Yu, Jaecheon; Ha, Yoon; Shin, Jun Jae; Oh, Jae Keun; Lee, Chang Kyu; Kim, Keung Nyun; Yoon, Do Heum
2017-10-26
To evaluate the efficacy of plate fixation on cervical alignment after anterior cervical discectomy and fusion (ACDF) using a stand-alone cage (ACDF-CA), compared to ACDF performed using a cage and plate fixation (ACDF-CP) and ACDF using autologous iliac bone graft and plate fixation (ACDF-AP), for the treatment of one- or two-level cervical degenerative disease. A second objective was to assess the clinical and radiological outcomes between the groups. A total of 247 patients underwent ACDF and were divided into three groups: those who underwent ACDF-CA (n = 76), ACDF-CP (n = 82) or ACDF-AP (n = 89). Fusion rate and time-to-fusion, global cervical and segmental angle, fused segment height, subsidence rate, and clinical outcomes, were measured using the visual analogue scale (VAS), Oswestry Neck Disability Index (NDI), and Robinson's criteria, assessed preoperatively, immediately postoperatively, and at least 24 months, postoperatively. ACDF-AP was associated with the shortest mean time-to-fusion, followed by ACDF-CP and ACDF-CA. Compared to the preoperative status, the fused segment height and segmental angle increased in all groups immediately postoperatively, being well-maintained in patients who underwent ACDF-AP, while decreasing in those who underwent ACDF-CP and ACDF-CA procedures. Global cervical lordosis increased with ACDF-AP, but decreased immediately postoperatively with ACDF-CP and ACDF-CA, and at the final follow-up. Univariate analysis confirmed that a change in fused segment height was positively associated with a change in both segmental and global cervical angles. Clinical outcomes, namely VAS and NDI scores, as well as Robinson's criteria, were comparable among the three techniques. Supplementation with plate fixation, especially using autologous iliac bone graft, is beneficial for maintaining the fused segment height and cervical spine curvature, as well as reducing time-to-fusion and subsidence rate.
Barth, Martin; Weiß, Christel; Brenke, Christopher; Schmieder, Kirsten
2017-04-01
Software-based planning of a spinal implant inheres in the promise of precision and superior results. The purpose of the study was to analyze the measurement reliability, prognostic value, and scientific use of a surgical planning software in patients receiving anterior cervical discectomy and fusion (ACDF). Lateral neutral, flexion, and extension radiographs of patients receiving tailored cages as suggested by the planning software were available for analysis. Differences of vertebral wedging angles and segmental height of all cervical segments were determined at different timepoints using intraclass correlation coefficients (ICC). Cervical lordosis (C2/C7), segmental heights, global, and segmental range of motion (ROM) were determined at different timepoints. Clinical and radiological variables were correlated 12 months after surgery. 282 radiographs of 35 patients with a mean age of 53.1 ± 12.0 years were analyzed. Measurement of segmental height was highly accurate with an ICC near to 1, but angle measurements showed low ICC values. Likewise, the ICCs of the prognosticated values were low. Postoperatively, there was a significant decrease of segmental height (p < 0.0001) and loss of C2/C7 ROM (p = 0.036). ROM of unfused segments also significantly decreased (p = 0.016). High NDI was associated with low subsidence rates. The surgical planning software showed high accuracy in the measurement of height differences and lower accuracy values with angle measurements. Both the prognosticated height and angle values were arbitrary. Global ROM, ROM of the fused and intact segments, is restricted after ACDF.
Global Kalman filter approaches to estimate absolute angles of lower limb segments.
Nogueira, Samuel L; Lambrecht, Stefan; Inoue, Roberto S; Bortole, Magdo; Montagnoli, Arlindo N; Moreno, Juan C; Rocon, Eduardo; Terra, Marco H; Siqueira, Adriano A G; Pons, Jose L
2017-05-16
In this paper we propose the use of global Kalman filters (KFs) to estimate absolute angles of lower limb segments. Standard approaches adopt KFs to improve the performance of inertial sensors based on individual link configurations. In consequence, for a multi-body system like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link angle estimations (e.g., foot). Global KF approaches, on the other hand, correlate the collective contribution of all signals from lower limb segments observed in the state-space model through the filtering process. We present a novel global KF (matricial global KF) relying only on inertial sensor data, and validate both this KF and a previously presented global KF (Markov Jump Linear Systems, MJLS-based KF), which fuses data from inertial sensors and encoders from an exoskeleton. We furthermore compare both methods to the commonly used local KF. The results indicate that the global KFs performed significantly better than the local KF, with an average root mean square error (RMSE) of respectively 0.942° for the MJLS-based KF, 1.167° for the matrical global KF, and 1.202° for the local KFs. Including the data from the exoskeleton encoders also resulted in a significant increase in performance. The results indicate that the current practice of using KFs based on local models is suboptimal. Both the presented KF based on inertial sensor data, as well our previously presented global approach fusing inertial sensor data with data from exoskeleton encoders, were superior to local KFs. We therefore recommend to use global KFs for gait analysis and exoskeleton control.
Cheng, Joseph S; Liu, Fei; Komistek, Richard D; Mahfouz, Mohamed R; Sharma, Adrija; Glaser, Diana
2007-11-01
In this cervical spine kinematics study the authors evaluate the motions and forces in the normal, degenerative, and fused states to assess how alteration in the cervical motion segment affects adjacent segment degeneration and spondylosis. Fluoroscopic images obtained in 30 individuals (10 in each group with disease at C5-6) undergoing flexion/extension motions were collected. Kinematic data were obtained from the fluoroscopic images and analyzed with an inverse dynamic mathematical model of the cervical spine that was developed for this analysis. During 20 degrees flexion to 15 degrees extension, average relative angles at the adjacent levels of C6-7 and C4-5 in the fused patients were 13.4 degrees and 8.8 degrees versus 3.7 degrees and 4.8 degrees in the healthy individuals. Differences at C3-4 averaged only about 1 degrees. Maximum transverse forces in the fused spines were two times the skull weight at C6-7 and one times the skull weight at C4-5, compared with 0.2 times the skull weight and 0.3 times the skull weight in the healthy individuals. Vertical forces ranged from 1.6 to 2.6 times the skull weight at C6-7 and from 1.2 to 2.5 times the skull weight at C4-5 in the patients who had undergone fusion, and from 1.4 to 3.1 times the skull weight and from 0.9 to 3.3 times the skull weight, respectively, in the volunteers. Adjacent-segment degeneration may occur in patients with fusion due to increased motions and forces at both adjacent levels when compared with healthy individuals in a comparable flexion and extension range.
Yamamoto, Yu; Hara, Masahito; Nishimura, Yusuke; Haimoto, Shoichi; Wakabayashi, Toshihiko
2018-03-15
Transvertebral foraminotomy (TVF) combined with anterior cervical decompression and fusion (ACDF) can be used to treat multilevel cervical spondylotic myelopathy and radiculopathy; however, the radiological outcomes and effectiveness of this hybrid procedure are unknown. We retrospectively assessed 22 consecutive patients treated with combined TVF and ACDF between January 2007 and May 2016. The Japanese Orthopedic Association (JOA) score and Odom's criteria were analyzed. Radiological assessment included the C2-7 sagittal Cobb angle (CA) and range of motion (ROM). The tilting angle (TA), TA ROM, and disc height (DH) of segments adjacent to the ACDF were also measured. Adjacent segment degeneration, which includes disc degeneration, was evaluated. The mean postoperative follow-up was 41.7 months. All surgeries were performed at two adjacent segments, with ACDF and TVF of the upper and lower segments, respectively. The JOA scores significantly improved. There were no significant differences in the C2-7 CA, C2-7 ROM, TA, and TA ROM, but there was a statistically significant decrease in DH of the lower adjacent segment to ACDF. Progression of disc degeneration was identified in two patients, with no progression in the criterion of adjacent segment degeneration over the follow-up. The TVF combined with ACDF produced excellent clinical results and maintained spinal alignment, albeit with a reduction in DH. TVF was safely performed at the lower segment adjacent to the ACDF, although this might result in earlier degeneration. In conclusion, this hybrid method is less invasive and beneficial for reduction of the number of fused levels.
Perrini, Paolo; Gambacciani, Carlo; Martini, Carlotta; Montemurro, Nicola; Lepori, Paolo
2015-12-01
To compare retrospectively the clinical and radiographic outcomes between cervical reconstruction with expandable cylindrical cage (ECC) and iliac crest autograft after one- or two-level anterior cervical corpectomy for spondylotic myelopathy. Forty-two patients underwent cervical reconstruction with either iliac crest autograft and plating (20 patients) or ECC and plating (22 patients). The average clinical and radiological follow-up period was 77.54 ± 44.28 months (range 14-155 months). The authors compared clinical parameters (Nurick Myelopathy Grade, modified Japanese Orthopedic Association (mJOA) scores), perioperative parameters (hospital stays, complications) and radiological parameters (Cobb's angles of the fused segments and C2-C7 segments, cervical subsidence, fusion rate). Fusion was assessed on flexion-extension X-ray films. No significant differences between the two groups were found in demographics, neurological presentation, preoperative sagittal alignment, clinical improvement and length of hospitalization. Patients of the autograft group experienced more postoperative complications, although the difference between the two treatment groups was not statistically significant (15 versus 4.5%, p=0.232). The fusion rate was 100% in both groups. The average lordotic increase of the segmental angle was significantly greater in the ECC group (p<0.05). Other radiological parameters were not significantly different in the two groups. Cervical reconstruction either with iliac crest autograft and plating or ECC and plating provides good clinical results and similar fusion rates after one- or two-level corpectomy for spondylotic myelopathy. However, the use of ECC obviates donor site complications and provides a more significant increase of lordosis in segmental angle. Copyright © 2015 Elsevier B.V. All rights reserved.
Lamp bulb with integral reflector
Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.
2001-01-01
An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.
Yang, Huiliang; Im, Gi Hye; Hu, Bowen; Wang, Lei; Zhou, Chunguang; Liu, Limin; Song, Yueming
2017-12-01
There are many different systems recommending upper instrumented vertebra (UIV) for Lenke type 2 adolescent idiopathic scoliosis (AIS), several of which suggest that all Lenke type 2 AIS patients should be fused to the second thoracic vertebra (T2). However, all previously proposed UIV selecting systems do not accurately predict postoperative shoulder balance. We investigated whether fusing to T2 could prevent postoperative shoulder imbalance and identified circumstances under which to fuse up to T2. We retrospectively collected all patients with typical Lenke type 2 AIS who received surgery by one spine surgeon in our hospital from 2010 to 2014. Lateral shoulder balance was assessed utilizing radiographic shoulder height difference (RSH), coracoid height difference (CHD), clavicle-rib intersection difference (CRID), and clavicle angle (CA). Medial shoulder balance was assessed by T1 tilt angle and first rib angle (FRA). Lateral shoulders were considered to be level if the absolute value of RSH was less than 10 millimeters. All patients were divided into two groups as follows: 1) T2 group: UIV of T2 (n=49); and 2) below-T2 group: UIV of T3 (n=24) or T4 (n=6). Patients were assessed before surgery and at final follow-up with a minimum follow-up duration of 24 months. Seventy-nine typical Lenke type 2 AIS patients were identified. Preoperative CHD and CA were significantly associated with postoperative lateral shoulder imbalance (both p=0.045), whereas the UIV level was not significantly associated with it. Both fusing to T2 and to below T2 could improve RSH (p<0.001 and p=0.001, respectively). Fusing to T2 slightly worsened CHD, CRID, and CA at last follow-up (all p<0.001), while fusing to below T2 improved these lateral shoulder balance parameters (p=0.042, p<0.001, and p=0.007, respectively). For medial shoulder balance, fusing to below T2 worsened T1 tilt angle and FRA at last follow-up (p=0.025 and p<0.001, respectively), while fusing to T2 effectively kept these medial shoulder parameters in balance. In addition, for patients with an elevated left border of T1, the T2 group had worse preoperative T1 tilt angle but gained better postoperative T1 tilt angle than the below-T2 group (p<0.001 and p=0.040, respectively). Preoperative lateral shoulder balance, more so than the UIV level, can strongly influence postoperative lateral shoulder balance. Fusing to T2 can only effectively improve medial shoulder balance, not lateral shoulder balance (CHD, CRID, and CA). Moreover, a positive T1 tilt angle is an indicator for fusing to T2 to improve medial shoulder balance. Copyright © 2017 Elsevier B.V. All rights reserved.
SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, R; Yang, J; Pan, T
Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less
Starr, Vanessa; Olivecrona, H; Noz, M E; Maguire, G Q; Zeleznik, M P; Jannsson, Karl-åke
2009-01-01
In this study we explore the possibility of accurately and cost-effectively monitoring tibial deformation induced by Taylor Spatial Frames (TSFs), using time-separated computed tomography (CT) scans and a volume fusion technique to determine tibial rotation and translation. Serial CT examinations (designated CT-A and CT-B, separated by a time interval of several months) of two patients were investigated using a previously described and validated volume fusion technique, in which user-defined landmarks drive the 3D registration of the two CT volumes. Both patients had undergone dual osteotomies to correct for tibial length and rotational deformity. For each registration, 10 or more landmarks were selected, and the quality of the fused volume was assessed both quantitatively and via 2D and 3D visualization tools. First, the proximal frame segment and tibia in CT-A and CT-B were brought into alignment (registered) by selecting landmarks on the frame and/or tibia. In the resulting "fused" volume, the proximal frame segment and tibia from CT-A and CT-B were aligned, while the distal frame segment and tibia from CT-A and CT-B were likely not aligned as a result of tibial deformation or frame adjustment having occurred between the CT scans. Using the proximal fused volume, the distal frame segment and tibia were then registered by selecting landmarks on the frame and/or tibia. The difference between the centroids of the final distal landmarks was used to evaluate the lengthening of the tibia, and the Euler angles from the registration were used to evaluate the rotation. Both the frame and bone could be effectively registered (based on visual interpretation). Movement between the proximal frame and proximal bone could be visualized in both cases. The spatial effect on the tibia could be both visually assessed and measured: 34 mm, 10 degrees in one case; 5 mm, 1 degrees in the other. This retrospective analysis of spatial correction of the tibia using Taylor Spatial Frames shows that CT offers an interesting potential means of quantitatively monitoring the patient's treatment. Compared with traditional techniques, modern CT scans in conjunction with image processing provide a high-resolution, spatially correct, and three-dimensional measurement system which can be used to quickly and easily assess the patient's treatment at low cost to the patient and hospital.
2013-04-10
discharge, a region approximately 15-mm- long, via a right angle prism and fused silica lenses , and directed to a photomultiplier tube (PMT) (Hamamatsu...A 60-mm-long, right- angle fused silica prism is placed along the channel to provide optical ac- cess from the side (see Fig. 1). The entire assembly...and exit windows set at Brewster’s angle . Note that using Rayleigh scattering calibration requires no change in optical alignment, therefore mitigating
Gupta, Ankur; Khaira, Ambar; Lal, Charanjit; Mahajan, Sandeep; Tiwari, Suresh C
2009-10-01
Noonan syndrome is characterised by short stature, typical facial dysmorphology and congenital heart defects. Urogenital abnormalities are reported in 10% of the cases. We present a 14-year-old girl with characteristic features of Noonan syndrome and nephrotic-range proteinuria. She had crossed fused ectopic kidneys. Renal biopsy showed focal segmental glomerulosclerosis. Oral steroids were instituted and she responded well. The case highlights this novel renal presentation of Noonan syndrome.
Lin, Tao; Shao, Wei; Zhang, Ke; Gao, Rui; Zhou, Xuhui
2018-03-01
To compare outcomes of anterior-only (AO), posterior-only (PO), and anteroposterior (AP) surgical approaches for treatment of dystrophic cervical kyphosis in patients with neurofibromatosis 1 (NF1). This retrospective observational study included 81 patients with dystrophic cervical kyphosis secondary to NF1. Length of kyphosis, duration of halo traction, Cobb angle, C2-7-sagittal vertical axis (SVA), T1 slope, Neck Disability Index score, and postoperative complications were evaluated before and, if possible, after each surgical approach. AP approach provided the best outcomes (average spinal Cobb angle was corrected from 61.2 ± 9.1° to 5.7 ± 3.2°, P < 0.05); there was no significant difference between AO and PO approaches (P > 0.05). With regard to cervical sagittal balance, AP approach had the most improvements of C2-7-SVA (mean C2-7-SVA was corrected from 3.2 ± 9.2 mm to 12.8 ± 2.6 mm, P < 0.05); the difference between AO and PO approaches was not significant (P > 0.05). T1 slope results were similar to C2-7-SVA. Neck Disability Index score of all patients improved significantly after surgery (P < 0.05); specifically, patients who had an AP approach constituted the largest portion of the satisfied patient group. Postoperative junctional kyphosis occurred in 11 patients (1 AP approach, 6 AO approach, 4 PO approach); these findings correlated with patients with ≤5 fused segments. AP approach surgery provided the best correction of dystrophic cervical kyphosis and sagittal balance for patients with NF1. Patients undergoing an AP approach were more satisfied with their outcomes. Junctional kyphosis can be prevented effectively using an AP approach in patients with >5 fused segments. Copyright © 2017 Elsevier Inc. All rights reserved.
Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets
NASA Astrophysics Data System (ADS)
Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara
2004-05-01
This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%
Tang, Shujie; Meng, Xueying
2011-01-01
The restoration of disc space height of fused segment is essential in anterior lumbar interbody fusion, while the disc space height in many cases decreased postoperatively, which may adversely aggravate the adjacent segmental degeneration. However, no literature available focused on the issue. A normal healthy finite element model of L3-5 and four anterior lumbar interbody fusion models with different disc space height of fused segment were developed. 800 N compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending and axial rotation were imposed on L3 superior endplate. The intradiscal pressure, the intersegmental rotation, the tresca stress and contact force of facet joints in L3-4 were investigated. Anterior lumbar interbody fusion with severely decreased disc space height presented with the highest values of the four parameters, and the normal healthy model presented with the lowest values except, under extension, the contact force of facet joints in normal healthy model is higher than that in normal anterior lumbar interbody fusion model. With disc space height decrease, the values of parameters in each anterior lumbar interbody fusion model increase gradually. Anterior lumbar interbody fusion with decreased disc space height aggravate the adjacent segmental degeneration more adversely.
Naylor, Richard W; Dodd, Rachel C; Davidson, Alan J
2016-10-19
The nephron is the functional unit of the kidney and is divided into distinct proximal and distal segments. The factors determining nephron segment size are not fully understood. In zebrafish, the embryonic kidney has long been thought to differentiate in situ into two proximal tubule segments and two distal tubule segments (distal early; DE, and distal late; DL) with little involvement of cell movement. Here, we overturn this notion by performing lineage-labelling experiments that reveal extensive caudal movement of the proximal and DE segments and a concomitant compaction of the DL segment as it fuses with the cloaca. Laser-mediated severing of the tubule, such that the DE and DL are disconnected or that the DL and cloaca do not fuse, results in a reduction in tubule cell proliferation and significantly shortens the DE segment while the caudal movement of the DL is unaffected. These results suggest that the DL mechanically pulls the more proximal segments, thereby driving both their caudal extension and their proliferation. Together, these data provide new insights into early nephron morphogenesis and demonstrate the importance of cell movement and proliferation in determining initial nephron segment size.
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
Four-point bending as a method for quantitatively evaluating spinal arthrodesis in a rat model.
Robinson, Samuel T; Svet, Mark T; Kanim, Linda A; Metzger, Melodie F
2015-02-01
The most common method of evaluating the success (or failure) of rat spinal fusion procedures is manual palpation testing. Whereas manual palpation provides only a subjective binary answer (fused or not fused) regarding the success of a fusion surgery, mechanical testing can provide more quantitative data by assessing variations in strength among treatment groups. We here describe a mechanical testing method to quantitatively assess single-level spinal fusion in a rat model, to improve on the binary and subjective nature of manual palpation as an end point for fusion-related studies. We tested explanted lumbar segments from Sprague-Dawley rat spines after single-level posterolateral fusion procedures at L4-L5. Segments were classified as 'not fused,' 'restricted motion,' or 'fused' by using manual palpation testing. After thorough dissection and potting of the spine, 4-point bending in flexion then was applied to the L4-L5 motion segment, and stiffness was measured as the slope of the moment-displacement curve. Results demonstrated statistically significant differences in stiffness among all groups, which were consistent with preliminary grading according to manual palpation. In addition, the 4-point bending results provided quantitative information regarding the quality of the bony union formed and therefore enabled the comparison of fused specimens. Our results demonstrate that 4-point bending is a simple, reliable, and effective way to describe and compare results among rat spines after fusion surgery.
Semantic image segmentation with fused CNN features
NASA Astrophysics Data System (ADS)
Geng, Hui-qiang; Zhang, Hua; Xue, Yan-bing; Zhou, Mian; Xu, Guang-ping; Gao, Zan
2017-09-01
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network (CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field (CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.
Retinal vessel segmentation on SLO image
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.
2010-01-01
A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149
Feng, Yi; Hai, Yong; Zhao, Sheng; Zang, Lei
2016-10-01
The main treatment for congenital scoliosis is posterior hemivertebra resection with bilateral transpedicular fixation. Reports describing posterior unilateral intervertebral fusion and transpedicular screw fixation are rare, with no long-term follow-up results, especially in older children. Retrospective analysis of the long-term outcomes of unilateral fusion and fixation after hemivertebra resection for congenital scoliosis. From April 2004 to May 2012, 19 consecutive cases (12 males; age range 2.3-13.4 years) of congenital scoliosis treated by hemivertebra resection with posterior unilateral or bilateral exposure and unilateral intervertebral fusion with transpedicular screw instrumentation alone were investigated retrospectively. All cases were followed-up for at least 3 years. The mean Cobb angle of the segmental scoliosis was improved from 34.8 to 13.4° (correction rate 61.5 %). The mean Cobb angle of the segmental kyphosis was improved from 23.5 to 5.8° (correction rate 75.3 %). The mean correction rates of compensatory cranial and caudal curves were 46.1 and 54.5 %, respectively. 11 patients (57.8 %) exhibited continuous segmental curve improvement during the follow-up. One pedicle fracture and one instrumentation failure were recorded. Unilateral transpedicular screw fixation provides satisfactory correction of the spinal deformity in both very young and older children. Unilateral intervertebral fusion and transpedicular fixation represents an advisable alternative method for the correction of congenital scoliosis and has advantages of reduced trauma, less surgery time and lower expense. Furthermore, the non-fused concave side offers the opportunity for correction of subsequent spine deformity.
The FUSE satellite is encased in a canister before being moved to the Launch Pad.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is fitted with another row of canister segments before being moved to Launch Pad 17A, CCAS. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 aboard a Boeing Delta II rocket.
1999-06-14
NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is fitted with another row of canister segments before being moved to Launch Pad 17A, CCAS. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 aboard a Boeing Delta II rocket
Einsiedel, Juergen; Lanig, Harald; Waibel, Reiner; Gmeiner, Peter
2007-11-23
Proline-derived peptide mimetics have become an area of paramount importance in peptide and protein chemistry. Since protein crystal structures frequently display Psi angles of 140-170 degrees for prolyl moieties, our intention was to design a completely novel series of 2,3-fused-proline-derived lactams covering this particular conformational space. Extending our recently described toolset of spirocyclic reverse-turn mimetics, we synthesized pyrrolidinyl-fused seven-, eight-, and nine-membered unsaturated lactam model peptides taking advantage of Grubbs' ring-closing metathesis. Investigating the seven-membered lactam 3a by means of IR and NMR spectroscopy and semiempirical molecular dynamics simulations, we could not observe a U-turn conformation; however, increasing the ring size to give eight- and nine-membered congeners revealed moderate and high type IotaIota beta-turn inducing properties. Interestingly, the conformational properties of our model systems depend on both the ring size of the fused dehydro-Freidinger lactam and the position of the endocyclic double bond. Superior reverse-turn inducing properties could be observed for the fused azacyclononenone 3e. According to diagnostic transanular NOEs, a discrete folding principle of the lactam ring strongly deviating from the regioisomeric lactams 3c,f explains the conformational behavior. Hence, we were able to establish a molecular building kit that allows adjustments of a wide range of naturally occurring proline Psi angles and thus can be exploited to probe molecular recognition and functional properties of biological systems.
Element for use in an inductive coupler for downhole components
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2009-03-31
An element for use in an inductive coupler for downhole components comprises an annular housing having a generally circular recess. The element further comprises a plurality of generally linear, magnetically conductive segments. Each segment includes a bottom portion, an inner wall portion, and an outer wall portion. The portions together define a generally linear trough from a first end to a second end of each segment. The segments are arranged adjacent to each other within the housing recess to form a generally circular trough. The ends of at least half of the segments are shaped such that the first end of one of the segments is complementary in form to the second end of an adjacent segment. In one embodiment, all of the ends are angled. Preferably, the first ends are angled with the same angle and the second ends are angled with the complementary angle.
The Effects of Fault Bends on Rupture Propagation: A Parameter Study
NASA Astrophysics Data System (ADS)
Lozos, J. C.; Oglesby, D. D.; Duan, B.; Wesnousky, S. G.
2008-12-01
Segmented faults with stepovers are ubiquitous, and occur at a variety of scales, ranging from small stepovers on the San Jacinto Fault, to the large-scale stepover on of the San Andreas Fault between Tejon Pass and San Gorgonio Pass. Because this type of fault geometry is so prevalent, understanding how rupture propagates through such systems is important for evaluating seismic hazard at different points along these faults. In the present study, we systematically investigate how far rupture will propagate through a fault with a linked (i.e., continuous fault) stepover, based on the length of the linking fault segment and the angle that connects the linking segment to adjacent segments. We conducted dynamic models of such systems using a two-dimensional finite element code (Duan and Oglesby 2007). The fault system in our models consists of three segments: two parallel 10km-long faults linked at a specified angle by a linking segment of between 500 m and 5 km. This geometry was run both as a extensional system and a compressional system. We observed several distinct rupture behaviors, with systematic differences between compressional and extensional cases. Both shear directions rupture straight through the stepover for very shallow stepover angles. In compressional systems with steeper angles, rupture may jump ahead from the stepover segment onto the far segment; whether or not rupture on this segment reaches critical patch size and slips fully is also a function of angle and stepover length. In some compressional cases, if the angle is steep enough and the stepover short enough, rupture may jump over the step entirely and propagate down the far segment without touching the linking segment. In extensional systems, rupture jumps from the nucleating segment onto the linking segment even at shallow angles, but at steeper angles, rupture propagates through without jumping. It is easier to propagate through a wider range of angles in extensional cases. In both extensional and compressional cases, for each stepover length there exists a maximum angle through which rupture can fully propagate; this maximum angle decreases asymptotically to a minimum value as the stepover length increases. We also found that a wave associated with a stopping phase coming from the far end of the fault may restart rupture and induce full propagation after a significant delay in some cases where the initial rupture terminated.
Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders
2013-10-03
Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.
