object
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang; Liebersbach, Robert; Trebi-Ollenu, Ashitey
2007-01-01
A computer program has been written for use in maintaining the calibration, with respect to the positions of imaged objects, of a stereoscopic pair of cameras on each of the Mars Explorer Rovers Spirit and Opportunity. The program identifies and locates a known object in the images. The object in question is part of a Moessbauer spectrometer located at the tip of a robot arm, the kinematics of which are known. In the program, the images are processed through a module that extracts edges, combines the edges into line segments, and then derives ellipse centroids from the line segments. The images are also processed by a feature-extraction algorithm that performs a wavelet analysis, then performs a pattern-recognition operation in the wavelet-coefficient space to determine matches to a texture feature measure derived from the horizontal, vertical, and diagonal coefficients. The centroids from the ellipse finder and the wavelet feature matcher are then fused to determine co-location. In the event that a match is found, the centroid (or centroids if multiple matches are present) is reported. If no match is found, the process reports the results of the analyses for further examination by human experts.
Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior
NASA Astrophysics Data System (ADS)
Griffin, Alison R.
A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of a bubble growing over the TFTC junction on both the sapphire and fused silica heater surfaces. When the fused silica heater produced a temperature drop of 1.4°C, the sapphire heater produced a drop of only 0.04°C under the same conditions. These results verified that the lack of temperature drops present in the sapphire data was due to the thermal properties of the sapphire layer. By observing the bubble departure frequency and site density on the heater, as well as the bubble departure diameter, the contribution of nucleate boiling to the overall heat removal from the surface could be calculated. These results showed that bubble vapor generation contributed to approximately 10% at 1 W/cm2, 23% at 1.75 W/cm2, and 35% at 2.9 W/cm 2 of the heat removed from a fused silica heater. Bubble growth and contact ring growth were observed and measured from images obtained with the high-speed camera. Bubble data recorded on a fused silica heater at 3 W/cm2, 4 W/cm2, and 5 W/cm 2 showed that bubble departure diameter and lifetime were negligibly affected by the increase in heat flux. Bubble and contact ring growth rates demonstrated significant differences when compared on the fused silica and sapphire heaters at 3 W/cm2. The bubble departure diameters were smaller, the bubble lifetimes were longer, and the bubble departure frequency was larger on the sapphire heater, while microlayer evaporation was faster on the fused silica heater. Additional considerations revealed that these differences may be due to surface conditions as well as differing thermal properties. Nucleate boiling curves were recorded on the fused silica and sapphire heaters by adjusting the heat flux input and monitoring the local surface temperature with the TFTCs. The resulting curves showed a temperature drop at the onset of nucleate boiling due to the increase in heat transfer coefficient associated with bubble nucleation. One of the TFTC locations on the sapphire heater frequently experienced a second temperature drop at a higher heat flux. When the heat flux was started from 1 W/cm2 instead of zero or returned to zero only momentarily, the temperature overshoot did not occur. In these cases sufficient vapor remained in the cavities to initiate boiling at a lower superheat.
PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method.
Haddadpour, Mozhdeh; Daneshvar, Sabalan; Seyedarabi, Hadi
2017-08-01
The process of medical image fusion is combining two or more medical images such as Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) and mapping them to a single image as fused image. So purpose of our study is assisting physicians to diagnose and treat the diseases in the least of the time. We used Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) as input images, so fused them based on combination of two dimensional Hilbert transform (2-D HT) and Intensity Hue Saturation (IHS) method. Evaluation metrics that we apply are Discrepancy (D k ) as an assessing spectral features and Average Gradient (AG k ) as an evaluating spatial features and also Overall Performance (O.P) to verify properly of the proposed method. In this paper we used three common evaluation metrics like Average Gradient (AG k ) and the lowest Discrepancy (D k ) and Overall Performance (O.P) to evaluate the performance of our method. Simulated and numerical results represent the desired performance of proposed method. Since that the main purpose of medical image fusion is preserving both spatial and spectral features of input images, so based on numerical results of evaluation metrics such as Average Gradient (AG k ), Discrepancy (D k ) and Overall Performance (O.P) and also desired simulated results, it can be concluded that our proposed method can preserve both spatial and spectral features of input images. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
Danhier, Pierre; Krishnamachary, Balaji; Bharti, Santosh; Kakkad, Samata; Mironchik, Yelena; Bhujwalla, Zaver M.
2015-01-01
Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies. PMID:26696369
Venkatesh, Yarra; Srivastava, Hemant Kumar; Bhattacharya, S; Mehra, Muneshwar; Datta, P K; Bandyopadhyay, S; Singh, N D Pradeep
2018-04-20
A one- and two-photon activated photoremovable protecting group (PRPG) was designed based on a carbazole fused o-hydroxycinnamate platform for the dual (same or different) release of alcohols. The mechanism for the dual release proceeds through a stepwise pathway and also monitors the first and second photorelease in real time by an increase in fluorescence intensity and color change, respectively. Further, its application in staining live neurons and ex vivo imaging with two-photon excitation is shown.
NASA Astrophysics Data System (ADS)
Demange, P.; Negres, R. A.; Raman, R. N.; Colvin, J. D.; Demos, S. G.
2011-08-01
We report on the experimental and hydrocode modeling investigation of the early material response to localized energy deposition via nanosecond laser pulses in bulk fused silica. A time-resolved microscope system was used to acquire transient images with adequate spatial and temporal resolution to resolve the material behavior from the onset of the process. These images revealed a high-pressure shock front propagating at twice the speed of sound at ambient conditions and bounding a region of modified material at delays up to one nanosecond. Hydrocode simulations matching the experimental conditions were also performed and indicated initial pressures of ˜40 GPa and temperatures of ˜1 eV at the absorption region. Both the simulations and the image data show a clear boundary between distinct material phases, a hot plasma and solid silica, with a suggestion that growth of perturbations at the Rayleigh-Taylor unstable interface between the two phases is the seed mechanism for the growth of cracks into the stressed solid.
Application of Virtual Navigation with Multimodality Image Fusion in Foramen Ovale Cannulation.
Qiu, Xixiong; Liu, Weizong; Zhang, Mingdong; Lin, Hengzhou; Zhou, Shoujun; Lei, Yi; Xia, Jun
2017-11-01
Idiopathic trigeminal neuralgia (ITN) can be effectively treated with radiofrequency thermocoagulation. However, this procedure requires cannulation of the foramen ovale, and conventional cannulation methods are associated with high failure rates. Multimodality imaging can improve the accuracy of cannulation because each imaging method can compensate for the drawbacks of the other. We aim to determine the feasibility and accuracy of percutaneous foramen ovale cannulation under the guidance of virtual navigation with multimodality image fusion in a self-designed anatomical model of human cadaveric heads. Five cadaveric head specimens were investigated in this study. Spiral computed tomography (CT) scanning clearly displayed the foramen ovale in all five specimens (10 foramina), which could not be visualized using two-dimensional ultrasound alone. The ultrasound and spiral CT images were fused, and percutaneous cannulation of the foramen ovale was performed under virtual navigation. After this, spiral CT scanning was immediately repeated to confirm the accuracy of the cannulation. Postprocedural spiral CT confirmed that the ultrasound and CT images had been successfully fused for all 10 foramina, which were accurately and successfully cannulated. The success rates of both image fusion and cannulation were 100%. Virtual navigation with multimodality image fusion can substantially facilitate foramen ovale cannulation and is worthy of clinical application. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision
NASA Astrophysics Data System (ADS)
Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.
2018-01-01
The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.
TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.
Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun
2016-11-01
The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .
[Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].
Fiedler, E; Platsch, G; Schwarz, A; Schmiedehausen, K; Tomandl, B; Huk, W; Rupprecht, Th; Rahn, N; Kuwert, T
2003-10-01
Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.
Chromodomains direct integration of retrotransposons to heterochromatin
Gao, Xiang; Hou, Yi; Ebina, Hirotaka; Levin, Henry L.; Voytas, Daniel F.
2008-01-01
The enrichment of mobile genetic elements in heterochromatin may be due, in part, to targeted integration. The chromoviruses are Ty3/gypsy retrotransposons with chromodomains at their integrase C termini. Chromodomains are logical determinants for targeting to heterochromatin, because the chromodomain of heterochromatin protein 1 (HP1) typically recognizes histone H3 K9 methylation, an epigenetic mark characteristic of heterochromatin. We describe three groups of chromoviruses based on amino acid sequence relationships of their integrase C termini. Genome sequence analysis indicates that representative chromoviruses from each group are enriched in gene-poor regions of the genome relative to other retrotransposons, and when fused to fluorescent marker proteins, the chromodomains target proteins to specific subnuclear foci coincident with heterochromatin. The chromodomain of the fungal element, MAGGY, interacts with histone H3 dimethyl- and trimethyl-K9, and when the MAGGY chromodomain is fused to integrase of the Schizosaccharomyces pombe Tf1 retrotransposon, new Tf1 insertions are directed to sites of H3 K9 methylation. Repetitive sequences such as transposable elements trigger the RNAi pathway resulting in their epigenetic modification. Our results suggest a dynamic interplay between retrotransposons and heterochromatin, wherein mobile elements recognize heterochromatin at the time of integration and then perpetuate the heterochromatic mark by triggering epigenetic modification. PMID:18256242
Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl; Verhaart, René F.; Angeloni, Francesco
2014-09-01
Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealisticmore » deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.« less
Detection technology of polarization target based on curvelet transform in turbid liquid
NASA Astrophysics Data System (ADS)
Zhang, Su; Duan, Jin; Fu, Qiang; Zhan, Juntong; Ma, Wanzhuo
2015-08-01
To suppress the interference of the target detecting in the turbid medium, a kind of polarization detection technology based on Curvelet transform was applied. This method firstly adjusts the angles of polarizing film to get the intensity images of the situations at 0°,60° and 120°, then deduces the images of Stokes vectors, degree of polarization (DOP) and polarization angle (PA) according to the Mueller matrix. At last the DOP and intensity images can be decomposed by Curvelet transform to realize the fusion of the high and low coefficients respectively, after the processed coefficients are reconstructed, the target which is easier to detect can be achieved. To prove this method, many targets in turbid medium have been detected by polarization method and fused their DOP and intensity images with Curvelet transform algorithm. As an example screws in moderate and high concentration liquid are presented respectively, from which we can see the unpolarized targets are less obvious in higher concentration liquid. When the DOP and intensity images are fused by Curvelet transform, the targets are emerged clearly out of the turbid medium, and the values of the quality evaluation parameters in clarity, degree of contract and spatial frequency are prominently enhanced comparing with the unpolarized images, which can show the feasibility of this method.
Fusion of Escherichia coli heat-stable enterotoxin and heat-labile enterotoxin B subunit.
Guzman-Verduzco, L M; Kupersztoch, Y M
1987-11-01
The 3' terminus of the DNA coding for the extracellular Escherichia coli heat-stable enterotoxin (ST) devoid of transcription and translation stop signals was fused to the 5' terminus of the DNA coding for the periplasmic B subunit of the heat-labile enterotoxin (LTB) deleted of ribosomal binding sites and leader peptide. By RNA-DNA hybridization analysis, it was shown that the fused DNA was transcribed in vivo into an RNA species in close agreement with the expected molecular weight inferred from the nucleotide sequence. The translation products of the fused DNA resulted in a hybrid molecule recognized in Western blots (immunoblots) with antibodies directed against the heat-labile moiety. Anti-LTB antibodies coupled to a solid support bound ST and LTB simultaneously when incubated with ST-LTB cellular extracts. By [35S]cysteine pulse-chase experiments, it was shown that the fused ST-LTB polypeptide was converted from a precursor with an equivalent electrophoretic mobility of 20,800 daltons to an approximately 18,500-dalton species, which accumulated within the cell. The data suggest that wild-type ST undergoes at least two processing steps during its export to the culture supernatant. Blocking the natural carboxy terminus of ST inhibited the second proteolytic step and extracellular delivery of the hybrid molecule.
High dynamic range coding imaging system
NASA Astrophysics Data System (ADS)
Wu, Renfan; Huang, Yifan; Hou, Guangqi
2014-10-01
We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.
Angiogram, fundus, and oxygen saturation optic nerve head image fusion
NASA Astrophysics Data System (ADS)
Cao, Hua; Khoobehi, Bahram
2009-02-01
A novel multi-modality optic nerve head image fusion approach has been successfully designed. The new approach has been applied on three ophthalmologic modalities: angiogram, fundus, and oxygen saturation retinal optic nerve head images. It has achieved an excellent result by giving the visualization of fundus or oxygen saturation images with a complete angiogram overlay. During this study, two contributions have been made in terms of novelty, efficiency, and accuracy. The first contribution is the automated control point detection algorithm for multi-sensor images. The new method employs retina vasculature and bifurcation features by identifying the initial good-guess of control points using the Adaptive Exploratory Algorithm. The second contribution is the heuristic optimization fusion algorithm. In order to maximize the objective function (Mutual-Pixel-Count), the iteration algorithm adjusts the initial guess of the control points at the sub-pixel level. A refinement of the parameter set is obtained at the end of each loop, and finally an optimal fused image is generated at the end of the iteration. It is the first time that Mutual-Pixel-Count concept has been introduced into biomedical image fusion area. By locking the images in one place, the fused image allows ophthalmologists to match the same eye over time and get a sense of disease progress and pinpoint surgical tools. The new algorithm can be easily expanded to human or animals' 3D eye, brain, or body image registration and fusion.
Tokuda, Junichi; Morikawa, Shigehiro; Dohi, Takeyoshi; Hata, Nobuhiko
2004-01-01
Image registration in magnetic resonance (MR) image-guided liver therapy enhances surgical guidance by fusing preoperative multimodality images with intraoperative images, or by fusing intramodality images to correlate serial intraoperative images to monitor the effect of therapy. The objective of this paper is to describe the application of navigator echo and projection profile matching to fast two-dimensional image registration for MR-guided liver therapy. We obtain navigator echoes along the read-out and phase-encoding directions by using modified gradient echo imaging. This registration is made possible by masking out the liver profile from the image and performing profile matching with cross-correlation or mutual information as similarity measures. The set of experiments include a phantom study with a 2.0-T experimental MR scanner, and a volunteer and a clinical study with a 0.5-T open-configuration MR scanner, and these evaluate the accuracy and effectiveness of this method for liver therapy. Both the phantom and volunteer study indicate that this method can perform registration in 34 ms with root-mean-square error of 1.6 mm when the given misalignment of a liver is 30 mm. The clinical studies demonstrate that the method can track liver motion of up to approximately 40 mm. Matching profiles with cross-correlation information perform better than with mutual information in terms of robustness and speed. The proposed image registration method has potential clinical impact on and advantages for MR-guided liver therapy.
Multi-dimension feature fusion for action recognition
NASA Astrophysics Data System (ADS)
Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin
2018-04-01
Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Liu, Y.; McDonough MacKenzie, C.; Primack, R.; Zhang, X.; Schaaf, C.; Sun, Q.; Wang, Z.
2015-12-01
Monitoring phenology with remotely sensed data has become standard practice in large-plot agriculture but remains an area of research in complex terrain. Landsat data (30m) provides a more appropriate spatial resolution to describe such regions but may only capture a few cloud-free images over a growing period. Daily data from the MODerate resolution Imaging Spectroradiometer(MODIS) and Visible Infrared Imaging Radiometer Suite(VIIRS) offer better temporal acquisitions but at coarse spatial resolutions of 250m to 1km. Thus fused data sets are being employed to provide the temporal and spatial resolutions necessary to accurately monitor vegetation phenology. This study focused on Acadia National Park, Maine, attempts to compare green-up from remote sensing and ground observations over varying topography. Three north-south field transects were established in 2013 on parallel mountains. Along these transects, researchers record the leaf out and flowering phenology for thirty plant species biweekly. These in situ spring phenological observations are compared with the dates detected by Landsat 7, Landsat 8, MODIS, and VIIRS observations, both separately and as fused data, to explore the ability of remotely sensed data to capture the subtle variations due to elevation. Daily Nadir BRDF Adjusted Reflectances(NBAR) from MODIS and VIIRS are fused with Landsat imagery to simulate 30m daily data via the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model(ESTARFM) algorithm. Piecewise logistic functions are fit to the time series to establish spring leaf-out dates. Acadia National Park, a region frequently affected by coastal clouds, is a particularly useful study area as it falls in a Landsat overlap region and thus offers the possibility of acquiring as many as 4 Landsat observations in a 16 day period. With the recent launch of Sentinel 2A, the community will have routine access to such high spatial and temporal data for phenological monitoring.
Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R
2004-07-01
The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.
SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, R; Yang, J; Pan, T
Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less
Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf
2017-08-01
A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or guidance system able to read DICOM data sets, expanding the possibilities of embedded planning software.
Loi, Vu Van; Harms, Manuela; Müller, Marret; Huyen, Nguyen Thi Thu; Hamilton, Chris J; Hochgräfe, Falko; Pané-Farré, Jan; Antelmann, Haike
2017-05-20
Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation, which can be reversed by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live imaging of the glutathione redox potential. Here, we have constructed a genetically encoded bacilliredoxin-fused redox biosensor (Brx-roGFP2) to monitor dynamic changes in the BSH redox potential in S. aureus. The Brx-roGFP2 biosensor showed a specific and rapid response to low levels of bacillithiol disulfide (BSSB) in vitro that required the active-site Cys of Brx. Dynamic live imaging in two methicillin-resistant S. aureus (MRSA) USA300 and COL strains revealed fast and dynamic responses of the Brx-roGFP2 biosensor under hypochlorite and hydrogen peroxide (H 2 O 2 ) stress and constitutive oxidation of the probe in different BSH-deficient mutants. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus COL compared with the USA300 strain. In phagocytosis assays with THP-1 macrophages, the biosensor was 87% oxidized in S. aureus COL. However, no changes in the BSH redox potential were measured after treatment with different antibiotics classes, indicating that antibiotics do not cause oxidative stress in S. aureus. Conclusion and Innovation: This Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and roGFP2 redox couples and can be applied for dynamic live imaging of redox changes in S. aureus and other BSH-producing Firmicutes. Antioxid. Redox Signal. 26, 835-848.
Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought
USDA-ARS?s Scientific Manuscript database
Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction ...
An infrared-visible image fusion scheme based on NSCT and compressed sensing
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Maldague, Xavier
2015-05-01
Image fusion, as a research hot point nowadays in the field of infrared computer vision, has been developed utilizing different varieties of methods. Traditional image fusion algorithms are inclined to bring problems, such as data storage shortage and computational complexity increase, etc. Compressed sensing (CS) uses sparse sampling without knowing the priori knowledge and greatly reconstructs the image, which reduces the cost and complexity of image processing. In this paper, an advanced compressed sensing image fusion algorithm based on non-subsampled contourlet transform (NSCT) is proposed. NSCT provides better sparsity than the wavelet transform in image representation. Throughout the NSCT decomposition, the low-frequency and high-frequency coefficients can be obtained respectively. For the fusion processing of low-frequency coefficients of infrared and visible images , the adaptive regional energy weighting rule is utilized. Thus only the high-frequency coefficients are specially measured. Here we use sparse representation and random projection to obtain the required values of high-frequency coefficients, afterwards, the coefficients of each image block can be fused via the absolute maximum selection rule and/or the regional standard deviation rule. In the reconstruction of the compressive sampling results, a gradient-based iterative algorithm and the total variation (TV) method are employed to recover the high-frequency coefficients. Eventually, the fused image is recovered by inverse NSCT. Both the visual effects and the numerical computation results after experiments indicate that the presented approach achieves much higher quality of image fusion, accelerates the calculations, enhances various targets and extracts more useful information.
ALLFlight: detection of moving objects in IR and ladar images
NASA Astrophysics Data System (ADS)
Doehler, H.-U.; Peinecke, Niklas; Lueken, Thomas; Schmerwitz, Sven
2013-05-01
Supporting a helicopter pilot during landing and takeoff in degraded visual environment (DVE) is one of the challenges within DLR's project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites). Different types of sensors (TV, Infrared, mmW radar and laser radar) are mounted onto DLR's research helicopter FHS (flying helicopter simulator) for gathering different sensor data of the surrounding world. A high performance computer cluster architecture acquires and fuses all the information to get one single comprehensive description of the outside situation. While both TV and IR cameras deliver images with frame rates of 25 Hz or 30 Hz, Ladar and mmW radar provide georeferenced sensor data with only 2 Hz or even less. Therefore, it takes several seconds to detect or even track potential moving obstacle candidates in mmW or Ladar sequences. Especially if the helicopter is flying with higher speed, it is very important to minimize the detection time of obstacles in order to initiate a re-planning of the helicopter's mission timely. Applying feature extraction algorithms on IR images in combination with data fusion algorithms of extracted features and Ladar data can decrease the detection time appreciably. Based on real data from flight tests, the paper describes applied feature extraction methods for moving object detection, as well as data fusion techniques for combining features from TV/IR and Ladar data.
Fused silica mirror development for SIRTF
NASA Technical Reports Server (NTRS)
Barnes, W. P., Jr.
1983-01-01
An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.
Localization of Lead Accumulated by Corn Plants 1
Malone, Carl; Koeppe, D. E.; Miller, Raymond J.
1974-01-01
Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dictyosome vesicles. Dictyosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit fused with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner. Images PMID:16658711
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
Hybrid Vision-Fusion system for whole-body scintigraphy.
Barjaktarović, Marko; Janković, Milica M; Jeremić, Marija; Matović, Milovan
2018-05-01
Radioiodine therapy in the treatment of differentiated thyroid carcinoma (DTC) is used in clinical practice for the ablation of thyroid residues and/or destruction of tumour tissue. Whole-body scintigraphy for visualization of the spatial 131I distribution performed by a gamma camera (GC) is a standard procedure in DTC patients after application of radioiodine therapy. A common problem is the precise topographic localization of regions where radioiodine is accumulated even in SPECT imaging. SPECT/CT can provide precise topographic localization of regions where radioiodine is accumulated, but it is often unavailable, especially in developing countries because of the high price of the equipment. In this paper, we present a Vision-Fusion system as an affordable solution for 1) acquiring an optical whole-body image during routine whole-body scintigraphy and 2) fusing gamma and optical images (also available for the auto-contour mode of GC). The estimated prediction error for image registration is 1.84 mm. The validity of fusing was tested by performing simultaneous optical and scintigraphy image acquisition of the bar phantom. The fusion result shows that the fusing process has a slight influence and is lower than the spatial resolution of GC (mean value ± standard deviation: 1.24 ± 0.22 mm). The Vision-Fusion system was used for radioiodine post-therapeutic treatment, and 17 patients were followed (11 women and 6 men, with an average age of 48.18 ± 13.27 years). Visual inspection showed no misregistration. Based on our first clinical experience, we noticed that the Vision-Fusion system could be very useful for improving the diagnostic possibility of whole-body scintigraphy after radioiodine therapy. Additionally, the proposed Vision-Fusion software can be used as an upgrade for any GC to improve localizations of thyroid/tumour tissue. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
Lindsey, Brooks D; Light, Edward D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W
2011-06-01
Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays-transducer design and interconnects-in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation.
Lindsey, Brooks D.; Light, Edward D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.
2012-01-01
Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation. PMID:21693401
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
Long, Xigui; Huang, Yanru; Tan, Hu; Li, Zhuo; Zhang, Rui; Linpeng, Siyuan; Lv, Weigang; Cao, Yingxi; Li, Haoxian; Liang, Desheng; Wu, Lingqian
2018-04-26
To detect the underlying pathogenesis of congenital cataract in a four-generation Chinese family. Whole-exome sequencing (WES) of family members (III:4, IV:4, and IV:6) was performed. Sanger sequencing and bioinformatics analysis were subsequently conducted. Full-length WT-MIP or K228fs-MIP fused to HA markers at the N-terminal was transfected into HeLa cells. Next, quantitative real-time PCR, western blotting and immunofluorescence confocal laser scanning were performed. The age of onset for nonsyndromic cataracts in male patients was by 1-year old, earlier than for female patients, who exhibited onset at adulthood. A novel c.682_683delAA (p.K228fs230X) mutation in main intrinsic protein (MIP) cosegregated with the cataract phenotype. The instability index and unfolded states for truncated MIP were predicted to increase by bioinformatics analysis. The mRNA transcription level of K228fs-MIP was reduced compared with that of WT-MIP, and K228fs-MIP protein expression was also lower than that of WT-MIP. Immunofluorescence images showed that WT-MIP principally localized to the plasma membrane, whereas the mutant protein was trapped in the cytoplasm. Our study generated genetic and primary functional evidence for a novel c.682_683delAA mutation in MIP that expands the variant spectrum of MIP and help us better understand the molecular basis of cataract.
NASA Astrophysics Data System (ADS)
Gong, K.; Fritsch, D.
2018-05-01
Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs' generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.
Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion.
Li, Hui; Jing, Linhai; Tang, Yunwei
2017-01-05
Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies.
Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion
Li, Hui; Jing, Linhai; Tang, Yunwei
2017-01-01
Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies. PMID:28067770
Zabeau, M; Stanley, K K
1982-01-01
Hybrid plasmids carrying cro-lacZ gene fusions have been constructed by joining DNA segments carrying the PR promoter and the start of the cro gene of bacteriophage lambda to the lacZ gene fragment carried by plasmid pLG400 . Plasmids in which the translational reading frames of the cro and lacZ genes are joined in-register (type I) direct the synthesis of elevated levels of cro-beta-galactosidase fusion protein amounting to 30% of the total cellular protein, while plasmids in which the genes are fused out-of-register (type II) produce a low level of beta-galactosidase protein. Sequence rearrangements downstream of the cro initiator AUG were found to influence the efficiency of translation, and have been correlated with alterations in the RNA secondary structure of the ribosome-binding site. Plasmids which direct the synthesis of high levels of beta-galactosidase are conditionally lethal and can only be propagated when the PR promoter is repressed. Deletion of sequences downstream of the lacZ gene restored viability, indicating that this region of the plasmid encodes a function which inhibits the growth of the cells. The different applications of these plasmids for expression of cloned genes are discussed. Images Fig. 6. PMID:6327257
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B
1995-01-01
Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.
Bentley, L; Fehrsen, J; Jordaan, F; Huismans, H; du Plessis, D H
2000-04-01
VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.
Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori
2017-07-15
DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.
Person-independent facial expression analysis by fusing multiscale cell features
NASA Astrophysics Data System (ADS)
Zhou, Lubing; Wang, Han
2013-03-01
Automatic facial expression recognition is an interesting and challenging task. To achieve satisfactory accuracy, deriving a robust facial representation is especially important. A novel appearance-based feature, the multiscale cell local intensity increasing patterns (MC-LIIP), to represent facial images and conduct person-independent facial expression analysis is presented. The LIIP uses a decimal number to encode the texture or intensity distribution around each pixel via pixel-to-pixel intensity comparison. To boost noise resistance, MC-LIIP carries out comparison computation on the average values of scalable cells instead of individual pixels. The facial descriptor fuses region-based histograms of MC-LIIP features from various scales, so as to encode not only textural microstructures but also the macrostructures of facial images. Finally, a support vector machine classifier is applied for expression recognition. Experimental results on the CK+ and Karolinska directed emotional faces databases show the superiority of the proposed method.
NASA Astrophysics Data System (ADS)
Imani, Farhad; Ghavidel, Sahar; Abolmaesumi, Purang; Khallaghi, Siavash; Gibson, Eli; Khojaste, Amir; Gaed, Mena; Moussa, Madeleine; Gomez, Jose A.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Siemens, D. Robert; Leveridge, Michael; Chang, Silvia; Fenster, Aaron; Ward, Aaron D.; Mousavi, Parvin
2016-03-01
Recently, multi-parametric Magnetic Resonance Imaging (mp-MRI) has been used to improve the sensitivity of detecting high-risk prostate cancer (PCa). Prior to biopsy, primary and secondary cancer lesions are identified on mp-MRI. The lesions are then targeted using TRUS guidance. In this paper, for the first time, we present a fused mp-MRI-temporal-ultrasound framework for characterization of PCa, in vivo. Cancer classification results obtained using temporal ultrasound are fused with those achieved using consolidated mp-MRI maps determined by multiple observers. We verify the outcome of our study using histopathology following deformable registration of ultrasound and histology images. Fusion of temporal ultrasound and mp-MRI for characterization of the PCa results in an area under the receiver operating characteristic curve (AUC) of 0.86 for cancerous regions with Gleason scores (GSs)>=3+3, and AUC of 0.89 for those with GSs>=3+4.
Lesche, R; Peetz, A; van der Hoeven, F; Rüther, U
1997-12-01
The dominant mouse mutation Fused toes is characterized by partial syndactyly of the limbs and thymic hyperplasia. Both morphological abnormalities were shown to be related to impaired regulation of programmed cell death. Ft/Ft embryos die in midgestation showing severe malformations of fore- and midbrain as well as randomized situs. In Ft mice a large chromosomal deletion (about 300 kb) occurred after insertional mutagenesis. In this report we describe the identification of the first gene that has been mutated by Fused toes. The expression of the novel gene Ft1 is reduced in Ft/+ mice and completely absent in Ft/Ft embryos. Analysis of the Ft1 cDNA revealed an open reading frame that could code for a 32-kDa protein with similarities to ubiquitin-conjugating enzymes. Ft1 transcripts with alternative 5' UTR sequences as well as differential usage of polyadenylation sites were found. Interestingly, the 3' parts of the longest Ft1 transcripts are identical to the reverse complement of the 3'-most sequences of the Rb-related p130 gene. Both genes are transcribed in opposite directions and overlap in their 3' UTRs. Despite the close linkage, p130 expression appeared not to be affected by the Ft mutation. In wild type mice, Ft1 expression levels were found to be high in brain, kidney, and testes and detectable in all other adult organs and throughout embryonic development. Finally, we show that Ft1 is conserved among mammals and identify the human homolog.
TALE: a tale of genome editing.
Zhang, Mingjie; Wang, Feng; Li, Shifei; Wang, Yan; Bai, Yun; Xu, Xueqing
2014-01-01
Transcription activator-like effectors (TALEs), first identified in Xanthomonas bacteria, are naturally occurring or artificially designed proteins that modulate gene transcription. These proteins recognize and bind DNA sequences based on a variable numbers of tandem repeats. Each repeat is comprised of a set of ∼ 34 conserved amino acids; within this conserved domain, there are usually two amino acids that distinguish one TALE from another. Interestingly, TALEs have revealed a simple cipher for the one-to-one recognition of proteins for DNA bases. Synthetic TALEs have been used to successfully target genes in a variety of species, including humans. Depending on the type of functional domain that is fused to the TALE of interest, these proteins can have diverse biological effects. For example, after binding DNA, TALEs fused to transcriptional activation domains can function as robust transcription factors (TALE-TFs), while fused to restriction endonucleases (TALENs) can cut DNA. Targeted genome editing, in theory, is capable of modifying any endogenous gene sequence of interest; this can be performed in cells or organisms, and may be applied to clinical gene-based therapies in the future. With current technologies, highly accurate, specific, and reliable gene editing cannot be achieved. Thus, recognition and binding mechanisms governing TALE biology are currently hot research areas. In this review, we summarize the major advances in TALE technology over the past several years with a focus on the interaction between TALEs and DNA, TALE design and construction, potential applications for this technology, and unique characteristics that make TALEs superior to zinc finger endonucleases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fully Convolutional Network-Based Multifocus Image Fusion.
Guo, Xiaopeng; Nie, Rencan; Cao, Jinde; Zhou, Dongming; Qian, Wenhua
2018-07-01
As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.
Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni
2016-10-01
This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.
Investigation of Hall Effect Thruster Channel Wall Erosion Mechanisms
2016-08-02
pretest height and laser image, c, d) post - test height and laser image. On all the pre-roughened samples, a cell-pattern developed from the random...7.8: Pre and post - test sample microscopy: Fused silica sample SA6 (loaded), 20x, center of exposed surface, a, b) pretest height and laser image, c, d...stress on the surface features developed during plasma erosion. The experiment is also designed specifically to test the SRH. A test fixture is
Evidential analysis of difference images for change detection of multitemporal remote sensing images
NASA Astrophysics Data System (ADS)
Chen, Yin; Peng, Lijuan; Cremers, Armin B.
2018-03-01
In this article, we develop two methods for unsupervised change detection in multitemporal remote sensing images based on Dempster-Shafer's theory of evidence (DST). In most unsupervised change detection methods, the probability of difference image is assumed to be characterized by mixture models, whose parameters are estimated by the expectation maximization (EM) method. However, the main drawback of the EM method is that it does not consider spatial contextual information, which may entail rather noisy detection results with numerous spurious alarms. To remedy this, we firstly develop an evidence theory based EM method (EEM) which incorporates spatial contextual information in EM by iteratively fusing the belief assignments of neighboring pixels to the central pixel. Secondly, an evidential labeling method in the sense of maximizing a posteriori probability (MAP) is proposed in order to further enhance the detection result. It first uses the parameters estimated by EEM to initialize the class labels of a difference image. Then it iteratively fuses class conditional information and spatial contextual information, and updates labels and class parameters. Finally it converges to a fixed state which gives the detection result. A simulated image set and two real remote sensing data sets are used to evaluate the two evidential change detection methods. Experimental results show that the new evidential methods are comparable to other prevalent methods in terms of total error rate.
Danhier, Pierre; Krishnamachary, Balaji; Bharti, Santosh; Kakkad, Samata; Mironchik, Yelena; Bhujwalla, Zaver M
2015-12-01
Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies. Copyright © 2015 Nencki Institute of Experimental Biology, Polish Academy of Sciences,. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A regulatory sequence from a serine proteinase inhibitor gene (BvSTIpro) shown to be up-regulated in resistant interactions with a root pest of sugar beet, the sugar beet root maggot, was fused to the ß-glucuronidase (GUS) reporter gene to characterize its expression patterns in transgenic Nicotiana...
Azevedo, A; Prado, A F; Issa, J P M; Gerlach, R F
2016-08-01
Matrix Metalloproteinases (MMPs) participate in many physiological and pathological processes. One major limitation to a better understanding of the role MMPs play in these processes is the lack of well-characterized chimeric proteins and characterization of their fluorescence. The specialized literature has reported on few constructs bearing MMPs fused to the sequence of the green fluorescent protein (GFP), but none of the described constructs have been intended for expression in bacteria or for purification and use in vivo. This work has tested a recombinant reporter protein containing the MMP-2 catalytic domain fused to GFP in terms of purification efficiency, degradation of substrates in solution and in zymograms, kinetic activity, GFP fluorescence, and GFP fluorescence in whole animals after injection of the purified and lyophilized fluorescent protein. This work has also characterized rhMMP-2 (recombinant human MMP-2) and inactive clones and used them as negative controls in experiments employing catMMP-2/GFP and rhMMP-2. To our knowledge, this is the first study that has fully characterized a chimeric protein with the MMP-2 catalytic domain fused to GFP, that has efficiently purified such protein from bacteria in a single-step, and that has obtained an adequate chimeric protein for injection in animals and tracking of MMP-2 fate and activity in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Ah-Fong, Audrey M V; Judelson, Howard S
2011-09-01
Fluorescent tagging has become the strategy of choice for examining the subcellular localisation of proteins. To develop a versatile community resource for this method in oomycetes, plasmids were constructed that allow the expression of either of four spectrally distinct proteins [cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), and mCherry], alone or fused at their N- or C-termini, to sequences of interest. Equivalent sets of plasmids were made using neomycin or hygromycin phosphotransferases (nptII, hpt) as selectable markers, to facilitate double-labelling and aid work in diverse species. The fluorescent proteins and drug-resistance markers were fused to transcriptional regulatory sequences from the oomycete Bremia lactucae, which are known to function in diverse oomycetes, although the promoter in the fluorescence cassette (ham34) can be replaced easily by a promoter of interest. The function of each plasmid was confirmed in Phytophthora infestans. Moreover, fusion proteins were generated using targeting sequences for the endoplasmic reticulum, Golgi, mitochondria, nuclei, and peroxisomes. Studies of the distribution of the fusions in mycelia and sporangia provided insight into cellular organisation at different stages of development. This toolbox of vectors should advance studies of gene function and cell biology in Phytophthora and other oomycetes. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Finding the Onset of Convection in Main Sequence Stars
NASA Technical Reports Server (NTRS)
Simon, Theodore
2003-01-01
The primary goal of the work performed under this grant was to locate, if possible, the onset of subphotospheric convection zones in normal main sequence stars by using the presence of emission in high temperature lines in far ultraviolet spectra from the FUSE spacecraft as a proxy for convection. The change in stellar structure represented by this boundary between radiative and convective stars has always been difficult to find by other empirical means. A search was conducted through observations of a sample of A-type stars, which were somewhat hotter and more massive than the Sun, and which were carefully chosen to bridge the theoretically expected radiative/convective boundary line along the main sequence.
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification
Liu, Fuxian
2018-01-01
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references. PMID:29581722
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification.
Yu, Yunlong; Liu, Fuxian
2018-01-01
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.