A new method based on Dempster-Shafer theory and fuzzy c-means for brain MRI segmentation
NASA Astrophysics Data System (ADS)
Liu, Jie; Lu, Xi; Li, Yunpeng; Chen, Xiaowu; Deng, Yong
2015-10-01
In this paper, a new method is proposed to decrease sensitiveness to motion noise and uncertainty in magnetic resonance imaging (MRI) segmentation especially when only one brain image is available. The method is approached with considering spatial neighborhood information by fusing the information of pixels with their neighbors with Dempster-Shafer (DS) theory. The basic probability assignment (BPA) of each single hypothesis is obtained from the membership function of applying fuzzy c-means (FCM) clustering to the gray levels of the MRI. Then multiple hypotheses are generated according to the single hypothesis. Then we update the objective pixel’s BPA by fusing the BPA of the objective pixel and those of its neighbors to get the final result. Some examples in MRI segmentation are demonstrated at the end of the paper, in which our method is compared with some previous methods. The results show that the proposed method is more effective than other methods in motion-blurred MRI segmentation.
Shau, David N; Parker, Scott L; Mendenhall, Stephen K; Zuckerman, Scott L; Godil, Saniya S; Devin, Clinton J; McGirt, Matthew J
2015-05-01
Transforaminal lumbar interbody fusion (TLIF) is a frequently performed method of lumbar arthrodesis in patients failing medical management of back and leg pain. Accurate placement of the interbody graft and restoration of lordosis has been shown to be crucial when performing lumbar fusion procedures. We performed a single-surgeon, prospective, randomized study to determine whether a novel articulating versus traditional straight graft delivery arm system allows for superior graft placement and increased lordosis for single-level TLIF. Thirty consecutive patients undergoing single-level TLIF were included and prospectively randomized to one of the 2 groups (articulated vs. straight delivery arm system). Three radiographic characteristics were evaluated at 6-week follow-up: (1) degree of segmental lumbar lordosis at the fused level; (2) the percent anterior location of the interbody graft in disk space; and (3) the distance (mm) off midline of the interbody graft placement. Randomization yielded 16 patients in the articulated delivery arm cohort and 14 in the straight delivery arm cohort. The articulating delivery arm system yielded an average of 14.7-degree segmental lordosis at fused level, 35% anterior location, and 3.6 mm off midline. The straight delivery arm system yielded an average of 10.7-degree segmental lordosis at fused level, 46% anterior location, and 7.0 mm off midline. All 3 comparisons were statistically significant (P<0.05). The study suggests that an articulating delivery arm system facilitates superior anterior and midline TLIF graft placement allowing for increased segmental lordosis compared with a traditional straight delivery arm system.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Yang, Xi; Song, Yueming; Liu, Limin; Zhou, Chunguang; Zhou, Zhongjie; Wang, Lei; Wang, Liang
2016-10-01
Posterior hemivertebra resection with short fusion has gradually become the mainstream treatment for the congenital scoliosis due to single fully segmented hemivertebra. A kind of unexpected emerging S-shaped scoliosis was found secondary to this surgery, and that has not been reported yet. The aim of the present study was to analyze the possible pathogenesis, clinical feature, and treatment of the emerging S-shaped scoliosis after posterior hemivertebra resection and short fusion. This study is a retrospective case series. A total of 128 patients participated. Preoperative and postoperative whole spine radiographs were used to measure the Cobb angle of main curve, compensatory curve, and emerging curves. And the hemivertebra location, the fused segment, the apical and ending vertebrae of postoperative-emerging curve (and preoperative compensatory curves) were assessed. Both the demographics and radiographic data were reviewed. Postoperative-emerging scoliosis was defined as the curve with an increasing angle of 20° and an apical vertebra locating at least two levels away from fusion region. Of the 128 patients, 9 (7%) showed postoperative-emerging S-shaped scoliosis. The mean age was 11.4 years old. The mean main curve was 36.1±14.4° preoperatively and been significantly corrected to 6.9±6.1° (p<.001). No significant difference was found in the main curve, kyphosis, coronal balance, or sagittal balance during follow-up. The emerging scoliosis occurred at 3 months (in four patients) or 6 months (in five patients) after initial surgery with an average angle of 42.6±12.9° at last follow-up. All patients underwent bracing or observation when the S-shaped scoliosis was arising, and four patients underwent a revision surgery because of deformity developing. The emerging S-shaped scoliosis was an extraordinary complication that may be developing from the preoperative compensatory scoliosis and usually occurred at 3-6 months after hemivertebra resection. The feature of these curves was similar to the adolescent idiopathic scoliosis (AIS) and brace or revision surgeries were suitable for therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
1999-06-19
Workers in the launch tower at Launch Pad 17A, Cape Canaveral Air Station, help guide the first segment of the fairing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study those elements to unlock the secrets of how galaxies evolve and to discover what the Universe was like when it was only a few minutes old
Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo
2011-03-01
Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.
Origin of Unusual Dependencies of LUMO Levels on Conjugation Length in Quinoidal Fused Oligosiloles
NASA Astrophysics Data System (ADS)
Misawa, Nana; Fujii, Mikiya; Shintani, Ryo; Tsuda, Tomohiro; Nozaki, Kyoko; Yamashita, Koichi
Quinoidal fused oligosiloles, a new family of silicon-bridged π-conjugated compounds, have been synthesized and their physical properties showed a unique trend in their LUMO levels, which become higher with longer π-conjugation. Although this trend was reproduced by the DFT calculations, its origin remained to be discussed. In this work we performed quantum chemical calculations and discovered that the unusual LUMO trend is attributable to the π-frameworks. We elucidated its origin by orbital correlation diagrams based on classical Hückel calculations, essentially. However, LUMO trends cannot fully be explained only by Hückel calculations because of the lack of the consideration of geometries. In the case of quinoidal fused oligosiloles, judging from DFT calculation results, the presence of silole fused structure play an important role in fixing the bond angles of the linear polyenes as an interior angle of siloles, leading to the unusual LUMO behavior. The qualitative but essential understanding of these LUMO trend would provide new insight into molecular design of π-conjugated compounds for tuning their LUMO levels.
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
Content-based fused off-axis object illumination direct-to-digital holography
Price, Jeffery R.
2006-05-02
Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Self-correcting multi-atlas segmentation
NASA Astrophysics Data System (ADS)
Gao, Yi; Wilford, Andrew; Guo, Liang
2016-03-01
In multi-atlas segmentation, one typically registers several atlases to the new image, and their respective segmented label images are transformed and fused to form the final segmentation. After each registration, the quality of the registration is reflected by the single global value: the final registration cost. Ideally, if the quality of the registration can be evaluated at each point, independent of the registration process, which also provides a direction in which the deformation can further be improved, the overall segmentation performance can be improved. We propose such a self-correcting multi-atlas segmentation method. The method is applied on hippocampus segmentation from brain images and statistically significantly improvement is observed.
Probabilistic fusion of stereo with color and contrast for bilayer segmentation.
Kolmogorov, Vladimir; Criminisi, Antonio; Blake, Andrew; Cross, Geoffrey; Rother, Carsten
2006-09-01
This paper describes models and algorithms for the real-time segmentation of foreground from background layers in stereo video sequences. Automatic separation of layers from color/contrast or from stereo alone is known to be error-prone. Here, color, contrast, and stereo matching information are fused to infer layers accurately and efficiently. The first algorithm, Layered Dynamic Programming (LDP), solves stereo in an extended six-state space that represents both foreground/background layers and occluded regions. The stereo-match likelihood is then fused with a contrast-sensitive color model that is learned on-the-fly and stereo disparities are obtained by dynamic programming. The second algorithm, Layered Graph Cut (LGC), does not directly solve stereo. Instead, the stereo match likelihood is marginalized over disparities to evaluate foreground and background hypotheses and then fused with a contrast-sensitive color model like the one used in LDP. Segmentation is solved efficiently by ternary graph cut. Both algorithms are evaluated with respect to ground truth data and found to have similar performance, substantially better than either stereo or color/ contrast alone. However, their characteristics with respect to computational efficiency are rather different. The algorithms are demonstrated in the application of background substitution and shown to give good quality composite video output.
The FUSE satellite is encased in a canister before being moved to the Launch Pad.
NASA Technical Reports Server (NTRS)
1999-01-01
Workers at Hangar AE, Cape Canaveral Air Station (CCAS), adjust the canister segments they are installing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.
The FUSE satellite is encased in a canister before being moved to the Launch Pad.
NASA Technical Reports Server (NTRS)
1999-01-01
Workers at Hangar AE, Cape Canaveral Air Station (CCAS), fit the second row of canister segments around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.
Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.
Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A
2015-12-01
We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of twist on single-mode fiber-optic 3 × 3 couplers
NASA Astrophysics Data System (ADS)
Chen, Dandan; Ji, Minning; Peng, Lei
2018-01-01
In the fabricating process of a 3 × 3 fused tapered coupler, the three fibers are usually twisted to be close-contact. The effect of twist on 3 × 3 fused tapered couplers is investigated in this paper. It is found that though a linear 3 × 3 coupler may realize equal power splitting ratio theoretically by twisting a special angle, it is hard to be fabricated actually because the twist angle and the coupler's length must be determined in advance. While an equilateral 3 × 3 coupler can not only realize approximate equal power splitting ratio theoretically but can also be fabricated just by controlling the elongation length. The effect of twist on the equilateral 3 × 3 coupler lies in the relationship between the equal ratio error and the twist angle. The more the twist angle is, the larger the equal ratio error may be. The twist angle usually should be no larger than 90° on one coupling period length in order to keep the equal ratio error small enough. The simulation results agree well with the experimental data.
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2006-01-01
Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used.
Mikesh, Michelle; Ghergherehchi, Cameron L; Rahesh, Sina; Jagannath, Karthik; Ali, Amir; Sengelaub, Dale R; Trevino, Richard C; Jackson, David M; Tucker, Haley O; Bittner, George D
2018-07-01
Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice. © 2018 Wiley Periodicals, Inc.
The FUSE satellite is encased in a canister before being moved to the Launch Pad.
NASA Technical Reports Server (NTRS)
1999-01-01
At Hangar AE, Cape Canaveral Air Station (CCAS), workers move segments of the canister that will be installed around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in the background. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.
The FUSE satellite is encased in a canister before being moved to the Launch Pad.
NASA Technical Reports Server (NTRS)
1999-01-01
At Hangar AE, Cape Canaveral Air Station (CCAS), the last segment is lifted over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite already encased in a protective canister. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.
Inohaya, Keiji; Takano, Yoshiro; Kudo, Akira
2010-06-01
The floor plate is a key organizer that controls the specification of neurons in the central nervous system. Here, we show a new role of the floor plate: segmental pattern formation of the vertebral column. Analysis of a spontaneous medaka mutant, fused centrum (fsc), which exhibits fused centra and the absence of the intervertebral ligaments, revealed that fsc encodes wnt4b, which was expressed exclusively in the floor plate. In fsc mutants, we found that wnt4b expression was completely lost in the floor plate and that abnormal conversion of the intervertebral ligament cells into osteoblasts appeared to cause a defect of the intervertebral ligaments. The establishment of the transgenic rescue lines and mosaic analyses allowed the conclusion to be drawn that production of wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column. Our findings provide a novel perspective on the mechanism of vertebrate development.
Yson, Sharon C; Sembrano, Jonathan N; Santos, Edward R G; Luna, Jeffrey T P; Polly, David W
2014-10-01
Retrospective comparative radiographic review. To determine if lateral to prone repositioning before posterior fixation confers additional operative level lordosis in lateral lumbar interbody fusion (LLIF) procedures. In a review of 56 consecutive patients who underwent LLIF, there was no statistically significant change in segmental lordosis from lateral to prone once a cage is in place. The greatest lordosis increase was observed after cage insertion. We reviewed 56 consecutive patients who underwent LLIF in the lateral position followed by posterior fixation in the prone position. Eighty-eight levels were fused. Disk space angle was measured on intraoperative C-arm images, and change in operative level segmental lordosis brought about by each of the following was determined: (1) cage insertion, (2) prone repositioning, and (3) posterior instrumentation. Paired t test was used to determine significance (α=0.05). Mean lordosis improvement brought about by cage insertion was 2.6 degrees (P=0.00005). There was a 0.1 degree mean lordosis change brought about by lateral to prone positioning (P=0.47). Mean lordosis improvement brought about by posterior fixation, including rod compression, was 1.0 degree (P=0.03). In LLIF procedures, the largest increase in operative level segmental lordosis is brought about by cage insertion. Further lordosis may be gained by placing posterior fixation, including compressive maneuvers. Prone repositioning after cage placement does not produce any incremental lordosis change. Therefore, posterior fixation may be performed in the lateral position without compromising operative level sagittal alignment.
Multi-function diamond film fiberoptic probe and measuring system employing same
Young, Jack P.
1998-01-01
A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Kakar, Rumit Singh; Li, Yumeng; Brown, Cathleen N; Kim, Seock-Ho; Oswald, Timothy S; Simpson, Kathy J
2018-01-01
Individuals with adolescent idiopathic scoliosis post spinal fusion often return to exercise and sport. However, the movements that individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) use to compensate for the loss of spinal flexibility during high-effort tasks are not known. The objective of this study was to compare the spinal kinematics of the trunk segments displayed during the stop-jump, a maximal effort task, between SF-AIS and healthy control groups. The study used a case-controlled design. Ten SF-AIS (physically active, posterior-approach spinal fusion: 11.2±1.9 fused segments, postop time: 2±.6 years) and nine control individuals, pair matched for gender, age (17.4±1.3 years and 20.6±1.5 years, respectively), mass (63.50±12.2 kg and 66. 40±10.9 kg), height (1.69±.09 m and 1.72±.08 m), and level of physical activity, participated in the study. Individuals with spinal fusion for adolescent idiopathic scoliosis and controls (CON) performed five acceptable trials of the stop-jump task. Spatial locations of 21 retroreflective trunk and pelvis markers were recorded via high-speed motion capture methodology. Mean differences and analysis of covariance (jump height=covariate, p<.05) were used to compare the groups' relative angle (RelAng) and segmental angle (SegAng) of the three trunk segments (trunk segments=upper trunk [C7-T8], middle trunk [MT: T9-T12], lower trunk [LT: L1-L5]) for each rotation plane in the three phases of interest (flight, stance, and the vertical flight phases). No significant group differences for jump height and RelAng were detected in the three phases of stop-jump. Individuals with spinal fusion for adolescent idiopathic scoliosis displayed 3.2° greater transverse plane RelAng of LT compared with CON (p=.059) in the stance phase. Group differences for RelAng ranged from 0° to 15.3°. For SegAng in the stance phase, LT demonstrated greater SegAng in the sagittal and frontal planes (mean difference: 3.2°-6.2°), whereas SegAng for MT was 5.1° greater in the sagittal plane and had a tendency of 2° greater displacement in the frontal plane (p=.070). In the vertical flight phase, greater LT displacement in the frontal plane was observed for SF-AIS than CON. In the flight phase, LT had a tendency for greater SegAng for SF-AIS than for CON in the transverse plane (p=.089). Overall, SF-AIS who participate in physical activity on a regular basis are able to demonstrate similar trunk kinematics during a high-intensity stop-jump task as their matched healthy peers. Fewer group differences for relative angular displacements of the spine were observed than anticipated. This finding suggests that the fused MT appeared to be moving synchronously with the LT, thereby suggesting a compensatory adaptation of SF-AIS to achieve sufficient trunk movements during this high-effort movement. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho
2015-01-01
Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P < .001) and TT (P = .018). In the hallux, HVA was strongly correlated with transverse ISA of the hallux (P < .001). The segmental foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.
Radio Frequency Ablation Registration, Segmentation, and Fusion Tool
McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.
2008-01-01
The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716
The FUSE satellite is encased in a canister before being moved to the Launch Pad.
NASA Technical Reports Server (NTRS)
1999-01-01
At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to finish erecting the canister around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite at left. At right is the last segment which will be placed on the top. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.
Optical coherence tomography in anterior segment imaging
Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive
2008-01-01
Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288
Yao, Guanfeng; Cheung, Jason P Y; Shigematsu, Hideki; Ohrt-Nissen, Søren; Cheung, Kenneth M C; Luk, Keith D K; Samartzis, Dino
2017-11-01
A prospective radiographic analysis of adolescent idiopathic scoliosis (AIS) patients managed with alternate-level pedicle screw fixation was performed. The objective of this study was to characterize segmental curve flexibility and to determine its predictive value in curve correction in AIS patients. Little is known regarding the distinct segmental curve characteristics and their ability to predict curve correction in patients with AIS. The segmental Cobb angle was measured on posteroanterior standing radiographs and on fulcrum bending radiographs. Radiographs were analyzed preoperatively and at 2 years postoperatively and the curve was divided into upper, mid, and lower segments based on predefined criteria. The segmental flexibility and the segmental fulcrum bending correction index (FBCI) were calculated. Eighty patients were included with mean age of 15 years. Preoperative mean segmental Cobb angles were 18, 31, and 17 degrees in the upper, mid, and lower segments, respectively. Segmental bending Cobb angles were 6, 13, and 4 degrees, respectively, corresponding to segmental flexibilities of 50%, 47%, and 83% in the upper, mid, and lower segments, respectively (P < 0.001). At 2-year follow up, the mean segmental FBCI were 155%, 131%, and 100% in the upper, mid, and lower segments, respectively (P < 0.001), which suggested that the lower segment of the curve was more flexible than the other segments and that higher correction was noted in the upper segments. A significant, positive correlation was noted between the segmental bending Cobb angle and the segmental FBCI (P < 0.05), whereby the strength of the correlation varied based on the curve segment. This is the first study to demonstrate the segmental variations in curve flexibility using the fulcrum bending radiograph in AIS patients. Curve flexibility is not uniform throughout the curve and different segments exhibit greater flexibility/correctibility than others. Segmental flexibility should be considered in assessing AIS patients and in the clinical decision-making strategy to optimize curve correction outcomes. 03.
Patient-specific semi-supervised learning for postoperative brain tumor segmentation.
Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2014-01-01
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.
1999-06-14
Workers at Hangar AE, Cape Canaveral Air Station (CCAS), adjust the canister segments they are installing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
1999-06-14
Workers at Hangar AE, Cape Canaveral Air Station (CCAS), fit the second row of canister segments around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
1999-06-14
At Hangar AE, Cape Canaveral Air Station (CCAS), workers move segments of the canister that will be installed around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in the background. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
1999-06-14
At Hangar AE, Cape Canaveral Air Station (CCAS), the last segment is lifted over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite already encased in a protective canister. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
Tun, Tin A; Baskaran, Mani; Tan, Shayne S; Perera, Shamira A; Aung, Tin; Husain, Rahat
2017-01-01
To evaluate the diagnostic performance of the anterior segment angle-to-angle scan of the Cirrus high-definition optical coherence tomography (HD-OCT) in detecting eyes with closed angles. All subjects underwent dark-room gonioscopy by an ophthalmologist. A technician performed anterior segment imaging with Cirrus (n = 202) and Visante OCT (n = 85) under dark-room conditions. All eyes were categorized by two masked graders as per number of closed quadrants. Each quadrant of anterior chamber angle was categorized as a closed angle if posterior trabecular meshwork could not be seen on gonioscopy or if there was any irido-corneal contact anterior to scleral spur in Cirrus and Visante images. An eye was graded as having a closed angle if two or more quadrants were closed. Agreement and area under the curve (AUC) were performed. There were 50 (24.8%) eyes with closed angles. The agreements of closed-angle diagnosis (by eye) between Cirrus HD-OCT and gonioscopy (k = 0.59; 95% confidence interval (CI) 0.45-0.72; AC1 = 0.76) and between Cirrus and Visante OCT (k = 0.65; 95% CI 0.48-0.82, AC1 = 0.77) were moderate. The AUC for diagnosing the eye with gonioscopic closed angle by Cirrus HD-OCT was good (AUC = 0.86; sensitivity = 83.33; specificity = 77.78). The diagnostic performance of Cirrus HD-OCT in detecting the eyes with closed angles was similar to that of Visante (AUC 0.87 vs. 0.9, respectively; P = 0.51). The anterior segment angle-to-angle scans of Cirrus HD-OCT demonstrated similar diagnostic performance as Visante in detecting gonioscopic closed angles. The agreement between Cirrus and gonioscopy for detecting eyes with closed angles was moderate.
Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu
2012-09-01
This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
NASA Astrophysics Data System (ADS)
Wen, Di; Ding, Xiaoqing
2003-12-01
In this paper we propose a general framework for character segmentation in complex multilingual documents, which is an endeavor to combine the traditionally separated segmentation and recognition processes into a cooperative system. The framework contains three basic steps: Dissection, Local Optimization and Global Optimization, which are designed to fuse various properties of the segmentation hypotheses hierarchically into a composite evaluation to decide the final recognition results. Experimental results show that this framework is general enough to be applied in variety of documents. A sample system based on this framework to recognize Chinese, Japanese and Korean documents and experimental performance is reported finally.
Airborne Infrared and Visible Image Fusion Combined with Region Segmentation
Zuo, Yujia; Liu, Jinghong; Bai, Guanbing; Wang, Xuan; Sun, Mingchao
2017-01-01
This paper proposes an infrared (IR) and visible image fusion method introducing region segmentation into the dual-tree complex wavelet transform (DTCWT) region. This method should effectively improve both the target indication and scene spectrum features of fusion images, and the target identification and tracking reliability of fusion system, on an airborne photoelectric platform. The method involves segmenting the region in an IR image by significance, and identifying the target region and the background region; then, fusing the low-frequency components in the DTCWT region according to the region segmentation result. For high-frequency components, the region weights need to be assigned by the information richness of region details to conduct fusion based on both weights and adaptive phases, and then introducing a shrinkage function to suppress noise; Finally, the fused low-frequency and high-frequency components are reconstructed to obtain the fusion image. The experimental results show that the proposed method can fully extract complementary information from the source images to obtain a fusion image with good target indication and rich information on scene details. They also give a fusion result superior to existing popular fusion methods, based on eithers subjective or objective evaluation. With good stability and high fusion accuracy, this method can meet the fusion requirements of IR-visible image fusion systems. PMID:28505137
Airborne Infrared and Visible Image Fusion Combined with Region Segmentation.
Zuo, Yujia; Liu, Jinghong; Bai, Guanbing; Wang, Xuan; Sun, Mingchao
2017-05-15
This paper proposes an infrared (IR) and visible image fusion method introducing region segmentation into the dual-tree complex wavelet transform (DTCWT) region. This method should effectively improve both the target indication and scene spectrum features of fusion images, and the target identification and tracking reliability of fusion system, on an airborne photoelectric platform. The method involves segmenting the region in an IR image by significance, and identifying the target region and the background region; then, fusing the low-frequency components in the DTCWT region according to the region segmentation result. For high-frequency components, the region weights need to be assigned by the information richness of region details to conduct fusion based on both weights and adaptive phases, and then introducing a shrinkage function to suppress noise; Finally, the fused low-frequency and high-frequency components are reconstructed to obtain the fusion image. The experimental results show that the proposed method can fully extract complementary information from the source images to obtain a fusion image with good target indication and rich information on scene details. They also give a fusion result superior to existing popular fusion methods, based on eithers subjective or objective evaluation. With good stability and high fusion accuracy, this method can meet the fusion requirements of IR-visible image fusion systems.
Namihira, Y; Kawazawa, T; Wakabayashi, H
1991-03-20
The incident polarization angle and temperature dependence of the polarization and spectral response characteristics of three different types of fiber coupler are presented. The couplers are (1) the biconicalfused- twisted-taper single-mode fiber (coupler A), (2) the asymmetric-etched-fused-taper wavelength division multiplex (coupler B), and (3) the biconical-polished polarization maintaining fiber (coupler C), respectively. It is confirmed experimentally that the polarization characteristics of couplers A and B vary greatly with temperature, but those of coupler C are independent of temperature. Also, the wavelength dependence characteristics of the power splitting ratio of couplers B and C have almost no change with temperature. However, the wavelength dependence of coupler A is greatly changed with temperature. Comparing couplers A and B, it is postulated that the sinusoidal variations of the polarization state vs the incident polarization angle are due to the stress birefringence caused by the fiber twisting when the fused fiber coupler is fabricated and packaged.
1999-06-19
A worker in the launch tower at Launch Pad 17A, Cape Canaveral Air Station, watches as the first segment of the fairing is maneuvered around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. At the lower left in the photo can be seen a camera installed on the second stage of the rocket to record the separation of the fairing several minutes after launch. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study those elements to unlock the secrets of how galaxies evolve and to discover what the Universe was like when it was only a few minutes old
1999-06-19
Workers in the launch tower at Launch Pad 17A, Cape Canaveral Air Station, help guide the first segment of the fairing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. At the lower left can be seen a camera installed on the second stage of the rocket to record the separation of the fairing several minutes after launch. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study those elements to unlock the secrets of how galaxies evolve and to discover what the Universe was like when it was only a few minutes old
1999-06-14
At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to finish erecting the canister around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite at left. At right is the last segment which will be placed on the top. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
Sampling-based ensemble segmentation against inter-operator variability
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Pope, Whitney; Brown, Matthew
2011-03-01
Inconsistency and a lack of reproducibility are commonly associated with semi-automated segmentation methods. In this study, we developed an ensemble approach to improve reproducibility and applied it to glioblastoma multiforme (GBM) brain tumor segmentation on T1-weigted contrast enhanced MR volumes. The proposed approach combines samplingbased simulations and ensemble segmentation into a single framework; it generates a set of segmentations by perturbing user initialization and user-specified internal parameters, then fuses the set of segmentations into a single consensus result. Three combination algorithms were applied: majority voting, averaging and expectation-maximization (EM). The reproducibility of the proposed framework was evaluated by a controlled experiment on 16 tumor cases from a multicenter drug trial. The ensemble framework had significantly better reproducibility than the individual base Otsu thresholding method (p<.001).