Oñate Miranda, M; Pinho, D F; Wardak, Z; Albuquerque, K; Pedrosa, I
2016-01-01
Cervical cancer is the third most common gynecological cancer. Its treatment depends on tumor staging at the time of diagnosis, and a combination of chemotherapy and radiotherapy is the treatment of choice in locally advanced cervical cancers. The combined use of external beam radiotherapy and brachytherapy increases survival in these patients. Brachytherapy enables a larger dose of radiation to be delivered to the tumor with less toxicity for neighboring tissues with less toxicity for neighboring tissues compared to the use of external beam radiotherapy alone. For years, brachytherapy was planned exclusively using computed tomography (CT). The recent incorporation of magnetic resonance imaging (MRI) provides essential information about the tumor and neighboring structures making possible to better define the target volumes. Nevertheless, MRI has limitations, some of which can be compensated for by fusing CT and MRI. Fusing the images from the two techniques ensures optimal planning by combining the advantages of each technique. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
A pre-trained convolutional neural network based method for thyroid nodule diagnosis.
Ma, Jinlian; Wu, Fa; Zhu, Jiang; Xu, Dong; Kong, Dexing
2017-01-01
In ultrasound images, most thyroid nodules are in heterogeneous appearances with various internal components and also have vague boundaries, so it is difficult for physicians to discriminate malignant thyroid nodules from benign ones. In this study, we propose a hybrid method for thyroid nodule diagnosis, which is a fusion of two pre-trained convolutional neural networks (CNNs) with different convolutional layers and fully-connected layers. Firstly, the two networks pre-trained with ImageNet database are separately trained. Secondly, we fuse feature maps learned by trained convolutional filters, pooling and normalization operations of the two CNNs. Finally, with the fused feature maps, a softmax classifier is used to diagnose thyroid nodules. The proposed method is validated on 15,000 ultrasound images collected from two local hospitals. Experiment results show that the proposed CNN based methods can accurately and effectively diagnose thyroid nodules. In addition, the fusion of the two CNN based models lead to significant performance improvement, with an accuracy of 83.02%±0.72%. These demonstrate the potential clinical applications of this method. Copyright © 2016 Elsevier B.V. All rights reserved.
Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao
2017-09-01
Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.
Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.
Liu, Min; Wang, Xueping; Zhang, Hongzhong
2018-03-01
In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.
SENTINEL-1 and SENTINEL-2 Data Fusion for Wetlands Mapping: Balikdami, Turkey
NASA Astrophysics Data System (ADS)
Kaplan, G.; Avdan, U.
2018-04-01
Wetlands provide a number of environmental and socio-economic benefits such as their ability to store floodwaters and improve water quality, providing habitats for wildlife and supporting biodiversity, as well as aesthetic values. Remote sensing technology has proven to be a useful and frequent application in monitoring and mapping wetlands. Combining optical and microwave satellite data can help with mapping and monitoring the biophysical characteristics of wetlands and wetlands` vegetation. Also, fusing radar and optical remote sensing data can increase the wetland classification accuracy. In this paper, data from the fine spatial resolution optical satellite, Sentinel-2 and the Synthetic Aperture Radar Satellite, Sentinel-1, were fused for mapping wetlands. Both Sentinel-1 and Sentinel-2 images were pre-processed. After the pre-processing, vegetation indices were calculated using the Sentinel-2 bands and the results were included in the fusion data set. For the classification of the fused data, three different classification approaches were used and compared. The results showed significant improvement in the wetland classification using both multispectral and microwave data. Also, the presence of the red edge bands and the vegetation indices used in the data set showed significant improvement in the discrimination between wetlands and other vegetated areas. The statistical results of the fusion of the optical and radar data showed high wetland mapping accuracy, showing an overall classification accuracy of approximately 90 % in the object-based classification method. For future research, we recommend multi-temporal image use, terrain data collection, as well as a comparison of the used method with the traditional image fusion techniques.
ART AND SCIENCE OF IMAGE MAPS.
Kidwell, Richard D.; McSweeney, Joseph A.
1985-01-01
The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-10-21
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array
Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-01-01
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637
Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris.
Ide, Nobuyuki; Masuda, Tetsuya; Kitabatake, Naofumi
2007-11-23
Thaumatin is a 22-kDa sweet-tasting protein containing eight disulfide bonds. When thaumatin is expressed in Pichia pastoris using the thaumatin cDNA fused with both the alpha-factor signal sequence and the Kex2 protease cleavage site from Saccharomyces cerevisiae, the N-terminal sequence of the secreted thaumatin molecule is not processed correctly. To examine the role of the thaumatin cDNA-encoded N-terminal pre-sequence and C-terminal pro-sequence on the processing of thaumatin and efficiency of thaumatin production in P. pastoris, four expression plasmids with different pre-sequence and pro-sequence were constructed and transformed into P. pastoris. The transformants containing pre-thaumatin gene that has the native plant signal, secreted thaumatin molecules in the medium. The N-terminal amino acid sequence of the secreted thaumatin molecule was processed correctly. The production yield of thaumatin was not affected by the C-terminal pro-sequence, and the pro-sequence was not processed in P. pastoris, indicating that pro-sequence is not necessary for thaumatin synthesis.
NASA Astrophysics Data System (ADS)
Osychenko, Alina A.; Zalessky, Alexandr D.; Kostrov, Andrey N.; Ryabova, Anastasia V.; Krivokharchenko, Alexander S.; Nadtochenko, Viktor A.
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion.
NCI scientists at forefront of new prostate cancer diagnostics
Introduction of the UroNav was the result of nearly a decade’s research and development, principally conducted at NCI. Resembling a stylized computer workstation on wheels, the system electronically fuses together pictures from magnetic resonance imaging
A method based on IHS cylindrical transform model for quality assessment of image fusion
NASA Astrophysics Data System (ADS)
Zhu, Xiaokun; Jia, Yonghong
2005-10-01
Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.
Improved colour matching technique for fused nighttime imagery with daytime colours
NASA Astrophysics Data System (ADS)
Hogervorst, Maarten A.; Toet, Alexander
2016-10-01
Previously, we presented a method for applying daytime colours to fused nighttime (e.g., intensified and LWIR) imagery (Toet and Hogervorst, Opt.Eng. 51(1), 2012). Our colour mapping not only imparts a natural daylight appearance to multiband nighttime images but also enhances the contrast and visibility of otherwise obscured details. As a result, this colourizing method leads to increased ease of interpretation, better discrimination and identification of materials, faster reaction times and ultimately improved situational awareness (Toet e.a., Opt.Eng.53(4), 2014). A crucial step in this colouring process is the choice of a suitable colour mapping scheme. When daytime colour images and multiband sensor images of the same scene are available the colour mapping can be derived from matching image samples (i.e., by relating colour values to sensor signal intensities). When no exact matching reference images are available the colour transformation can be derived from the first-order statistical properties of the reference image and the multiband sensor image (Toet, Info. Fus. 4(3), 2003). In the current study we investigated new colour fusion schemes that combine the advantages of the both methods, using the correspondence between multiband sensor values and daytime colours (1st method) in a smooth transformation (2nd method). We designed and evaluated three new fusion schemes that focus on: i) a closer match with the daytime luminances, ii) improved saliency of hot targets and iii) improved discriminability of materials
Image fusion based on Bandelet and sparse representation
NASA Astrophysics Data System (ADS)
Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi
2018-04-01
Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.
F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anna M.
2013-01-18
The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2.more » Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.« less
Zahiri, Javad; Mohammad-Noori, Morteza; Ebrahimpour, Reza; Saadat, Samaneh; Bozorgmehr, Joseph H; Goldberg, Tatyana; Masoudi-Nejad, Ali
2014-12-01
Protein-protein interaction (PPI) detection is one of the central goals of functional genomics and systems biology. Knowledge about the nature of PPIs can help fill the widening gap between sequence information and functional annotations. Although experimental methods have produced valuable PPI data, they also suffer from significant limitations. Computational PPI prediction methods have attracted tremendous attentions. Despite considerable efforts, PPI prediction is still in its infancy in complex multicellular organisms such as humans. Here, we propose a novel ensemble learning method, LocFuse, which is useful in human PPI prediction. This method uses eight different genomic and proteomic features along with four types of different classifiers. The prediction performance of this classifier selection method was found to be considerably better than methods employed hitherto. This confirms the complex nature of the PPI prediction problem and also the necessity of using biological information for classifier fusion. The LocFuse is available at: http://lbb.ut.ac.ir/Download/LBBsoft/LocFuse. The results revealed that if we divide proteome space according to the cellular localization of proteins, then the utility of some classifiers in PPI prediction can be improved. Therefore, to predict the interaction for any given protein pair, we can select the most accurate classifier with regard to the cellular localization information. Based on the results, we can say that the importance of different features for PPI prediction varies between differently localized proteins; however in general, our novel features, which were extracted from position-specific scoring matrices (PSSMs), are the most important ones and the Random Forest (RF) classifier performs best in most cases. LocFuse was developed with a user-friendly graphic interface and it is freely available for Linux, Mac OSX and MS Windows operating systems. Copyright © 2014 Elsevier Inc. All rights reserved.
'2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting.
Roulston, Claire; Luke, Garry A; de Felipe, Pablo; Ruan, Lin; Cope, Jonathan; Nicholson, John; Sukhodub, Andriy; Tilsner, Jens; Ryan, Martin D
2016-08-01
We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting. © 2016 The Authors. Traffic published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan
2015-12-01
In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.
Multifocus image fusion using phase congruency
NASA Astrophysics Data System (ADS)
Zhan, Kun; Li, Qiaoqiao; Teng, Jicai; Wang, Mingying; Shi, Jinhui
2015-05-01
We address the problem of fusing multifocus images based on the phase congruency (PC). PC provides a sharpness feature of a natural image. The focus measure (FM) is identified as strong PC near a distinctive image feature evaluated by the complex Gabor wavelet. The PC is more robust against noise than other FMs. The fusion image is obtained by a new fusion rule (FR), and the focused region is selected by the FR from one of the input images. Experimental results show that the proposed fusion scheme achieves the fusion performance of the state-of-the-art methods in terms of visual quality and quantitative evaluations.
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
End of the Line for a Star like Ours
ERIC Educational Resources Information Center
Riddle, Bob
2010-01-01
Stars of different masses have varying life spans, with the more massive stars "burning out" more quickly than stars of lower masses. How or what they do when they burn out also varies, depending on the mass of the star. All stars are called "main sequence stars" as they continue fusing hydrogen and staying in a state of equilibrium--a balance…
FcUni-RLuc: an engineered Renilla luciferase with Fc binding ability and light emission activity.
Farzannia, A; Roghanian, R; Zarkesh-Esfahani, S H; Nazari, M; Emamzadeh, R
2015-03-07
A novel and advanced Fc-binding probe – FcUni-RLuc namely – has been produced and functionally assayed for labelling IgGs. The Fc antibody binding sequence – HWRGWV – was fused to Renilla luciferase, and the purified probe was employed for bioluminescence enzyme-linked immunoabsorbance assay of Her2 positive cells.
Facilitating protein solubility by use of peptide extensions
Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason
2013-09-17
Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.
Yamamoto, T; Okawa, N; Endo, T; Kaji, A
1991-08-01
The ras gene was fused with the DNA sequence of OmpF signal peptide or with the DNA sequence of OmpF signal peptide plus the amino terminal portion of the OmpF gene. They were placed in plasmids together with the bacteriophage lambda PL promoter. These plasmids were introduced into Escherichia coli strain K-12 and the OmpF signal peptide fusion proteins were expressed. These fusion proteins were identified as 29.0 and 30.0 kDa proteins. However, processed products of these proteins were not found in the extract. The fusion proteins were localized mostly in the cytoplasm and the inner membrane, but none of them was secreted into the periplasmic space. On the other hand, the ras protein alone was found in the cytoplasm and not in the inner membrane. Viable counts of E. coli harbouring these plasmids decreased when these fused proteins were induced. Induction of the ras protein alone did not harm cells. These observations suggest that insertion of the heterologous proteins into the inner membrane may cause the bactericidal effect.
Rearrangement of Immunoglobulin Genes in Shark Germ Cells
Lee, Susan S.; Fitch, David; Flajnik, Martin F.; Hsu, Ellen
2000-01-01
The variable (V), (diversity [D]), and joining (J) region recombinases (recombination activating genes [RAGs]) can perform like transposases and are thought to have initiated development of the adaptive immune system in early vertebrates by splitting archaic V genes with transposable elements. In cartilaginous fishes, the immunoglobulin (Ig) light chain genes are organized as multiple VJ-constant (C) clusters; some loci are capable of rearrangement while others contain fused VJ. The latter may be key to understanding the evolutionary role of RAG. Are they relics of the archaic genes, or are they results of rearrangement in germ cells? Our data suggest that some fused VJ genes are not only recently rearranged, but also resulted from RAG-like activity involving hairpin intermediates. Expression studies show that these, like some other germline-joined Ig sequences, are expressed at significant levels only early in ontogeny. We suggest that a rejoined Ig gene may not merely be a sequence restricting antibody diversity, but is potentially a novel receptor no longer tied to somatic RAG expression and rearrangement. From the combined data, we arrived at the unexpected conclusion that, in some vertebrates, RAG is still an active force in changing the genome. PMID:10811858
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu
2018-01-05
Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.
Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.
Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans
2011-08-01
To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Giblin-Davis, Robin M.; Kanzaki, Natsumi; Ye, Weimin; Mundo-Ocampo, Manuel; Baldwin, James G.; Thomas, W. Kelley
2006-01-01
Bursaphelenchus platzeri n. sp., an associate of nitidulid beetles in southern California, is described and illustrated. Adult males and females of B. platzeri n. sp. were examined by scanning electron microscopy for ultrastructural comparisons with other members of the genus. Bursaphelenchus cocophilus (red ring nematode) appears to be the closest related taxon to B. platzeri n. sp. based upon shared morphological features of the fused spicules, female tail shape, phoresy with non-scolytid beetles, and molecular analysis of the near full-length small subunit (SSU) rDNA. Unfortunately, sequence data from the D2D3 expansion segments of the large subunit (LSU) rDNA and partial mitochondrial DNA COI did not help resolve the relationship of nearest relative. In addition to significant molecular sequence differences in SSU, LSU, and COI, B. platzeri n. sp., which is an obligate fungal feeder, can be differentiated from B. cocophilus because it is an obligate parasite of palms. Bursaphelenchus platzeri n. sp. can be differentiated from all other species of Bursaphelenchus by the length and shape of the female tail and spicule morphology. The spicules are fused along the ventral midline and possess unfused cucullae; the fused unit appears to function as a conduit for sperm. Population growth of B. platzeri n. sp. was measured in a time-course experiment at 25°C in the laboratory on cultures of the fungus Monilinia fructicola grown on 5% glycerol-supplemented potato dextrose agar (GPDA). Nematode population densities rapidly increased from 25 to approximately 200,000/culture within 14 d and then plateaued for up to 28 d. PMID:19259440
Hassan, Mohamed M
2014-11-02
Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the mycoparasitism effect of the extracellular enzymes.
de Virgilio, Maddalena; Bellucci, Michele; Mainieri, Davide; Rossi, Marika; Benvenuto, Eugenio; Arcioni, Sergio; Vitale, Alessandro
2008-01-01
Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein γ-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of γ-zein). Protein blots and pulse–chase indicate that fusions between Nef and the same γ-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin–Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its γ-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants. PMID:18540021
Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species
2016-01-01
Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5′ untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool. PMID:27973777
Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
Watanabe, Tomoko; Thayil, Anisha; Jesacher, Alexander; Grieve, Kate; Debarre, Delphine; Wilson, Tony; Booth, Martin; Srinivas, Shankar
2010-06-03
Lipid droplets (LD) are organelles with an important role in normal metabolism and disease. The lipid content of embryos has a major impact on viability and development. LD in Drosophila embryos and cultured cell lines have been shown to move and fuse in a microtubule dependent manner. Due to limitations in current imaging technology, little is known about the behaviour of LD in the mammalian embryo. Harmonic generation microscopy (HGM) allows one to image LD without the use of exogenous labels. Adaptive optics can be used to correct aberrations that would otherwise degrade the quality and information content of images. We have built a harmonic generation microscope with adaptive optics to characterise early mouse embryogenesis. At fertilization, LD are small and uniformly distributed, but in the implanting blastocyst, LD are larger and enriched in the invading giant cells of the trophectoderm. Time-lapse studies reveal that LD move continuously and collide but do not fuse, instead forming aggregates that subsequently behave as single units. Using specific inhibitors, we show that the velocity and dynamic behaviour of LD is dependent not only on microtubules as in other systems, but also on microfilaments. We explore the limits within which HGM can be used to study living embryos without compromising viability and make the counterintuitive finding that 16 J of energy delivered continuously over a period of minutes can be less deleterious than an order of magnitude lower energy delivered dis-continuously over a period of hours. LD in pre-implantation mouse embryos show a previously unappreciated complexity of behaviour that is dependent not only on microtubules, but also microfilaments. Unlike LD in other systems, LD in the mouse embryo do not fuse but form aggregates. This study establishes HGM with adaptive optics as a powerful tool for the study of LD biology and provides insights into the photo-toxic effects of imaging embryos.
Doppler Imaging with FUSE: The Partially Eclipsing Binary VW Cep
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Brickhouse, Nancy
2003-01-01
This report covers the FUSE Guest Observer program. This project involves the study of emission line profiles for the partially eclipsing, rapidly rotating binary system VW Cep. Active regions on the surface of the star(s) produce observable line shifts as the stars move with respect to the observer. By studying the time-dependence of the line profile changes and centroid shifts, one can determine the location of the activity. FUSE spectra were obtained by the P.I. 27 Sept 2002 and data reduction is in progress. Since we are interested in line profile analysis, we are now investigating the wavelength scale calibration in some detail. We have also obtained and are analyzing Chandra data in order to compare the X-ray velocities with the FUV velocities. A complementary project comparing X-ray and Far UltraViolet (FUV) emission for the similar system 44i Boo is also underway. Postdoctoral fellow Ronnie Hoogerwerf has joined the investigation team and will perform the data analysis, once the calibration is optimized.
On the Multi-Modal Object Tracking and Image Fusion Using Unsupervised Deep Learning Methodologies
NASA Astrophysics Data System (ADS)
LaHaye, N.; Ott, J.; Garay, M. J.; El-Askary, H. M.; Linstead, E.
2017-12-01
The number of different modalities of remote-sensors has been on the rise, resulting in large datasets with different complexity levels. Such complex datasets can provide valuable information separately, yet there is a bigger value in having a comprehensive view of them combined. As such, hidden information can be deduced through applying data mining techniques on the fused data. The curse of dimensionality of such fused data, due to the potentially vast dimension space, hinders our ability to have deep understanding of them. This is because each dataset requires a user to have instrument-specific and dataset-specific knowledge for optimum and meaningful usage. Once a user decides to use multiple datasets together, deeper understanding of translating and combining these datasets in a correct and effective manner is needed. Although there exists data centric techniques, generic automated methodologies that can potentially solve this problem completely don't exist. Here we are developing a system that aims to gain a detailed understanding of different data modalities. Such system will provide an analysis environment that gives the user useful feedback and can aid in research tasks. In our current work, we show the initial outputs our system implementation that leverages unsupervised deep learning techniques so not to burden the user with the task of labeling input data, while still allowing for a detailed machine understanding of the data. Our goal is to be able to track objects, like cloud systems or aerosols, across different image-like data-modalities. The proposed system is flexible, scalable and robust to understand complex likenesses within multi-modal data in a similar spatio-temporal range, and also to be able to co-register and fuse these images when needed.
NASA Astrophysics Data System (ADS)
Koldenkova, Vadim Pérez; Matsuda, Tomoki; Nagai, Takeharu
2015-10-01
Intracellular Mg roles are commensurate with its abundance in the cell cytoplasm. However, little is known about Mg subcellular dynamics, primarily due to the lack of suitable Mg-selective tools to monitor this ion in intracellular compartments. To cope with this lack, we developed a Mg-sensitive indicator-MagIC (indicator for Magnesium Imaging in Cell) -composed of a functionalized yellow fluorescent protein (FP) variant fused to a red-emitting FP serving as a reference, thus allowing ratiometric imaging of Mg. MagIC expressed in mammalian cells is homogeneously distributed between the cytosol and nucleus but its fusion with appropriate targeting sequences redirects it to mitochondria or the endoplasmic reticulum. MagIC shows little interference by intracellular Ca [Kd(Mg2+)=5.1 mM Kd(Ca2+)=4.8 mM] and its kinetic properties (k=84 s-1) approach those of indicator dyes. With MagIC, as reported previously, we also observed a cytosolic Mg increase provoked by application of 50 mM MgCl2 in the medium. This effect is, however, mimicked by 75 mM KCl or 150 mM D-sorbitol addition, indicating that it is a response to the associated hyperosmotic shock and not to Mg itself. Our results confirm the functionality of MagIC as a useful tool for the long-awaited possibility of prolonged and organelle-specific monitoring of cellular Mg.
Peterson, Kylee M; Torii, Keiko U
2012-12-31
Imaging in vivo dynamics of cellular behavior throughout a developmental sequence can be a powerful technique for understanding the mechanics of tissue patterning. During animal development, key cell proliferation and patterning events occur very quickly. For instance, in Caenorhabditis elegans all cell divisions required for the larval body plan are completed within six hours after fertilization, with seven mitotic cycles(1); the sixteen or more mitoses of Drosophila embryogenesis occur in less than 24 hr(2). In contrast, cell divisions during plant development are slow, typically on the order of a day (3,4,5) . This imposes a unique challenge and a need for long-term live imaging for documenting dynamic behaviors of cell division and differentiation events during plant organogenesis. Arabidopsis epidermis is an excellent model system for investigating signaling, cell fate, and development in plants. In the cotyledon, this tissue consists of air- and water-resistant pavement cells interspersed with evenly distributed stomata, valves that open and close to control gas exchange and water loss. Proper spacing of these stomata is critical to their function, and their development follows a sequence of asymmetric division and cell differentiation steps to produce the organized epidermis (Fig. 1). This protocol allows observation of cells and proteins in the epidermis over several days of development. This time frame enables precise documentation of stem-cell divisions and differentiation of epidermal cells, including stomata and epidermal pavement cells. Fluorescent proteins can be fused to proteins of interest to assess their dynamics during cell division and differentiation processes. This technique allows us to understand the localization of a novel protein, POLAR(6), during the proliferation stage of stomatal-lineage cells in the Arabidopsis cotyledon epidermis, where it is expressed in cells preceding asymmetric division events and moves to a characteristic area of the cell cortex shortly before division occurs. Images can be registered and streamlined video easily produced using public domain software to visualize dynamic protein localization and cell types as they change over time.
DeFranco, D; Yamamoto, K R
1986-01-01
The expression of genes fused downstream of the Moloney murine sarcoma virus (MoMSV) long terminal repeat is stimulated by glucocorticoids. We mapped the glucocorticoid response element that conferred this hormonal regulation and found that it is a hormone-dependent transcriptional enhancer, designated Sg; it resides within DNA fragments that also carry a previously described enhancer element (B. Levinson, G. Khoury, G. Vande Woude, and P. Gruss, Nature [London] 295:568-572, 1982), here termed Sa, whose activity is independent of the hormone. Nuclease footprinting revealed that purified glucocorticoid receptor bound at multiple discrete sites within and at the borders of the tandemly repeated sequence motif that defines Sa. The Sa and Sg activities stimulated the apparent efficiency of cognate or heterologous promoter utilization, individually providing modest enhancement and in concert yielding higher levels of activity. A deletion mutant lacking most of the tandem repeat but retaining a single receptor footprint sequence lost Sa activity but still conferred Sg activity. The two enhancer components could also be distinguished physiologically: both were operative within cultured rat fibroblasts, but only Sg activity was detectable in rat exocrine pancreas cells. Therefore, the sequence determinants of Sa and Sg activity may be interdigitated, and when both components are active, the receptor and a putative Sa factor can apparently bind and act simultaneously. We concluded that MoMSV enhancer activity is effected by at least two distinct binding factors, suggesting that combinatorial regulation of promoter function can be mediated even from a single genetic element. Images PMID:3023887
High-density, microsphere-based fiber optic DNA microarrays.
Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R
2003-05-01
A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.
Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi
2015-01-01
To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Osychenko, Alina A; Zalessky, Alexandr D; Kostrov, Andrey N; Ryabova, Anastasia V; Krivokharchenko, Alexander S; Nadtochenko, Viktor A
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Introduction to clinical and laboratory (small-animal) image registration and fusion.
Zanzonico, Pat B; Nehmeh, Sadek A
2006-01-01
Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.
Prostate seed implant quality assessment using MR and CT image fusion.
Amdur, R J; Gladstone, D; Leopold, K A; Harris, R D
1999-01-01
After a seed implant of the prostate, computerized tomography (CT) is ideal for determining seed distribution but soft tissue anatomy is frequently not well visualized. Magnetic resonance (MR) images soft tissue anatomy well but seed visualization is problematic. We describe a method of fusing CT and MR images to exploit the advantages of both of these modalities when assessing the quality of a prostate seed implant. Eleven consecutive prostate seed implant patients were imaged with axial MR and CT scans. MR and CT images were fused in three dimensions using the Pinnacle 3.0 version of the ADAC treatment planning system. The urethra and bladder base were used to "line up" MR and CT image sets during image fusion. Alignment was accomplished using translation and rotation in the three ortho-normal planes. Accuracy of image fusion was evaluated by calculating the maximum deviation in millimeters between the center of the urethra on axial MR versus CT images. Implant quality was determined by comparing dosimetric results to previously set parameters. Image fusion was performed with a high degree of accuracy. When lining up the urethra and base of bladder, the maximum difference in axial position of the urethra between MR and CT averaged 2.5 mm (range 1.3-4.0 mm, SD 0.9 mm). By projecting CT-derived dose distributions over MR images of soft tissue structures, qualitative and quantitative evaluation of implant quality is straightforward. The image-fusion process we describe provides a sophisticated way of assessing the quality of a prostate seed implant. Commercial software makes the process time-efficient and available to any clinical practice with a high-quality treatment planning system. While we use MR to image soft tissue structures, the process could be used with any imaging modality that is able to visualize the prostatic urethra (e.g., ultrasound).
Development of Recording Materials for Holographic Non-Destructive Testing
1979-08-01
fuse together and appear as one. The reconstructed image may therefore be substituted for the actual object in an interferometric application, for...re- flective gold layer, the overall path change becomes A. When examined micros- copically with a Nomarski polarization interferometer, however, the
A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions
USDA-ARS?s Scientific Manuscript database
Studies of land surface dynamics in heterogeneous landscapes often require remote sensing data with high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta ...
Application of an E. coli signal sequence as a versatile inclusion body tag.
Jong, Wouter S P; Vikström, David; Houben, Diane; van den Berg van Saparoea, H Bart; de Gier, Jan-Willem; Luirink, Joen
2017-03-21
Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.
A new method based on Dempster-Shafer theory and fuzzy c-means for brain MRI segmentation
NASA Astrophysics Data System (ADS)
Liu, Jie; Lu, Xi; Li, Yunpeng; Chen, Xiaowu; Deng, Yong
2015-10-01
In this paper, a new method is proposed to decrease sensitiveness to motion noise and uncertainty in magnetic resonance imaging (MRI) segmentation especially when only one brain image is available. The method is approached with considering spatial neighborhood information by fusing the information of pixels with their neighbors with Dempster-Shafer (DS) theory. The basic probability assignment (BPA) of each single hypothesis is obtained from the membership function of applying fuzzy c-means (FCM) clustering to the gray levels of the MRI. Then multiple hypotheses are generated according to the single hypothesis. Then we update the objective pixel’s BPA by fusing the BPA of the objective pixel and those of its neighbors to get the final result. Some examples in MRI segmentation are demonstrated at the end of the paper, in which our method is compared with some previous methods. The results show that the proposed method is more effective than other methods in motion-blurred MRI segmentation.
Malek, Salim; Melgani, Farid; Mekhalfi, Mohamed Lamine; Bazi, Yakoub
2017-11-16
This paper describes three coarse image description strategies, which are meant to promote a rough perception of surrounding objects for visually impaired individuals, with application to indoor spaces. The described algorithms operate on images (grabbed by the user, by means of a chest-mounted camera), and provide in output a list of objects that likely exist in his context across the indoor scene. In this regard, first, different colour, texture, and shape-based feature extractors are generated, followed by a feature learning step by means of AutoEncoder (AE) models. Second, the produced features are fused and fed into a multilabel classifier in order to list the potential objects. The conducted experiments point out that fusing a set of AE-learned features scores higher classification rates with respect to using the features individually. Furthermore, with respect to reference works, our method: (i) yields higher classification accuracies, and (ii) runs (at least four times) faster, which enables a potential full real-time application.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
Molecular Hydrogen Fluorescence in IC 63
NASA Technical Reports Server (NTRS)
Andersson, B-G
2005-01-01
This grant has supported the acquisition, reduction and analysis of data targeting the structure and excitation of molecular hydrogen in the reflection nebula IC 63 and in particular the fluorescent emission seen in the UV. In addition to manpower for analyzing the FUSE data, the grant supported the (attempted) acquisition of supporting ground-based data. We proposed for and received observing time for two sets of ground based, data; narrow band imaging ([S II], [O III) at KPNO (July 2002; Observer: Burgh) and imaging spectro-photometry of several of the near-infrared rotation-vibration lines of H2 at the IRTF (October 2003; Observer: Andersson). Unfortunately, both of these runs were failures, primarily because of bad weather, and did not result in any useful data. We combined the FUSE observations with rocket borne observations of the star responsible for exciting the H2 fluorescence in IC 63: gamma Cas, and with archival HUT observations of IC 63, covering the long-wavelength part of the molecular hydrogen fluorescence.
Gomes, S L; Gober, J W; Shapiro, L
1990-01-01
Caulobacter crescentus has a single dnaK gene that is highly homologous to the hsp70 family of heat shock genes. Analysis of the cloned and sequenced dnaK gene has shown that the deduced amino acid sequence could encode a protein of 67.6 kilodaltons that is 68% identical to the DnaK protein of Escherichia coli and 49% identical to the Drosophila and human hsp70 protein family. A partial open reading frame 165 base pairs 3' to the end of dnaK encodes a peptide of 190 amino acids that is 59% identical to DnaJ of E. coli. Northern blot analysis revealed a single 4.0-kilobase mRNA homologous to the cloned fragment. Since the dnaK coding region is 1.89 kilobases, dnaK and dnaJ may be transcribed as a polycistronic message. S1 mapping and primer extension experiments showed that transcription initiated at two sites 5' to the dnaK coding sequence. A single start site of transcription was identified during heat shock at 42 degrees C, and the predicted promoter sequence conformed to the consensus heat shock promoters of E. coli. At normal growth temperature (30 degrees C), a different start site was identified 3' to the heat shock start site that conformed to the E. coli sigma 70 promoter consensus sequence. S1 protection assays and analysis of expression of the dnaK gene fused to the lux transcription reporter gene showed that expression of dnaK is temporally controlled under normal physiological conditions and that transcription occurs just before the initiation of DNA replication. Thus, in both human cells (I. K. L. Milarski and R. I. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986) and in a simple bacterium, the transcription of a hsp70 gene is temporally controlled as a function of the cell cycle under normal growth conditions. Images PMID:2345134
'Blueberry' Triplets Born in Rock
NASA Technical Reports Server (NTRS)
2004-01-01
This microscopic image, taken at the outcrop region dubbed 'Berry Bowl' near the Mars Exploration Rover Opportunity's landing site, shows the sphere-like grains or 'blueberries' that fill Berry Bowl. Of particular interest is the blueberry triplet, which indicates that these geologic features grew in pre-existing wet sediments. Other sphere-like grains that form in the air, such as impact spherules or ejected volcanic material called lapilli, are unlikely to fuse along a line and form triplets. This image was taken by the rover's microscopic imager on the 46th martian day, or sol, of its mission.
NASA Astrophysics Data System (ADS)
Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei
2011-03-01
We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.
Fusion of Geophysical Images in the Study of Archaeological Sites
NASA Astrophysics Data System (ADS)
Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.
2011-12-01
This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image. In the resultant image appear clear linear and ellipsoid features corresponding to potential archaeological relics.
A similarity measure method combining location feature for mammogram retrieval.
Wang, Zhiqiong; Xin, Junchang; Huang, Yukun; Li, Chen; Xu, Ling; Li, Yang; Zhang, Hao; Gu, Huizi; Qian, Wei
2018-05-28
Breast cancer, the most common malignancy among women, has a high mortality rate in clinical practice. Early detection, diagnosis and treatment can reduce the mortalities of breast cancer greatly. The method of mammogram retrieval can help doctors to find the early breast lesions effectively and determine a reasonable feature set for image similarity measure. This will improve the accuracy effectively for mammogram retrieval. This paper proposes a similarity measure method combining location feature for mammogram retrieval. Firstly, the images are pre-processed, the regions of interest are detected and the lesions are segmented in order to get the center point and radius of the lesions. Then, the method, namely Coherent Point Drift, is used for image registration with the pre-defined standard image. The center point and radius of the lesions after registration are obtained and the standard location feature of the image is constructed. This standard location feature can help figure out the location similarity between the image pair from the query image to each dataset image in the database. Next, the content feature of the image is extracted, including the Histogram of Oriented Gradients, the Edge Direction Histogram, the Local Binary Pattern and the Gray Level Histogram, and the image pair content similarity can be calculated using the Earth Mover's Distance. Finally, the location similarity and content similarity are fused to form the image fusion similarity, and the specified number of the most similar images can be returned according to it. In the experiment, 440 mammograms, which are from Chinese women in Northeast China, are used as the database. When fusing 40% lesion location feature similarity and 60% content feature similarity, the results have obvious advantages. At this time, precision is 0.83, recall is 0.76, comprehensive indicator is 0.79, satisfaction is 96.0%, mean is 4.2 and variance is 17.7. The results show that the precision and recall of this method have obvious advantage, compared with the content-based image retrieval.
NASA Astrophysics Data System (ADS)
Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.
2015-12-01
Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.
Sun, Lu; Xie, Shuping; Qi, Jing; Liu, Ergang; Liu, Di; Liu, Quan; Chen, Sunhui; He, Huining; Yang, Victor C
2017-11-15
Matrix metalloproteinases (MMPs) activatable imaging probe has been explored for tumor detection. However, activation of the probe is mainly done in the extracellular space without intracellular uptake of the probe for more sensitivity. Although cell-penetrating peptides (CPPs) have been demonstrated to enable intracellular delivery of the imaging probe, they nevertheless encounter off-target delivery of the cargos to normal tissues. Herein, we have developed a dual MMP-2-activatable and tumor cell-permeable magnetic nanoprobe to simultaneously achieve selective and intracellular tumor imaging. This novel imaging probe was constructed by self-assembling a hexahistidine-tagged (His-tagged) fluorescent fusion protein chimera and nickel ferrite nanoparticles via a chelation mechanism. The His-tagged fluorescent protein chimera consisted of a red fluorescent protein mCherry that acted as the fluorophore, the low-molecular-weight protamine peptide as the CPP, and the MMP-2 cleavage sequence fused with the hexahistidine tag, whereas the nickel ferrite nanoparticles functioned as the His-tagged protein binder and also the fluorescent quencher. Both in vitro and in vivo results revealed that this imaging probe would not only remain nonpermeable to normal tissues, thereby offsetting the nonselective cellular uptake, but was also suppressed of fluorescent signals during magnetic tumor-targeting in the circulation, primarily because of the masking of the CPP activity and quenching of the fluorophore by the associated NiFe 2 O 4 nanoparticles. However, these properties were recovered or "turned on" by the action of tumor-associated MMP-2 stimuli, leading to cell penetration of the nanoprobes as well as fluorescence restoration and visualization within the tumor cells. In this regard, the presented tumor-activatable and cell-permeable system deems to be an appealing platform to achieve selective tumor imaging and intracellular protein delivery. Its impact is therefore significant, far-reaching, and wide-spread.
Preparation of a Light Focusing Glass Rod by Ion-Exchange Techniques
NASA Astrophysics Data System (ADS)
Pearson, A. David; French, William G.; Rawson, Eric G.
1969-07-01
A glass rod with a radially graduated refractive index was produced by replacing the lithium ions contained in the glass composition with sodium ions from a fused salt bath. Glass rods with such refractive index gradients are potentially useful as low resolution imaging devices.
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wenbo, Mei; Huiqian, Du; Zexian, Wang
2018-04-01
A new algorithm was proposed for medical images fusion in this paper, which combined gradient minimization smoothing filter (GMSF) with non-sampled directional filter bank (NSDFB). In order to preserve more detail information, a multi scale edge preserving decomposition framework (MEDF) was used to decompose an image into a base image and a series of detail images. For the fusion of base images, the local Gaussian membership function is applied to construct the fusion weighted factor. For the fusion of detail images, NSDFB was applied to decompose each detail image into multiple directional sub-images that are fused by pulse coupled neural network (PCNN) respectively. The experimental results demonstrate that the proposed algorithm is superior to the compared algorithms in both visual effect and objective assessment.
A fast and automatic mosaic method for high-resolution satellite images
NASA Astrophysics Data System (ADS)
Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing
2015-12-01
We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.