2012-01-01
Background Most modern spinal implants contain titanium and remain in the patient’s body permanently. Local and systemic effects such as tissue necrosis, osteolysis and malignant cell transformation caused by implants have been described. Increasing tissue concentration and whole blood levels of ions are necessary before a disease caused by a contaminant develops. The aim of the present study was the measurement of whole blood titanium levels and the evaluation of a possible correlation between these changes and the number of fused segments. Methods A prospective study was designed to determine changes in whole blood titanium levels after spinal fusion and to analyze the correlation to the number of pedicle screws, cross connectors and interbody devices implanted. Blood samples were taken preoperatively in group I (n = 15), on the first, second and 10th day postoperatively, as well as 3 and 12 months after surgery. Group II (n = 16) served as a control group of volunteers who did not have any metal implants in the body. Blood samples were taken once in this group. The number of screw-rod-connections and the length of the spinal fusion were determined using radiographic pictures. This study was checked and approved by the ethical committee of the University of Tuebingen. Results The mean age in group I was 47 ± 22 years (range 16 - 85 years). There were three male (20%) and twelve female (80%) patients. The median number of fused segments was 5 (range 1 to 11 segments). No statistically significant increase in the titanium level was seen 12 months after surgery (mean difference: -7.2 μg/l, 95% CI: -26.9 to 12.5 μg/l, p = 0.446). By observing the individual titanium levels, 4 out of 15 patients demonstrated an increase in titanium levels 12 months after surgery. No statistically significant correlation between fused segments (r = -0.188, p = 0.503) length of instrumentation (r = -0.329, p = 0.231), number of interbody devices (r = -0.202, p = 0.291) and increase of titanium levels over the observation period was seen. Conclusions Instrumented spinal fusion does not lead to a statistically significant increase in whole blood titanium levels. There seems to be no correlation between the number of pedicle screws, cross connectors and interbody devices implanted and the increase of serum titanium levels. PMID:22925526
Nakamine, Sakari; Sakai, Hiroshi; Arakaki, Yoshikuni; Yonahara, Michiko; Kaiya, Tadayoshi
2018-01-01
To study the effect of the internal fixation lamp on anterior chamber width measured by anterior segment optical coherence tomography. In a prospective cross sectional observational study, consecutive 22 right eyes of 22 patients (4 men and 18 women) with suspected primary angle closure underwent swept source domain anterior segment optical coherence tomography (AS-OCT), (CASIA SS-1000, Tomey, Nagoya, Japan). Anterior chamber parameters of angle opening distance (AOD), trabecular-iris angle (TIA), angle recess area (ARA) at 500 or 750 µm from scleral spur and pupil diameter were measured by AS-OCT in a three-dimensional mode in 4 quadrants (superior, inferior, temporal and nasal) in dark room setting both with and without internal fixation lamp. Anterior segment parameters of AOD 500 in superior, inferior and temporal quadrants, AOD 750 at superior and nasal, TIA 500 at superior, and inferior and TIA 750 at superior and nasal, and ARA 500 or 750 at superior and inferior with internal fixation lamp were greater and the pupil diameter was significantly (all P < 0.05, paired t test) smaller than when measured without fixation lamp. Internal fixation lamp of the anterior segment OCT makes the pupil constrict and angle wider. When using AS-OCT with usual setting with internal fixation lamp on with eyes in which the anterior chamber angle is narrow but open, it is recommended that the internal fixation lamp be turned off to ensure a clear indication as to whether the angle is open or closed in the dark.
Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes
Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.
2011-01-01
Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624
NASA Astrophysics Data System (ADS)
Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang
2012-01-01
The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.
Nasir, Muhammad; Attique Khan, Muhammad; Sharif, Muhammad; Lali, Ikram Ullah; Saba, Tanzila; Iqbal, Tassawar
2018-02-21
Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for highly equipped environment. The recent advancements in computerized solutions for these diagnoses are highly promising with improved accuracy and efficiency. In this article, we proposed a method for the classification of melanoma and benign skin lesions. Our approach integrates preprocessing, lesion segmentation, features extraction, features selection, and classification. Preprocessing is executed in the context of hair removal by DullRazor, whereas lesion texture and color information are utilized to enhance the lesion contrast. In lesion segmentation, a hybrid technique has been implemented and results are fused using additive law of probability. Serial based method is applied subsequently that extracts and fuses the traits such as color, texture, and HOG (shape). The fused features are selected afterwards by implementing a novel Boltzman Entropy method. Finally, the selected features are classified by Support Vector Machine. The proposed method is evaluated on publically available data set PH2. Our approach has provided promising results of sensitivity 97.7%, specificity 96.7%, accuracy 97.5%, and F-score 97.5%, which are significantly better than the results of existing methods available on the same data set. The proposed method detects and classifies melanoma significantly good as compared to existing methods. © 2018 Wiley Periodicals, Inc.
2-Propyl-4H-thiazolo[3,2-a][1,3,5]triazine-4-thione
Yunus, Uzma; Tahir, Muhammad Kalim; Bhatti, Moazzam Hussain; Wong, Wai-Yeung
2008-01-01
In the title compound, C8H9N3S2, the n-propyl chain is disordered over two orientations (site-occupancy ratio = 0.522:0.478) and is roughly perpendicular to the fused thiazolotriazine system. The angle between the fused ring and the propyl chain is 83.6 (1)° [ 82.2 (1)° for the disordered chain]. The structure is stabilized by C—H⋯N hydrogen bonds. PMID:21202112
Todoroki, Shin-ichi
2008-01-01
Background Fiber fuse is a process of optical fiber destruction under the action of laser radiation, found 20 years ago. Once initiated, opical discharge runs along the fiber core region to the light source and leaves periodic voids whose shape looks like a bullet pointing the direction of laser beam. The relation between damage pattern and propagation mode of optical discharge is still unclear even after the first in situ observation three years ago. Methodology/Principal Findings Fiber fuse propagation over hetero-core splice point (Corning SMF-28e and HI 1060) was observed in situ. Sequential photographs obtained at intervals of 2.78 µs recorded a periodic emission at the tail of an optical discharge pumped by 1070 nm and 9 W light. The signal stopped when the discharge ran over the splice point. The corresponding damage pattern left in the fiber core region included a segment free of periodicity. Conclusions The spatial modulation pattern of the light emission agreed with the void train formed over the hetero-core splice point. Some segments included a bullet-shaped void pointing in the opposite direction to the laser beam propagation although the sequential photographs did not reveal any directional change in the optical discharge propagation. PMID:18815621
Posnien, Nico; Bucher, Gregor
2010-02-01
The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a "bend and zipper" model for insect head capsule formation.
The nephridial hypothesis of the gill slit origin.
Ezhova, Olga V; Malakhov, Vladimir V
2015-12-01
Metameric gill slits are mysterious structures, unique for Chordata and Hemichordata, and also, perhaps, for the extinct Cambrian Calcichordata. There is a discussed hypothesis of the gill slits origin from the metameric nephridia. According to the hypothesis, the hypothetical metameric deuterostome ancestor had in each segment a pair of coelomoducts and a pair of intestinal pockets. In the anterior segments, the coelomoducts have fused with the intestinal pockets. As a result, each nephridium opened both into the gut and into the environment. Then the dissepiments and funnels reduced in all segments except the collar one. Thus, in recent enteropneusts, only the first pair of gill slits keeps the ancestral arrangement communicating at the same time with the gut, with the environment, and with the coelom of the preceding (collar) segment. In the anterior part of the branchio-genital trunk region of enteropneusts, the metameric intestinal pockets remained, as well as the metameric coelomoducts functioning as the ducts of the metameric gonads, i.e., as the gonoducts. The consequence of the hypothesis is that the metameric gill pores originate from the metameric excreting pores, and the metameric branchial sacs originate from the metameric endodermal pockets of the gut fused with the coelomoducts. The metameric gill slits by themselves correspond with metameric openings connecting the gut with metameric intestinal pockets. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 647-652, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
SpArcFiRe: Scalable automated detection of spiral galaxy arm segments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Darren R.; Hayes, Wayne B., E-mail: drdavis@uci.edu, E-mail: whayes@uci.edu
Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takesmore » about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.« less
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
NASA Astrophysics Data System (ADS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
NASA Astrophysics Data System (ADS)
Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian
2018-06-01
Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.
Automatic segmentation of bones from digital hand radiographs
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Taira, Ricky K.; Shim, Hyeonjoon; Keaton, Patricia
1995-05-01
The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The algorithm uses an object-oriented approach comprising several stages beginning with the most general objects to be segmented, such as the outline of the hand from background, and proceeding in a succession of stages to the most specific object, such as a specific phalangeal bone from a digit of the hand. Each stage carries custom operators unique to the needs of that specific stage which will aid in more accurate results. The method is further aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. Shape models, 1-D wrist profiles, as well as an interpretation tree are used to map model and data contour segments. Shape analysis is performed using an arc-length orientation transform. The method is tested on close to 340 phalangeal and epiphyseal objects to be segmented from 17 cases of pediatric hand images obtained from our clinical PACS. Patient age ranges from 2 - 16 years. A pediatric radiologist preliminarily assessed the results of the object contours and were found to be accurate to within 95% for cases with non-fused bones and to within 85% for cases with fused bones. With accurate and robust results, the method can be applied toward areas such as the determination of bone age, the development of a normal hand atlas, and the characterization of many congenital and acquired growth diseases. Furthermore, this method's architecture can be applied to other image segmentation problems.
Effect of total lumbar disc replacement on lumbosacral lordosis.
Kasliwal, Manish K; Deutsch, Harel
2012-10-01
Original article : To study effect of lumbar disc replacement on lumbosacral lordosis. There has been a growing interest in total disc replacement (TDR) for back pain with the rising concern of adjacent segment degeneration. Lumbar fusion surgery has been shown to lead to decrease in lumbar lordosis, which may account for postfusion pain resulting in less acceptable clinical outcome after successful fusion. TDR has recently emerged as an alternative treatment for back pain. There have been very few studies reporting lumbar sagittal outcome after TDR. Retrospective study of radiographic data of 17 patients who underwent TDR for single level degenerative disc disease at the author's institution was carried out. Study included measurement of preoperative and postoperative segmental and global lumbar lordosis and angle of lordosis. Patients age varied from 19 to 54 (mean, 35) years. Follow-up ranged from 12 to 24 months. TDR was performed at L4-5 level in 3 patients and L5-S1 level in 14 patients. The average values for segmental lordosis, global lordosis, and angle of lordosis at the operated level before and after surgery were 17.3, 49.7, and 8.6 degrees and 21.6, 54, and 9.5 degrees, respectively. There was a trend toward significant (P=0.02) and near significant (P=0.057) increase in segmental and global lordosis, respectively after TDR. Although prosthesis increased angle of lordosis at the level implanted in majority of the patients, the difference in preoperative and postoperative angle of lordosis was not significant (P=0.438). In addition, there was no correlation between the angle of implant of chosen and postoperative angle of lordosis at the operated level. The effect of TDR on sagittal balance appears favorable with an increase in global and segmental lumbar lordosis after single level TDR for degenerative disc disease. The degree of postoperative angle of lordosis was not affected by the angle of implant chosen at the operated level and varied independently of the implant angle.
Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.
Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin
2017-09-01
Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker J.V.
1988-01-01
A Segmented Rail Surface (SRS) structure is described that eliminates restrike arcs by progressively disconnecting segments of the rail surface after the plasma armature has passed. This technique has been demonstrated using the Los Alamos MIDI-2 railgun. Restrike was eliminated in a plasma armature acceleration experiment using metal-foil fuses as opening switches. A plasma velocity increase from 11 to 16 km/s was demonstrated using the SRS technique to eliminate the viscous drag losses associated with the restrike plasma. This technique appears to be a practical option for a laboratory launcher at present and for future multi-shot launchers if appropriate switchesmore » can be developed. 5 refs., 8 figs.« less
Kinon, Merritt D; Nasser, Rani; Nakhla, Jonathan P; Adogwa, Owoicho; Moreno, Jessica R; Harowicz, Michael; Verla, Terence; Yassari, Reza; Bagley, Carlos A
2016-01-01
The surgical treatment of adult scoliosis frequently involves long segment fusions across the lumbosacral joints that redistribute tremendous amounts of force to the remaining mobile spinal segments as well as to the pelvis and hip joints. Whether or not these forces increase the risk of femoral bone pathology remains unknown. The aim of this study is to determine the correlation between long segment spinal fusions to the pelvis and the antecedent development of degenerative hip pathologies as well as what predictive patient characteristics, if any, correlate with their development. A retrospective chart review of all long segment fusions to the pelvis for adult degenerative deformity operated on by the senior author at the Duke Spine Center from February 2008 to March 2014 was undertaken. Enrolment criteria included all available demographic, surgical, and clinical outcome data as well as pre and postoperative hip pathology assessment. All patients had prospectively collected outcome measures and a minimum 2-year follow-up. Multivariable logistic regression analysis was performed comparing the incidence of preoperative hip pain and antecedent postoperative hip pain as a function of age, gender, body mass index (BMI), and number of spinal levels fused. In total, 194 patients were enrolled in this study. Of those, 116 patients (60%) reported no hip pain prior to surgery. Eighty-three patients (71.6%) remained hip pain free, whereas 33 patients (28.5%) developed new postoperative hip pain. Age, gender, and BMI were not significant among those who went on to develop hip pain postoperatively ( P < 0.0651, 0.3491, and 0.1021, respectively). Of the 78 patients with preoperative hip pain, 20 patients (25.6%) continued to have hip pain postoperatively, whereas 58 patients reported improvement in the hip pain after long segment fusion for correction of their deformity, a 74.4% rate of reduction. Age, gender, and BMI were not significant among those who continued to have hip pain postoperatively ( P < 0.4386, 0.4637, and 0.2545, respectively). Number of levels fused was not a significant factor in the development of hip pain in either patient population; patients without preoperative pain who developed pain postoperatively ( P < 0.1407) as well as patients with preoperative pain who continued to have pain postoperatively ( P < 0.0772). This study demonstrates that long segment lumbosacral fusions are not associated with an increase in postoperative hip pathology. Age, gender, BMI, and levels fused do not correlate with the development of postoperative hip pain. The restoration of spinal alignment with long segment fusions may actually decrease the risk of developing femoral bone pathology and have a protective effect on the hip.
Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.
1996-01-01
Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Reflectance and optical constants for Cer-Vit from 250 to 1050 A
NASA Technical Reports Server (NTRS)
Osantowski, J. F.
1974-01-01
The reflectance for a bowl-feed polished Cer-Vit sample was measured at nine wavelengths and five angles of incidence from 15 to 85 deg. Optical constants were derived by the reflectance-vs-angle-of-incidence method and compared to previously reported values for ultralow-expansion fused silica and several other glasses. Surface-roughness corrections of the reflectance data and optical constants are discussed.
He, Shengguan; Chen, Feng; Liu, Keyin; Yang, Qing; Liu, Hewei; Bian, Hao; Meng, Xiangwei; Shan, Chao; Si, Jinhai; Zhao, Yulong; Hou, Xun
2012-09-15
We demonstrate an improved femtosecond laser irradiation followed by chemical etching process to create complex three-dimensional (3D) microchannels with arbitrary length and uniform diameter inside fused silica. A segmented chemical etching method of introducing extra access ports and a secondary power compensation is presented, which enables the fabrication of uniform 3D helical microchannels with length of 1.140 cm and aspect-ratio of 522. Based on this method, a micromixer which consists of a long helical microchannel and a y-tape microchannel was created inside the fused silica. We measured the mixing properties of the micromixer by injecting the phenolphthalein and NaOH solution through the two inlets of the y-tape microchannel. A rapid and efficient mixing was achieved in the 3D micromixer at a low Reynolds number.
Multi-dimension feature fusion for action recognition
NASA Astrophysics Data System (ADS)
Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin
2018-04-01
Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
Anterior Segment Imaging for Angle Closure.
Chansangpetch, Sunee; Rojanapongpun, Prin; Lin, Shan C
2018-04-01
To summarize the role of anterior segment imaging (AS-imaging) in angle closure diagnosis and management, and the possible advantages over the current standard of gonioscopy. Literature review and perspective. Review of the pertinent publications with interpretation and perspective in relation to the use of AS-imaging in angle closure assessment focusing on anterior segment optical coherence tomography and ultrasound biomicroscopy. Several limitations have been encountered with the reference standard of gonioscopy for angle assessment. AS-imaging has been shown to have performance in angle closure detection compared to gonioscopy. Also, imaging has greater reproducibility and serves as better documentation for long-term follow-up than conventional gonioscopy. The qualitative and quantitative information obtained from AS-imaging enables better understanding of the underlying mechanisms of angle closure and provides useful parameters for risk assessment and possible prediction of the response to laser and surgical intervention. The latest technologies-including 3-dimensional imaging-have allowed for the assessment of the angle that simulates the gonioscopic view. These advantages suggest that AS-imaging has a potential to be a reference standard for the diagnosis and monitoring of angle closure disease in the future. Although gonioscopy remains the primary method of angle assessment, AS-imaging has an increasing role in angle closure screening and management. The test should be integrated into clinical practice as an adjunctive tool for angle assessment. It is arguable that AS-imaging should be considered first-line screening for patients at risk for angle closure. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sanger, N. L.
1973-01-01
The flow characteristics of several tandem bladed compressor stators were analytically evaluated over a range of inlet incidence angles. The ratios of rear-segment to front-segment chord and camber were varied. Results were also compared to the analytical performance of a reference solid blade section. All tandem blade sections exhibited lower calculated losses than the solid stator. But no one geometric configuration exhibited clearly superior characteristics. The front segment accepts the major effect of overall incidence angle change. Rear- to front-segment camber ratios of 4 and greater appeared to be limited by boundary-layer separation from the pressure surface of the rear segment.
Synthetic Air Data Estimation: A case study of model-aided estimation
NASA Astrophysics Data System (ADS)
Lie, F. Adhika Pradipta
A method for estimating airspeed, angle of attack, and sideslip without using conventional, pitot-static airdata system is presented. The method relies on measurements from GPS, an inertial measurement unit (IMU) and a low-fidelity model of the aircraft's dynamics which are fused using two, cascaded Extended Kalman Filters. In the cascaded architecture, the first filter uses information from the IMU and GPS to estimate the aircraft's absolute velocity and attitude. These estimates are used as the measurement updates for the second filter where they are fused with the aircraft dynamics model to generate estimates of airspeed, angle of attack and sideslip. Methods for dealing with the time and inter-state correlation in the measurements coming from the first filter are discussed. Simulation and flight test results of the method are presented. Simulation results using high fidelity nonlinear model show that airspeed, angle of attack, and sideslip angle estimation errors are less than 0.5 m/s, 0.1 deg, and 0.2 deg RMS, respectively. Factors that affect the accuracy including the implication and impact of using a low fidelity aircraft model are discussed. It is shown using flight tests that a single linearized aircraft model can be used in lieu of a high-fidelity, non-linear model to provide reasonably accurate estimates of airspeed (less than 2 m/s error), angle of attack (less than 3 deg error), and sideslip angle (less than 5 deg error). This performance is shown to be relatively insensitive to off-trim attitudes but very sensitive to off-trim velocity.
Katsumi, Keiichi; Hirano, Toru; Watanabe, Kei; Ohashi, Masayuki; Yamazaki, Akiyoshi; Ito, Takui; Sawakami, Kimihiko; Sano, Atsuki; Kikuchi, Ren; Endo, Naoto
2016-11-01
The study aimed to investigate the clinical outcomes and limitations after vertebroplasty with posterior spinal fusion (VP+PSF) without neural decompression for osteoporotic vertebral collapse. We conducted a prospective multicenter study including 45 patients (12 men and 33 women, mean age: 77.0 years) evaluated between 2008 and 2012. Operation time, blood loss, visual analog scale (VAS) of back pain, neurological status, kyphosis angle in the fused area, and vertebral union of the collapsed vertebra were evaluated. The mean operation time was 162 min and blood loss was 381 mL. The postoperative VAS score significantly improved, and the neurological status improved in 35 patients (83 %), and none of the remaining patients demonstrated a deteriorating neurological status at two years post-operatively. The mean kyphosis angle pre-operatively, immediately post-operatively, and two years post-operatively was 23.8°, 10.7°, and 24.3°, respectively, and there was no significant difference between the angles pre-operatively and two years post-operatively. The extensive correction of kyphosis >16° was a risk factor for a higher correction loss and subsequent fracture. Union of the collapsed vertebra was observed in 43 patients (95 %) at two years post-operatively. The present study suggests that spinal stabilization rather than neural decompression is essential to treat OVC. Short-segment VP+PSF can achieve a high union rate of collapsed vertebra and provide a significant improvement in back pain or neurological status with less invasive surgery, but has a limit of kyphosis correction more than 16°.
Lee, Ji-Ho; Lee, Dong-Oh; Lee, Jae Hyup; Shim, Hee Jong
2015-01-01
This study aims to assess the differences in the radiological and clinical results depending on the lordotic angles of the cage in posterior lumbar interbody fusion (PLIF). We reviewed 185 segments which underwent PLIF using two different lordotic angles of 4° and 8° of a polyetheretherketone (PEEK) cage. The segmental lordosis and total lumbar lordosis of the 4° and 8° cage groups were compared preoperatively, as well as on the first postoperative day, 6th and 12th months postoperatively. Clinical assessment was performed using the ODI and the VAS of low back pain. The pre- and immediate postoperative segmental lordosis angles were 12.9° and 12.6° in the 4° group and 12° and 12.0° in the 8° group. Both groups exhibited no significant different segmental lordosis angle and total lumbar lordosis over period and time. However, the total lumbar lordosis significantly increased from six months postoperatively compared with the immediate postoperative day in the 8° group. The ODI and the VAS in both groups had no differences. Cages with different lordotic angles of 4° and 8° showed insignificant results clinically and radiologically in short-level PLIF surgery. Clinical improvements and sagittal alignment recovery were significantly observed in both groups. PMID:25685795
Segmentation by fusion of histogram-based k-means clusters in different color spaces.
Mignotte, Max
2008-05-01
This paper presents a new, simple, and efficient segmentation approach, based on a fusion procedure which aims at combining several segmentation maps associated to simpler partition models in order to finally get a more reliable and accurate segmentation result. The different label fields to be fused in our application are given by the same and simple (K-means based) clustering technique on an input image expressed in different color spaces. Our fusion strategy aims at combining these segmentation maps with a final clustering procedure using as input features, the local histogram of the class labels, previously estimated and associated to each site and for all these initial partitions. This fusion framework remains simple to implement, fast, general enough to be applied to various computer vision applications (e.g., motion detection and segmentation), and has been successfully applied on the Berkeley image database. The experiments herein reported in this paper illustrate the potential of this approach compared to the state-of-the-art segmentation methods recently proposed in the literature.
Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy
Balakrishna, Nagalla
2017-01-01
Aim To evaluate the configuration of the anterior chamber angle quantitatively and study the morphological changes in the eye with ultrasound biomicroscopy (UBM) in primary angle closure glaucoma (PACG) patients after laser peripheral iridotomy (LPI). Materials and methods A total of 185 eyes of 185 PACG patients post-LPI and 126 eyes of 126 normal subjects were included in this prospective study. All subjects underwent complete ophthalmic evaluation, A-scan biometry, and UBM. The anterior segment and angle parameters were measured quantitatively and compared in both groups using Student’s t-test. Results The PACG patients had shorter axial length, shallower central anterior chamber depth anterior chamber depth (ACD), and anteriorly located lens when compared with normal subjects. Trabecular iris angle (TIA) was significantly narrow (5.73 ± 7.76°) in patients with PACG when compared with normal subjects (23.75 ± 9.38°). The angle opening distance at 500 pm from scleral spur (AOD 500), trabecular-ciliary process distance (TCPD), iris-ciliary process distance (ICPD), and iris-zonule distance (IZD) were significantly shorter in patients with PACG than in normal subjects (p < 0.0001). The iris lens angle (ILA), scleral-iris angle (SIA), and scleral-ciliary process angle (SCPA) were significantly narrower in patients with PACG than in normal subjects (p < 0.0001). The iris-lens contact distance (ILCD) was greater in PACG group than in normal (p = 0.001). Plateau iris was seen in 57/185 (30.8%) of the eyes. Anterior positioned ciliary processes were seen in 130/185 eyes (70.3%) of eyes. Conclusion In PACG patients, persistent apposition angle closure is common even after LPI, which could be due to anterior rotation of ciliary body and plateau iris and overcrowding of anterior segment due to shorter axial length and relative anterior lens position. How to cite this article: Mansoori T, Balakrishna N. Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy. J Curr Glaucoma Pract 2017;11(3):86-91. PMID:29151682
[Ebstein's "like" anomaly ventricular double inlet. A rare association].
Muñoz Castellanos, Luis; Kuri Nivon, Magdalena
The association of univentricular heart with double inlet and Ebstein's "like" anomaly of the common atrioventricular valve is extremely rare. Two hearts with this association are described with the segmental sequential system which determine the atrial situs, the types of atrioventricular and ventriculoarterial connections and associated anomalies. Both hearts had atrial situs solitus, and a univentricular heart with common atrioventricular valve, a foramen primum and double outlet ventricle with normal crossed great arteries. In the fiefirst heart the four leaflets of the atrioventricular valve were displaced and fused to the ventricular walls, from the atrioventricular union roward the apex with atrialization of the inlet and trabecular zones and there was stenosis in the infundibulum and in the pulmonary valve. In the second heart the proximal segment of the atrioventricular valve was displaced and fused to the ventricular whith shot atrialization and the distal segment was dysplastic with fibromixoid nodules and tendinous cords short and thick; the pulmonary artery was dilate. Both hearts are grouped in the atrioventricular univentricular connection in the segmental sequential system. The application of this method in the diagnosis of congenital heart disease demonstrates its usefulness. The associations of complex anomalies in these hearts show us the infinite spectrum of presentation of congenital heart disease which expands our knowledge of pediatric cardiology. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.
Nongpiur, Monisha E; Aboobakar, Inas F; Baskaran, Mani; Narayanaswamy, Arun; Sakata, Lisandro M; Wu, Renyi; Atalay, Eray; Friedman, David S; Aung, Tin
2017-03-01
Baseline anterior segment imaging parameters associated with incident gonioscopic angle closure, to our knowledge, are unknown. To identify baseline quantitative anterior segment optical coherence tomography parameters associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline. Three hundred forty-two participants aged 50 years or older were recruited to participate in this prospective, community-based observational study. Participants underwent gonioscopy and anterior segment optical coherence tomography imaging at baseline and after 4 years. Custom image analysis software was used to quantify anterior chamber parameters from anterior segment optical coherence tomography images. Baseline anterior segment optical coherence tomography measurements among participants with gonioscopically open vs closed angles at follow-up. Of the 342 participants, 187 (55%) were women and 297 (87%) were Chinese. The response rate was 62.4%. Forty-nine participants (14.3%) developed gonioscopic angle closure after 4 years. The mean age (SD) at baseline of the 49 participants was 62.9 (8.0) years, 15 (30.6%) were men, and 43 (87.8%) were Chinese. These participants had a smaller baseline angle opening distance at 750 µm (AOD750) (0.15 mm; 95% CI, 0.12-0.18), trabecular iris surface area at 750 µm (0.07 mm2; 95% CI, 0.05-0.08), anterior chamber area (30 mm2; 95% CI, 2.27-3.74), and anterior chamber volume (24.32 mm2; 95% CI, 18.20-30.44) (all P < .001). Baseline iris curvature (-0.08; 95% CI, -0.12 to -0.04) and lens vault (LV) measurements (-0.29 mm; 95% CI, -0.37 to -0.21) were larger among these participants ( all P < .001). A model consisting of the LV and AOD750 measurements explained 38% of the variance in gonioscopic angle closure occurring at 4 years, with LV accounting for 28% of this variance. For every 0.1 mm increase in LV and 0.1 mm decrease in AOD750, the odds of developing gonioscopic angle closure was 1.29 (95% CI, 1.07-1.57) and 3.27 (95% CI, 1.87-5.69), respectively. In terms of per SD change in LV and AOD750, this translates to an odds ratio of 2.14 (95% CI, 2.48-12.34) and 5.53 (95% CI, 1.22-3.77), respectively. A baseline LV cut-off value of >0.56 mm had 64.6% sensitivity and 84.0% specificity for identifying participants who developed angle closure. These findings suggest that smaller AOD750 and larger LV measurements are associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline.
Spatial range of illusory effects in Müller-Lyer figures.
Predebon, J
2001-11-01
The spatial range of the illusory effects in Müller-Lyer (M-L) figures was examined in three experiments. Experiments 1 and 2 assessed the pattern of bisection errors along the shaft of the standard or double-angle (experiment 1) and the single-angle (experiment 2) M-L figures: Subjects bisected the shaft and the resulting two half-segments of the shaft to produce apparently equal quarters, and then each of the quarters to produce eight equal-appearing segments. The bisection judgments of each segment were referenced to the segment's physical midpoints. The expansion or wings-out and the contraction or wings-in figures yielded similar patterns of bisection errors. For the standard M-L figures, there were significant errors in bisecting each half, and each end-quarter, but not the two central quarters of the shaft. For the single-angle M-L figures, there were significant errors in bisecting the length of the shaft, the half-segment, and the quarter, of the shaft adjacent to the vertex but not the second quarter from the vertex nor in dividing the half of the shaft at the open end of the figure into four equal intervals. Experiment 3 assessed the apparent length of the half-segment of the shaft at the open end of the single-angle figures. Length judgments were unaffected by the vertex at the opposite end of the shaft. Taken together, the results indicate that the length distortions in both the standard and single-angle M-L figures are not uniformly distributed along the shaft but rather are confined mainly to the quarters adjacent to the vertices. The present findings imply that theories of the M-L illusion which assume uniform expansion or contraction of the shafts are incomplete.
Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas
2009-01-01
Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277
Optimal trajectories for the aeroassisted flight experiment. Part 4: Data, tables, and graphs
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Lee, W. Y.; Wang, H.; Wu, G. D.
1989-01-01
The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. Data, tables, and graphs relative to the following transfers are presented: (IA) indirect ascent to a 178 NM perigee via a 197 NM apogee; and (DA) direct ascent to a 178 NM apogee. For both transfers, two cases are investigated: (1) the bank angle is continuously variable; and (2) the trajectory is divided into segments along which the bank angle is constant. For case (2), the following subcases are studied: two segments, three segments, four segments, and five segments; because the time duration of each segment is optimized, the above subcases involve four, six, eight, and ten parameters, respectively. Presented here are systematic data on a total of ten optimal trajectories (OT), five for Transfer IA and five for Transfer DA. For comparison purposes and only for Transfer IA, a five-segment reference trajectory RT is also considered.
See, Jovina L S; Chew, Paul T K; Smith, Scott D; Nolan, Winifred P; Chan, Yiong‐Huak; Huang, David; Zheng, Ce; Foster, Paul J; Aung, Tin; Friedman, David S
2007-01-01
Aim Using the anterior segment optical coherence tomography (AS‐OCT) to quantify changes in anterior segment morphology going from light to dark and following laser iridotomy (LI). Methods Prospective observational study. 17 consecutive subjects without peripheral anterior synechiae undergoing LI were evaluated using gonioscopy and AS‐OCT. Angle configuration including angle opening distance (AOD) at 500 microns anterior to the scleral spur, AOD500, trabecular‐iris space area up to 750 microns from the scleral spur, TISA750 and the increase in angle opening going from dark to light conditions was determined. Results Both mean AOD500 and TISA750 increased nearly threefold going from dark to light. Both also significantly increased following LI (p<0.001) as did gonioscopic grading of the angle in all quadrants (p<0.001, McNemar's test). Angles were more than twice as wide on average in the dark after LI than before LI (p<0.05). Both the mean absolute change and the mean proportionate change in AOD500 and TISA750 when going from light to dark were greater after LI than before (p<0.05). Conclusion Increased illumination as well as LI resulted in significant widening of the anterior chamber angle. AS‐OCT (which does not require a water bath and can be performed with the patient at the slit lamp) identified similar magnitude changes as those previously reported using ultrasound biomicroscopy (UBM). Furthermore, the angle appears to open more both in absolute terms and and proportionate terms in response to illumination after LI. PMID:17504852
Novel compact panomorph lens based vision system for monitoring around a vehicle
NASA Astrophysics Data System (ADS)
Thibault, Simon
2008-04-01
Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.
Kida, Yuichiro; Morimoto, Fumiko; Sakaguchi, Masao
2007-01-01
During protein integration into the endoplasmic reticulum, the N-terminal domain preceding the type I signal-anchor sequence is translocated through a translocon. By fusing a streptavidin-binding peptide tag to the N terminus, we created integration intermediates of multispanning membrane proteins. In a cell-free system, N-terminal domain (N-domain) translocation was arrested by streptavidin and resumed by biotin. Even when N-domain translocation was arrested, the second hydrophobic segment mediated translocation of the downstream hydrophilic segment. In one of the defined intermediates, two hydrophilic segments and two hydrophobic segments formed a transmembrane disposition in a productive state. Both of the translocating hydrophilic segments were crosslinked with a translocon subunit, Sec61α. We conclude that two translocating hydrophilic segment in a single membrane protein can span the membrane during multispanning topogenesis flanking the translocon. Furthermore, even after six successive hydrophobic segments entered the translocon, N-domain translocation could be induced to restart from an arrested state. These observations indicate the remarkably flexible nature of the translocon. PMID:18166653
CallFUSE Version 3: A Data Reduction Pipeline for the Far Ultraviolet Spectroscopic Explorer
2007-05-01
Earth orbit with an inclination of 25 to the equator and an approximately 100 minute orbital period. Data obtained with the instrument are reduced...throughout the mis- sion reveal that the gratings’ orbital motion depends on three parameters: beta angle (the angle between the target and the anti- Sun ...University, Bal- timore, MD; wvd@pha.jhu.edu. 3 Space Telescope Science Institute, ESS/SSG, Baltimore, MD. 4 Current address: Earth Orientation Department
Manufacturing techniques for gyroscopes in gravity probe B
NASA Technical Reports Server (NTRS)
Rasquin, J. R.
1976-01-01
The design of the fused silica gyroscope configuration is presented. The first gyroscope was made for erection and spin tests only and does not contain the angle readout loops necessary for a functioning experimental gyroscope. The rotor ball described is not coated with the ultimate material, niobium, but instead with a sandwich of titanium, cooper, and titanium for spin-up test purposes. Background, historical information, manufacturing procedures, and sketches for this gyroscope are included to provide a better understanding of the device and the techniques and special tools required to manufacture a fused silica gyroscope to the required specifications.
Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.
Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin
2015-12-01
To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at baseline. Copyright © 2015 American Academy of Ophthalmology. All rights reserved.
NASA Technical Reports Server (NTRS)
Bebis, George (Inventor); Amayeh, Gholamreza (Inventor)
2015-01-01
Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.
NASA Technical Reports Server (NTRS)
Bebis, George
2013-01-01
Hand-based biometric analysis systems and techniques provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an input image. Additionally, the analysis uses re-use of commonly seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.
Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan
2013-11-21
To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40-80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese.
Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan
2013-01-01
Purpose. To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. Methods. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40–80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. Results. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Conclusions. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese. PMID:24168992
N-(3-Chloro-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2013-10-12
In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N-H⋯O hydrogen bonds link the mol-ecules, forming a two-dimensional network parallel to (001).
Bilayer segmentation of webcam videos using tree-based classifiers.
Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan
2011-01-01
This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.
On a methodology for robust segmentation of nonideal iris images.
Schmid, Natalia A; Zuo, Jinyu
2010-06-01
Iris biometric is one of the most reliable biometrics with respect to performance. However, this reliability is a function of the ideality of the data. One of the most important steps in processing nonideal data is reliable and precise segmentation of the iris pattern from remaining background. In this paper, a segmentation methodology that aims at compensating various nonidealities contained in iris images during segmentation is proposed. The virtue of this methodology lies in its capability to reliably segment nonideal imagery that is simultaneously affected with such factors as specular reflection, blur, lighting variation, occlusion, and off-angle images. We demonstrate the robustness of our segmentation methodology by evaluating ideal and nonideal data sets, namely, the Chinese Academy of Sciences iris data version 3 interval subdirectory, the iris challenge evaluation data, the West Virginia University (WVU) data, and the WVU off-angle data. Furthermore, we compare our performance to that of our implementation of Camus and Wildes's algorithm and Masek's algorithm. We demonstrate considerable improvement in segmentation performance over the formerly mentioned algorithms.
News video story segmentation method using fusion of audio-visual features
NASA Astrophysics Data System (ADS)
Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang
2007-11-01
News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.
Research on fusion algorithm of polarization image in tetrolet domain
NASA Astrophysics Data System (ADS)
Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing
2015-12-01
Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect
Influence of neck postural changes on cervical spine motion and angle during swallowing
Kim, Jun Young; Hong, Jae Taek; Oh, Joo Seon; Jain, Ashish; Kim, Il Sup; Lim, Seong Hoon; Kim, Jun Sung
2017-01-01
Abstract Occipitocervical (OC) fixation in a neck retraction position could be dangerous due to the risk of postoperative dysphagia. No previous study has demonstrated an association between the cervical posture change and cervical spine motion/angle during swallowing. So, we aimed to analyze the influence of neck posture on the cervical spine motion and angle change during swallowing. Thirty-seven asymptomatic volunteers were recruited for participation this study. A videoflurographic swallowing study was performed in the neutral and retracted neck posture. We analyzed the images of the oral and pharyngeal phases of swallowing and compared the angle and the position changes of each cervical segment. In the neutral posture, C1 and C2 were flexed, while C5, C6, and C7 were extended. C3, C4, C5, C6, and C7 moved posteriorly. All cervical levels, except for C5, moved superiorly. In the retraction posture, C0 and C1 were flexed, while C6 was extended during swallowing. All cervical levels moved posteriorly. C1, C2, C3, and C4 moved superiorly. The comparison between 2 postures shows that angle change is significantly different between C0, C2, and C5. Posterior translation change is significantly different in the upper cervical spine (C0, C1, and C2) and C7. Superior movement is significantly different in C0. C0 segment is most significantly different between neutral and retraction posture in terms of angle and position change. These data suggest that C0 segment could be a critical level of compensation that allows swallowing even in the retraction neck posture regarding motion and angle change. So, it is important not to do OC fixation in retraction posture. Also, sparing C0 segment could provide some degree of freedom for the compensatory movement and angle change to avoid dysphagia after OC fixation. PMID:29137075
Gebisa, Aboma Wagari; Lemu, Hirpa G
2018-03-27
Fused-deposition modeling (FDM), one of the additive manufacturing (AM) technologies, is an advanced digital manufacturing technique that produces parts by heating, extruding and depositing filaments of thermoplastic polymers. The properties of FDM-produced parts apparently depend on the processing parameters. These processing parameters have conflicting advantages that need to be investigated. This article focuses on an investigation into the effect of these parameters on the flexural properties of FDM-produced parts. The investigation is carried out on high-performance ULTEM 9085 material, as this material is relatively new and has potential application in the aerospace, military and automotive industries. Five parameters: air gap, raster width, raster angle, contour number, and contour width, with a full factorial design of the experiment, are considered for the investigation. From the investigation, it is revealed that raster angle and raster width have the greatest effect on the flexural properties of the material. The optimal levels of the process parameters achieved are: air gap of 0.000 mm, raster width of 0.7814 mm, raster angle of 0°, contour number of 5, and contour width of 0.7814 mm, leading to a flexural strength of 127 MPa, a flexural modulus of 2400 MPa, and 0.081 flexural strain.
Gebisa, Aboma Wagari
2018-01-01
Fused-deposition modeling (FDM), one of the additive manufacturing (AM) technologies, is an advanced digital manufacturing technique that produces parts by heating, extruding and depositing filaments of thermoplastic polymers. The properties of FDM-produced parts apparently depend on the processing parameters. These processing parameters have conflicting advantages that need to be investigated. This article focuses on an investigation into the effect of these parameters on the flexural properties of FDM-produced parts. The investigation is carried out on high-performance ULTEM 9085 material, as this material is relatively new and has potential application in the aerospace, military and automotive industries. Five parameters: air gap, raster width, raster angle, contour number, and contour width, with a full factorial design of the experiment, are considered for the investigation. From the investigation, it is revealed that raster angle and raster width have the greatest effect on the flexural properties of the material. The optimal levels of the process parameters achieved are: air gap of 0.000 mm, raster width of 0.7814 mm, raster angle of 0°, contour number of 5, and contour width of 0.7814 mm, leading to a flexural strength of 127 MPa, a flexural modulus of 2400 MPa, and 0.081 flexural strain. PMID:29584674
Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
NASA Astrophysics Data System (ADS)
Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.
2017-03-01
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.
Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M
2017-02-11
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Crowd motion segmentation and behavior recognition fusing streak flow and collectiveness
NASA Astrophysics Data System (ADS)
Gao, Mingliang; Jiang, Jun; Shen, Jin; Zou, Guofeng; Fu, Guixia
2018-04-01
Crowd motion segmentation and crowd behavior recognition are two hot issues in computer vision. A number of methods have been proposed to tackle these two problems. Among the methods, flow dynamics is utilized to model the crowd motion, with little consideration of collective property. Moreover, the traditional crowd behavior recognition methods treat the local feature and dynamic feature separately and overlook the interconnection of topological and dynamical heterogeneity in complex crowd processes. A crowd motion segmentation method and a crowd behavior recognition method are proposed based on streak flow and crowd collectiveness. The streak flow is adopted to reveal the dynamical property of crowd motion, and the collectiveness is incorporated to reveal the structure property. Experimental results show that the proposed methods improve the crowd motion segmentation accuracy and the crowd recognition rates compared with the state-of-the-art methods.
G, Kalsey; R K, Singla; K, Sachdeva
2011-04-01
The distinctive morphology and sexual dimorphism of the human hip bone makes it of interest from the anatomical, anthropological and forensic points of view. The shape of the greater sciatic notch has attracted great attention in the past. In the current investigation, an attempt has been made to find the baseline data of various parameters pertaining to the greater sciatic notch of 100 hip bones of known sex (male:female = 80:20) and side (right:left = 50:50), obtained from the Department of Anatomy, Government Medical College, Amritsar, Punjab, India, during the period 2007-2009. Seven parameters of the notch, viz. width, depth, posterior segment width, total angle, posterior segment angle, index I and index II of the greater sciatic notch were studied. The results thus obtained were compiled, tabulated, statistically analysed and were compared with the accessible literature. Out of all the parameters studied, width of the notch, posterior segment width, total angle, posterior segment angle and index II of notch were found to be significantly greater in women as compared with men. Thus the greater sciatic notch can serve as a reliable sex indicator even when the complete hip bone has not been well preserved.
Integration of heterogeneous data for classification in hyperspectral satellite imagery
NASA Astrophysics Data System (ADS)
Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.
2012-06-01
As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.
Slot angle detecting method for fiber fixed chip
NASA Astrophysics Data System (ADS)
Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao
2018-04-01
The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.
Chain-Wise Generalization of Road Networks Using Model Selection
NASA Astrophysics Data System (ADS)
Bulatov, D.; Wenzel, S.; Häufel, G.; Meidow, J.
2017-05-01
Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using
Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.
Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D
2018-04-07
We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Quankun; Xie, Huimin
2017-12-01
Fused deposition modelling (FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method (VFM) is applied to characterize all the mechanical parameters (Q_{11}, Q_{22}, Q_{12}, Q_{66}) using the full-field strain, which is measured by digital image correlation (DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method (FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30°. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters (Q_{11}, Q_{22}, Q_{12}, Q_{66}) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants (Q_{11}, Q_{22}, Q_{12}, Q_{66}) were determined from the test with an angle of 27°.
The morphology and evolution of the female postabdomen of Holometabola (Insecta).
Hünefeld, Frank; Missbach, Christine; Beutel, Rolf Georg
2012-07-01
In the present article homology issues, character evolution and phylogenetic implications related to the female postabdomen of the holometabolan insects are discussed, based on an earlier analysis of a comprehensive morphological data set. Hymenoptera, the sistergroup of the remaining Holometabola, are the only group where the females have retained a fully developed primary ovipositor of the lepismatid type. There are no characters of the female abdomen supporting a clade Coleopterida + Neuropterida. The invagination of the terminal segments is an autapomorphy of Coleoptera. The ovipositor is substantially modified in Raphidioptera and distinctly reduced in Megaloptera and Neuroptera. The entire female abdomen is extremely simplified in Strepsiptera. The postabdomen is tapering posteriorly in Mecopterida and retractile in a telescopic manner (oviscapt). The paired ventral sclerites of segments VIII and IX are preserved, but valvifers and valvulae are not distinguishable. In Amphiesmenoptera sclerotizations derived from the ventral appendages VIII are fused ventromedially, forming a solid plate, and the appendages IX are reduced. The terminal segments are fused and form a terminal unit which bears the genital opening subapically. The presence of two pairs of apophyses and the related protraction of the terminal unit by muscle force are additional autapomorphies, as is the fusion of the rectum with the posterior part of the genital chamber (cloaca). Antliophora are supported by the presence of a transverse muscle between the ventral sclerites of segment VIII. Secondary egg laying tubes have evolved independently within Boreidae (absent in Caurinus) and in Tipulomorpha. The loss of two muscle associated with the genital chamber are likely autapomorphies of Diptera. The secondary loss of the telescopic retractability of the postabdomen is one of many autapomorphies of Siphonaptera. Copyright © 2012 Elsevier Ltd. All rights reserved.
Multiresolution texture models for brain tumor segmentation in MRI.
Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir
2011-01-01
In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.
Production of immunologically active surface antigens of hepatitis B virus by Escherichia coli.
MacKay, P; Pasek, M; Magazin, M; Kovacic, R T; Allet, B; Stahl, S; Gilbert, W; Schaller, H; Bruce, S A; Murray, K
1981-01-01
Several plasmids have been constructed which direct the synthesis of hepatitis B virus surface antigens in Escherichia coli either as the native polypeptide or fused to other plasmid encoded polypeptides. When injected into rabbits, extracts from bacteria carrying some of these plasmids induced the synthesis of antibodies to the antigens even though the extracts did not give satisfactory positive results in radioimmunoassay for them. Either the NH2-terminal segment or the COOH-terminal segment of the surface antigens alone was sufficient to elicit the immune response, but antibodies against the two segments showed different specificities. The results emphasize the value of an in vivo assay for the presence of antigens in crude cell extracts and illustrate the feasibility of this type of screening with laboratory animals. PMID:6170067
Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William
2016-09-01
Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.
N-(3-Chloro-1H-indazol-5-yl)-4-methoxybenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N—H⋯O hydrogen bonds link the molecules, forming a two-dimensional network parallel to (001). PMID:24454078
Murphy, Robert F; Moisan, Alice; Kelly, Derek M; Warner, William C; Jones, Tamekia L; Sawyer, Jeffrey R
2016-06-01
Although the vertical expandable prosthetic titanium rib (VEPTR) has been shown to be useful in treating congenital scoliosis (CS) with fused ribs, no studies to date have specifically evaluated the efficacy of VEPTR in the treatment of CS without fused ribs. The purpose of this study was to determine the effectiveness of VEPTR in sagittal/coronal curve correction and spine growth and compare its complication rate to the use of VEPTR in other conditions and to other treatment methods used for CS. A multicenter database was queried for patients with CS without fused ribs treated with VEPTR. Anteroposterior (AP) and lateral radiographs were used to measure parameters at 3 timepoints (preoperative, immediate postoperative, and latest follow-up): coronal Cobb angle, sagittal kyphosis, and thoracic and lumbar spine heights. Clinical data included age, time to follow-up, and complications. Twenty-five patients (13 females, 12 males) were identified. The average age at implantation was 5.7 years, with an average follow-up of 50 months. Several parameters improved from preoperative to latest follow-up: coronal Cobb angle (69 to 54 degrees, P<0.0001), thoracic spine height (T1-T12) in the AP (13.3 to 15.9 cm, P<0.0001) and lateral (14.8 to 17.4 cm, P=0.0024) planes, and lumbar spine height (L1-S1) in the AP (8.8 to 11.4 cm, P<0.0001) and lateral (9.9 to 11.9 cm, P=0.0002) planes. Kyphosis increased over the study period (36 to 41 degrees, P=0.6). Fifteen patients (60%) had 41 complications (average 2.75; range, 1 to 12). Twenty-eight complications (68%) were device-related, and 13 (32%) were disease-related. The most common complications were infection, wound dehiscence, and device migration. Six complications (15%) altered the course of treatment. Thoracic spine height increased 79% of expected growth. VEPTR is an effective treatment for patients with CS without fused ribs, as evidenced by improved radiographic parameters and increased spinal height, with a complication rate which is high but similar to other methods of treatment. Level IV-case series.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
A multi-focus image fusion method via region mosaicking on Laplacian pyramids
Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong
2018-01-01
In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912
Hosoi, Kunihiko; Tonomura, Hitoshi; Takatori, Ryota; Nagae, Masateru; Mikami, Yasuo; Osawa, Toru; Arai, Yuji; Fujiwara, Hiroyoshi; Kubo, Toshikazu
2017-01-01
Abstract Favorable bone fusion and clinical results have been reported for anterior cervical fusion (ACF) using titanium interbody cage (TIC). This method might induce postoperative subsidence and local kyphosis, but the relationship between radiological changes and preoperative local alignment is not known. The purpose of the present study is to investigate the impact of preoperative local alignment on the clinical and radiological outcomes of ACF using TIC. The study enrolled 36 patients (mean age 49.8 years) who underwent single-level ACF using TIC for cervical degenerative diseases. Patients were divided into 2 groups by preoperative segmental lordotic angle at the operative level: group L, ≥0° (n = 16); group K, <0° (n = 20). Clinical outcomes included recovery rate according to the Japanese Orthopaedic Association score and complication rates. Radiological assessment was conducted for the cervical and segmental lordotic angles, subsidence, and bone fusion. Mann–Whitney test and chi-square test were applied to compare the outcomes. The Japanese Orthopaedic Association score recovery rate was 77.2% in group L and 87.6% in group K, with no significant difference. No obvious complications were observed in any of the subjects. Mean cervical lordotic angles preoperatively and at last follow-up were 9.2 ± 9.5° and 11.3 ± 11.7°, respectively, in group L, and −1.3 ± 12.8° and 4.6 ± 13.3°, respectively, in group K. The mean segmental lordotic angles preoperatively and at last follow-up were 2.5 ± 2.2° and 2.6 ± 5.7°, respectively, in group L, and −4.5 ± 2.8° and −1.4 ± 5.8°, respectively, in group K. In group K, the cervical and segmental lordotic angles at the last follow-up were significantly greater than the preoperative angles. The change observed in group L was not significant. Subsidence of ≥3 mm was observed in 3 patients in group L and 4 patients in group K. None of the patients showed nonunion. Anterior cervical fusion using TIC provided favorable clinical results regardless of preoperative segmental alignment. Although postoperative subsidence and kyphotic changes are concerns in patients presenting segmental kyphosis, ACF using TIC corrected both the entire cervical spine and segmental alignment. The TIC is useful for correction of the cervical alignment for patients with cervical degenerative disease with local kyphotic changes. PMID:28796062
NASA Astrophysics Data System (ADS)
Yang, Yunyun; Kong, Weibo; Yuan, Ye; Zhou, Changlin; Cai, Xufu
2018-04-01
Novel poly(carbonate-co-amide) (PCA) block copolymers are prepared with polycarbonate diol (PCD) as soft segments, polyamide-6 (PA6) as hard segments and 4,4'-diphenylmethane diisocyanate (MDI) as coupling agent through reactive processing. The reactive processing strategy is eco-friendly and resolve the incompatibility between polyamide segments and PCD segments in preparation processing. The chemical structure, crystalline properties, thermal properties, mechanical properties and water resistance were extensively studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermal gravity analysis (TGA), Dynamic mechanical analysis (DMA), tensile testing, water contact angle and water absorption, respectively. The as-prepared PCAs exhibit obvious microphase separation between the crystalline hard PA6 phase and amorphous PCD soft segments. Meanwhile, PCAs showed outstanding mechanical with the maximum tensile strength of 46.3 MPa and elongation at break of 909%. The contact angle and water absorption results indicate that PCAs demonstrate outstanding water resistance even though possess the hydrophilic surfaces. The TGA measurements prove that the thermal stability of PCA can satisfy the requirement of multiple-processing without decomposition.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Nolan, Winifred P; See, Jovina L; Chew, Paul T K; Friedman, David S; Smith, Scott D; Radhakrishnan, Sunita; Zheng, Ce; Foster, Paul J; Aung, Tin
2007-01-01
To evaluate noncontact anterior segment optical coherence technology (AS-OCT) as a qualitative method of imaging the anterior chamber angle and to determine its ability to detect primary angle closure when compared with gonioscopy in Asian subjects. Prospective observational case series. Two hundred three subjects were recruited from glaucoma clinics in Singapore with diagnoses of primary angle closure, primary open-angle glaucoma, ocular hypertension, or cataract. Both eyes (if eligible) of each patient were included in the study. Exclusion criteria were pseudophakia or previous glaucoma surgery. Images of the nasal, temporal, and inferior angles were obtained with AS-OCT in dark and then light conditions. Gonioscopic angle width was graded using the Spaeth classification for each quadrant in low lighting conditions. Angle closure was defined by AS-OCT as contact between the peripheral iris and angle wall anterior to the scleral spur and by gonioscopy as a Spaeth grade of 0 degree (posterior trabecular meshwork not visible). Comparison of the 2 methods in detecting angle closure was done by eye and by individual. Sensitivities and specificities of AS-OCT were calculated using gonioscopy as the reference standard. Complete data were available for 342 eyes of 200 patients. Of the patients, 70.9% had a clinical diagnosis of treated or untreated primary angle closure. Angle closure in > or =1 quadrants was detected by AS-OCT in 142 (71%) patients (228 [66.7%] eyes) and by gonioscopy in 99 (49.5%) patients (152 [44.4%] eyes). The inferior angle was closed more frequently than the nasal or temporal quadrants using both AS-OCT and gonioscopy. When performed under dark conditions, AS-OCT identified 98% of those subjects found to have angle closure on gonioscopy (95% confidence interval [CI], 92.2-99.6) and led to the characterization of 44.6% of those found to have open angles on gonioscopy to have angle closure as well. With gonioscopy as the reference standard, specificity of AS-OCT in the dark was 55.4% (95% CI, 45.2-65.2) for detecting individuals with angle closure. Anterior segment OCT is a rapid noncontact method of imaging angle structures. It is highly sensitive in detecting angle closure when compared with gonioscopy. More persons are found to have closed angles with AS-OCT than with gonioscopy.
Hayat, Maqsood; Khan, Asifullah
2013-05-01
Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/ .
Krishnan, Kartik G; Müller, Adolf
2002-04-01
Reconstruction of the cervical spine using free vascularized bone flaps has been described in the literature. The reports involve either one level or, when multiple levels, they describe en bloc resection and reconstruction. Stabilization of different levels with a preserved intermediate segment with a single vascularized flap has not been described. We report on the case of a 55-year-old man, who had been operated several times using conventional techniques for cervical myelopathy and instability, who presented to us with severe neck pain. Diagnostic procedures showed pseudarthrosis of C3/4 and stress-overload of the C3/4 and C5/6 segments. The C4/5 fusion was adequately rigid, but avascular. We performed anterior cervical fusion at the C3/4 and C5/6 levels with a vascularized fibula flap modified as a double island. The rigidly fused C4/5 block was preserved and vascularized with the periosteum bridging the two fibular islands. The method and technique are described in detail. Fusion was adequate. Donor site morbidity was minimal and temporary. The patient is symptom free to date (25 months). The suggested method provides the possibility of vertebral fusion at different levels using a single vascularized flap. The indications for this procedure are (1) repeated failure of conventional methods, (2) established poor bone healing and bone non-union with avascular grafts and (3) a well-fused or preserved intermediate segment. The relevant literature is reviewed.