Li, Yi; Sun, Hong-chen; Guo, Xue-jun; Feng, Shu-zhang
2005-02-01
To clone the recombinant fusion gene of Escherichia coli heat-liable enterotoxin B subunit (Ltb) and Actinobacillus actinomycetemcomitans fimbria associative protein (Fap). Two couples of primers were designed for PCR according to the known sequence of ltb and fap. The ltb and fap gene were obtained by amplification PCR technique from plasmid EWD299 of Escherichia coli and Actinobacillus actinomycetemcomitans 310 DNA respectively, and fused them by PCR. The fusion gene ltb-fap were cloning into plasmid pET28a(+). The recombined plasmid pET28a ltb-fap was transformed into Escherichia coli DH5alpha. The recombinant was screened and identified by restriction enzyme and PCR. The cloned gene was sequenced. The ltb-fap about 531bp in size was obtained successfully, and identified by PCR, restrictive enzyme and sequence analysis. The vector of pET28a ltb-fap was obtained.
a Novel Ihs-Ga Fusion Method Based on Enhancement Vegetated Area
NASA Astrophysics Data System (ADS)
Niazi, S.; Mokhtarzade, M.; Saeedzadeh, F.
2015-12-01
Pan sharpening methods aim to produce a more informative image containing the positive aspects of both source images. However, the pan sharpening process usually introduces some spectral and spatial distortions in the resulting fused image. The amount of these distortions varies highly depending on the pan sharpening technique as well as the type of data. Among the existing pan sharpening methods, the Intensity-Hue-Saturation (IHS) technique is the most widely used for its efficiency and high spatial resolution. When the IHS method is used for IKONOS or QuickBird imagery, there is a significant color distortion which is mainly due to the wavelengths range of the panchromatic image. Regarding the fact that in the green vegetated regions panchromatic gray values are much larger than the gray values of intensity image. A novel method is proposed which spatially adjusts the intensity image in vegetated areas. To do so the normalized difference vegetation index (NDVI) is used to identify vegetation areas where the green band is enhanced according to the red and NIR bands. In this way an intensity image is obtained in which the gray values are comparable to the panchromatic image. Beside the genetic optimization algorithm is used to find the optimum weight parameters in order to gain the best intensity image. Visual and statistical analysis proved the efficiency of the proposed method as it significantly improved the fusion quality in comparison to conventional IHS technique. The accuracy of the proposed pan sharpening technique was also evaluated in terms of different spatial and spectral metrics. In this study, 7 metrics (Correlation Coefficient, ERGAS, RASE, RMSE, SAM, SID and Spatial Coefficient) have been used in order to determine the quality of the pan-sharpened images. Experiments were conducted on two different data sets obtained by two different imaging sensors, IKONOS and QuickBird. The result of this showed that the evaluation metrics are more promising for our fused image in comparison to other pan sharpening methods.
Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W
2015-03-15
Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pyxis handheld polarimetric imager
NASA Astrophysics Data System (ADS)
Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.
2016-05-01
The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.
Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L
2015-08-01
Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.
Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent
NASA Astrophysics Data System (ADS)
Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon
This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.
Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao
2018-04-19
Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiview face detection based on position estimation over multicamera surveillance system
NASA Astrophysics Data System (ADS)
Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh
2012-02-01
In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.
"Solid All the Way Through": Margaret Mahy's Ordinary Witches
ERIC Educational Resources Information Center
Waller, Alison
2004-01-01
In "The Haunting," "The Changeover," and "The Tricksters," Margaret Mahy fuses supernatural iconography of witchcraft and magic with images of ordinary and domestic adolescence. This article argues that Mahy's "fantastic realism" illuminates aspects of female teenage experience through a blend of myth, fairy tale, folklore and history, as well as…
Diffuse Prior Monotonic Likelihood Ratio Test for Evaluation of Fused Image Quality Measures
2011-02-01
852–864. [25] W. Mendenhall , R. L. Scheaffer, and D. D. Wackerly, Mathematical Statistics With Applications, 3rd ed. Boston, MA: Duxbury Press, 1986...Professor and holds the Robert W. Wieseman Chaired Research Professorship in Electrical Engi- neering. His research interests include signal
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...
Limited Angle Dual Modality Breast Imaging
NASA Astrophysics Data System (ADS)
More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.
2007-06-01
We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.
Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald
2016-08-01
Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Developing Matlab scripts for image analysis and quality assessment
NASA Astrophysics Data System (ADS)
Vaiopoulos, A. D.
2011-11-01
Image processing is a very helpful tool in many fields of modern sciences that involve digital imaging examination and interpretation. Processed images however, often need to be correlated with the original image, in order to ensure that the resulting image fulfills its purpose. Aside from the visual examination, which is mandatory, image quality indices (such as correlation coefficient, entropy and others) are very useful, when deciding which processed image is the most satisfactory. For this reason, a single program (script) was written in Matlab language, which automatically calculates eight indices by utilizing eight respective functions (independent function scripts). The program was tested in both fused hyperspectral (Hyperion-ALI) and multispectral (ALI, Landsat) imagery and proved to be efficient. Indices were found to be in agreement with visual examination and statistical observations.
A detail-preserved and luminance-consistent multi-exposure image fusion algorithm
NASA Astrophysics Data System (ADS)
Wang, Guanquan; Zhou, Yue
2018-04-01
When irradiance across a scene varies greatly, we can hardly get an image of the scene without over- or underexposure area, because of the constraints of cameras. Multi-exposure image fusion (MEF) is an effective method to deal with this problem by fusing multi-exposure images of a static scene. A novel MEF method is described in this paper. In the proposed algorithm, coarser-scale luminance consistency is preserved by contribution adjustment using the luminance information between blocks; detail-preserved smoothing filter can stitch blocks smoothly without losing details. Experiment results show that the proposed method performs well in preserving luminance consistency and details.
Spliced RNA of woodchuck hepatitis virus.
Ogston, C W; Razman, D G
1992-07-01
Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.
Self-Organizing Hidden Markov Model Map (SOHMMM).
Ferles, Christos; Stafylopatis, Andreas
2013-12-01
A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Gengyun; Liu, Xin; Quan, Zhiwu; Cheng, Shifeng; Xu, Xun; Pan, Shengkai; Xie, Min; Zeng, Peng; Yue, Zhen; Wang, Wenliang; Tao, Ye; Bian, Chao; Han, Changlei; Xia, Qiuju; Peng, Xiaohua; Cao, Rui; Yang, Xinhua; Zhan, Dongliang; Hu, Jingchu; Zhang, Yinxin; Li, Henan; Li, Hua; Li, Ning; Wang, Junyi; Wang, Chanchan; Wang, Renyi; Guo, Tao; Cai, Yanjie; Liu, Chengzhang; Xiang, Haitao; Shi, Qiuxiang; Huang, Ping; Chen, Qingchun; Li, Yingrui; Wang, Jun; Zhao, Zhihai; Wang, Jian
2012-05-13
Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C(4) photosynthesis pathway were also identified.
Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu
2018-01-01
Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fast Fourier transform-based Retinex and alpha-rooting color image enhancement
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; Agaian, Sos S.; Gonzales, Analysa M.
2015-05-01
Efficiency in terms of both accuracy and speed is highly important in any system, especially when it comes to image processing. The purpose of this paper is to improve an existing implementation of multi-scale retinex (MSR) by utilizing the fast Fourier transforms (FFT) within the illumination estimation step of the algorithm to improve the speed at which Gaussian blurring filters were applied to the original input image. In addition, alpha-rooting can be used as a separate technique to achieve a sharper image in order to fuse its results with those of the retinex algorithm for the sake of achieving the best image possible as shown by the values of the considered color image enhancement measure (EMEC).
NASA Astrophysics Data System (ADS)
Liu, Meiling; Liu, Xiangnan; Li, Jin; Ding, Chao; Jiang, Jiale
2014-12-01
Satellites routinely provide frequent, large-scale, near-surface views of many oceanographic variables pertinent to plankton ecology. However, the nutrient fertility of water can be challenging to detect accurately using remote sensing technology. This research has explored an approach to estimate the nutrient fertility in coastal waters through the fusion of synthetic aperture radar (SAR) images and optical images using the random forest (RF) algorithm. The estimation of total inorganic nitrogen (TIN) in the Hong Kong Sea, China, was used as a case study. In March of 2009 and May and August of 2010, a sequence of multi-temporal in situ data and CCD images from China's HJ-1 satellite and RADARSAT-2 images were acquired. Four sensitive parameters were selected as input variables to evaluate TIN: single-band reflectance, a normalized difference spectral index (NDSI) and HV and VH polarizations. The RF algorithm was used to merge the different input variables from the SAR and optical imagery to generate a new dataset (i.e., the TIN outputs). The results showed the temporal-spatial distribution of TIN. The TIN values decreased from coastal waters to the open water areas, and TIN values in the northeast area were higher than those found in the southwest region of the study area. The maximum TIN values occurred in May. Additionally, the estimation accuracy for estimating TIN was significantly improved when the SAR and optical data were used in combination rather than a single data type alone. This study suggests that this method of estimating nutrient fertility in coastal waters by effectively fusing data from multiple sensors is very promising.
Enhanced echolocation via robust statistics and super-resolution of sonar images
NASA Astrophysics Data System (ADS)
Kim, Kio
Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust statistics is in fusing the images. It is shown that the maximum a posteriori fusion method can be formulated in a Kalman filter-like manner, and also that the resulting expression is identical to a W-estimator with a specific weight function.
Predicting individual fusional range from optometric data
NASA Astrophysics Data System (ADS)
Endrikhovski, Serguei; Jin, Elaine; Miller, Michael E.; Ford, Robert W.
2005-03-01
A model was developed to predict the range of disparities that can be fused by an individual user from optometric measurements. This model uses parameters, such as dissociated phoria and fusional reserves, to calculate an individual user"s fusional range (i.e., the disparities that can be fused on stereoscopic displays) when the user views a stereoscopic stimulus from various distances. This model is validated by comparing its output with data from a study in which the individual fusional range of a group of users was quantified while they viewed a stereoscopic display from distances of 0.5, 1.0, and 2.0 meters. Overall, the model provides good data predictions for the majority of the subjects and can be generalized for other viewing conditions. The model may, therefore, be used within a customized stereoscopic system, which would render stereoscopic information in a way that accounts for the individual differences in fusional range. Because the comfort of an individual user also depends on the user"s ability to fuse stereo images, such a system may, consequently, improve the comfort level and viewing experience for people with different stereoscopic fusional capabilities.
Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach
NASA Astrophysics Data System (ADS)
Jazaeri, Amin
High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.
Shadow-free single-pixel imaging
NASA Astrophysics Data System (ADS)
Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang
2017-11-01
Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.
Antunes, Jacob; Viswanath, Satish; Brady, Justin T; Crawshaw, Benjamin; Ros, Pablo; Steele, Scott; Delaney, Conor P; Paspulati, Raj; Willis, Joseph; Madabhushi, Anant
2018-07-01
The objective of this study was to develop and quantitatively evaluate a radiology-pathology fusion method for spatially mapping tissue regions corresponding to different chemoradiation therapy-related effects from surgically excised whole-mount rectal cancer histopathology onto preoperative magnetic resonance imaging (MRI). This study included six subjects with rectal cancer treated with chemoradiation therapy who were then imaged with a 3-T T2-weighted MRI sequence, before undergoing mesorectal excision surgery. Excised rectal specimens were sectioned, stained, and digitized as two-dimensional (2D) whole-mount slides. Annotations of residual disease, ulceration, fibrosis, muscularis propria, mucosa, fat, inflammation, and pools of mucin were made by an expert pathologist on digitized slide images. An expert radiologist and pathologist jointly established corresponding 2D sections between MRI and pathology images, as well as identified a total of 10 corresponding landmarks per case (based on visually similar structures) on both modalities (five for driving registration and five for evaluating alignment). We spatially fused the in vivo MRI and ex vivo pathology images using landmark-based registration. This allowed us to spatially map detailed annotations from 2D pathology slides onto corresponding 2D MRI sections. Quantitative assessment of coregistered pathology and MRI sections revealed excellent structural alignment, with an overall deviation of 1.50 ± 0.63 mm across five expert-selected anatomic landmarks (in-plane misalignment of two to three pixels at 0.67- to 1.00-mm spatial resolution). Moreover, the T2-weighted intensity distributions were distinctly different when comparing fibrotic tissue to perirectal fat (as expected), but showed a marked overlap when comparing fibrotic tissue and residual rectal cancer. Our fusion methodology enabled successful and accurate localization of post-treatment effects on in vivo MRI. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Dangerous gas detection based on infrared video
NASA Astrophysics Data System (ADS)
Ding, Kang; Hong, Hanyu; Huang, Likun
2018-03-01
As the gas leak infrared imaging detection technology has significant advantages of high efficiency and remote imaging detection, in order to enhance the detail perception of observers and equivalently improve the detection limit, we propose a new type of gas leak infrared image detection method, which combines background difference methods and multi-frame interval difference method. Compared to the traditional frame methods, the multi-frame interval difference method we proposed can extract a more complete target image. By fusing the background difference image and the multi-frame interval difference image, we can accumulate the information of infrared target image of the gas leak in many aspect. The experiment demonstrate that the completeness of the gas leakage trace information is enhanced significantly, and the real-time detection effect can be achieved.
Multi-focus image fusion and robust encryption algorithm based on compressive sensing
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Lan; Xiang, Tao; Wang, Yong
2017-06-01
Multi-focus image fusion schemes have been studied in recent years. However, little work has been done in multi-focus image transmission security. This paper proposes a scheme that can reduce data transmission volume and resist various attacks. First, multi-focus image fusion based on wavelet decomposition can generate complete scene images and optimize the perception of the human eye. The fused images are sparsely represented with DCT and sampled with structurally random matrix (SRM), which reduces the data volume and realizes the initial encryption. Then the obtained measurements are further encrypted to resist noise and crop attack through combining permutation and diffusion stages. At the receiver, the cipher images can be jointly decrypted and reconstructed. Simulation results demonstrate the security and robustness of the proposed scheme.
Fused pulmonary lobes is a rat model of human Fraser syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L.
Highlights: {yields} Fused pulmonary lobes (fpl) mutant rats exhibit similar phenotypes to Fraser syndrome. {yields} The fpl gene harbors a nonsense mutation in Fraser syndrome-associated gene Frem2. {yields} Fpl mutant is defined as a first model of human Fraser syndrome in rats. -- Abstract: Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigatedmore » whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.« less
Klocke, Michael; Mundt, Kerstin; Idler, Frank; Jung, Sabrina; Backhausen, Jan E
2005-06-01
The genes for the bacteriocins enterocin A and B were isolated from Enterococcus faecium ATB 197a. Using the pET37b(+) vector, the enterocin genes were fused to an Escherichia coli specific export signal sequence, a cellulose-binding domain (CBD(cenA)) and a S-tag under the control of a T7lac promotor. The constructs were subsequently cloned into E. coli host cells. The expression of the recombinant enterocins had different effects on both the host cells and other Gram-positive bacteria. The expression of entA in Esc. coli led to the synthesis and secretion of functional active enterocin A fusion proteins, which were active against some Gram-positive indicator bacteria, but did not influence the viability of the host cells. In contrast, the expression of enterocin B fusion proteins led to a reduced viability of the host cells, indicating a misfolding of the protein or interference with the cellular metabolism of Esc. coli. Indicator strains of Gram-positive bacteria were not inhibited by purified enterocin B fusion proteins. However, recombinant enterocin B displayed inhibitory activity after the proteolytic cleavage of the fused peptides.
AMS Radiocarbon Dating of Large Za Baobabs (Adansonia za) of Madagascar
Patrut, Adrian; Patrut, Roxana T.; Danthu, Pascal; Leong Pock-Tsy, Jean-Michel; Rakosy, Laszlo; Lowy, Daniel A.; von Reden, Karl F.
2016-01-01
The article reports the radiocarbon investigation of Anzapalivoro, the largest za baobab (Adansonia za) specimen of Madagascar and of another za, namely the Big cistern baobab. Several wood samples collected from the large inner cavity and from the outer part/exterior of the tree were investigated by AMS (accelerator mass spectrometry) radiocarbon dating. For samples collected from the cavity walls, the age values increase with the distance into the wood up to a point of maximum age, after which the values decrease toward the outer part. This anomaly of age sequences indicates that the inner cavity of Anzapalivoro is a false cavity, practically an empty space between several fused stems disposed in a ring-shaped structure. The radiocarbon date of the oldest sample was 780 ± 30 bp, which corresponds to a calibrated age of around 735 yr. Dating results indicate that Anzapalivoro has a closed ring-shaped structure, which consists of 5 fused stems that close a false cavity. The oldest part of the biggest za baobab has a calculated age of 900 years. We also disclose results of the investigation of a second za baobab, the Big cistern baobab, which was hollowed out for water storage. This specimen, which consists of 4 fused stems, was found to be around 260 years old. PMID:26760300
AMS Radiocarbon Dating of Large Za Baobabs (Adansonia za) of Madagascar.
Patrut, Adrian; Patrut, Roxana T; Danthu, Pascal; Leong Pock-Tsy, Jean-Michel; Rakosy, Laszlo; Lowy, Daniel A; von Reden, Karl F
2016-01-01
The article reports the radiocarbon investigation of Anzapalivoro, the largest za baobab (Adansonia za) specimen of Madagascar and of another za, namely the Big cistern baobab. Several wood samples collected from the large inner cavity and from the outer part/exterior of the tree were investigated by AMS (accelerator mass spectrometry) radiocarbon dating. For samples collected from the cavity walls, the age values increase with the distance into the wood up to a point of maximum age, after which the values decrease toward the outer part. This anomaly of age sequences indicates that the inner cavity of Anzapalivoro is a false cavity, practically an empty space between several fused stems disposed in a ring-shaped structure. The radiocarbon date of the oldest sample was 780 ± 30 bp, which corresponds to a calibrated age of around 735 yr. Dating results indicate that Anzapalivoro has a closed ring-shaped structure, which consists of 5 fused stems that close a false cavity. The oldest part of the biggest za baobab has a calculated age of 900 years. We also disclose results of the investigation of a second za baobab, the Big cistern baobab, which was hollowed out for water storage. This specimen, which consists of 4 fused stems, was found to be around 260 years old.
Probabilistic fusion of stereo with color and contrast for bilayer segmentation.
Kolmogorov, Vladimir; Criminisi, Antonio; Blake, Andrew; Cross, Geoffrey; Rother, Carsten
2006-09-01
This paper describes models and algorithms for the real-time segmentation of foreground from background layers in stereo video sequences. Automatic separation of layers from color/contrast or from stereo alone is known to be error-prone. Here, color, contrast, and stereo matching information are fused to infer layers accurately and efficiently. The first algorithm, Layered Dynamic Programming (LDP), solves stereo in an extended six-state space that represents both foreground/background layers and occluded regions. The stereo-match likelihood is then fused with a contrast-sensitive color model that is learned on-the-fly and stereo disparities are obtained by dynamic programming. The second algorithm, Layered Graph Cut (LGC), does not directly solve stereo. Instead, the stereo match likelihood is marginalized over disparities to evaluate foreground and background hypotheses and then fused with a contrast-sensitive color model like the one used in LDP. Segmentation is solved efficiently by ternary graph cut. Both algorithms are evaluated with respect to ground truth data and found to have similar performance, substantially better than either stereo or color/ contrast alone. However, their characteristics with respect to computational efficiency are rather different. The algorithms are demonstrated in the application of background substitution and shown to give good quality composite video output.