Fusing Image Data for Calculating Position of an Object
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang; Liebersbach, Robert; Trebi-Ollenu, Ashitey
2007-01-01
A computer program has been written for use in maintaining the calibration, with respect to the positions of imaged objects, of a stereoscopic pair of cameras on each of the Mars Explorer Rovers Spirit and Opportunity. The program identifies and locates a known object in the images. The object in question is part of a Moessbauer spectrometer located at the tip of a robot arm, the kinematics of which are known. In the program, the images are processed through a module that extracts edges, combines the edges into line segments, and then derives ellipse centroids from the line segments. The images are also processed by a feature-extraction algorithm that performs a wavelet analysis, then performs a pattern-recognition operation in the wavelet-coefficient space to determine matches to a texture feature measure derived from the horizontal, vertical, and diagonal coefficients. The centroids from the ellipse finder and the wavelet feature matcher are then fused to determine co-location. In the event that a match is found, the centroid (or centroids if multiple matches are present) is reported. If no match is found, the process reports the results of the analyses for further examination by human experts.
Du, Juan; Keesee, Robert G; Zhu, Lei
2014-09-18
The competitive adsorption of HNO3 and H2O from the gas phase onto fused silica surfaces is investigated. Brewster angle cavity ring-down spectroscopy is used to measure absorption of a laser probe beam by the HNO3/H2O coadsorbed on fused silica surfaces as a function of the mixture pressure. The laser absorption measurements were made in the 295-345 nm region. Langmuir adsorption constants for nitric acid and water were found to be 107 ± 17 and 562 ± 21 Torr(-1), respectively. A method has been developed for calculating absorption by HNO3 and H2O codeposited on the surface as a function of the HNO3/H2O mixture pressure using multicomponent Langmuir adsorption isotherms and absorption cross-sections at a given wavelength for surface-adsorbed HNO3 and H2O. The validity of this treatment has been evaluated both as a function of wavelength and as a function of mixing ratio.
Role of the Middle Lumbar Fascia on Spinal Mechanics: A Human Biomechanical Assessment.
Ranger, Tom A; Newell, Nicolas; Grant, Caroline A; Barker, Priscilla J; Pearcy, Mark J
2017-04-15
Biomechanical experiment. The aims of the present study were to test the effect of fascial tension on lumbar segmental axial rotation and lateral flexion and the effect of the angle of fascial attachment. Tension in the middle layer of lumbar fascia has been demonstrated to affect mechanical properties of lumbar segmental flexion and extension in the neutral zone. The effect of tension on segmental axial rotation and lateral flexion has, however, not been investigated. Seven unembalmed lumbar spines were divided into segments and mounted for testing. A 6 degree-of-freedom robotic testing facility was used to displace the segments in each anatomical plane (flexion-extension, lateral bending, and axial rotation) with force and moment data recorded by a load cell positioned beneath the test specimen. Tests were performed with and without a 20 N fascia load and the subsequent forces and moments were compared. In addition, forces and moments were compared when the specimens were held in a set position and the fascia loading angle was varied. A fascial tension of 20 N had no measurable effect on the forces or moments measured when the specimens were displaced in any plane of motion (P > 0.05). When 20 N of fascial load were applied to motion segments in a set position small segmental forces and moments were measured. Changing the angle of the fascial load did not significantly alter these measurements. Application of a 20 N fascial load did not produce a measureable effect on the mechanics of a motion segment, even though it did produce small measurable forces and moments on the segments when in a fixed position. Results from the present study are inconsistent with previous studies, suggesting that further investigation using multiple testing protocols and different loading conditions is required to determine the effects of fascial loading on spinal segment behavior. N/A.
Hamarat, Yasin; Deimantavicius, Mantas; Kalvaitis, Evaldas; Siaudvytyte, Lina; Januleviciene, Ingrida; Zakelis, Rolandas; Bartusis, Laimonas
2017-12-01
The aim of the present study was to locate the ophthalmic artery by using the edge of the internal carotid artery (ICA) as the reference depth to perform a reliable non-invasive intracranial pressure measurement via a multi-depth transcranial Doppler device and to then determine the positions and angles of an ultrasonic transducer (UT) on the closed eyelid in the case of located segments. High tension glaucoma (HTG) patients and healthy volunteers (HVs) undergoing non-invasive intracranial pressure measurement were selected for this prospective study. The depth of the edge of the ICA was identified, followed by a selection of the depths of the IOA and EOA segments. The positions and angles of the UT on the closed eyelid were measured. The mean depth of the identified ICA edge for HTG patients was 64.3 mm and was 63.0 mm for HVs (p = 0.21). The mean depth of the selected IOA segment for HTG patients was 59.2 mm and 59.3 mm for HVs (p = 0.91). The mean depth of the selected EOA segment for HTG patients was 48.5 mm and 49.8 mm for HVs (p = 0.14). The difference in the located depths of the segments between groups was not statistically significant. The results showed a significant difference in the measured UT angles in the case of the identified edge of the ICA and selected ophthalmic artery segments (p = 0.0002). We demonstrated that locating the IOA and EOA segments can be achieved using the edge of the ICA as a reference point. OA: ophthalmic artery; IOA: intracranial segments of the ophthalmic artery; EOA: extracranial segments of the ophthalmic artery; ICA: internal carotid artery; UT: ultrasonic transducer; HTG: high tension glaucoma; SD: standard deviation; ICP: intracranial pressure; TCD: transcranial Doppler.
MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F
2017-11-01
Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.
Nyholm, Tufve; Svensson, Stina; Andersson, Sebastian; Jonsson, Joakim; Sohlin, Maja; Gustafsson, Christian; Kjellén, Elisabeth; Söderström, Karin; Albertsson, Per; Blomqvist, Lennart; Zackrisson, Björn; Olsson, Lars E; Gunnlaugsson, Adalsteinn
2018-03-01
We describe a public dataset with MR and CT images of patients performed in the same position with both multiobserver and expert consensus delineations of relevant organs in the male pelvic region. The purpose was to provide means for training and validation of segmentation algorithms and methods to convert MR to CT like data, i.e., so called synthetic CT (sCT). T1- and T2-weighted MR images as well as CT data were collected for 19 patients at three different departments. Five experts delineated nine organs for each patient based on the T2-weighted MR images. An automatic method was used to fuse the delineations. Starting from each fused delineation, a consensus delineation was agreed upon by the five experts for each organ and patient. Segmentation overlap between user delineations with respect to the consensus delineations was measured to describe the spread of the collected data. Finally, an open-source software was used to create deformation vector fields describing the relation between MR and CT images to further increase the usability of the dataset. The dataset has been made publically available to be used for academic purposes, and can be accessed from https://zenodo.org/record/583096. The dataset provides a useful source for training and validation of segmentation algorithms as well as methods to convert MR to CT-like data (sCT). To give some examples: The T2-weighted MR images with their consensus delineations can directly be used as a template in an existing atlas-based segmentation engine; the expert delineations are useful to validate the performance of a segmentation algorithm as they provide a way to measure variability among users which can be compared with the result of an automatic segmentation; and the pairwise deformably registered MR and CT images can be a source for an atlas-based sCT algorithm or for validation of sCT algorithm. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Hsia, Yen C; Moghimi, Sasan; Coh, Paul; Chen, Rebecca; Masis, Marisse; Lin, Shan C
2017-07-01
To evaluate intraocular pressure (IOP) change after cataract surgery in eyes with open-angle glaucoma (OAG) and its relationship to angle and anterior segment parameters measured by anterior segment optical coherence tomography (AS-OCT). University of California, San Francisco, California, USA. Prospective case series. Eyes were placed into a narrow-angle group or open-angle group based on gonioscopy grading. Biometric parameters were measured using AS-OCT (Visante) preoperatively, and IOP 4 months after surgery was obtained. The IOP change and its relationship to AS-OCT parameters were evaluated. Eighty-one eyes of 69 patients were enrolled. The mean age of the patients was 76.8 years. The preoperative IOP was 15.02 mm Hg on 1.89 glaucoma medications. The average mean deviation of preoperative visual field was -4.58 dB. The mean IOP reduction was 2.1 mm Hg (12.8%) from a preoperative mean of 15.0 mm Hg. The IOP reduction was significantly greater in eyes with narrow angles than in eyes with open angles (20.4% versus 8.0%) (P = .002). In multivariate analysis, preoperative IOP (β = -0.53, P < .001, R 2 = 0.40), angle-opening distance at 500 mm (β = 5.83, P = .02, R 2 = 0.45), angle-opening distance at 750 mm (β = 5.82, P = .001, R 2 = 0.52), and lens vault (β = -0.002, P = .009, R 2 = 0.47) were associated with IOP reduction postoperatively. In eyes with OAG, IOP reduction after cataract surgery was greater in eyes with narrower angles. Preoperative IOP, angle-opening distance, and lens vault were predictors for IOP reduction. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Extremely long posterior communicating artery diagnosed by MR angiography: report of two cases.
Uchino, Akira; Suzuki, Chihiro; Tanaka, Masahiko
2015-07-01
We report two cases of an extremely long left posterior communicating artery (PCoA) diagnosed by magnetic resonance (MR) angiography. The PCoA arose from the normal point of the supraclinoid internal carotid artery and fused with the posterior cerebral artery (PCA) at its posterior ambient segment, forming an extremely long PCoA and extremely long precommunicating segment of the PCA. To our knowledge, this is the first report of such variation. Careful observation of MR angiographic images is important for detecting rare arterial variations. To identify these anomalous arteries on MR angiography, partial maximum-intensity-projection images are useful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.V.
1989-01-01
A Segmented Rail Surface (SRS) structure is described that eliminates restrike arcs by progressively disconnecting segments of the rail surface after the plasma armature has passed. This technique has been demonstrated using the Los Alamos MIDI-2 railgun. Restrike was eliminated in a plasma armature acceleration experiment using metal-foil fuses as opening switches. A plasma velocity increase from 11 to 16 km/s was demonstrated using the SRS technique to eliminate the viscous drag losses associated with the restrike plasma. This technique appears to be a practical option for a laboratory launcher at present and for future multi-shot launchers if appropriate switchesmore » can be developed.« less
Formica, Matteo; Cavagnaro, Luca; Basso, Marco; Zanirato, Andrea; Felli, Lamberto; Formica, Carlo; Di Martino, Alberto
2016-10-01
The use of intermediate screws in fractured vertebrae has been proposed to decrease the number of fused levels in thoracolumbar fractures and to enable short fixations. The aim of this study was to evaluate the results of this technique and to establish predictive factors involved in loss of segmental kyphosis correction (LKC). Forty-three patients who underwent short-segment spinal fixation with intermediate screws for a thoracolumbar spine fracture in a two-year time period were enrolled in the study. Patients had AO-type A3, A4 and B2 thoracolumbar fractures. Radiological parameters included segmental kyphosis (SK), vertebral wedge angle (VWA) and loss of anterior and posterior vertebral body height. Patients were evaluated up to one-year follow-up. The correlation between LKC and potential risk factors, such as smoking habit, sex, age, neurological status and BMI was evaluated. Mean preoperative SK was 16.5°±6.5°, and it decreased to 3.4°±3.5° postoperatively (P<0.01). At the one-year follow-up mean SK dropped to 5.5°±3.9° (P<0.01). Mean preoperative VWA was 20.0°±8.1°, and significantly improved to 6.3°±3.1° after surgery (P<0.01). There was a mean LKC of 1.8°±2.1°at one year. LKC mildly correlated with body mass index (BMI, r: +0.31), and obese patients (BMI>30) had an increased risk of LKC at the one-year follow-up (P=0.03; odds ratio [OR]=3.2). Analysis of the radiological data at one-year follow-up showed that all the evaluated parameters were associated with a mild loss of correction, with no impact on the clinical outcomes or implant failure. These findings confirm the trends reported in the literature. The correlation between LKC and clinical features, such as BMI, age, sex, smoking habit and preoperative neurological status was investigated. Interestingly, a positive correlation was observed between BMI and LKC, and obese patients with BMI>30 had an increased risk of LKC at one-year follow-up (OR 3.2); to our knowledge this finding has never before been reported. Short-segment fixation with intermediate screws is a viable technique with positive clinical and radiological outcomes at one-year follow-up. However, surgeons should be aware that in obese patients (BMI>30) this technique is associated with an increased risk of LKC. 3. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.
NASA Astrophysics Data System (ADS)
Wang, Junhua; Li, Dazhen; Wang, Bo; Yang, Jing; Yang, Houwen; Wang, Xiaoqian; Cheng, Wenyong
2017-11-01
In inertial confinement fusion, ultraviolet laser damage of the fused silica lens is an important limiting factor for load capability of the laser driver. To solve this problem, a new configuration of frequency tripling is proposed in this paper. The frequency tripling crystal is placed on downstream of the focusing lens, thus sum frequency generation of fundamental frequency light and doubling frequency light occurs in the beam convergence path. The focusing lens is only irradiated by fundamental light and doubling frequency lights. Thus, its damage threshold will increase. LiB3O5 (LBO) crystals are employed as frequency tripling crystals for its larger acceptance angle and higher damage threshold than KDP/DKDP crystals'. With the limitation of acceptance angle and crystal growth size are taken into account, the tiling scheme of LBO crystals is proposed and designed optimally to adopt to the total convergence angle of 36.0 mrad. Theoretical results indicate that 3 LBO crystals titling with different cutting angles in θ direction can meet the phase matching condition. Compared with frequency tripling of parallel beam using one LBO crystal, 83.8% (93.1% with 5 LBO crystals tiling) of the frequency tripling conversion efficiency can be obtained employing this new configuration. The results of a principle experiment also support this scheme. By employing this new design, not only the load capacity of a laser driver will be significantly improved, but also the fused silica lens can be changed to K9 glass lens which has the mature technology and low cost.
Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji
2015-09-01
Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.
Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji
2015-01-01
Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS. PMID:28793537
A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.
Mignotte, Max
2010-06-01
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
A Kalman Filtering Perspective for Multiatlas Segmentation*
Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S.; Bouix, Sylvain; Tannenbaum, Allen
2016-01-01
In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity—neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy. PMID:26807162
NASA Astrophysics Data System (ADS)
Savitri, I. T.; Badri, C.; Sulistyani, L. D.
2017-08-01
Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.
Limited Angle Dual Modality Breast Imaging
NASA Astrophysics Data System (ADS)
More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.
2007-06-01
We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.
Wu, Ren-Yi; Nongpiur, Monisha E; He, Ming-Guang; Sakata, Lisandro M; Friedman, David S; Chan, Yiong-Huak; Lavanya, Raghavan; Wong, Tien-Yin; Aung, Tin
2011-05-01
To describe the measurement of anterior chamber area and anterior chamber volume by anterior-segment optical coherence tomography and to investigate the association of these parameters with the presence of narrow angles. This was a cross-sectional study of subjects aged at least 50 years without ophthalmic symptoms recruited from a community clinic. All participants underwent standardized ocular examination and anterior-segment optical coherence tomography. Customized software was used to measure anterior chamber area (cross-sectional area bounded by the corneal endothelium, anterior surface of iris, and lens within the pupil) and anterior chamber volume (calculated by rotating the anterior chamber area 360° around a vertical axis through the midpoint of the anterior chamber area). An eye was considered to have narrow angles if the posterior pigmented trabecular meshwork was not visible for at least 180° on gonioscopy with the eye in the primary position. A total of 1922 subjects were included in the final analyses, 317 (16.5%) of whom had narrow angles. Mean anterior chamber area (15.6 vs 21.1 mm(2); P < .001) and anterior chamber volume (97.6 vs 142.1 mm(3); P < .001) were smaller in eyes with narrow angles compared with those in eyes without narrow angles. After adjusting for age, sex, anterior chamber depth, axial length, and pupil size, smaller anterior chamber area (odds ratio, 53.2; 95% confidence interval, 27.1-104.5) and anterior chamber volume (odds ratio, 40.2; 95% confidence interval, 21.5-75.2) were significantly associated with the presence of narrow angles. Smaller anterior chamber area and anterior chamber volume were independently associated with narrow angles in Singaporeans, even after controlling for other known ocular risk factors.
New mathematical definition and calculation of axial rotation of anatomical joints.
Miyazaki, S; Ishida, A
1991-08-01
In the field of joint kinematics, clinical terms such as internal-external, or medical-lateral, rotations are commonly used to express the rotation of a body segment about its own long axis. However, these terms are not defined in a strict mathematical sense. In this paper, a new mathematical definition of axial rotation is proposed and methods to calculate it from the measured Euler angles are given. The definition and methods to calculate it from the measured Euler angles are given. The definition is based on the integration of the component of the angular velocity vector projected onto the long axis of the body segment. First, the absolute axial rotation of a body segment with respect to the stationary coordinate system is defined. This definition is then generalized to give the relative axial rotation of one body segment with respect to the other body segment where the two segments are moving in the three-dimensional space. The well-known Codman's paradox is cited as an example to make clear the difference between the definition so far proposed by other researchers and the new one.
A new region-edge based level set model with applications to image segmentation
NASA Astrophysics Data System (ADS)
Zhi, Xuhao; Shen, Hong-Bin
2018-04-01
Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.
LANDSAT-D program. Volume 2: Ground segment
NASA Technical Reports Server (NTRS)
1984-01-01
Raw digital data, as received from the LANDSAT spacecraft, cannot generate images that meet specifications. Radiometric corrections must be made to compensate for aging and for differences in sensitivity among the instrument sensors. Geometric corrections must be made to compensate for off-nadir look angle, and to calculate spacecraft drift from its prescribed path. Corrections must also be made for look-angle jitter caused by vibrations induced by spacecraft equipment. The major components of the LANDSAT ground segment and their functions are discussed.
3D Multi-segment foot kinematics in children: A developmental study in typically developing boys.
Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Christel; Hermans, Cedric; Matricali, Giovanni Arnoldo; Lobet, Sebastien
2017-02-01
The relationship between age and 3D rotations objectivized with multisegment foot models has not been quantified until now. The purpose of this study was therefore to investigate the relationship between age and multi-segment foot kinematics in a cross-sectional database. Barefoot multi-segment foot kinematics of thirty two typically developing boys, aged 6-20 years, were captured with the Rizzoli Multi-segment Foot Model. One-dimensional statistical parametric mapping linear regression was used to examine the relationship between age and 3D inter-segment rotations of the dominant leg during the full gait cycle. Age was significantly correlated with sagittal plane kinematics of the midfoot and the calcaneus-metatarsus inter-segment angle (p<0.0125). Age was also correlated with the transverse plane kinematics of the calcaneus-metatarsus angle (p<0.0001). Gait labs should consider age related differences and variability if optimal decision making is pursued. It remains unclear if this is of interest for all foot models, however, the current study highlights that this is of particular relevance for foot models which incorporate a separate midfoot segment. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantifying coordination among the rearfoot, midfoot, and forefoot segments during running.
Takabayashi, Tomoya; Edama, Mutsuaki; Yokoyama, Erika; Kanaya, Chiaki; Kubo, Masayoshi
2018-03-01
Because previous studies have suggested that there is a relationship between injury risk and inter-segment coordination, quantifying coordination between the segments is essential. Even though the midfoot and forefoot segments play important roles in dynamic tasks, previous studies have mostly focused on coordination between the shank and rearfoot segments. This study aimed to quantify coordination among rearfoot, midfoot, and forefoot segments during running. Eleven healthy young men ran on a treadmill. The coupling angle, representing inter-segment coordination, was calculated using a modified vector coding technique. The coupling angle was categorised into four coordination patterns. During the absorption phase, rearfoot-midfoot coordination in the frontal planes was mostly in-phase (rearfoot and midfoot eversion with similar amplitudes). The present study found that the eversion of the midfoot with respect to the rearfoot was comparable in magnitude to the eversion of the rearfoot with respect to the shank. A previous study has suggested that disruption of the coordination between the internal rotation of the shank and eversion of the rearfoot leads to running injuries such as anterior knee pain. Thus, these data might be used in the future to compare to individuals with foot deformities or running injuries.
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen
2015-10-01
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen
2016-01-01
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501
Nucleus detection using gradient orientation information and linear least squares regression
NASA Astrophysics Data System (ADS)
Kwak, Jin Tae; Hewitt, Stephen M.; Xu, Sheng; Pinto, Peter A.; Wood, Bradford J.
2015-03-01
Computerized histopathology image analysis enables an objective, efficient, and quantitative assessment of digitized histopathology images. Such analysis often requires an accurate and efficient detection and segmentation of histological structures such as glands, cells and nuclei. The segmentation is used to characterize tissue specimens and to determine the disease status or outcomes. The segmentation of nuclei, in particular, is challenging due to the overlapping or clumped nuclei. Here, we propose a nuclei seed detection method for the individual and overlapping nuclei that utilizes the gradient orientation or direction information. The initial nuclei segmentation is provided by a multiview boosting approach. The angle of the gradient orientation is computed and traced for the nuclear boundaries. Taking the first derivative of the angle of the gradient orientation, high concavity points (junctions) are discovered. False junctions are found and removed by adopting a greedy search scheme with the goodness-of-fit statistic in a linear least squares sense. Then, the junctions determine boundary segments. Partial boundary segments belonging to the same nucleus are identified and combined by examining the overlapping area between them. Using the final set of the boundary segments, we generate the list of seeds in tissue images. The method achieved an overall precision of 0.89 and a recall of 0.88 in comparison to the manual segmentation.
An Iris Segmentation Algorithm based on Edge Orientation for Off-angle Iris Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J
Iris recognition is known as one of the most accurate and reliable biometrics. However, the accuracy of iris recognition systems depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. In this paper, we present a segmentation algorithm for off-angle iris images that uses edge detection, edge elimination, edge classification, and ellipse fitting techniques. In our approach, we first detect all candidate edges in the iris image by using the canny edge detector; this collection contains edges from the iris and pupil boundaries as well as eyelash, eyelids, iris texturemore » etc. Edge orientation is used to eliminate the edges that cannot be part of the iris or pupil. Then, we classify the remaining edge points into two sets as pupil edges and iris edges. Finally, we randomly generate subsets of iris and pupil edge points, fit ellipses for each subset, select ellipses with similar parameters, and average to form the resultant ellipses. Based on the results from real experiments, the proposed method shows effectiveness in segmentation for off-angle iris images.« less
Research on the lesion segmentation of breast tumor MR images based on FCM-DS theory
NASA Astrophysics Data System (ADS)
Zhang, Liangbin; Ma, Wenjun; Shen, Xing; Li, Yuehua; Zhu, Yuemin; Chen, Li; Zhang, Su
2017-03-01
Magnetic resonance imaging (MRI) plays an important role in the treatment of breast tumor by high intensity focused ultrasound (HIFU). The doctors evaluate the scale, distribution and the statement of benign or malignancy of breast tumor by analyzing variety modalities of MRI, such as the T2, DWI and DCE images for making accurate preoperative treatment plan and evaluating the effect of the operation. This paper presents a method of lesion segmentation of breast tumor based on FCM-DS theory. Fuzzy c-means clustering (FCM) algorithm combined with Dempster-Shafer (DS) theory is used to process the uncertainty of information, segmenting the lesion areas on DWI and DCE modalities of MRI and reducing the scale of the uncertain parts. Experiment results show that FCM-DS can fuse the DWI and DCE images to achieve accurate segmentation and display the statement of benign or malignancy of lesion area by Time-Intensity Curve (TIC), which could be beneficial in making preoperative treatment plan and evaluating the effect of the therapy.
Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.
Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E
2013-05-01
Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.
Apparatus For Laminating Segmented Core For Electric Machine
Lawrence, Robert Anthony; Stabel, Gerald R
2003-06-17
A segmented core for an electric machine includes segments stamped from coated electric steel. The segments each have a first end, a second end, and winding openings. A predetermined number of segments are placed end-to-end to form layers. The layers are stacked such that each of the layers is staggered from adjacent layers by a predetermined rotation angle. The winding openings of each of the layers are in vertical alignment with the winding openings of the adjacent layers. The stack of layers is secured to form the segmented core.
Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan
2013-05-01
In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.
Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory
NASA Astrophysics Data System (ADS)
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro
2011-09-01
To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.
Korinth, M C; Hero, T; Mahnken, A H; Ragoss, C; Scherer, K
2004-12-01
Animals are becoming more and more common as in vitro and in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examination human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO/glass composite (Ecopore) or polymethyl-methacrylate (PMMA) after discectomy. First experience with the use of the new material and its influence on the primary stability after in vitro application were gained. After fusion of 10 sheep cervical spines in the levels C2/3 and C4/5 in each case with PMMA and with an Ecopore-cage, radiologic as well as computertomographic examinations were performed postoperatively and every 4 weeks during the following 2 and 4 months, respectively. Apart from establishing our animal model, we analysed the radiological changes and the degree of bony fusion of the operated segments during the course. In addition we performed measurements of the corresponding disc space heights (DSH) and intervertebral angles (IVA) for comparison among each other, during the course and with the initial values. Immediately after placement of both implants in the disc spaces the mean DSH and IVA increased (34.8% and 53.9%, respectively). During the following months DSH decreased to a greater extent in the Ecopore-segments than in the PMMA-segments, even to a value below the initial value (p>0.05). Similarly, the IVA decreased in both groups in the postoperative time lapse, but more distinct in the Ecopore-segments (p<0.05). These changes in terms of a subsidence of the implants, were confirmed morphologically in the radiological examination in the course. The radiologically evaluated fusion, i.e. bony bridging of the operated segments, was more pronounced after implantation of an Ecopore-cage (83%), than after PMMA interposition (50%), but did not gain statistical significance. In this first in vivo examination of our new porous ceramic bone replacement material we showed its application in the spondylodesis model of the sheep cervical spine. Distinct radiological changes regarding evident subsidence and detectable fusion of the segments, operated on with the new biomaterial, were seen. We demonstrated the radiological changes of the fused segments during several months and analysed them morphologically, before the biomechanical evaluation will be presented in a subsequent publication.
Locomotor variation and bending regimes of capuchin limb bones.
Demes, Brigitte; Carlson, Kristian J
2009-08-01
Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further.
Operations of the Far Ultraviolet Spectroscopic Explorer : A `Dynamic' Flux Calibration.
NASA Astrophysics Data System (ADS)
Ehrenreich, D.; Dupuis, J.; Dixon, W. V.; Sahnow, D. J.; Kruk, J. W.