Laser fluorescence bronchoscope for localization of occult lung tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Profio, A.E.; Doiron, D.R.; King, E.G.
1979-11-01
A system for imaging occult bronchogenic carcinoma by the fluorescence of previously-injected, tumor-specific compound hematoporphyrin-derivative has been assembled and successfully used to locate a tumor l mm thick. The violet excitation source is a krypton ion laser coupled to fused quartz fiber light conductor. An electrostatic image intensifier attached to a standard flexible fiberoptic bronchoscope provides a bright image even at relatively low irradiance. A red secondary filter rejects most reflected background and autofluorescence. Sensitivity and contrast capability of the system should permit detection of a tumor less than 0.1 mm thick.
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2006-01-01
Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used.
2013-09-30
COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images...limited, but potentially provide more detailed data. Initial assessments have been made on MODIS data in terms of its suitability. While clouds obscure...estimates. 2 Data from Aqua, Terra, and Suomi NPP satellites were investigated. Aqua and Terra are older satellites that fly the MODIS instrument
Lertudomphonwanit, Thamrong; Kelly, Michael P; Bridwell, Keith H; Lenke, Lawrence G; McAnany, Steven J; Punyarat, Prachya; Bryan, Timothy P; Buchowski, Jacob M; Zebala, Lukas P; Sides, Brenda A; Steger-May, Karen; Gupta, Munish C
2018-02-28
Risk factors associated with rod fracture (RF) following adult spinal deformity (ASD) surgery fused to the sacrum remain debatable, and the impact of RF on patient-reported outcomes (PROs) after ASD surgery has not been investigated. We aimed to evaluate the prevalence of and risk factors for RF and determine PROs changes associated with RF after ASD surgery fused to the sacrum. A retrospective single-center cohort study was performed. Patients undergoing long-construct posterior spinal fusions to the sacrum performed at a single institution by two senior spine surgeons from 2004 to 2014 were included. Patient demographics, radiographic parameters, and surgical factors were assessed for risk factors associated with RF. Oswestry Disability Index (ODI) and Scoliosis Research Society-30 (SRS-30) scores were assessed at baseline, 1 year postoperatively, and latest follow-up. Inclusion criteria were ASD patients age >18 who had ≥5 vertebrae instrumented and fused posteriorly to the sacrum and either development of RF or no development of RF with minimum 2-year follow-up. Patient characteristics, operative data, radiographic parameters, and PROs were analyzed at baseline and follow-up. Separate Cox proportional hazard models based on rod material and diameter were used to determine factors associated with RF. Five hundred twenty-six patients (80%) were available for analysis. RF occurred in 97 (18.4%) patients (unilateral RF n=61 [63%]; bilateral RF n=36 [37%]). Risk factors for fracture of 5.5 mm cobalt chromium (CC) instrumentation (CC 5.5 model) included preoperative sagittal vertical axis (hazard ratio [HR] 1.07, 95% confidence interval [95% CI] 1.02-1.14 per 1-cm increase), preoperative thoracolumbar kyphosis (HR 1.02, 95% CI 1.01-1.04 per 1-degree increase), and number of levels fused for patients who received rhBMP-2 <12 mg per level fused (HR 1.48, 95% CI 1.20-1.82 per 1-level increase). Implants that were 5.5-mm CC constructs were at a higher risk for fracture than 6.35-mm stainless steel (SS) constructs (HR 8.49, 95% CI 4.26-16.89). The RF group had less overall improvement in SRS Satisfaction (0.93 vs. 1.32; p=.007) and SRS Self-image domain scores (0.72 vs. 1.02; p=.01). The bilateral RF group had less overall improvement in ODI (8.1 vs. 15.8; p=.02), SRS Subscore (0.51 vs. 0.85; p=.03), and SRS Pain domain scores (0.48 vs. 0.95; p=.02) compared with the non-RF group at final follow-up. The prevalence of all RF after index procedures was 18.4%, 37% for bilateral RF. Greater preoperative sagittal vertical axis, greater preoperative thoracolumbar kyphosis, increased number of vertebrae fused for patients who received rhBMP-2 <12 mg per level fused, and CC 5.5-mm rod were associated with RF. Less improvement in patient satisfaction and self-image was noted in the RF group. Furthermore, bilateral RF significantly affected PROs as measured by ODI and SRS Subscore at final follow-up. Copyright © 2018 Elsevier Inc. All rights reserved.
MR angiography fusion technique for treatment planning of intracranial arteriovenous malformations.
McGee, Kiaran P; Ivanovic, Vladimir; Felmlee, Joel P; Meyer, Fredrick B; Pollock, Bruce E; Huston, John
2006-03-01
To develop an image fusion technique using elliptical centric contrast-enhanced (CE) MR angiography (MRA) and three-dimensional (3D) time-of-flight (TOF) acquisitions for radiosurgery treatment planning of arteriovenous malformations (AVMs). CE and 3D-TOF MR angiograms with disparate in-plane fields of view (FOVs) were acquired, followed by k-space reformatting to provide equal voxel dimensions. Spatial domain addition was performed to provide a third, fused data volume. Spatial distortion was evaluated on an MRA phantom and provided slice-dependent and global distortion along the three physical dimensions of the MR scanner. In vivo validation was performed on 10 patients with intracranial AVMs prior to their conventional angiogram on the day of gamma knife radiosurgery. Spatial distortion in the phantom within a volume of 14 x 14 x 3.2 cm(3) was less than +/-1 mm (+/-1 standard deviation (SD)) for CE and 3D-TOF data sets. Fused data volumes were successfully generated for all 10 patients. Image fusion can be used to obtain high-resolution CE-MRA images of intracranial AVMs while keeping the fiducial markers needed for gamma knife radiosurgery planning. The spatial fidelity of these data is within the tolerance acceptable for daily quality control (QC) purposes and gamma knife treatment planning. (c) 2006 Wiley-Liss, Inc.
Linte, Cristian A; Moore, John; Wedlake, Chris; Bainbridge, Daniel; Guiraudon, Gérard M; Jones, Douglas L; Peters, Terry M
2009-03-01
An interventional system for minimally invasive cardiac surgery was developed for therapy delivery inside the beating heart, in absence of direct vision. A system was developed to provide a virtual reality (VR) environment that integrates pre-operative imaging, real-time intra-operative guidance using 2D trans-esophageal ultrasound, and models of the surgical tools tracked using a magnetic tracking system. Detailed 3D dynamic cardiac models were synthesized from high-resolution pre-operative MR data and registered within the intra-operative imaging environment. The feature-based registration technique was employed to fuse pre- and intra-operative data during in vivo intracardiac procedures on porcine subjects. This method was found to be suitable for in vivo applications as it relies on easily identifiable landmarks, and hence, it ensures satisfactory alignment of pre- and intra-operative anatomy in the region of interest (4.8 mm RMS alignment accuracy) within the VR environment. Our initial experience in translating this work to guide intracardiac interventions, such as mitral valve implantation and atrial septal defect repair demonstrated feasibility of the methods. Surgical guidance in the absence of direct vision and with no exposure to ionizing radiation was achieved, so our virtual environment constitutes a feasible candidate for performing various off-pump intracardiac interventions.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
How a surgeon becomes superman by visualization of intelligently fused multi-modalities
NASA Astrophysics Data System (ADS)
Erat, Okan; Pauly, Olivier; Weidert, Simon; Thaller, Peter; Euler, Ekkehard; Mutschler, Wolf; Navab, Nassir; Fallavollita, Pascal
2013-03-01
Motivation: The existing visualization of the Camera augmented mobile C-arm (CamC) system does not have enough cues for depth information and presents the anatomical information in a confusing way to surgeons. Methods: We propose a method that segments anatomical information from X-ray and then augment it on the video images. To provide depth cues, pixels belonging to video images are classified as skin and object classes. The augmentation of anatomical information from X-ray is performed only when pixels have a larger probability of belonging to skin class. Results: We tested our algorithm by displaying the new visualization to 2 expert surgeons and 1 medical student during three surgical workflow sequences of the interlocking of intramedullary nail procedure, namely: skin incision, center punching, and drilling. Via a survey questionnaire, they were asked to assess the new visualization when compared to the current alphablending overlay image displayed by CamC. The participants all agreed (100%) that occlusion and instrument tip position detection were immediately improved with our technique. When asked if our visualization has potential to replace the existing alpha-blending overlay during interlocking procedures, all participants did not hesitate to suggest an immediate integration of the visualization for the correct navigation and guidance of the procedure. Conclusion: Current alpha blending visualizations lack proper depth cues and can be a source of confusion for the surgeons when performing surgery. Our visualization concept shows great potential in alleviating occlusion and facilitating clinician understanding during specific workflow steps of the intramedullary nailing procedure.
Panoramic 3D Reconstruction by Fusing Color Intensity and Laser Range Data
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lu, Jian
Technology for capturing panoramic (360 degrees) three-dimensional information in a real environment have many applications in fields: virtual and complex reality, security, robot navigation, and so forth. In this study, we examine an acquisition device constructed of a regular CCD camera and a 2D laser range scanner, along with a technique for panoramic 3D reconstruction using a data fusion algorithm based on an energy minimization framework. The acquisition device can capture two types of data of a panoramic scene without occlusion between two sensors: a dense spatio-temporal volume from a camera and distance information from a laser scanner. We resample the dense spatio-temporal volume for generating a dense multi-perspective panorama that has equal spatial resolution to that of the original images acquired using a regular camera, and also estimate a dense panoramic depth-map corresponding to the generated reference panorama by extracting trajectories from the dense spatio-temporal volume with a selecting camera. Moreover, for determining distance information robustly, we propose a data fusion algorithm that is embedded into an energy minimization framework that incorporates active depth measurements using a 2D laser range scanner and passive geometry reconstruction from an image sequence obtained using the CCD camera. Thereby, measurement precision and robustness can be improved beyond those available by conventional methods using either passive geometry reconstruction (stereo vision) or a laser range scanner. Experimental results using both synthetic and actual images show that our approach can produce high-quality panoramas and perform accurate 3D reconstruction in a panoramic environment.
Somerville, Christopher R.; Nawrath, Christiane; Poirier, Yves
1997-03-11
The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid.
Genomic Approaches for Detection and Treatment of Breast Cancer
2008-07-01
number display fused to the T7 coat protein, 10B. The library was then extensively characterized by sequencing several hundred individual phage clones at...FLAG-tagged T7 phage (1:1000) into a native phage population and diluting an anti-FLAG antibody (1:1000) into a non-specific isotype control antibody...plaque lift assay) by systematically varying the following parameters: T7 phage concentration, antibody concentration, time of immunoprecipitation, and
Using Genetics and Genomics for the Detection and Treatment of Breast Cancer
2009-09-01
display fused to the 13 T7 coat protein, 10B. The library was then extensively characterized by sequencing several hundred individual phage clones at...tagged T7 phage (1:1000) into a native phage population and diluting an anti-FLAG antibody (1:1000) into a non-specific isotype control antibody, we...assay) by systematically varying the following parameters: T7 phage concentration, antibody concentration, time of immunoprecipitation, and number of
A flexible spatiotemporal method for fusing satellite images with different resolutions
Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky
2016-01-01
Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...
New Demotic Typography: The Search for New Indices.
ERIC Educational Resources Information Center
Butler, Frances
1995-01-01
Sees new demotic typography as the reinvention of many older punctuation devices in terms of "marginal reuse." Argues that it can represent the fluid fields of type and image that will induce reverie, often a precondition for metaphoric, nonlinear thought, thus helping to fuse widely separated information and aid lateral thinking. (SR)
USDA-ARS?s Scientific Manuscript database
Atmosphere-Land Exchange Inverse model and associated disaggregation scheme (ALEXI/DisALEXI). Satellite-based ET retrievals from both the Moderate Resolution Imaging Spectoradiometer (MODIS; 1km, daily) and Landsat (30m, bi-weekly) are fused with The Spatial and Temporal Adaptive Reflective Fusion ...
Fusing Satellite-Derived Irradiance and Point Measurements through Optimal Interpolation
NASA Astrophysics Data System (ADS)
Lorenzo, A.; Morzfeld, M.; Holmgren, W.; Cronin, A.
2016-12-01
Satellite-derived irradiance is widely used throughout the design and operation of a solar power plant. While satellite-derived estimates cover a large area, they also have large errors compared to point measurements from sensors on the ground. We describe an optimal interpolation routine that fuses the broad spatial coverage of satellite-derived irradiance with the high accuracy of point measurements. The routine can be applied to any satellite-derived irradiance and point measurement datasets. Unique aspects of this work include the fact that information is spread using cloud location and thickness and that a number of point measurements are collected from rooftop PV systems. The routine is sensitive to errors in the satellite image geolocation, so care must be taken to adjust the cloud locations based on the solar and satellite geometries. Analysis of the optimal interpolation routine over Tucson, AZ, with 20 point measurements shows a significant improvement in the irradiance estimate for two distinct satellite image to irradiance algorithms. Improved irradiance estimates can be used for resource assessment, distributed generation production estimates, and irradiance forecasts.
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
NASA Astrophysics Data System (ADS)
Scholtz, Gerhard; Brenneis, Georg
2016-02-01
A malformed adult female specimen of Pycnogonum litorale (Pycnogonida) with a supernumerary leg in the right body half is described concerning external and internal structures. The specimen was maintained in our laboratory culture after an injury in the right trunk region during a late postembryonic stage. The supernumerary leg is located between the second and third walking legs. The lateral processes connecting to these walking legs are fused to one large structure. Likewise, the coxae 1 of the second and third walking legs and of the supernumerary leg are fused to different degrees. The supernumerary leg is a complete walking leg with mirror image symmetry as evidenced by the position of joints and muscles. It is slightly smaller than the normal legs, but internally, it contains a branch of the ovary and a gut diverticulum as the other legs. The causes for this malformation pattern found in the Pycnogonum individual are reconstructed in the light of extirpation experiments in insects, which led to supernumerary mirror image legs, and the "boundary model" for appendage differentiation.
NASA Astrophysics Data System (ADS)
Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.
2015-12-01
Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.
NASA Astrophysics Data System (ADS)
Zhou, Xunfei; Hsieh, Sheng-Jen
2017-05-01
After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.
Zhang, Zhi-cheng; Sun, Tian-sheng; Li, Fang; Tang, Guo-lin
2009-05-19
To explore the effect of CAD and CAE related technique in separation of Pygopagus Conjoined Twins. CT images of Pygopagus conjoined twins were obtained and reconstructed in three-dimensional by Mimics software. 3D entity model of skin and spine of conjoined twins were made by fast plastic technique and equipment according to 3D data model. The circumference and area of fused and independent dural sac were measured by software of AutoCAD. The entity model is real reflection of skin and spine of Pygopagus. It was used in the procedures of discussion, sham operation, skin flap design and informed consent. In the measure of MRI, the circumference and area of fused dural sac was more than of independent dural sac, that is to say, the defect of dural sac can be repaired by direct suture. The intraoperative finding match with imaging measure results. The application of CAD and CAE in the procedure of preoperative plan have gave big help to successful separation of Pygopagus Conjoined Twins.
Improvements in Cloud Remote Sensing from Fusing VIIRS and CrIS data
NASA Astrophysics Data System (ADS)
Heidinger, A. K.; Walther, A.; Lindsey, D. T.; Li, Y.; NOH, Y. J.; Botambekov, D.; Miller, S. D.; Foster, M. J.
2016-12-01
In the fall of 2016, NOAA began the operational production of cloud products from the S-NPP Visible and Infrared Imaging Radiometer Suite (VIIRS) using the NOAA Enterprise Algorithms. VIIRS, while providing unprecedented spatial resolution and imaging clarity, does lack certain IR channels that are beneficial to cloud remote sensing. At the UW Space Science and Engineering Center (SSEC), tools were written to generate the missing IR channels from the Cross Track Infrared Sounder (CrIS) and to map them into the VIIRS swath. The NOAA Enterprise Algorithms are also implemented into the NESDIS CLAVR-x system. CLAVR-x has been modified to use the fused VIIRS and CrIS data. This presentation will highlight the benefits offered by the CrIS data to the NOAA Enterprise Algorithms. In addition, these benefits also have enabled the generation of 3D cloud retrievals to support the request from the National Weather Service (NWS) for a Cloud Cover Layers product. Lastly, the benefits of using VIIRS and CrIS for achieving consistency with GOES-R will also be demonstrated.
Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges
Lemeshewsky, George P.; Schowengerdt, Robert A.
2000-01-01
Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.
Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study
NASA Astrophysics Data System (ADS)
Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela
2015-03-01
Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.
Identification of Surface and Near Surface Defects and Damage Evaluation by Laser Speckle Techniques
NASA Technical Reports Server (NTRS)
Gowda, Chandrakanth H.
2001-01-01
As a part of the grant activity, a laboratory was established within the Department of Electrical Engineering for the study for measurements of surface defects and damage evaluation. This facility has been utilized for implementing several algorithms for accurate measurements of defects. Experiments were conducted using simulated images and multiple images were fused to achieve accurate measurements. During the nine months of the grants when the principal investigator was transferred in my name, experiments were conducted using simulated synthetic aperture radar (SAR) images. This proved useful when several algorithms were used on images of smooth objects with minor deformalities. Given the time constraint, the derived algorithms could not be applied to actual images of smooth objects with minor abnormalities.
MRI and PET Compatible Bed for Direct Co-Registration in Small Animals
NASA Astrophysics Data System (ADS)
Bartoli, Antonietta; Esposito, Giovanna; D'Angeli, Luca; Chaabane, Linda; Terreno, Enzo
2013-06-01
To obtain an accurate co-registration with stand-alone PET and MRI scanners, we developed a compatible bed system for mice and rats that enables both images to be acquired without repositioning the animals. MRI acquisitions were performed on a preclinical 7T scanner (Pharmascan, Bruker), whereas PET scans were acquired on a YAP-(S)PET (ISE s.r.l.). The bed performance was tested both on a phantom (NEMA Image Quality phantom) and in vivo (healthy rats and mice brain). Fiducial markers filled up with a drop of 18 F were visible in both modalities. Co-registration process was performed using the point-based registration technique. The reproducibility and accuracy of the co-registration were assessed using the phantom. The reproducibility of the translation distances was 0.2 mm along the z axis. On the other hand, the accuracy depended on the physical size of the phantom structures under investigation but was always lower than 4%. Regions of Interest (ROIs) drawn on the fused images were used for quantification purposes. PET and MRI intensity profiles on small structures of the phantom showed that the underestimation in activity concentration reached 90% in regions that were smaller than the PET spatial resolution, while the MRI allowed a good visualization of the 1 mm 0 rod. PET/MRI images of healthy mice and rats highlighted the expected superior capability of MRI to define brain structures. The simplicity of our developed MRI/PET compatible bed and the quality of the fused images obtained offers a promising opportunity for a future preclinical translation, particularly for neuroimaging studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg
2015-08-15
Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less
Live cell imaging of in vitro human trophoblast syncytialization.
Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei
2014-06-01
Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.
Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain
Tang, Xiaoying; Yoshida, Shoko; Hsu, John; Huisman, Thierry A. G. M.; Faria, Andreia V.; Oishi, Kenichi; Kutten, Kwame; Poretti, Andrea; Li, Yue; Miller, Michael I.; Mori, Susumu
2014-01-01
In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure. PMID:24809486
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
Feature detection in satellite images using neural network technology
NASA Technical Reports Server (NTRS)
Augusteijn, Marijke F.; Dimalanta, Arturo S.
1992-01-01
A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.
Affibody Molecules for In vivo Characterization of HER2-Positive Tumors by Near-Infrared Imaging
Lee, Sang Bong; Hassan, Moinuddin; Fisher, Robert; Chertov, Oleg; Chernomordik, Victor; Kramer-Marek, Gabriela; Gandjbakhche, Amir; Capala, Jacek
2012-01-01
Purpose HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared optical imaging. The goal is to provide probes that will minimally interfere with the studied system, i.e., whose binding does not interfere with the binding of the therapeutic agents, and whose effect on the target cells is minimal. Experimental Design We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents, and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semi-uantitative in vivo near-infrared optical imaging studies were carried out using mice with subcutaneous xenografts of HER2-positive tumors. Results The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. Conclusion Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific near-infrared probe for the non-invasive semi-quantitative imaging of HER2 expression in vivo. PMID:18559604
Kobayashi, Kazuyoshi; Ando, Kei; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Ishiguro, Naoki; Imagama, Shiro
2018-05-01
The O-arm ® navigation system allows intraoperative CT imaging that can facilitate highly accurate instrumentation surgery, but radiation exposure is higher than with X-ray radiography. This is a particular concern in pediatric surgery. The purpose of this study is to examine intraoperative radiation exposure in pediatric spinal scoliosis surgery using O-arm. The subjects were 38 consecutive patients (mean age 12.9 years, range 10-17) with scoliosis who underwent spinal surgery with posterior instrumentation using O-arm. The mean number of fused vertebral levels was 11.0 (6-15). O-arm was performed before and after screw insertion, using an original protocol for the cervical, thoracic, and lumbar spine doses. The average scanning range was 6.9 (5-9) intervertebral levels per scan, with 2-7 scans per patient (mean 4.0 scans). Using O-arm, the dose per scan was 92.5 (44-130) mGy, and the mean total dose was 401 (170-826) mGy. This dose was 80.2% of the mean preoperative CT dose of 460 (231-736) mGy (P = 0.11). The total exposure dose and number of scans using intraoperative O-arm correlated strongly and significantly with the number of fused levels; however, there was no correlation with the patient's height. As the fused range became wider, several scans were required for O-arm, and the total radiation exposure became roughly the same as that in preoperative CT. Use of O-arm in our original protocol can contribute to reduction in radiation exposure.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
Extracting flat-field images from scene-based image sequences using phase correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caron, James N., E-mail: Caron@RSImd.com; Montes, Marcos J.; Obermark, Jerome L.
Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method usesmore » sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.« less
Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.
2007-01-01
While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779
Hassan, Mohamed M.
2014-01-01
Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride, by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride. Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%–70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina, Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the mycoparasitism effect of the extracellular enzymes. PMID:26019588
Harakuni, Tetsuya; Andoh, Kiyohiko; Sakamoto, Ryu-Ichi; Tamaki, Yukihiro; Miyata, Takeshi; Uefuji, Hirotaka; Yamazaki, Ken-Ichi; Arakawa, Takeshi
2016-06-08
Egg-drop syndrome (EDS) virus is an avian adenovirus that causes a sudden drop in egg production and in the quality of the eggs when it infects chickens, leading to substantial economic losses in the poultry industry. Inactivated EDS vaccines produced in embryonated duck eggs or cell culture systems are available for the prophylaxis of EDS. However, recombinant subunit vaccines that are efficacious and inexpensive are a desirable alternative. In this study, we engineered chimeric fusion proteins in which the trimeric fiber knob domain lacking the triple β-spiral motif in the fiber shaft region was genetically fused to trimeric coiled coils, such as those of the engineered form of the GCN4 leucine zipper peptide or chicken cartilage matrix protein (CMP). The fusion proteins were expressed predominantly as soluble trimeric proteins in Escherichia coli at levels of 15-80mg/L of bacterial culture. The single immunization of chickens with the purified fusion proteins, at a dose equivalent to 10μg of the knob moiety, elicited serum antibodies with high hemagglutination inhibition (HI) activities, similar to those induced by an inactivated EDS vaccine. A dose-response analysis indicated that a single immunization with as little as 1μg of the knob moiety of the CMP-knob fusion protein was as effective as the inactivated vaccine in inducing antibodies with HI activity. The immunization of laying hens had no apparent adverse effects on egg production and effectively prevented clinical symptoms of EDS when the chickens were challenged with pathogenic EDS virus. This study demonstrates that the knob domain lacking the shaft sequence but fused to a trimeric coiled coil is a promising candidate subunit vaccine for the prophylaxis of EDS in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.
An improved artifact removal in exposure fusion with local linear constraints
NASA Astrophysics Data System (ADS)
Zhang, Hai; Yu, Mali
2018-04-01
In exposure fusion, it is challenging to remove artifacts because of camera motion and moving objects in the scene. An improved artifact removal method is proposed in this paper, which performs local linear adjustment in artifact removal progress. After determining a reference image, we first perform high-dynamic-range (HDR) deghosting to generate an intermediate image stack from the input image stack. Then, a linear Intensity Mapping Function (IMF) in each window is extracted based on the intensities of intermediate image and reference image, the intensity mean and variance of reference image. Finally, with the extracted local linear constraints, we reconstruct a target image stack, which can be directly used for fusing a single HDR-like image. Some experiments have been implemented and experimental results demonstrate that the proposed method is robust and effective in removing artifacts especially in the saturated regions of the reference image.
Pulse-coupled neural network sensor fusion
NASA Astrophysics Data System (ADS)
Johnson, John L.; Schamschula, Marius P.; Inguva, Ramarao; Caulfield, H. John
1998-03-01
Perception is assisted by sensed impressions of the outside world but not determined by them. The primary organ of perception is the brain and, in particular, the cortex. With that in mind, we have sought to see how a computer-modeled cortex--the PCNN or Pulse Coupled Neural Network--performs as a sensor fusing element. In essence, the PCNN is comprised of an array of integrate-and-fire neurons with one neuron for each input pixel. In such a system, the neurons corresponding to bright pixels reach firing threshold faster than the neurons corresponding to duller pixels. Thus, firing rate is proportional to brightness. In PCNNs, when a neuron fires it sends some of the resulting signal to its neighbors. This linking can cause a near-threshold neuron to fire earlier than it would have otherwise. This leads to synchronization of the pulses across large regions of the image. We can simplify the 3D PCNN output by integrating out the time dimension. Over a long enough time interval, the resulting 2D (x,y) pattern IS the input image. The PCNN has taken it apart and put it back together again. The shorter- term time integrals are interesting in themselves and will be commented upon in the paper. The main thrust of this paper is the use of multiple PCNNs mutually coupled in various ways to assemble a single 2D pattern or fused image. Results of experiments on PCNN image fusion and an evaluation of its advantages are our primary objectives.
Validation of 3D multimodality roadmapping in interventional neuroradiology
NASA Astrophysics Data System (ADS)
Ruijters, Daniel; Homan, Robert; Mielekamp, Peter; van de Haar, Peter; Babic, Drazenko
2011-08-01
Three-dimensional multimodality roadmapping is entering clinical routine utilization for neuro-vascular treatment. Its purpose is to navigate intra-arterial and intra-venous endovascular devices through complex vascular anatomy by fusing pre-operative computed tomography (CT) or magnetic resonance (MR) with the live fluoroscopy image. The fused image presents the real-time position of the intra-vascular devices together with the patient's 3D vascular morphology and its soft-tissue context. This paper investigates the effectiveness, accuracy, robustness and computation times of the described methods in order to assess their suitability for the intended clinical purpose: accurate interventional navigation. The mutual information-based 3D-3D registration proved to be of sub-voxel accuracy and yielded an average registration error of 0.515 mm and the live machine-based 2D-3D registration delivered an average error of less than 0.2 mm. The capture range of the image-based 3D-3D registration was investigated to characterize its robustness, and yielded an extent of 35 mm and 25° for >80% of the datasets for registration of 3D rotational angiography (3DRA) with CT, and 15 mm and 20° for >80% of the datasets for registration of 3DRA with MR data. The image-based 3D-3D registration could be computed within 8 s, while applying the machine-based 2D-3D registration only took 1.5 µs, which makes them very suitable for interventional use.
Hu, Peinan; Zhao, Xueying; Zhang, Qinghua; Li, Weiming; Zu, Yao
2018-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the tyr gene and two sites in the gol gene related to pigmentation in zebrafish. Phenotypic analysis revealed that all types of Cas9 led to hypopigmentation in similar proportions of injected embryos. Genome analysis by T7 Endonuclease I (T7E1) assays demonstrated that all types of Cas9 similarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites (tyr1 > 66%, tyr2 > 73%, gol1 > 50%, and gol2 > 35%), as well as various types (more than six) of indel mutations observed in all four types of Cas9-injected embryos. Furthermore, all types of Cas9 showed efficient targeted mutagenesis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing efficiencies on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome editing is highly dependent on guide RNAs (gRNAs) and gene loci. These findings may help to simplify the selection of Cas9 for gene editing using the CRISPR/Cas9 system. PMID:29295818
Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization.
Cissell, Kyle A; Rahimi, Yasmeen; Shrestha, Suresh; Deo, Sapna K
2009-01-01
Reassembly of split reporter proteins, also referred to as protein complementation, is utilized in the detection of protein-protein or protein-nucleic acid interactions. In this strategy, a reporter protein is fragmented into two inactive polypeptides to which interacting/binding partners are fused. The interaction between fused partners leads to the formation of a reassembled, active reporter. In this Communication, we have presented a proof-of-concept for the detection of a target nucleic acid sequence based on the reassembly of the bioluminescent reporter Renilla luciferase (Rluc), which is driven by DNA hybridization. Although, reassembly of Rluc though protein interactions has been demonstrated by others, the Rluc reassembly through DNA hybridization has not been shown yet, which is the novelty of this work. It is well established that bioluminescence detection offers significant advantages due to the absence of any background signal. In our study, two rationally designed fragments of Rluc were conjugated to complementary oligonucleotide probes. Hybridization of the two probes with fused Rluc fragments resulted in the reassembly of the fragments, generating active Rluc, measurable by the intensity of light given off upon addition of coelenterazine. Our study also shows that the reassembly of Rluc can be inhibited by an oligonucleotide probe that competes to bind to the hybridized probe-Rluc fragment complex, indicating a potential strategy for the quantitative detection of target nucleic acid. We were able to achieve the reassembly of Rluc fused to oligonucleotide probes using femtomole amounts of the probe-fragment protein conjugate. This concentration is approximately 4 orders of magnitude less than that reported using green fluorescent protein (GFP) as the reporter. A DNA-driven Rluc reassembly study performed in a cellular matrix did not show any interference from the matrix.
Mikesh, Michelle; Ghergherehchi, Cameron L; Rahesh, Sina; Jagannath, Karthik; Ali, Amir; Sengelaub, Dale R; Trevino, Richard C; Jackson, David M; Tucker, Haley O; Bittner, George D
2018-07-01
Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice. © 2018 Wiley Periodicals, Inc.
Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A
2014-01-01
To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a secure differentiation between different tumor tissue areas in comparison to image fusion with MRI in our small study group. Therefore ultrasound tissue elasticity imaging might be used for fast detection of tumor response in the future whereas conventional grey scale imaging alone could not provide the additional information. By using standard, contrast-enhanced MRI images for reliable and reproducible slice positioning, the strongly user-dependent limitation of ultrasound tissue elasticity imaging may be overcome, especially for a comparison between baseline and follow-up measurements.
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur
2005-01-01
The purpose of this research was to develop enhancement and multi-sensor fusion algorithms and techniques to make it safer for the pilot to fly in what would normally be considered Instrument Flight Rules (IFR) conditions, where pilot visibility is severely restricted due to fog, haze or other weather phenomenon. We proposed to use the non-linear Multiscale Retinex (MSR) as the basic driver for developing an integrated enhancement and fusion engine. When we started this research, the MSR was being applied primarily to grayscale imagery such as medical images, or to three-band color imagery, such as that produced in consumer photography: it was not, however, being applied to other imagery such as that produced by infrared image sources. However, we felt that it was possible by using the MSR algorithm in conjunction with multiple imaging modalities such as long-wave infrared (LWIR), short-wave infrared (SWIR), and visible spectrum (VIS), we could substantially improve over the then state-of-the-art enhancement algorithms, especially in poor visibility conditions. We proposed the following tasks: 1) Investigate the effects of applying the MSR to LWIR and SWIR images. This consisted of optimizing the algorithm in terms of surround scales, and weights for these spectral bands; 2) Fusing the LWIR and SWIR images with the VIS images using the MSR framework to determine the best possible representation of the desired features; 3) Evaluating different mixes of LWIR, SWIR and VIS bands for maximum fog and haze reduction, and low light level compensation; 4) Modifying the existing algorithms to work with video sequences. Over the course of the 3 year research period, we were able to accomplish these tasks and report on them at various internal presentations at NASA Langley Research Center, and in presentations and publications elsewhere. A description of the work performed under the tasks is provided in Section 2. The complete list of relevant publications during the research periods is provided in Section 5. This research also resulted in the generation of intellectual property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less
Recombinant soluble adenovirus receptor
Freimuth, Paul I.
2002-01-01
Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.
Franklin, Daniel; Flavel, Ambika
2015-05-01
The clavicle is the first bone to ossify in the developing embryo and the last to complete epiphyseal union. It is the latter sustained period of growth that has attracted the interest of skeletal biologists and forensic practitioners alike, who collectively recognize the important opportunity this bone affords to estimate skeletal age across the prenatal to early adult lifespan. Current research is largely directed towards evaluating the applicability of assessing fusion in the medial epiphysis, specifically for determining age of majority in the living. This study aims to contribute further insights, and inform medicolegal practice, by evaluating the Schmeling five-stage system for the assessment of clavicular development in a Western Australian population. We retrospectively evaluated high-resolution multiple detector computed tomography (MDCT) scans of 388 individuals (210 male; 178 female) between 10 and 35 years of age. Scans are viewed in axial and multiplanar reconstructed (MPR) images using OsiriX®. Fusion status is scored according to a five-stage system. Transition analysis is used to calculate age ranges and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates (in years) for transition from unfused to fusing is 20.60 (male) and 19.19 (female); transition from fusing to complete fusion is 21.92 (male) and 21.47 (female). Results of the present study confirm the reliability of the assessed method and demonstrate remarkable consistency to data reported for other global populations.
Integrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters
Jia, Baolei; Zhu, Xiao Feng; Pu, Zhong Ji; Duan, Yu Xi; Hao, Lu Jiang; Zhang, Jie; Chen, Li-Qing; Jeon, Che Ok; Xuan, Yuan Hu
2017-01-01
Sugars Will Eventually be Exported Transporter (SWEET) and SemiSWEET are recently characterized families of sugar transporters in eukaryotes and prokaryotes, respectively. SemiSWEETs contain 3 transmembrane helices (TMHs), while SWEETs contain 7. Here, we performed sequence-based comprehensive analyses for SWEETs and SemiSWEETs across the biosphere. In total, 3,249 proteins were identified and ≈60% proteins were found in green plants and Oomycota, which include a number of important plant pathogens. Protein sequence similarity networks indicate that proteins from different organisms are significantly clustered. Of note, SemiSWEETs with 3 or 4 TMHs that may fuse to SWEET were identified in plant genomes. 7-TMH SWEETs were found in bacteria, implying that SemiSWEET can be fused directly in prokaryote. 15-TMH extraSWEET and 25-TMH superSWEET were also observed in wild rice and oomycetes, respectively. The transporters can be classified into 4, 2, 2, and 2 clades in plants, Metazoa, unicellular eukaryotes, and prokaryotes, respectively. The consensus and coevolution of amino acids in SWEETs were identified by multiple sequence alignments. The functions of the highly conserved residues were analyzed by molecular dynamics analysis. The 19 most highly conserved residues in the SWEETs were further confirmed by point mutagenesis using SWEET1 from Arabidopsis thaliana. The results proved that the conserved residues located in the extrafacial gate (Y57, G58, G131, and P191), the substrate binding pocket (N73, N192, and W176), and the intrafacial gate (P43, Y83, F87, P145, M161, P162, and Q202) play important roles for substrate recognition and transport processes. Taken together, our analyses provide a foundation for understanding the diversity, classification, and evolution of SWEETs and SemiSWEETs using large-scale sequence analysis and further show that gene duplication and gene fusion are important factors driving the evolution of SWEETs. PMID:29326750
Integrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters.
Jia, Baolei; Zhu, Xiao Feng; Pu, Zhong Ji; Duan, Yu Xi; Hao, Lu Jiang; Zhang, Jie; Chen, Li-Qing; Jeon, Che Ok; Xuan, Yuan Hu
2017-01-01
Sugars Will Eventually be Exported Transporter (SWEET) and SemiSWEET are recently characterized families of sugar transporters in eukaryotes and prokaryotes, respectively. SemiSWEETs contain 3 transmembrane helices (TMHs), while SWEETs contain 7. Here, we performed sequence-based comprehensive analyses for SWEETs and SemiSWEETs across the biosphere. In total, 3,249 proteins were identified and ≈60% proteins were found in green plants and Oomycota, which include a number of important plant pathogens. Protein sequence similarity networks indicate that proteins from different organisms are significantly clustered. Of note, SemiSWEETs with 3 or 4 TMHs that may fuse to SWEET were identified in plant genomes. 7-TMH SWEETs were found in bacteria, implying that SemiSWEET can be fused directly in prokaryote. 15-TMH extraSWEET and 25-TMH superSWEET were also observed in wild rice and oomycetes, respectively. The transporters can be classified into 4, 2, 2, and 2 clades in plants, Metazoa, unicellular eukaryotes, and prokaryotes, respectively. The consensus and coevolution of amino acids in SWEETs were identified by multiple sequence alignments. The functions of the highly conserved residues were analyzed by molecular dynamics analysis. The 19 most highly conserved residues in the SWEETs were further confirmed by point mutagenesis using SWEET1 from Arabidopsis thaliana . The results proved that the conserved residues located in the extrafacial gate (Y57, G58, G131, and P191), the substrate binding pocket (N73, N192, and W176), and the intrafacial gate (P43, Y83, F87, P145, M161, P162, and Q202) play important roles for substrate recognition and transport processes. Taken together, our analyses provide a foundation for understanding the diversity, classification, and evolution of SWEETs and SemiSWEETs using large-scale sequence analysis and further show that gene duplication and gene fusion are important factors driving the evolution of SWEETs.