2003-05-01
The FUSE flux calibration is based on model-atmosphere predictions of the spectra of well studied white-dwarf stars. Calibration operations, however, are a highly `dynamic' process consisting of repeatedly measuring these standard stars, deriving corrections, and integrating the results into CALFUSE, the FUSE science pipeline. With suitable scheduling, those calibration observation campaigns let us characterize short term and long term variations of the sensitivity. One particular issue addressed by these observations is monitoring possible degradation of the FUSE optical coatings by atomic oxygen present in the upper atmosphere. We have attempted to minimize this by avoiding pointing close to the instantaneous velocity vector of the spacecraft (the ram vector). Prior to Cycle 3, the minimum permitted angle between the line of sight and the ram vector was 20 degrees. This was reduced to 15 degrees during Cycle 3 to increase our sky coverage, and will be further reduced to 10 degrees for Cycle 4. This relaxation of ram constraints has been preceded by a tailored calibration program in which white dwarf measurements are obtained before and after observations performed for a limited time below the current ram vector constraint. This relaxation of the ram vector constraint will considerably expand the ability of FUSE to observe sources at low declination. This work is based on data obtained for the Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U.S. participants has been provided by NASA contract NAS5-32985.
Chizewski, Michael G; Chiu, Loren Z F
2012-05-01
Joint angle is the relative rotation between two segments where one is a reference and assumed to be non-moving. However, rotation of the reference segment will influence the system's spatial orientation and joint angle. The purpose of this investigation was to determine the contribution of leg and calcaneal rotations to ankle rotation in a weight-bearing task. Forty-eight individuals performed partial squats recorded using a 3D motion capture system. Markers on the calcaneus and leg were used to model leg and calcaneal segment, and ankle joint rotations. Multiple linear regression was used to determine the contribution of leg and calcaneal segment rotations to ankle joint dorsiflexion. Regression models for left (R(2)=0.97) and right (R(2)=0.97) ankle dorsiflexion were significant. Sagittal plane leg rotation had a positive influence (left: β=1.411; right: β=1.418) while sagittal plane calcaneal rotation had a negative influence (left: β=-0.573; right: β=-0.650) on ankle dorsiflexion. Sagittal plane rotations of the leg and calcaneus were positively correlated (left: r=0.84, P<0.001; right: r=0.80, P<0.001). During a partial squat, the calcaneus rotates forward. Simultaneous forward calcaneal rotation with ankle dorsiflexion reduces total ankle dorsiflexion angle. Rear foot posture is reoriented during a partial squat, allowing greater leg rotation in the sagittal plane. Segment rotations may provide greater insight into movement mechanics that cannot be explained via joint rotations alone. Copyright © 2012 Elsevier B.V. All rights reserved.
Papanikolopoulou, Katerina; Teixeira, Susana; Belrhali, Hassan; Forsyth, V Trevor; Mitraki, Anna; van Raaij, Mark J
2004-09-03
Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.
Dynamic gonioscopy using optical coherence tomography.
Matonti, Frederic; Chazalon, Elodie; Trichet, Elodie; Khaled, El Samak; Denis, Danièle; Hoffart, Louis
2012-01-01
To describe the use of anterior segment optical coherence tomography (AS-OCT) in studying the dynamic changes of the anterior chamber angle by corneal indentation. In a prospective observational study, the anterior segments of 21 eyes were imaged using AS-OCT. After the initial scan, a second scan was executed on the same areas with a central corneal indentation. An evaluation of the reopening of the angle and its measurement were performed. With AS-OCT, the indirect signs were accurate enough to guide the diagnosis in all plateau iris confirmed by ultrabiomicroscopy. The angle widths were significantly increased after indentation. This method would appear to offer a convenient and rapid method of assessing the configuration of the anterior chamber; it may help during the routine clinical assessment and treatment of patients with narrow or closed angles, particularly when gonioscopy is difficult to interpret. Copyright 2012, SLACK Incorporated.
Chang, Yunhee; Jeong, Bora; Kang, Sungjae; Ryu, Jeicheong; Kim, Gyoosuk
2017-01-01
The evaluation of multisegment coordination is important in gaining a better understanding of the gait and physical activities in humans. Therefore, this study aims to verify whether the use of knee sleeves affects the coordination of lower-limb segments during level walking and one-leg hopping. Eleven healthy male adults participated in this study. They were asked to walk 10 m on a level ground and perform one-leg hops with and without a knee sleeve. The segment angles and the response velocities of the thigh, shank, and foot were measured and calculated by using a motion analysis system. The phases between the segment angle and the velocity were then calculated. Moreover, the continuous relative phase (CRP) was calculated as the phase of the distal segment subtracted from the phase of the proximal segment and denoted as CRPTS (thigh–shank), CRPSF (shank–foot), and CRPTF (thigh–foot). The root mean square (RMS) values were used to evaluate the in-phase or out-of-phase states, while the standard deviation (SD) values were utilized to evaluate the variability in the stance and swing phases during level walking and in the preflight, flight, and landing phases during one-leg hopping. The walking velocity and the flight time improved when the knee sleeve was worn (p < 0.05). The segment angles of the thigh and shank also changed when the knee sleeve was worn during level walking and one-leg hopping. The RMS values of CRPTS and CRPSF in the stance phase and the RMS values of CRPSF in the preflight and landing phases changed (p < 0.05 in all cases). Moreover, the SD values of CRPTS in the landing phase and the SD values of CRPSF in the preflight and landing phases increased (p < 0.05 in all cases). These results indicated that wearing a knee sleeve caused changes in segment kinematics and coordination. PMID:28533981
1,2,3-Triphenyl-1,2-dihydroquinoxaline
Edelmann, Frank T.; Blaurock, Steffen; Lorenz, Volker; Fischer, Axel
2008-01-01
The title compound, C26H20N2, first reported in 1891, was obtained as a by-product in the preparation of benzildianil from benzil and excess aniline. The dihedral angles between the fused benzene ring and the pendant phenyl rings are 17.93 (11), 53.18 (10) and 89.08 (12)°. PMID:21201177
Paeng, Dong-Guk; Chang, Jin Ho; Chen, Ruimin; Humayun, Mark S.; Shung, K. Kirk
2009-01-01
High frequency ultrasound over 40 MHz has been used to image the anterior segment of the eye, but it is not suitable for the posterior segment due to the frequency-dependent attenuation of ultrasound and thus the limitation of penetration depth. This paper proposes a novel scan method to image the posterior segment of the eye with an angled high frequency (beyond 40 MHz) ultrasound needle transducer. In this method, the needle transducer is inserted into the eye through a small incision hole (∼1 mm in diameter) and rotated around the axial direction to form a cone-shaped imaging plane, allowing the spatial information of retinal vessels and diagnosis of their occlusion to be displayed. The feasibility of this novel technique was tested with images of a wire phantom, a polyimide tube, and an excised pig eye obtained by manually rotating a 40-MHz PMN-PT needle transducer with a beveled tip of 45°. From the results, we believe that rotational scan imaging will help expand the minimally invasive applications of high frequency ultrasound to other areas due to the capability of increased closeness of an angled needle transducer to structures of interest buried in other tissues. PMID:19411226
Paeng, Dong-Guk; Chang, Jin Ho; Chen, Ruimin; Humayun, Mark S; Shung, K Kirk
2009-03-01
High frequency ultrasound over 40 MHz has been used to image the anterior segment of the eye, but it is not suitable for the posterior segment due to the frequency dependent attenuation of ultrasound and thus the limitation of penetration depth. This paper proposes a novel scan method to image the posterior segment of the eye with an angled high frequency (beyond 40 MHz) ultrasound needle transducer. In this method, the needle transducer is inserted into the eye through a small incision hole (approximately 1 mm in diameter) and rotated around the axial direction to form a cone-shaped imaging plane, allowing the spatial information of retinal vessels and diagnosis of their occlusion to be displayed. The feasibility of this novel technique was tested with images of a wire phantom, a polyimide tube, and an excised pig eye obtained by manually rotating a 40-MHz PMN-PT needle transducer with a beveled tip of 45 degrees . From the results, we believe that rotational scan imaging will help expand the minimally invasive applications of high frequency ultrasound to other areas due to the capability of increased closeness of an angled needle transducer to structures of interest buried in other tissues.
Wavefront Control Testbed (WCT) Experiment Results
NASA Technical Reports Server (NTRS)
Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III
2004-01-01
The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.
Finn, Michael A; Samuelson, Mical M; Bishop, Frank; Bachus, Kent N; Brodke, Darrel S
2011-03-15
Biomechanical study. To determine biomechanical forces exerted on intermediate and adjacent segments after two- or three-level fusion for treatment of noncontiguous levels. Increased motion adjacent to fused spinal segments is postulated to be a driving force in adjacent segment degeneration. Occasionally, a patient requires treatment of noncontiguous levels on either side of a normal level. The biomechanical forces exerted on the intermediate and adjacent levels are unknown. Seven intact human cadaveric cervical spines (C3-T1) were mounted in a custom seven-axis spine simulator equipped with a follower load apparatus and OptoTRAK three-dimensional tracking system. Each intact specimen underwent five cycles each of flexion/extension, lateral bending, and axial rotation under a ± 1.5 Nm moment and a 100-Nm axial follower load. Applied torque and motion data in each axis of motion and level were recorded. Testing was repeated under the same parameters after C4-C5 and C6-C7 diskectomies were performed and fused with rigid cervical plates and interbody spacers and again after a three-level fusion from C4 to C7. Range of motion was modestly increased (35%) in the intermediate and adjacent levels in the skip fusion construct. A significant or nearly significant difference was reached in seven of nine moments. With the three-level fusion construct, motion at the infra- and supra-adjacent levels was significantly or nearly significantly increased in all applied moments over the intact and the two-level noncontiguous construct. The magnitude of this change was substantial (72%). Infra- and supra-adjacent levels experienced a marked increase in strain in all moments with a three-level fusion, whereas the intermediate, supra-, and infra-adjacent segments of a two-level fusion experienced modest strain moments relative to intact. It would be appropriate to consider noncontiguous fusions instead of a three-level fusion when confronted with nonadjacent disease.
Da Ros, Vanina G; Munuce, María J; Cohen, Débora J; Marín-Briggiler, Clara I; Busso, Dolores; Visconti, Pablo E; Cuasnicú, Patricia S
2004-05-01
Numerous studies have demonstrated that sperm capacitation is a bicarbonate-dependent process. In the rat, capacitation has not been studied as much as in other species, mainly because of the difficulties in carrying out functional assays with this animal model. In the present study, we have examined the influence of bicarbonate in the overall rat sperm capacitation process by analyzing involvement of the anion in 1) protein tyrosine phosphorylation, 2) migration of epididymal protein DE (also known as CRISP-1) from the dorsal region to the equatorial segment of the sperm head that occurs during capacitation, and 3) ability of sperm to fuse with the egg. Incubation of sperm under capacitating conditions produced a time-dependent increase in protein tyrosine phosphorylation. This phosphorylation did not occur in the absence of HCO3- and rapidly increased by either exposure of sperm to HCO3- or replacement of the anion by a cAMP analog (dibutyryl-cAMP) and a phosphodiesterase inhibitor (pentoxifylline). The absence of HCO3- also produced a significant decrease in the percentage of cells showing migration of DE to the equatorial segment. This parameter was completely restored by addition of the anion, but dibutyryl-cAMP and pentoxifylline were not sufficient to overcome the decrease in DE migration. Sperm capacitated in the absence of HCO3- were unable to penetrate zona-free eggs independent of the presence of the anion during gamete coincubation. Exposure of these sperm to bicarbonate, or replacement of the anion by dibutyryl-cAMP and pentoxifylline, only partially restored the sperm fusion ability. Altogether, these results indicate that, in addition to its influence on protein tyrosine phosphorylation, bicarbonate is required to support other rat sperm capacitation- associated events, such as migration of DE to the equatorial segment, and expression of the ability of sperm to fuse with the egg.
Incidence and variation of interpretably bone (os incae) in northeastern Thailand.
Thanapaisal, Chaiwit; Duangthongpon, Pichayen; Kitkuandee, Amnat; Chaiciwamongkol, Kowit; Morthong, Vilaiwan
2013-09-01
The squamous segment of occipital bone consists of cartilaginous and membranous origin. The cartilaginous part develops to supra-occipital bone. The membranous part has three primary ossification centers on each side. The first pair ossification center lies above the cartilaginous part between the superior nuchal line and the highest nuchal line and fuse with the cartilaginous part to form a supra-occipital segment of occipital bone. The second and third pairs have two nuclei each forming lateral and medial plates. All of these ossification centers fuse to form squamous segments of occipital bone. The fusion failure between ossification centers of second and third pair nuclei with each other or supra-occipital segment causes separated bone(s) called interparietal bone(s) or os incae. The interparietal bone should be differentiated from Wormian (intrasutural) bone. The incidence from various studies ranges from 0.37% to 9.50% of the population. To study the incidence and variation of interparietal bone in Northeastern Thailand as compared with other studies. A total of 400 Thai native skulls (276 male and 124 female) from the collection of Anatomical Museum of the Faculty of Medicine Khon Kaen University aged from 16 to 93 years old were examined by naked eye and photographed. Wormian bone was excluded by shape and site. The statistical method used was percentage of relative frequency. The incidence of interparietal bone in Northeastern Thailand is 7.25% (29 from 400). Males have a two times higher incidence rate than females, (8.33% versus 4.84%). Eleven patterns of interparietal bone were found. Fusion failure of a third pair ossification center is more common than second pair Knowledge of interparietal bone is useful for neurosurgeons and radiologists to avoid missed diagnosis of skull fracture. Presented interparietal bone may cause difficulty in surgery of occipital and parietal bone. Forensic scientist can use interparietal bone for personal identification.
Wallsh, Josh O; Gallemore, Ron P; Taban, Mehran; Hu, Charles; Sharareh, Behnam
2013-01-01
To assess the safety and efficacy of a modified technique for pars plana placement of the Ahmed valve in combination with pars plana vitrectomy in the treatment of glaucoma associated with posterior segment disease. Thirty-nine eyes with glaucoma associated with posterior segment disease underwent pars plana vitrectomy combined with Ahmed valve placement. All valves were placed in the pars plana using a modified technique, without the pars plana clip, and using a scleral patch graft. The 24 eyes diagnosed with neovascular glaucoma had an improvement in intraocular pressure from 37.6 mmHg to 13.8 mmHg and best-corrected visual acuity from 2.13 logarithm of minimum angle of resolution to 1.40 logarithm of minimum angle of resolution. Fifteen eyes diagnosed with steroid-induced glaucoma had an improvement in intraocular pressure from 27.9 mmHg to 14.1 mmHg and best-corrected visual acuity from 1.38 logarithm of minimum angle of resolution to 1.13 logarithm of minimum angle of resolution. Complications included four cases of cystic bleb formation and one case of choroidal detachment and explantation for hypotony. Ahmed valve placement through the pars plana during vitrectomy is an effective option for managing complex cases of glaucoma without the use of the pars plana clip.
Park, Seong Bae; Sung, Kyung Rim; Kang, Sung Yung; Jo, Jung Woo; Lee, Kyoung Sub; Kook, Michael S
2011-07-01
To evaluate anterior chamber (AC) angles using gonioscopy, Van Herick technique and anterior segment optical coherence tomography (AS-OCT). One hundred forty-eight consecutive subjects were enrolled. The agreement between any two of three diagnostic methods, gonioscopy, AS-OCT and Van Herick, was calculated in narrow-angle patients. The area under receiver-operating characteristic curves (AUC) for discriminating between narrow and open angles determined by gonioscopy was calculated in all participants for AS-OCT parameter angle opening distance (AOD), angle recess area, trabecular iris surface area and anterior chamber depth (ACD). As a subgroup analysis, capability of AS-OCT parameters for detecting angle closure defined by AS-OCT was assessed in narrow-angle patients. The agreement between the Van Herick method and gonioscopy in detecting angle closure was excellent in narrow angles (κ = 0.80, temporal; κ = 0.82, nasal). However, agreement between gonioscopy and AS-OCT and between the Van Herick method and AS-OCT was poor (κ = 0.11-0.16). Discrimination capability of AS-OCT parameters between open and narrow angles determined by gonioscopy was excellent for all AS-OCT parameters (AUC, temporal: AOD500 = 0.96, nasal: AOD500 = 0.99). The AUCs for detecting angle closure defined by AS-OCT image in narrow angle subjects was good for all AS-OCT parameters (AUC, 0.80-0.94) except for ACD (temporal: ACD = 0.70, nasal: ACD = 0.63). Assessment of narrow angles by gonioscopy and the Van Herick technique showed good agreement, but both measurements revealed poor agreement with AS-OCT. The angle closure detection capability of AS-OCT parameters was excellent; however, it was slightly lower in ACD.
Atalay, Eray; Nongpiur, Monisha E; Baskaran, Mani; Sharma, Sourabh; Perera, Shamira A; Aung, Tin
2016-10-01
To compare ocular biometric and anterior segment parameters between the affected and fellow eye in subjects with acute primary angle closure (APAC). We evaluated 76 subjects with unilateral APAC who had undergone bilateral laser peripheral iridotomy before enrollment. Imaging was done using anterior segment optical coherence tomography and a customized software was used to measure the following: angle opening distance (AOD750); trabecular-iris space area (TISA750); iris thickness (IT750); iris curvature (ICURV); iris area (IAREA); anterior chamber depth; area and volume (ACD; ACA and ACV); anterior chamber width (ACW); anterior vault (ACD+LV); lens vault (LV); and pupil diameter (PD). We used A-scan ultrasonography to measure axial length (AL) and lens thickness (LT). Mean differences in ocular biometric and anterior segment parameters were assessed using linear mixed model adjusting for PD. A total of 53 subjects (36 females, 67.9%) with a mean age of 62.7 ± 8.1 years were analyzed after excluding 17 unanalyzable images in at least one eye. Affected eyes had shallower ACD, smaller ACA, ACV, anterior vault, TISA750, AOD750, and ICURV (all P < 0.05). Axial length, ACW, LV, LT, IAREA, and IT750 did not differ between the eyes. In the affected eyes, IT750 was significantly associated AOD750 (P < 0.05); whereas in the fellow eyes, IT750 and AL was predictive of AOD750 (all P < 0.05). Eyes with previous APAC had smaller anterior segment dimensions when compared with their fellow eyes. Iris thickness was the strongest predictor of angle width in both affected and fellow eyes.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-12-04
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.
Prostate segmentation in MRI using fused T2-weighted and elastography images
NASA Astrophysics Data System (ADS)
Nir, Guy; Sahebjavaher, Ramin S.; Baghani, Ali; Sinkus, Ralph; Salcudean, Septimiu E.
2014-03-01
Segmentation of the prostate in medical imaging is a challenging and important task for surgical planning and delivery of prostate cancer treatment. Automatic prostate segmentation can improve speed, reproducibility and consistency of the process. In this work, we propose a method for automatic segmentation of the prostate in magnetic resonance elastography (MRE) images. The method utilizes the complementary property of the elastogram and the corresponding T2-weighted image, which are obtained from the phase and magnitude components of the imaging signal, respectively. It follows a variational approach to propagate an active contour model based on the combination of region statistics in the elastogram and the edge map of the T2-weighted image. The method is fast and does not require prior shape information. The proposed algorithm is tested on 35 clinical image pairs from five MRE data sets, and is evaluated in comparison with manual contouring. The mean absolute distance between the automatic and manual contours is 1.8mm, with a maximum distance of 5.6mm. The relative area error is 7.6%, and the duration of the segmentation process is 2s per slice.
A cascaded two-step Kalman filter for estimation of human body segment orientation using MEMS-IMU.
Zihajehzadeh, S; Loh, D; Lee, M; Hoskinson, R; Park, E J
2014-01-01
Orientation of human body segments is an important quantity in many biomechanical analyses. To get robust and drift-free 3-D orientation, raw data from miniature body worn MEMS-based inertial measurement units (IMU) should be blended in a Kalman filter. Aiming at less computational cost, this work presents a novel cascaded two-step Kalman filter orientation estimation algorithm. Tilt angles are estimated in the first step of the proposed cascaded Kalman filter. The estimated tilt angles are passed to the second step of the filter for yaw angle calculation. The orientation results are benchmarked against the ones from a highly accurate tactical grade IMU. Experimental results reveal that the proposed algorithm provides robust orientation estimation in both kinematically and magnetically disturbed conditions.
Study Of Pre-Shaped Membrane Mirrors And Electrostatic Mirrors With Nonlinear-Optical Correction
2002-01-01
mirrors have been manufactured of glass-like material Zerodur with very low coefficient of linear expansion. They have a more light cellular construction...primary and flat secondary mirrors are both segmented ones. In the case of the primary mirror made of traditional materials such as Zerodur or fused...FINAL REPORT ISTC Project #2103p “Study of Pre-Shaped Membrane Mirrors and Electrostatic Mirrors with Nonlinear-Optical Correction” Manager
Development of Composite Scaffolds for Load Bearing Segmental Bone Defects
2013-07-01
general, is that they cannot be used alone for load-bearing applications due to the brittleness (failure due to lack of plastic deformation) of...5, 61, 77, 78], microsphere sintering [77], supercritical CO2 technology [80], fused deposition modeling (FDM) [5, 6], 3D printing [5], in situ...American Ceramic Society 2006;89: 1771- 1789. [36] Vitale-Brovarone C, Miola M, Balagna C, Verné E. 3D -glass–ceramic scaffolds with antibacterial
Kobayashi, Kazuyoshi; Imagama, Shiro; Ito, Zenya; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki
2017-01-01
OBJECTIVE Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS. METHODS A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration. RESULTS The patients (3 males and 65 females) had an average age of 14.4 years (range 11-19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration. CONCLUSIONS Waveform deterioration commonly occurred during rotation maneuvers and more frequently in patients with a larger preoperative Cobb angle. The significant relationships of EBL and number of levels fused with waveform deterioration suggest that these surgical invasions may be involved in waveform deterioration.
Jian, Junming; Xiong, Fei; Xia, Wei; Zhang, Rui; Gu, Jinhui; Wu, Xiaodong; Meng, Xiaochun; Gao, Xin
2018-06-01
Segmentation of colorectal tumors is the basis of preoperative prediction, staging, and therapeutic response evaluation. Due to the blurred boundary between lesions and normal colorectal tissue, it is hard to realize accurate segmentation. Routinely manual or semi-manual segmentation methods are extremely tedious, time-consuming, and highly operator-dependent. In the framework of FCNs, a segmentation method for colorectal tumor was presented. Normalization was applied to reduce the differences among images. Borrowing from transfer learning, VGG-16 was employed to extract features from normalized images. We conducted five side-output blocks from the last convolutional layer of each block of VGG-16 along the network, these side-output blocks can deep dive multiscale features, and produced corresponding predictions. Finally, all of the predictions from side-output blocks were fused to determine the final boundaries of the tumors. A quantitative comparison of 2772 colorectal tumor manual segmentation results from T2-weighted magnetic resonance images shows that the average Dice similarity coefficient, positive predictive value, specificity, sensitivity, Hammoude distance, and Hausdorff distance were 83.56, 82.67, 96.75, 87.85%, 0.2694, and 8.20, respectively. The proposed method is superior to U-net in colorectal tumor segmentation (P < 0.05). There is no difference between cross-entropy loss and Dice-based loss in colorectal tumor segmentation (P > 0.05). The results indicate that the introduction of FCNs contributed to accurate segmentation of colorectal tumors. This method has the potential to replace the present time-consuming and nonreproducible manual segmentation method.
Deformable templates guided discriminative models for robust 3D brain MRI segmentation.
Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen
2013-10-01
Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.
A fusion network for semantic segmentation using RGB-D data
NASA Astrophysics Data System (ADS)
Yuan, Jiahui; Zhang, Kun; Xia, Yifan; Qi, Lin; Dong, Junyu
2018-04-01
Semantic scene parsing is considerable in many intelligent field, including perceptual robotics. For the past few years, pixel-wise prediction tasks like semantic segmentation with RGB images has been extensively studied and has reached very remarkable parsing levels, thanks to convolutional neural networks (CNNs) and large scene datasets. With the development of stereo cameras and RGBD sensors, it is expected that additional depth information will help improving accuracy. In this paper, we propose a semantic segmentation framework incorporating RGB and complementary depth information. Motivated by the success of fully convolutional networks (FCN) in semantic segmentation field, we design a fully convolutional networks consists of two branches which extract features from both RGB and depth data simultaneously and fuse them as the network goes deeper. Instead of aggregating multiple model, our goal is to utilize RGB data and depth data more effectively in a single model. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and achieve competitive results with the state-of-the-art methods.
Analysis of the Command and Control Segment (CCS) attitude estimation algorithm
NASA Technical Reports Server (NTRS)
Stockwell, Catherine
1993-01-01
This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.
NASA Technical Reports Server (NTRS)
Kerley, James J., Jr. (Inventor)
1990-01-01
A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Tan, Kimberly-Anne; Lim, Joel L; Choong, Denise; Lau, Leok-Lim; Liu, Ka-Po G; Wong, Hee-Kit
2017-10-01
A cross-sectional study of prospectively collected data. To compare lumbar spine alignment in six common postures, and estimate loss in range of motion (ROM) relative to standing. Ideal position for fusion of lumbar spine remains unknown. Although surgical fusion is necessary for deformity correction and symptom relief, the final position in which the vertebrae are immobilized should provide maximum residual function. Data were collected prospectively from 70 patients with low back pain recruited over a year. All subjects had x-rays performed in slump sitting, forward bending, supine, half squatting, standing, and backward bending postures. ROM quantified in terms of sagittal global and segmental Cobb angles was measured from L1 to S1. Loss of ROM relative to standing was calculated for each posture. Analysis of variance and unpaired t tests were used to identify differences in alignment between postures. Slump sitting gives the greatest lumbar flexion followed by forward bending, and supine postures (P < 0.001). Backward bending produces greater lumbar extension than standing (P = 0.035). Half-squatting and standing postures were not significantly different (P = 0.938). For all postures, L4-5 and L5-S1 segments remained in lordosis, with L4-5 having greater ROM than L5-S1. L1-2 turns kyphotic in lying supine, L2-3 at forward bending, and L3-4 at slump sitting in the form of a "kyphosing cascade." Should the entire lumbar spine be fused in standing position from L1-S1, there would likely be a mean loss of 47.6° of lumbar flexion and 5.9° of lumbar extension. The present study demonstrates the extent of flexibility required of the lumbar spine in assuming various postures. It also enables comparison of the differences in degree of motion occurring in the lumbar spine, both across postures and across segments. Significant loss in ROM, particularly flexion, is anticipated with fusion modeled after the lordotic standing lumbar spine. 2.
From Fractal Trees to Deltaic Networks
NASA Astrophysics Data System (ADS)
Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.
2013-12-01
Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated. Network Example
Hong, Ji Wook; Yun, Sung-Cheol; Sung, Kyung Rim; Lee, Jong Eun
2016-06-01
To compare the clinical and anterior segment anatomical features in primary angle closure sub-groups based on configurations of iris root insertion. Primary angle closure patients were imaged using anterior segment optical coherence tomography. Anterior chamber depth, iris curvature, iris thickness (IT) at the scleral spur and 500, 750, and 1,500 µm from the scleral spur (IT0, IT500, IT750, and IT1500), lens vault, iris area, angle opening distance (AOD500), angle recess area (ARA750), and trabecular iris space area (TISA750) were measured. Iris root insertion was categorized into a non-basal insertion group (NBG) and basal insertion group (BG). In total, 43 eyes of 39 participants belonged to the NBG and 89 eyes of 53 participants to the BG. The mean age of participants was greater in the NBG than the BG (62.7 ± 5.7 vs. 59.8 ± 7.3 years, p = 0.043), and the baseline intraocular pressure was higher in the BG than the NBG (16.4 ± 4.4 vs. 14.9 ± 3.3 mmHg, p = 0.037). The BG showed a greater IT0 (0.265 ± 0.04 vs. 0.214 ± 0.03 mm, p < 0.001) and iris area (1.59 ± 0.24 vs. 1.52 ± 0.27 mm(2), p = 0.045), lower ARA750 (0.112 ± 0.08 vs. 0.154 ± 0.08 mm(2), p = 0.017) and AOD500 (0.165 ± 0.07 vs. 0.202 ± 0.08 mm, p = 0.014) compared to the NBG. The BG had a narrower anterior chamber angle, thicker peripheral iris, and higher pretreatment intraocular pressure.
Partitioning Pythagorean Triangles Using Pythagorean Angles
ERIC Educational Resources Information Center
Swenson, Carl E.; Yandl, Andre L.
2012-01-01
Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.
Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2014-01-01
Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615
Extraction and Classification of Human Gait Features
NASA Astrophysics Data System (ADS)
Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi
In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.
Ricard, Daniel; Ferri, Joël
2009-08-01
We describe a new surgical procedure to improve stability when counterclockwise rotation of the maxillomandibular complex and the occlusal plane is intended. This preliminary prospective study evaluated 10 patients (8 female patients and 2 male patients) who each underwent maxillomandibular surgical advancement with counterclockwise rotation of the occlusal plane. A mandibular counterclockwise rotation was done in all cases with bilateral ramus sagittal split osteotomy. After the split of the ramus had been completed, a vertical osteotomy was done distally to the second molar on the internal ramus segment. With the completion of this vertical osteotomy, the internal ramus segment became completely mobile. All osteotomies were stabilized with rigid internal fixation by use of plates with monocortical screws. Ten patients have been treated with the "mobilizing vertical osteotomy of the internal ramus segment." The mean reduction of the occlusal plane angle was 10.1 degrees , showing a substantial counterclockwise rotation of the maxillomandibular complex. All patients had significant improvement of their facial balance. After a 1-year follow-up period, all cases but 1 showed very good stability of their occlusion and occlusal plane angle. An 11.4% relapse of the forward movement of the mandible was noted. On the basis of this prospective study, we conclude that when performing a counterclockwise rotation of the maxillomandibular complex, the mobilizing vertical osteotomy of the internal ramus segment combined with the sagittal split osteotomy of the mandible potentially enhances the occlusal plane angle and occlusal stability after a 1-year period.
Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring
Alldieck, Thiemo; Bahnsen, Chris H.; Moeslund, Thomas B.
2016-01-01
In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion. PMID:27869730
Wolf, H; Gross, F; Merz, A; Schuler, A
2013-03-01
Liver segment definition due to Couinaud is the basis for localisation of focal liver lesions in imaging, in the follow-up or for planning operations. A literature review shows variety in segment definition and the frontier between segment II and III in the left liver lobe, in the course of the portal vein level and in variations of liver veins. The aim of this study is to demonstrate liver segment anatomy in sonography compared to anatomic preparations and the literature. This leads to a proposal for a unique nomenclature and illustration. 152 liver healthy persons (77 F, 75 M, mean age 63.3 years (18 - 91 years) were examined with standardised abdominal ultrasound in longitudinal, transversal and axis planes. (Angle) measurements were taken to define the left hepatic vein (Fissura sinistra), the Ramus umbilicalis of the portal vein (Fissura umbilicalis), the portal vein level and the amount and variations of the liver veins. The left hepatic vein was found with a mean angle of 24° (0 - 70°) left to the median axis, the Pars umbilicalis of the portal vein wasalmost strictly in the mid axis. The portal vein level was located with a mean angle of 61° (5 - 110°) right to the median with no variations of the two main branches. 27 (18 %) out of the remaining 151 patients showed variations of the liver veins: 7 × (4.6 %) a doubled mid hepatic vein, 12 × (8 %) a doubled left hepatic vein, 4 × (2.7 %) 3 left liver veins were found with a short (≤ 1 cm) common trunk, 1 × each (0.7 %) four left liver veins with a short common trunk, one trifurcation of the mid hepatic vein, one doubled right liver vein and one common trunk (2 cm) of all 3 main liver veins leading to the inferior V. cava. The surgical functional liver segment definition by Couinaud is the basis for localisation of focal liver lesions. The frontier between segment II and III is mainly described as a horizontal plane in the literature. The course of the left liver vein (fissura sinistra) has a mean angle of 24° left to the median and not like the umbilical fissure, which is found almost strictly in the median plane. The left hepatic vein(s), their course and liver vein variations are well demonstrated by sonography (99.3 % in this study). Anatomic landmarks as well as variations and a unique nomenclature should be well known and considered in the localisation of focal liver lesions, their feeding vessels and liver segment anatomy. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.
1999-01-01
During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.
A new method for automated discontinuity trace mapping on rock mass 3D surface model
NASA Astrophysics Data System (ADS)
Li, Xiaojun; Chen, Jianqin; Zhu, Hehua
2016-04-01
This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.
Brain tissue segmentation based on DTI data
Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.
2008-01-01
We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258
Microstructural Organization of Elastomeric Polyurethanes with Siloxane-Containing Soft Segments
NASA Astrophysics Data System (ADS)
Choi, Taeyi; Weklser, Jadwiga; Padsalgikar, Ajay; Runt, James
2011-03-01
In the present study, we investigate the microstructure of two series of segmented polyurethanes (PUs) containing siloxane-based soft segments and the same hard segments, the latter synthesized from diphenylmethane diisocyanate and butanediol. The first series is synthesized using a hydroxy-terminated polydimethylsiloxane macrodiol and varying hard segment contents. The second series are derived from an oligomeric diol containing both siloxane and aliphatic carbonate species. Hard domain morphologies were characterized using tapping mode atomic force microscopy and quantitative analysis of hard/soft segment demixing was conducted using small-angle X-ray scattering. The phase transitions of all materials were investigated using DSC and dynamic mechanical analysis, and hydrogen bonding by FTIR spectroscopy.
Krishnaiah, M.; Babu, V.H.H. Surendra; Sankar, A. Uma Ravi; Raju, C. Naga; Kant, Rajni
2010-01-01
In the title compound, C25H28NO2PS, the cyclodecene ring exhibits a crown conformation. The two dimethylbenzene rings which are fused symmetrically on either side of the ten-membered ring, make dihedral angles of 20.2 (1) and 18.0 (1)°. The phenyl ring substituted at P is perpendicular to the heterocyclic ring, making a dihedral angle of 88.4 (1)°. The crystal structure is stabilized by very weak intramolecular C—H⋯O hydrogen bonding. PMID:21580010
3-Ethyl-5-(4-methoxyphenoxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine
Ranjith, S.; SubbiahPandi, A.; Suresh, A. D.; Pitchumani, K.
2011-01-01
In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking interaction between the phenyl rings of neighbouring molecules [centroid–centroid distance = 3.772 (2) Å, interplanar distance = 3.546 (2) Å and slippage = 1.286 (2) Å]. PMID:21837144
Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu
2012-05-01
SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.
Detection technology of polarization target based on curvelet transform in turbid liquid
NASA Astrophysics Data System (ADS)
Zhang, Su; Duan, Jin; Fu, Qiang; Zhan, Juntong; Ma, Wanzhuo
2015-08-01
To suppress the interference of the target detecting in the turbid medium, a kind of polarization detection technology based on Curvelet transform was applied. This method firstly adjusts the angles of polarizing film to get the intensity images of the situations at 0°,60° and 120°, then deduces the images of Stokes vectors, degree of polarization (DOP) and polarization angle (PA) according to the Mueller matrix. At last the DOP and intensity images can be decomposed by Curvelet transform to realize the fusion of the high and low coefficients respectively, after the processed coefficients are reconstructed, the target which is easier to detect can be achieved. To prove this method, many targets in turbid medium have been detected by polarization method and fused their DOP and intensity images with Curvelet transform algorithm. As an example screws in moderate and high concentration liquid are presented respectively, from which we can see the unpolarized targets are less obvious in higher concentration liquid. When the DOP and intensity images are fused by Curvelet transform, the targets are emerged clearly out of the turbid medium, and the values of the quality evaluation parameters in clarity, degree of contract and spatial frequency are prominently enhanced comparing with the unpolarized images, which can show the feasibility of this method.
Nguyen, Donna; Minnal, Vandana R.
2016-01-01
Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300
Peters, Marloes J M; Wierts, Roel; Jutten, Elisabeth M C; Halders, Servé G E A; Willems, Paul C P H; Brans, Boudewijn
2015-11-01
A complication after spinal fusion surgery is pseudarthrosis, but its radiological diagnosis is of limited value. (18)F-fluoride PET with its ability to assess bone metabolism activity could be of value. The goal of this study was to assess the clinical feasibility of calculating the static standardized uptake value (SUV) from a short dynamic scan without the use of blood sampling, thereby obtaining all dynamic and static parameters in a scan of only 30 min. This approach was tested on a retrospective patient population with persisting pain after spinal fusion surgery. In 16 patients, SUVs (SUV max, SUV mean) and kinetic parameters (K 1, k 2, k 3, v b, K i,NLR, K 1/k 2, k 3/(k 2 + k 3), K i,patlak) were derived from static and dynamic PET/CT scans of operated and control regions of the spine, after intravenous administration of 156-214 MBq (18)F-fluoride. Parameter differences between control and operated regions, as well as between pseudarthrosis and fused segments were evaluated. SUVmean at 30 and 60 min was calculated from kinetic parameters obtained from the dynamic data set (SUV mean,2TCM). Agreement between measured and calculated SUVs was evaluated through Bland-Altman plots. Overall, statistically significant differences between control and operated regions were observed for SUV max, SUV mean, K i,NLR, K i,patlak, K 1/k 2 and k 3/(k 2 + k 3). Diagnostic CT showed pseudarthrosis in 6/16 patients, while in 10/16 patients, segments were fused. Of all parameters, only those regarding the incorporation of bone [K i,NLR, K i,patlak, k 3/(k 2 + k 3)] differed statistically significant in the intervertebral disc space between the pseudarthrosis and fused patients group. The mean values of the patient-specific blood clearance rate [Formula: see text] differed statistically significant between the pseudarthrosis and the fusion group, with a p value of 0.011. This may correspond with the lack of statistical significance of the SUV values between pseudarthrosis and fused patients. Bland-Altman plots show that calculated SUV mean,2TCM values corresponded well with the measured SUV mean values. This study shows the feasibility of a 30-min dynamic (18)F-fluoride PET/CT scanning and this may provide dynamic parameters clinically relevant to the diagnosis of pseudarthrosis.
Development of the zebrafish mesonephros
Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.
2015-01-01
The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367
Formica, Matteo; Cavagnaro, Luca; Basso, Marco; Zanirato, Andrea; Felli, Lamberto; Formica, Carlo
2015-11-01
To evaluate the results of a novel rigid-dynamic stabilization technique in lumbar degenerative segment diseases (DSD), expressly pointing out the preservation of postoperative lumbar lordosis (LL). Forty-one patients with one level lumbar DSD and initial disc degeneration at the adjacent level were treated. Circumferential lumbar arthrodesis and posterior hybrid instrumentation were performed to preserve an initial disc degeneration above the segment that has to be fused. Clinical and spino-pelvic parameters were evaluated pre- and postoperatively. At 2-year follow-up, a significant improvement of clinical outcomes was reported. No statistically significant difference was noted between postoperative and 2-year follow-up in LL and in disc/vertebral body height ratio at the upper adjacent fusion level. When properly selected, this technique leads to good results. A proper LL should be achieved after any hybrid stabilization to preserve the segment above the fusion.
Change Detection of Remote Sensing Images by Dt-Cwt and Mrf
NASA Astrophysics Data System (ADS)
Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.
2017-05-01
Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.
Arya, Shobhit; Hadjievangelou, Nancy; Lei, Su; Kudo, Hiromi; Goldin, Robert D; Darzi, Ara W; Elson, Daniel S; Hanna, George B
2013-09-01
Bipolar radiofrequency (RF) induced tissue fusion is believed to have the potential to seal and anastomose intestinal tissue thereby providing an alternative to current techniques which are associated with technical and functional complications. This study examines the mechanical and cellular effects of RF energy and varying compressive pressures when applied to create ex vivo intestinal seals. A total of 299 mucosa-to-mucosa fusions were formed on ex vivo porcine small bowel segments using a prototype bipolar RF device powered by a closed-loop, feedback-controlled RF generator. Compressive pressures were increased at 0.05 MPa intervals from 0.00 to 0.49 MPa and RF energy was applied for a set time period to achieve bowel tissue fusion. Seal strength was subsequently assessed using burst pressure and tensile strength testing, whilst morphological changes were determined through light microscopy. To further identify the subcellular tissue changes that occur as a result of RF energy application, the collagen matrix in the fused area of a single bowel segment sealed at an optimal pressure was examined using transmission electron microscopy (TEM). An optimal applied compressive pressure range was observed between 0.10 and 0.25 MPa. Light microscopy demonstrated a step change between fused and unfused tissues but was ineffective in distinguishing between pressure levels once tissues were sealed. Non uniform collagen damage was observed in the sealed tissue area using TEM, with some areas showing complete collagen denaturation and others showing none, despite the seal being complete. This finding has not been described previously in RF-fused tissue and may have implications for in vivo healing. This study shows that both bipolar RF energy and optimal compressive pressures are needed to create strong intestinal seals. This finding suggests that RF fusion technology can be effectively applied for bowel sealing and may lead to the development of novel anastomosis tools.
CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honig, Z. N.; Reid, M. J., E-mail: mreid@cfa.harvard.edu
2015-02-10
We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiralmore » arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.« less
Segmented amplifier configurations for laser amplifier
Hagen, Wilhelm F.
1979-01-01
An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.
Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data
NASA Astrophysics Data System (ADS)
Pang, Y.; Li, Z.
2016-12-01
Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard
2017-12-01
Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.
Subudhi, Badri Narayan; Thangaraj, Veerakumar; Sankaralingam, Esakkirajan; Ghosh, Ashish
2016-11-01
In this article, a statistical fusion based segmentation technique is proposed to identify different abnormality in magnetic resonance images (MRI). The proposed scheme follows seed selection, region growing-merging and fusion of multiple image segments. In this process initially, an image is divided into a number of blocks and for each block we compute the phase component of the Fourier transform. The phase component of each block reflects the gray level variation among the block but contains a large correlation among them. Hence a singular value decomposition (SVD) technique is adhered to generate a singular value of each block. Then a thresholding procedure is applied on these singular values to identify edgy and smooth regions and some seed points are selected for segmentation. By considering each seed point we perform a binary segmentation of the complete MRI and hence with all seed points we get an equal number of binary images. A parcel based statistical fusion process is used to fuse all the binary images into multiple segments. Effectiveness of the proposed scheme is tested on identifying different abnormalities: prostatic carcinoma detection, tuberculous granulomas identification and intracranial neoplasm or brain tumor detection. The proposed technique is established by comparing its results against seven state-of-the-art techniques with six performance evaluation measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Project W-320, 241-C-106 sluicing electrical calculations, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.W.
1998-08-07
This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing;more » Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.« less
N-(1-Allyl-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen
2013-11-30
The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol-ecules linked by an N-H⋯O hydrogen bond. The mol-ecules show different conformations. In the first mol-ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl-benzene-sulfonamide group is 78.8 (1)°. On the other hand, in the second mol-ecule, the dihedral angles between the indazole plane and the allyl and methyl-benzene-sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol-ecules are further linked by N-H⋯N and C-H⋯O hydrogen bonds, forming a three-dimensional network.
Sakata, Lisandro M; Lavanya, Raghavan; Friedman, David S; Aung, Han T; Gao, Hong; Kumar, Rajesh S; Foster, Paul J; Aung, Tin
2008-05-01
To compare the performance of gonioscopy and anterior segment (AS) optical coherence tomography (OCT) in detecting angle closure in the different quadrants of the anterior chamber angle (ACA). Cross-sectional observational study. Five hundred two consecutive subjects more than 50 years of age with no previous ophthalmic problems recruited from a community clinic in Singapore. All subjects underwent gonioscopy and AS OCT imaging in the dark. Using gonioscopy, the ACA was graded using the Scheie system by a single examiner masked to AS OCT findings. The ACA in a particular quadrant was classified as closed if the posterior trabecular meshwork could not be seen on gonioscopy. A closed ACA on AS OCT imaging was defined by the presence of any contact between the iris and angle wall anterior to the scleral spur. After excluding eyes with poor image quality, a total of 423 right eyes were included in the analysis. A closed angle in at least 1 quadrant was observed in 59% of the eyes by AS OCT and in 33% of the eyes by gonioscopy (P<0.001), with fair agreement between the two methods (kappa = 0.40). The frequency of closed angles by AS OCT and gonioscopy were 48% versus 29% superiorly, 43% versus 22% inferiorly, 18% versus 14% nasally, and 12% versus 20% temporally, respectively. Of the 119 of 1692 quadrants that were closed on gonioscopy but open on AS OCT, a steep iris profile was present in 61 (51%) of 119 quadrants on AS OCT, and of the 276 of 1692 quadrants that were open on gonioscopy but closed on AS OCT, 196 (71%) of 276 quadrants showed short iridoangle contact on AS OCT. The highest rates of closed angles on gonioscopy and AS OCT images were observed in the superior quadrant. Anterior segment OCT tended to detect more closed ACAs than gonioscopy, particularly in the superior and inferior quadrants. Variations in the iris profile and level of iridoangle contact also may explain some of the differences seen between gonioscopy and AS OCT.
Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.
Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping
2014-01-01
The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.
Amoroso, N; Errico, R; Bruno, S; Chincarini, A; Garuccio, E; Sensi, F; Tangaro, S; Tateo, A; Bellotti, R
2015-11-21
In this study we present a novel fully automated Hippocampal Unified Multi-Atlas-Networks (HUMAN) algorithm for the segmentation of the hippocampus in structural magnetic resonance imaging. In multi-atlas approaches atlas selection is of crucial importance for the accuracy of the segmentation. Here we present an optimized method based on the definition of a small peri-hippocampal region to target the atlas learning with linear and non-linear embedded manifolds. All atlases were co-registered to a data driven template resulting in a computationally efficient method that requires only one test registration. The optimal atlases identified were used to train dedicated artificial neural networks whose labels were then propagated and fused to obtain the final segmentation. To quantify data heterogeneity and protocol inherent effects, HUMAN was tested on two independent data sets provided by the Alzheimer's Disease Neuroimaging Initiative and the Open Access Series of Imaging Studies. HUMAN is accurate and achieves state-of-the-art performance (Dice[Formula: see text] and Dice[Formula: see text]). It is also a robust method that remains stable when applied to the whole hippocampus or to sub-regions (patches). HUMAN also compares favorably with a basic multi-atlas approach and a benchmark segmentation tool such as FreeSurfer.
Dentalmaps: Automatic Dental Delineation for Radiotherapy Planning in Head-and-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariat, Juliette, E-mail: jthariat@hotmail.com; Ramus, Liliane; INRIA
Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy. Methods and Materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query. Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as groundmore » truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure. Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.« less
NASA Astrophysics Data System (ADS)
Amoroso, N.; Errico, R.; Bruno, S.; Chincarini, A.; Garuccio, E.; Sensi, F.; Tangaro, S.; Tateo, A.; Bellotti, R.; Alzheimers Disease Neuroimaging Initiative,the
2015-11-01
In this study we present a novel fully automated Hippocampal Unified Multi-Atlas-Networks (HUMAN) algorithm for the segmentation of the hippocampus in structural magnetic resonance imaging. In multi-atlas approaches atlas selection is of crucial importance for the accuracy of the segmentation. Here we present an optimized method based on the definition of a small peri-hippocampal region to target the atlas learning with linear and non-linear embedded manifolds. All atlases were co-registered to a data driven template resulting in a computationally efficient method that requires only one test registration. The optimal atlases identified were used to train dedicated artificial neural networks whose labels were then propagated and fused to obtain the final segmentation. To quantify data heterogeneity and protocol inherent effects, HUMAN was tested on two independent data sets provided by the Alzheimer’s Disease Neuroimaging Initiative and the Open Access Series of Imaging Studies. HUMAN is accurate and achieves state-of-the-art performance (Dice{{}\\text{ADNI}} =0.929+/- 0.003 and Dice{{}\\text{OASIS}} =0.869+/- 0.002 ). It is also a robust method that remains stable when applied to the whole hippocampus or to sub-regions (patches). HUMAN also compares favorably with a basic multi-atlas approach and a benchmark segmentation tool such as FreeSurfer.
Kim, Won; Chivukula, Srinivas; Hauptman, Jason; Pouratian, Nader
2016-01-01
Background/Aims Thalamic deep brain stimulation (DBS) for the treatment of medically refractory pain has largely been abandoned on account of its inconsistent and oftentimes poor efficacy. Our aim here was to use diffusion tensor imaging (DTI)-based segmentation to assess the internal thalamic nuclei of patients who have undergone thalamic DBS for intractable pain and retrospectively correlate lead position with clinical outcome. Methods DTI-based segmentation was performed on 5 patients who underwent sensory thalamus DBS for chronic pain. Postoperative computed tomography (CT) images obtained for electrode placement were fused with preoperative MRIs that had undergone DTI-based thalamic segmentation. Sensory thalamus maps of 4 patients were analyzed for lead positioning and interpatient variability. Results Four patients who experienced significant pain relief following DBS demonstrated contact positions within the DTI-determined sensory thalamus or in its vicinity, whereas one who did not respond to stimulation did not. Only four voxels (2%) within the sensory thalamus were mutually shared among patients; 108 voxels (58%) were uniquely represented. Conclusions DTI-based segmentation of the thalamus can be used to confirm thalamic lead placement relative to the sensory thalamus, and may serve as a useful tool to guide thalamic DBS electrode implantation in the future. PMID:27537848
Muriel-Hoyos, Felipe; Santana-Piñeros, Ana María; Cruz-Quintana, Yanis; Suárez-Morales, Eduardo
2015-11-01
A new copepod species, Ergasilus curticrus n. sp. is described based on 14 female specimens collected from the gills of the characid teleost Bryconops giacopinii Fernández-Yépez, captured in the Vichada River Basin in Colombia. The new species has a unique combination of characters including: (i) 2-segmented endopods in legs 1 and 4; (ii) a semi-pinnate, falciform seta on the terminal segment of the first leg exopod; (iii) a 1-segmented fourth leg exopod; (iv) a reduced fifth leg with a single seta; and (v) a circular structure fused to a groove near the lateral margins of the second pedigerous tergite. Only two other known congeners have a 1-segmented leg 4 exopod, E. coatiarus Araujo & Varella, 1998 and E. iheringi Tidd, 1942. Among other characters, they differ from the new species by the lack of a semi-pinnate, falciform seta on the terminal exopodal segment of leg 1 and in the structure and armature of the fifth leg. The prevalence of E. curticrus n. sp. was 13.6% and its mean abundance was 0.4 specimens per host. This is the first new species of Ergasilus Nordmann, 1832 described from the Orinoco River Basin.
Self-Paced Physics, Segments 19-23.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Five study segments of the Self-Paced Physics Course materials are presented in this fourth problems and solutions book used as a part of student course work. The subject matter is related to electric charges, insulators, Coulomb's law, electric fields, lines of force, solid angles, conductors, motion of charged particles, dipoles, electric flux,…
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-01-01
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154
Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco
2015-01-01
The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076
Nongpiur, Monisha E; Haaland, Benjamin A; Perera, Shamira A; Friedman, David S; He, Mingguang; Sakata, Lisandro M; Baskaran, Mani; Aung, Tin
2014-01-01
To develop a score along with an estimated probability of disease for detecting angle closure based on anterior segment optical coherence tomography (AS OCT) imaging. Cross-sectional study. A total of 2047 subjects 50 years of age and older were recruited from a community polyclinic in Singapore. All subjects underwent standardized ocular examination including gonioscopy and imaging by AS OCT (Carl Zeiss Meditec). Customized software (Zhongshan Angle Assessment Program) was used to measure AS OCT parameters. Complete data were available for 1368 subjects. Data from the right eyes were used for analysis. A stepwise logistic regression model with Akaike information criterion was used to generate a score that then was converted to an estimated probability of the presence of gonioscopic angle closure, defined as the inability to visualize the posterior trabecular meshwork for at least 180 degrees on nonindentation gonioscopy. Of the 1368 subjects, 295 (21.6%) had gonioscopic angle closure. The angle closure score was calculated from the shifted linear combination of the AS OCT parameters. The score can be converted to an estimated probability of having angle closure using the relationship: estimated probability = e(score)/(1 + e(score)), where e is the natural exponential. The score performed well in a second independent sample of 178 angle-closure subjects and 301 normal controls, with an area under the receiver operating characteristic curve of 0.94. A score derived from a single AS OCT image, coupled with an estimated probability, provides an objective platform for detection of angle closure. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Brock, T. G.; Kaufman, P. B.
1988-01-01
Pulvini of excised segments from oats (Avena sativa L. cv Victory) were treated unilaterally with indoleacetic acid (IAA) or gibberellic acid (GA3) with or without gravistimulation to assess the effect of gravistimulation on hormone action. Optimum pulvinus elongation growth (millimeters) and segment curvature (degrees) over 24 hours were produced by 100 micromolar IAA in vertical segments. The curvature response to IAA at levels greater than 100 micromolar, applied to the lower sides of gravistimulated (90 degrees) pulvini, was significantly less than the response to identical levels in vertical segments. Furthermore, the bending response of pulvini to 100 micromolar IAA did not vary significantly over a range of presentation angles between 0 and 90 degrees. In contrast, the response to IAA at levels less than 10 micromolar, with gravistimulation, was approximately the sum of the responses to gravistimulation alone and to IAA without gravistimulation. This was observed over a range of presentation angles. Also, GA3 (0.3-30 micromolar) applied to the lower sides of horizontal segments significantly enhanced pulvinus growth and segment curvature, although exogenous GA3 over a range of concentrations had no effect on pulvinus elongation growth or segment curvature in vertical segments. The response to GA3 (10 micromolar) plus IAA (1.0 or 100 micromolar) was additive for either vertical or horizontal segments. These results indicate that gravistimulation produces changes in pulvinus responsiveness to both IAA and GA3 and that the changes are unique for each growth regulator. It is suggested that the changes in responsiveness may result from processes at the cellular level other than changes in hormonal sensitivity.