Bioinspired synthesis of pentalene-based chromophores from an oligoketone chain.
Saito, Yuki; Higuchi, Masayuki; Yoshioka, Shota; Senboku, Hisanori; Inokuma, Yasuhide
2018-04-24
We report a bioinspired synthesis of 2,5-dihydropentalene-based chromophores from an aliphatic oligoketone bearing 1,3- and 1,4-diketone subunits. Unlike the natural polyketone sequence, fused five-membered rings were formed via an intramolecular aldol condensation. A subsequent Knoevenagel condensation reaction with malononitrile furnished a multiply cross-conjugated π-system with low-lying LUMO levels. Furthermore, pentalenes obtained from a non-conjugated aliphatic chain exhibited visible absorption and solid-state fluorescence.
New Functional Device using Bio Nano Process
2011-09-20
anticipated that acid treatment of CNTs would reduce the electronic properties.2 In contrast, Pender et al. created a bifunctional peptide aptamer that has...of amino acids . Here we report that a novel bifunctional cage-shaped protein able to fabricate a SWNT-titanium nanocompound containing nano-porous...nanostructures.6-7 Two peptide aptamers, NHBP-1 (DYFSSPYYEQLF)8 and minTBP-1 (RKLPDA)9 were genetically fused at the Fig. 1 (a) Amino acid sequence of CDT1. The
Somerville, C.R.; Nawrath, C.; Poirier, Y.
1997-03-11
The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.
NASA Astrophysics Data System (ADS)
Gholoum, M.; Bruce, D.; Hazeam, S. Al
2012-07-01
A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.
18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.
Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun
2011-08-01
To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.
A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK.
Penzel, Roland; Schirmacher, Peter; Warth, Arne
2012-07-01
Cytotoxic chemotherapy remains the mainstay of treatment for most patients with advanced disease. Recently, anaplastic lymphoma kinase (ALK) expression as a major target for successful treatment with ALK inhibitors was detected in a subset of non-small-cell lung carcinomas, usually as a result of echinoderm microtubule-associated protein-like 4 (EML4)-ALK rearrangements. Although the chromosomal breakpoint within the EML4 gene varied, the breakpoint within ALK was most frequently reported within intron 19 or rarely in exon 20. Therefore, the different EML4-ALK variants so far contain the same 3' portion of ALK starting with exon 20. Here, we report a novel EML4-ALK variant detected by reverse transcription polymerase chain reaction analysis. Subsequent sequencing revealed an EML4-ALK fusion variant in which exon 6 of EML4 was fused to exon 19 of ALK. It occurred in a predominant solid pulmonary adenocarcinoma of a 65-year-old woman with a clear split signal of ALK in fluorescence in situ hybridization analysis and a weakly homogeneous ALK expression in immunohistochemical staining. Because of the growing number of fusion variants a primary reverse transcription polymerase chain reaction-based screening for ALK-positive non-small-cell lung carcinoma patients may not be sufficient for predictive diagnostics but transcript-based approaches and sequencing of ALK fusion variants might finally contribute to an optimized selection of patients.
A dual host vector for Fab phage display and expression of native IgG in mammalian cells.
Tesar, Devin; Hötzel, Isidro
2013-10-01
A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.
NASA Astrophysics Data System (ADS)
Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.
2016-06-01
In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.
Microbeads display of proteins using emulsion PCR and cell-free protein synthesis.
Gan, Rui; Yamanaka, Yumiko; Kojima, Takaaki; Nakano, Hideo
2008-01-01
We developed a method for coupling protein to its coding DNA on magnetic microbeads using emulsion PCR and cell-free protein synthesis in emulsion. A PCR mixture containing streptavidin-coated microbeads was compartmentalized by water-in-oil (w/o) emulsion with estimated 0.5 template molecules per droplet. The template molecules were amplified and immobilized on beads via bead-linked reverse primers and biotinylated forward primers. After amplification, the templates were sequentially labeled with streptavidin and biotinylated anti-glutathione S-transferase (GST) antibody. The pool of beads was then subjected to cell-free protein synthesis compartmentalized in another w/o emulsion, in which templates were coupled to their coding proteins. We mixed two types of DNA templates of Histidine6 tag (His6)-fused and FLAG tag-fused GST in a ratio of 1:1,000 (His6: FLAG) for use as a model DNA library. After incubation with fluorescein isothiocyanate (FITC)-labeled anti-His6 (C-term) antibody, the beads with the His6 gene were enriched 917-fold in a single-round screening by using flow cytometry. A library with a theoretical diversity of 10(6) was constructed by randomizing the middle four residues of the His6 tag. After a two-round screening, the randomized sequences were substantially converged to peptide-encoding sequences recognized by the anti-His6 antibody.
Self-correcting multi-atlas segmentation
NASA Astrophysics Data System (ADS)
Gao, Yi; Wilford, Andrew; Guo, Liang
2016-03-01
In multi-atlas segmentation, one typically registers several atlases to the new image, and their respective segmented label images are transformed and fused to form the final segmentation. After each registration, the quality of the registration is reflected by the single global value: the final registration cost. Ideally, if the quality of the registration can be evaluated at each point, independent of the registration process, which also provides a direction in which the deformation can further be improved, the overall segmentation performance can be improved. We propose such a self-correcting multi-atlas segmentation method. The method is applied on hippocampus segmentation from brain images and statistically significantly improvement is observed.
27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT ...
27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT LOOKED IN 1983. OBLIQUE VIEW FACING EAST. BUNKER IS IN FOREGROUND, PROTECTIVE SHED FOR WFRP AT TOP OF IMAGE. INEL PHOTO NUMBER 83-574-12-1, TAKEN IN 1983. PHOTOGRAPHER: ROMERO. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ton, H.; Yeung, E.S.
1997-02-15
An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less
Ahn, Jin-Ho; Hwang, Mi-Yeon; Lee, Kyung-Ho; Choi, Cha-Yong; Kim, Dong-Myung
2007-01-01
This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours. PMID:17185295
Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice.
Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A; Genazzani, Armando A; Ribchester, Richard R; Magni, Giulio; Coleman, Michael
2009-02-23
The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration.
Weber-aware weighted mutual information evaluation for infrared-visible image fusion
NASA Astrophysics Data System (ADS)
Luo, Xiaoyan; Wang, Shining; Yuan, Ding
2016-10-01
A performance metric for infrared and visible image fusion is proposed based on Weber's law. To indicate the stimulus of source images, two Weber components are provided. One is differential excitation to reflect the spectral signal of visible and infrared images, and the other is orientation to capture the scene structure feature. By comparing the corresponding Weber component in infrared and visible images, the source pixels can be marked with different dominant properties in intensity or structure. If the pixels have the same dominant property label, the pixels are grouped to calculate the mutual information (MI) on the corresponding Weber components between dominant source and fused images. Then, the final fusion metric is obtained via weighting the group-wise MI values according to the number of pixels in different groups. Experimental results demonstrate that the proposed metric performs well on popular image fusion cases and outperforms other image fusion metrics.
Steganalysis based on reducing the differences of image statistical characteristics
NASA Astrophysics Data System (ADS)
Wang, Ran; Niu, Shaozhang; Ping, Xijian; Zhang, Tao
2018-04-01
Compared with the process of embedding, the image contents make a more significant impact on the differences of image statistical characteristics. This makes the image steganalysis to be a classification problem with bigger withinclass scatter distances and smaller between-class scatter distances. As a result, the steganalysis features will be inseparate caused by the differences of image statistical characteristics. In this paper, a new steganalysis framework which can reduce the differences of image statistical characteristics caused by various content and processing methods is proposed. The given images are segmented to several sub-images according to the texture complexity. Steganalysis features are separately extracted from each subset with the same or close texture complexity to build a classifier. The final steganalysis result is figured out through a weighted fusing process. The theoretical analysis and experimental results can demonstrate the validity of the framework.
NASA Astrophysics Data System (ADS)
Che, Chang; Yu, Xiaoyang; Sun, Xiaoming; Yu, Boyang
2017-12-01
In recent years, Scalable Vocabulary Tree (SVT) has been shown to be effective in image retrieval. However, for general images where the foreground is the object to be recognized while the background is cluttered, the performance of the current SVT framework is restricted. In this paper, a new image retrieval framework that incorporates a robust distance metric and information fusion is proposed, which improves the retrieval performance relative to the baseline SVT approach. First, the visual words that represent the background are diminished by using a robust Hausdorff distance between different images. Second, image matching results based on three image signature representations are fused, which enhances the retrieval precision. We conducted intensive experiments on small-scale to large-scale image datasets: Corel-9, Corel-48, and PKU-198, where the proposed Hausdorff metric and information fusion outperforms the state-of-the-art methods by about 13, 15, and 15%, respectively.
Boll, Daniel T; Lewin, Jonathan S; Duerk, Jeffrey L; Aschoff, Andrik J; Merkle, Elmar M
2004-05-01
To compare the appropriate pulse sequences for interventional device guidance during magnetic resonance (MR) imaging at 0.2 T and to evaluate the dependence of sequence selection on the anatomic region of the procedure. Using a C-arm 0.2 T system, four interventional MR sequences were applied in 23 liver cases and during MR-guided neck interventions in 13 patients. The imaging protocol consisted of: multislice turbo spin echo (TSE) T2w, sequential-slice fast imaging with steady precession (FISP), a time-reversed version of FISP (PSIF), and FISP with balanced gradients in all spatial directions (True-FISP) sequences. Vessel conspicuity was rated and contrast-to-noise ratio (CNR) was calculated for each sequence and a differential receiver operating characteristic was performed. Liver findings were detected in 96% using the TSE sequence. PSIF, FISP, and True-FISP imaging showed lesions in 91%, 61%, and 65%, respectively. The TSE sequence offered the best CNR, followed by PSIF imaging. Differential receiver operating characteristic analysis also rated TSE and PSIF to be the superior sequences. Lesions in the head and neck were detected in all cases by TSE and FISP, in 92% using True-FISP, and in 84% using PSIF. True-FISP offered the best CNR, followed by TSE imaging. Vessels appeared bright on FISP and True-FISP imaging and dark on the other sequences. In interventional MR imaging, no single sequence fits all purposes. Image guidance for interventional MR during liver procedures is best achieved by PSIF or TSE, whereas biopsies in the head and neck are best performed using FISP or True-FISP sequences.
Design of a new type synchronous focusing mechanism
NASA Astrophysics Data System (ADS)
Zhang, Jintao; Tan, Ruijun; Chen, Zhou; Zhang, Yongqi; Fu, Panlong; Qu, Yachen
2018-05-01
Aiming at the dual channel telescopic imaging system composed of infrared imaging system, low-light-level imaging system and image fusion module, In the fusion of low-light-level images and infrared images, it is obvious that using clear source images is easier to obtain high definition fused images. When the target is imaged at 15m to infinity, focusing is needed to ensure the imaging quality of the dual channel imaging system; therefore, a new type of synchronous focusing mechanism is designed. The synchronous focusing mechanism realizes the focusing function through the synchronous translational imaging devices, mainly including the structure of the screw rod nut, the shaft hole coordination structure and the spring steel ball eliminating clearance structure, etc. Starting from the synchronous focusing function of two imaging devices, the structure characteristics of the synchronous focusing mechanism are introduced in detail, and the focusing range is analyzed. The experimental results show that the synchronous focusing mechanism has the advantages of ingenious design, high focusing accuracy and stable and reliable operation.
Principles of Quantitative MR Imaging with Illustrated Review of Applicable Modular Pulse Diagrams.
Mills, Andrew F; Sakai, Osamu; Anderson, Stephan W; Jara, Hernan
2017-01-01
Continued improvements in diagnostic accuracy using magnetic resonance (MR) imaging will require development of methods for tissue analysis that complement traditional qualitative MR imaging studies. Quantitative MR imaging is based on measurement and interpretation of tissue-specific parameters independent of experimental design, compared with qualitative MR imaging, which relies on interpretation of tissue contrast that results from experimental pulse sequence parameters. Quantitative MR imaging represents a natural next step in the evolution of MR imaging practice, since quantitative MR imaging data can be acquired using currently available qualitative imaging pulse sequences without modifications to imaging equipment. The article presents a review of the basic physical concepts used in MR imaging and how quantitative MR imaging is distinct from qualitative MR imaging. Subsequently, the article reviews the hierarchical organization of major applicable pulse sequences used in this article, with the sequences organized into conventional, hybrid, and multispectral sequences capable of calculating the main tissue parameters of T1, T2, and proton density. While this new concept offers the potential for improved diagnostic accuracy and workflow, awareness of this extension to qualitative imaging is generally low. This article reviews the basic physical concepts in MR imaging, describes commonly measured tissue parameters in quantitative MR imaging, and presents the major available pulse sequences used for quantitative MR imaging, with a focus on the hierarchical organization of these sequences. © RSNA, 2017.
Heavy Element Abundances in Two B0-B0.5 Main Sequence Stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.
We propose FUSE observations of AV304 (B0.5V) and NGC346-637 B0V), two sharp-lined main-sequence stars in the Small Magellanic Cloud, to determine the abundances of heavy elements, especially those of the iron group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV 1) near 1130 Angstroms, that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 Angstoms, in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. A limited analyses of ground-based spectra of these stars by Dufton et al. (1990) and Rolleston et al. (1993) indicated an average underabundance of 0.7-0.8 dex for most light elements and a recent analysis of HSTSTIS data on AV304 by Peters & Grigsby (2001) suggests that the Fe group elements are depleted by the same amount relative to the sun. When combined with the HST-STIS results, this effort will represent the first attempt to measure the abundances of Fe group elements in the photospheres of early B, main sequence stars in an external galaxy. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, the ground-based study did not yield this information because measurable lines from these species are found only in the UV spectral region. Abundances and abundance ratios of both heavy & light elements will be compared with the HST-STIS results from AV304, H II regions, supernova remnants, evolved massive stars in the SMC, and theoretical calculations of nucleosynthesis.
Protein fold recognition using geometric kernel data fusion.
Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves
2014-07-01
Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.
A Nitrile Hydratase in the Eukaryote Monosiga brevicollis
Foerstner, Konrad U.; Doerks, Tobias; Muller, Jean; Raes, Jeroen; Bork, Peer
2008-01-01
Bacterial nitrile hydratase (NHases) are important industrial catalysts and waste water remediation tools. In a global computational screening of conventional and metagenomic sequence data for NHases, we detected the two usually separated NHase subunits fused in one protein of the choanoflagellate Monosiga brevicollis, a recently sequenced unicellular model organism from the closest sister group of Metazoa. This is the first time that an NHase is found in eukaryotes and the first time it is observed as a fusion protein. The presence of an intron, subunit fusion and expressed sequence tags covering parts of the gene exclude contamination and suggest a functional gene. Phylogenetic analyses and genomic context imply a probable ancient horizontal gene transfer (HGT) from proteobacteria. The newly discovered NHase might open biotechnological routes due to its unconventional structure, its new type of host and its apparent integration into eukaryotic protein networks. PMID:19096720
Integrating image quality in 2nu-SVM biometric match score fusion.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2007-10-01
This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.
Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.
Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori
2018-05-01
The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Elleuche, Skander
2015-02-01
It is a mammoth task to develop a modular protein toolbox enabling the production of posttranslational organized multifunctional enzymes that catalyze reactions in complex pathways. However, nature has always guided scientists to mimic evolutionary inventions in the laboratory and, nowadays, versatile methods have been established to experimentally connect enzymatic activities with multiple advantages. Among the oldest known natural examples is the linkage of two or more juxtaposed proteins catalyzing consecutive, non-consecutive, or opposing reactions by a native peptide bond. There are multiple reasons for the artificial construction of such fusion enzymes including improved catalytic activities, enabled substrate channelling by proximity of biocatalysts, higher stabilities, and cheaper production processes. To produce fused proteins, it is either possible to genetically fuse coding open reading frames or to connect proteins in a posttranslational process. Molecular biology techniques that have been established for the production of end-to-end or insertional fusions include overlap extension polymerase chain reaction, cloning, and recombination approaches. Depending on their flexibility and applicability, these methods offer various advantages to produce fusion genes in high throughput, different orientations, and including linker sequences to maximize the flexibility and performance of fusion partners. In this review, practical techniques to fuse genes are highlighted, enzymatic parameters to choose adequate enzymes for fusion approaches are summarized, and examples with biotechnological relevance are presented including a focus on plant biomass-degrading glycosyl hydrolases.
Kureel, Shiv Narain; Gupta, Archika; Singh, Chandra Shekhar; Kumar, Manoj
2013-10-01
To study the anatomic arrangement of the fascial planes and superficial vessels in relationship to the laid-open urethral plate, glans, corpus spongiosum, and corpora cavernosa in the penis of patients with exstrophy or epispadias. Of 6 patients, 4 had classic exstrophy and 2 had incontinent epispadias. These patients had presented beyond adolescence without previous intervention and were selected for the present study. Using a 1.5-T magnetic resonance imaging scanner and compatible 3-in. surface coil, the epispadiac penises were studied using fast spin echo sequences and contrast-enhanced sequences. In 2 patients, angiography of the superficial vessels was also performed using multidetector row helical computed tomography. The imaging findings were also verified during the subsequent reconstructive surgery. A clear demarcation of the skin, dartos fascia, Buck's fascia, corpora cavernosa, corpus spongiosum, and the intraglanular planes were seen with the course of the blood vessels. The penile dartos received axial pattern vessels from the external pudendal vessels, with collateral branches from the dorsal penile artery as transverse branches at the shaft of the penis and preputial branches at the coronal sulcus. Buck's fascia sleeved the corpora cavernosa, enveloped the neurovascular bundle, and fused with the corpus spongiosum without crossing the midline. Intraglanular extension of Buck's fascia separated the intraglanular vascular arcade from the tip of the corpora. Parallel to the ventral midline, axial pattern vessels to the skin-dartos complex are present, with an additional supply to the prepuce from the terminal penile arteries. These findings can be used for designing the skin coverage. The subfascial plane between the tip of the corpora and the intraglanular vascular arcade and the plane of cleavage between the cavernosa-spongiosum interface can be used for efficient corporal urethral separation. Copyright © 2013 Elsevier Inc. All rights reserved.