Mansouri, Mohammadreza; Ramezani, Farshid; Moghimi, Sasan; Tabatabaie, Ali; Abdi, Fatemeh; He, Mingguang; Lin, Shan C
2014-10-21
To describe anterior segment optical coherence tomography (AS-OCT) parameters in phacomorphic angle closure eyes, mature cataract eyes, and their fellow eyes, and identify those parameters that could be used to differentiate phacomorphic angle closure eyes from those with mature cataract and no phacomorphic angle closure. In this cross-sectional study, a total of 33 phacomorphic angle closure subjects and 34 control patients with unilateral mature cataracts were enrolled. All patients underwent AS-OCT imaging and A-scan biometry of both eyes. Anterior chamber depth (ACD), anterior chamber area (ACA), iris thickness, iris curvature, lens vault (LV), and angle parameters, including angle opening distance (AOD750) and trabecular-iris space area (TISA750), were measured in qualified images using customized software and compared among eyes with phacomorphic angle closure, mature cataract eyes, and their fellow eyes. There was no significant difference in axial length among the four groups. Phacomorphic angle closure had the smallest angle (AOD750, TISA750) and anterior chamber parameters (ACD, ACA, anterior chamber width) and the greatest LV among the groups. This pattern was similar when comparing fellow eyes of mature cataract patients and fellow eyes of phacomorphic angle closure. Anterior chamber area less than 18.62 mm(2), ACD less than 2.60 mm, LV greater than 532.0 μm, and AOD750 less than 0.218 mm had the highest odds ratios (ORs) for distinguishing fellow eyes of phacomorphic angle closure versus fellow eyes of mature cataracts, with OR values of 9.90, 8.31, 7.91, and 7.91, respectively. Logistic regression showed that ACA less than 18.62 was the major parameter associated with fellow eyes of phacomorphic angle closure (OR = 10.96, P < 0.001). Anterior chamber depth, ACA, AOD750, and LV are powerful indicators in differentiating phacomorphic angle closure eyes from those with mature cataract and their fellow eyes. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Granados, Alejandro; Vakharia, Vejay; Rodionov, Roman; Schweiger, Martin; Vos, Sjoerd B; O'Keeffe, Aidan G; Li, Kuo; Wu, Chengyuan; Miserocchi, Anna; McEvoy, Andrew W; Clarkson, Matthew J; Duncan, John S; Sparks, Rachel; Ourselin, Sébastien
2018-06-01
The accurate and automatic localisation of SEEG electrodes is crucial for determining the location of epileptic seizure onset. We propose an algorithm for the automatic segmentation of electrode bolts and contacts that accounts for electrode bending in relation to regional brain anatomy. Co-registered post-implantation CT, pre-implantation MRI, and brain parcellation images are used to create regions of interest to automatically segment bolts and contacts. Contact search strategy is based on the direction of the bolt with distance and angle constraints, in addition to post-processing steps that assign remaining contacts and predict contact position. We measured the accuracy of contact position, bolt angle, and anatomical region at the tip of the electrode in 23 post-SEEG cases comprising two different surgical approaches when placing a guiding stylet close to and far from target point. Local and global bending are computed when modelling electrodes as elastic rods. Our approach executed on average in 36.17 s with a sensitivity of 98.81% and a positive predictive value (PPV) of 95.01%. Compared to manual segmentation, the position of contacts had a mean absolute error of 0.38 mm and the mean bolt angle difference of [Formula: see text] resulted in a mean displacement error of 0.68 mm at the tip of the electrode. Anatomical regions at the tip of the electrode were in strong concordance with those selected manually by neurosurgeons, [Formula: see text], with average distance between regions of 0.82 mm when in disagreement. Our approach performed equally in two surgical approaches regardless of the amount of electrode bending. We present a method robust to electrode bending that can accurately segment contact positions and bolt orientation. The techniques presented in this paper will allow further characterisation of bending within different brain regions.
Wu, Ziqiang; Lin, Jialiu; Huang, Jingjing
2015-01-01
Purpose To describe a novel method for quantitative measurement of area parameters in ocular anterior segment ultrasound biomicroscopy (UBM) images using Photoshop software and to assess its intraobserver and interobserver reproducibility. Methods Twenty healthy volunteers with wide angles and twenty patients with narrow or closed angles were consecutively recruited. UBM images were obtained and analyzed using Photoshop software by two physicians with different-level training on two occasions. Borders of anterior segment structures including cornea, iris, lens, and zonules in the UBM image were semi-automatically defined by the Magnetic Lasso Tool in the Photoshop software according to the pixel contrast and modified by the observers. Anterior chamber area (ACA), posterior chamber area (PCA), iris cross-section area (ICA) and angle recess area (ARA) were drawn and measured. The intraobserver and interobserver reproducibilities of the anterior segment area parameters and scleral spur location were assessed by limits of agreement, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Results All of the parameters were successfully measured by Photoshop. The intraobserver and interobserver reproducibilities of ACA, PCA, and ICA were good, with no more than 5% CV and more than 0.95 ICC, while the CVs of ARA were within 20%. The intraobserver and interobserver reproducibilities for defining the spur location were more than 0.97 ICCs. Although the operating times for both observers were less than 3 minutes per image, there was significant difference in the measuring time between two observers with different levels of training (p<0.001). Conclusion Measurements of ocular anterior segment areas on UBM images by Photoshop showed good intraobserver and interobserver reproducibilties. The methodology was easy to adopt and effective in measuring. PMID:25803857
Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC).
Hinrichs, Heiko; Hinrichs, Jan B; Gutberlet, Marcel; Lenzen, Henrike; Raatschen, Hans-Juergen; Wacker, Frank; Ringe, Kristina I
2016-04-01
To assess the value of variable flip angle-based T1 liver mapping on gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC) for evaluation of global and segmental liver function, and determine a possible correlation with disease severity. Sixty-one patients (19 female, 42 male; mean age 41 years) with PSC were included in this prospective study. T1 mapping was performed using a 3D-spoiled GRE sequence (flip angles 5°, 15°, 20°, 30°) before, 16 (HP1) and 132 min (HP2) after contrast injection. T1 values were measured and compared (Wilcoxon-Test) by placing ROIs in each liver segment. The mean reduction of T1 relaxation time at HP1 and HP2 was calculated and correlated with liver function tests (LFTs), MELD, Mayo Risk and Amsterdam Scores (Spearman correlation). Significant changes of T1 relaxation times between non-enhanced and gadoxetate disodium-enhanced MRI at HP1 and HP2 could be observed in all liver segments (p < 0.0001). A significant correlation of T1 reduction could be observed with LFTs, MELD and Mayo Risk Score (p < 0.05). T1 mapping of the liver using a variable flip angle-based sequence is a feasible technique to evaluate liver function on a global level, and may be extrapolated on a segmental level in patients with PSC. • T1 mapping enables evaluation of global liver function in PSC. • T1 relaxation time reduction correlates with the MELD and MayoRisk Score. • Extrapolated, T1 mapping may allow for segmental evaluation of liver function.
Late glaucoma after interstitial keratitis.
Grant, W M
1975-01-01
In a systematic study of 45 patients who had syphilitic interstitial keratitis early in life and, many years later, were discovered to have glaucoma, there was evidence of two different but equally common mechanisms. In one group of patients, a deep-chamber type of glaucoma was superimposed on old inflammatory changes, was characteristically refractory to medical treatment, but did well with filtering surgery. The other group of patients had reversible angle-closure glaucoma associated with anatomically small anterior segments, and typically responded well to iridectomy. The late, refractory, deep-chamber type of glaucoma may involve endothelialization and formation of glass membrane in the angle, as seen in one excised eye. Occurrence of the shallow-chamber, reversible angle-closure type of glaucoma after interstitial keratitis may be coincidental, since no other evidence supports the idea that small anterior segments might be particularly prevalent among patients who have had congenital syphilis or interstitial keratitis.
Zebardast, Nazlee; Kavitha, Srinivasan; Krishnamurthy, Palaniswamy; Friedman, David S; Nongpiur, Monisha E; Aung, Tin; Quigley, Harry A; Ramulu, Pradeep Y; Venkatesh, Rengaraj
2016-12-01
To compare anterior segment optical coherence tomography (ASOCT) angle morphology before and after laser peripheral iridotomy (LPI) in a cohort of South Indian subjects with primary angle-closure suspect (PACS) or primary angle-closure/primary angle-closure glaucoma (PAC/PACG) and to examine baseline parameters associated with angle widening. Prospective observational study. A total of 244 subjects aged ≥30 years with PACS or PAC/PACG in at least 1 eye. The ASOCT images and angle gonioscopic grades were analyzed for all subjects at baseline and 2 weeks after LPI. Multivariable linear and logistic regression models were used to determine predictors of angle widening (change in mean angle opening distance [AOD750]) and angle opening (all 4 quadrants with trabecular meshwork [TM] visible on gonioscopy after LPI). Change in ASOCT parameters with LPI and baseline predictors of angle widening. Laser peripheral iridotomy resulted in angle widening on ASOCT with significant increases in AOD750, angle recess area, and trabecular iris surface area (P < 0.05 for all). Gonioscopically, 44.7% of all subjects had open angles in all 4 quadrants after LPI, with a greater percentage of angles open in the PACS group compared with the PAC/PACG group (52.4% vs. 36.4%; P = 0.01). In multivariable regression analyses, greater postoperative angle widening as defined by change in AOD750 was associated with shorter baseline AOD750 and axial length, and greater baseline anterior chamber depth, iris curvature, and lens vault (P ≤ 0.002 for all). Gonioscopic angle opening after LPI was more common with wider baseline angle width (modified Shaffer grade) and lower cup-to-disc ratio (P < 0.001 for both). In a South Indian population with PACS or PAC/PACG, LPI results in significant anterior chamber angle widening seen on both ASOCT and gonioscopy, although some degree of persistent iridotrabecular contact was present in approximately half of PACS eyes and approximately two thirds of PAC/PACG eyes on gonioscopy. The greatest widening by ASOCT was observed in eyes with features most consistent with greater baseline pupillary block. Copyright © 2016 American Academy of Ophthalmology. All rights reserved.
Duplicate origin of the posterior communicating artery diagnosed by magnetic resonance angiography.
Uchino, Akira; Kamiya, Kouhei; Suzuki, Chihiro
2013-10-01
Extremely rarely, a posterior communicating artery (PCoA) of "duplicate origin" occurs when two branches of the PCoA arise separately from the supraclinoid segment of the internal carotid artery (ICA) and quickly fuse to form an arterial ring. Three such cases previously reported were described as "fenestration." We report the case of this rare variation diagnosed by magnetic resonance angiography and discuss the differentiation of PCoA of duplicate origin from PCoA fenestration, supraclinoid ICA fenestration, and hyperplastic anterior choroidal artery.
Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments
NASA Astrophysics Data System (ADS)
Nikiforov, I. I.; Veselova, A. V.
2018-02-01
We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center ( R 0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R 0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R 0 in the sense that an increase in R 0 leads to a growth in the absolute values of the pitch angles.
Comparison of EyeCam and anterior segment optical coherence tomography in detecting angle closure.
Baskaran, Mani; Aung, Tin; Friedman, David S; Tun, Tin A; Perera, Shamira A
2012-12-01
To compare the diagnostic performance of EyeCam (Clarity Medical Systems, Pleasanton, CA, USA) and anterior segment optical coherence tomography (ASOCT, Visante; Carl Zeiss Meditec, Dublin, CA, USA) in detecting angle closure, using gonioscopy as the reference standard. Ninety-eight phakic patients, recruited from a glaucoma clinic, underwent gonioscopy by a single examiner, and EyeCam and ASOCT imaging by another examiner. Another observer, masked to gonioscopy findings, graded EyeCam and ASOCT images. For both gonioscopy and EyeCam, a closed angle in a particular quadrant was defined if the posterior trabecular meshwork was not visible. For ASOCT, angle closure was defined by any contact between the iris and angle anterior to the scleral spur. An eye was diagnosed as having angle closure if ≥2 quadrants were closed. Agreement and area under the receiver operating characteristic curves (AUC) were evaluated. The majority of subjects were Chinese (69/98, 70.4%) with a mean age of 60.6 years. Angle closure was diagnosed in 39/98 (39.8%) eyes with gonioscopy, 40/98 (40.8%) with EyeCam and 56/97 (57.7%) with ASOCT. The agreement (kappa statistic) for angle closure diagnosis for gonioscopy versus EyeCam was 0.89; gonioscopy versus ASOCT and EyeCam versus ASOCT were both 0.56. The AUC for detecting eyes with gonioscopic angle closure with EyeCam was 0.978 (95% CI: 0.93-1.0) and 0.847 (95% CI: 0.76-0.92, p < 0.01) for ASOCT. The diagnostic performance of EyeCam was better than ASOCT in detecting angle closure when gonioscopic grading was used as the reference standard. The agreement between the two imaging modalities was moderate. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Cyclic coordinate descent: A robotics algorithm for protein loop closure.
Canutescu, Adrian A; Dunbrack, Roland L
2003-05-01
In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.
A coarse-to-fine approach for medical hyperspectral image classification with sparse representation
NASA Astrophysics Data System (ADS)
Chang, Lan; Zhang, Mengmeng; Li, Wei
2017-10-01
A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.
An integrated use of topography with RSI in gully mapping, Shandong Peninsula, China.
He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed.
An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China
He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed. PMID:25302333
Li, Xi-lei; Zhou, Xiao-gang; Dong, Jian; Fang, Tao-lin; Lin, Hong; Ma, Yi-qun; Li, Juan
2011-04-01
To investigate the safety and therapeutic effects of monosegment pedicle instrumentation in treating incomplete thoracolumbar burst fracture. A retrospective analysis was conducted on 56 inpatients with incomplete thoracolumbar burst fracture (AO classification: A3.1 and A3.2) from April 2005 to January 2010. There were 28 cases were fixed with monosegment pedicle instrumentation (MSPI), 28 cases were fixed with short segment pedicle instrumentation (SSPI). The operative time, blood loss, visual analogue scale (VAS) and vertebral kyphotic angle (VK) before and after surgery were evaluated. In the group of MSPI, the mean operative time was (93 ± 20) min; the intraoperative blood loss was (184 ± 64) ml; the VK angle was 17° ± 10° before operation, 7° ± 7° at one week after operation, and 10° ± 7° at latest follow-up; VAS score was 7.6 ± 1.5 before operation, 2.4 ± 0.8 at one week after operation, and 1.5 ± 0.9 at latest follow-up; no adjacent segment degeneration was found. In the group of SSPI, the operative time was (102 ± 30) min; the intraoperative blood loss was (203 ± 88) ml; the VK angle was 17° ± 9° before operation, 7° ± 7° at one week after operation, and 8° ± 5° at latest follow-up; VAS score was 6.8 ± 1.3 before operation, 3.1 ± 0.5 at one week after operation, and 1.2 ± 0.7 at latest follow-up. One case of adjacent segment degeneration was found in 36 months after operation. There were no significantly statistical differences between two groups in operative time, blood loss, VAS score and VK angle before and after surgery (P > 0.05). The VAS score and VK angle at one week after surgery and latest follow-up all decreased obviously than preoperative ones in both groups (P < 0.05). MSPI for incomplete thoracolumbar burst fracture is effective and safe. The operative blood loss, the mean operative time, the improvement of VAS score and the VK angle in group MSPI are equal to those in group SSPI.
Kashkoush, Ahmed; Agarwal, Nitin; Paschel, Erin; Goldschmidt, Ezequiel; Gerszten, Peter C
2016-06-10
The development of adjacent-segment disease is a recognized consequence of lumbar fusion surgery. Posterior dynamic stabilization, or motion preservation, techniques have been developed which theoretically decrease stress on adjacent segments following fusion. This study presents the experience of using a hybrid dynamic stabilization and fusion construct for degenerative lumbar spine pathology in place of rigid arthrodesis. A clinical cohort investigation was conducted of 66 consecutive patients (31 female, 35 male; mean age: 53 years, range: 25 - 76 years) who underwent posterior lumbar instrumentation with the Dynesys Transition Optima (DTO) implant (Zimmer-Biomet Spine, Warsaw, IN) hybrid dynamic stabilization and fusion system over a 10-year period. The median length of follow-up was five years. DTO consists of pedicle screw fixation coupled to a rigid rod as well as a flexible longitudinal connecting system. All patients had symptoms of back pain and neurogenic claudication refractory to non-surgical treatment. Patients underwent lumbar arthrodesis surgery in which the hybrid system was used for stabilization instead of arthrodesis of the stenotic adjacent level. Indications for DTO instrumentation were primary degenerative disc disease (n = 52) and failed back surgery syndrome (n = 14). The most common dynamically stabilized and fused segments were L3-L4 (n = 37) and L5-S1 (n = 33), respectively. Thirty-eight patients (56%) underwent decompression at the dynamically stabilized level, and 57 patients (86%) had an interbody device placed at the level of arthrodesis. Complications during the follow-up period included a single case of screw breakage and a single case of pseudoarthrosis. Ten patients (15%) subsequently underwent conversion of the dynamic stabilization portion of their DTO instrumentation to rigid spinal arthrodesis. The DTO system represents a novel hybrid dynamic stabilization and fusion construct. This 10-year experience found the device to be highly effective as well as safe. The technique may serve as an alternative to multilevel arthrodesis. Implantation of a motion-preserving dynamic stabilization device immediately adjacent to a fused level instead of extending a rigid construct may reduce the subsequent development of adjacent-segment disease in this patient population.
Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu; Yu, Zhicong; Zeng, Gengsheng L.
2015-09-15
Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmentedmore » slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.« less
Prediction of Test Mass Thermal Noise by Measurement of the Anelastic Aftereffect
NASA Astrophysics Data System (ADS)
Beilby, Mark A.; Saulson, Peter R.; Abramovici, Alex
1997-04-01
The thermal noise from the internal modes of test masses of interferometric gravitational wave detectors depends on the dissipation at the frequencies of interest. To date, predictions have been based on the Qs of resonances, all at frequencies higher than the expected signals. We have developed a method to determine the dissipation of test masses in the signal band, using the anelastic aftereffect, the creep J(τ) of a test mass after a compressive stress has been released. The loss angle φ(ω) is approximately given by the logarithmic derivative of J(τ) evaluated at τ=1/ω. For a transparent material such as fused silica, a convenient way to measure J(τ) is via the photoelastic effect. We will describe the apparatus that we have constructed, present measurements of the losses in dummy test masses made from BK7 glass and fused silica, and discuss the application of this method to LIGO test masses.
Fused silica GRISMs manufactured by hydrophilic direct bonding at moderate heating
NASA Astrophysics Data System (ADS)
Kalkowski, G.; Grabowski, K.; Harnisch, G.; Flügel-Paul, T.; Zeitner, U.; Risse, S.
2017-12-01
For high-resolution spectroscopy in space, GRISM elements—obtained by patterning gratings onto a prism surface—find increasing applications. We report on GRISM manufacturing by joining the individual functional elements—prisms and gratings—to suitable components by the technology of hydrophilic direct bonding. Fused silica was used as a substrate material and binary gratings were fabricated by standard e-beam lithography and dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment on dedicated bonding gear matched to the substrate geometry. Materials adapted bonds of high transmission, stiffness, and strength were obtained after heat treatment at temperatures of about 200 °C in vacuum. Examples for bonding uncoated as well as coated grating surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used in space or other heavy duty applications.
Sagittal and transversal plane deformity in thoracic scoliosis.
Kotwicki, Tomasz
2002-01-01
The aim of the study was to assess the sagittal and transversal plane deformity of the spine in thoracic scoliosis by the mean of 3-D radiographic analysis. 46 patients admitted for surgery for thoracic idiopathic scoliosis underwent preoperative radiographic assessment. All patients presented the same pattern of the coronal plane deformity: single right thoracic curve (Lenke 1, King 3). Neither lumbar nor proximal thoracic structural curve were present. The Cobb angle varied from 41gamma to 77 gamma (mean 55,4 gamma +/- 8,6 gamma). Long cassette standing antero-posterior and lateral radiographs were analysed. Three-dimensional reconstruction with Rachis 91TM software was performed for each pair of radiographs. The following parameters were assessed: sagittal thoracic Cobb angle (Th4-Th12), upper thoracic kyphosis angle (Th5-Th8), lower thoracic kyphosis angle (Th9-Th12), superior and inferior hemi-curve sagittal angles, lumbar lordosis, sacral slope, sacral incidence, vertebral plate index, segmental vertebral axial rotation throughout the thoracic and lumbar spine. Results showed great variability of parameters assessed. The non-harmonious distribution of kyphosis was demonstrated in the thoracic spine. Local Th9-Th12 hypokyphosis and adjacent local Th5-Th8 hyperkyphosis constitute the most typical sagittal pathologies. So called normokyphotic curves were composed of one hyperkyphotic and one hypokyphotic zone. Th1-Th4 segment revealed two patterns of segmental rotation distribution: a purely compensatory curve with no vertebral axial rotation or a rotated curve presenting the morphology intermediate between Lenke 1 and Lenke 2 types (or King 3 and King 5). curves presenting the same coronal plane deformity differ in their morphology assessed in the two other planes; global thoracic kyphosis angle is a misleading parameter because it covers hypo- and hyperkyphotic zones; local distal thoracic (Th9-Th12) hypokyphosis is present in idiopathic thoracic scoliosis.
Segmentation of human upper body movement using multiple IMU sensors.
Aoki, Takashi; Lin, Jonathan Feng-Shun; Kulic, Dana; Venture, Gentiane
2016-08-01
This paper proposes an approach for the segmentation of human body movements measured by inertial measurement unit sensors. Using the angular velocity and linear acceleration measurements directly, without converting to joint angles, we perform segmentation by formulating the problem as a classification problem, and training a classifier to differentiate between motion end-point and within-motion points. The proposed approach is validated with experiments measuring the upper body movement during reaching tasks, demonstrating classification accuracy of over 85.8%.
Ghailane, S; Pesenti, Sebastien; Peltier, E; Choufani, E; Blondel, B; Jouve, J L
2017-05-01
Proximal junctional kyphosis (PJK) is a frequent proximal adjacent segment disease following spinal fusion in adolescent idiopathic scoliosis (AIS) and its rate has been estimated to 28% in the literature. The etiology is multifactorial, and risk factors associated with PJK are controversial. The aim of this study was to demonstrate that the disruption of muscular and bony tissue above the upper instrumented vertebra (UIV) during surgery does not increase the rate of PJK in patients undergoing posterior fusion for adolescent idiopathic scoliosis. 50 patients with AIS operated between June 2014 and January 2016 were included. Every patient underwent a long posterior spine arthrodesis with a hybrid construct (proximal lamino-laminar claw, thoracic sublaminar bands and lumbar screws). The dissection of posterior elements above the UIV was necessary for the placement of proximal anchors. Radiographic analysis including proximal junctional angle, spino-pelvic parameters (cervical lordosis, thoracic kyphosis TK, lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope) and sagittal vertical axis were collected preoperatively and postoperatively at the last control. The numbers of fused levels, locations of upper instrumented vertebra, locations of lower instrumented vertebra, length of fusion segments were also recorded. Multiple odd ratios and other statistical analysis were performed to evaluate the relation between PJK and the potential risk factors. There were 43 females and 7 males with a mean age of 14.8 years at surgery. PJK occurred in 5 out of 50 cases with an incidence of 10%. The mean follow-up was 18 months. There was no significant difference in gender (OR 1.36, p = 0.8), decrease of TK (OR 1.63, p = 0 0.69), location of UIV (OR 2.25, p = 0.4), LIV (OR 2, p = 0.55), and SVA change (OR 1.63, p = 0.46). The disruption of ligamentous and bony tissue proximal to the UIV during the surgery does not increase the rate of PJK. Level of evidence IV.
NASA Technical Reports Server (NTRS)
Sims, F.; Olive, R.
1971-01-01
Experimental aerodynamic investigations were conducted on a .003366-scale model of the Grumman space shuttle configuration mounted to a three (3) segmented solid propellant booster. These tests were conducted in the MSFC 14-inch trisonic wind tunnel over a Mach number range of 0.6 to 4.96. The purpose of the test was to determine the aerodynamic characteristics of this configuration. Aerodynamic data was taken over a nominal angle of attack and angle of sideslip of -10 degrees to 10 degrees at zero degrees beta and alpha respectively. In addition, data was obtained for the H-33 orbiter alone to supplement data from TWT 502 and TWT 503.
Efficiency of geometric designs of flexible solar panels: mathematical simulation
NASA Astrophysics Data System (ADS)
Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia
2017-09-01
The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Bin, E-mail: toby198489@163.com; Jiang, Li; Hu, Rui
2013-04-15
The correlation between the grain boundary misorientation and the precipitation behaviors of intergranular M{sub 23}C{sub 6} carbides in a wrought Ni–Cr–W superalloy was investigated by using the electron backscattered diffraction (EBSD) technique. It was observed that the grain boundaries with a misorientation angle less than 20°, as well as all coincidence site lattice (CSL) boundaries, are immune to precipitation of the M{sub 23}C{sub 6} carbides; in contrast, the random high-angle grain boundaries with a misorientation angle of 20°–40° provide preferential precipitation sites of the M{sub 23}C{sub 6} carbides at the random high-angle grain boundaries with a higher misorientation angle ofmore » 55°–60°/[2 2 3] turn to retard precipitation of M{sub 23}C{sub 6} carbides owing to their nature like the Σ3 grain boundaries and retard the precipitation of M{sub 23}C{sub 6} carbides. The low-angle and certain random grain boundary segments induced by twins were found to interrupt the precipitation of the M{sub 23}C{sub 6} carbides along the high-angle grain boundaries. - Highlights: ► The low angle grain boundaries and CSL boundaries are immune to precipitation. ► M23C6 precipitate preferentially at random grain boundaries within 20°–40°. ► Some certain random grain boundary segments interrupt M23C6 precipitation.« less
Thermographic Phosphor Measurements of Shock-Shock Interactions on a Swept Cylinder
NASA Technical Reports Server (NTRS)
Jones, Michelle L.; Berry, Scott A.
2013-01-01
The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite onedimensional method.
Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6
NASA Technical Reports Server (NTRS)
Jones, Michelle L.
2013-01-01
The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.
[Surgical treatment of degenerative lumbar scoliosis with multi-segment lumbar spinal stenosis].
Lan, Jiaping; Tang, Xun; Xu, Yongqing; Zhou, Tianhua; Shi, Jian; Cui, Yi; Xiang, Qili; Cai, Zhijun; Zhao, Qingkai; Yang, Xiaoyong; Zhao, Caihua
2014-08-01
To explore the surgical indications, decompression and fusion method, and fusion level selection of degenerative lumbar scoliosis (DLS) and multi-segment lumbar spinal stenosis. Between April 2000 and November 2011, 46 cases of DLS and multi-segment lumbar spinal stenosis were treated with multi-level decompression by fenestration and crept enlargement plus internal fixation by interbody and posterior-lateral bone graft fusion (5 segments or above). Of 46 cases, 25 were male and 21 were female, with a mean age of 70.2 years (range, 65-81 years) and with a mean disease duration of 6.4 years (range, 4 years and 6 months to 13 years). X-ray films showed that the lumbar Cobb angle was (26.7 ± 10.0) degrees, and the lumbar lordotic angle was (20.3 ± 8.8)degrees. The lumbar CT and MRI images showed three-segment stenosis in 24 cases, four-segment stenosis in 17 cases, and five-segment stenosis in 5 cases. A total of 165 stenosed segments included 12 L1,2, 34 L2,3, 43 L3,4, 45 L4,5, and 31 L5 and S1. Visual analogue scale (VAS) score, Oswestry disability index (ODI), and Japanese Orthopedic Association (JOA) score (29 points) were employed to evaluate effectiveness. Thirteen patients had leakage of cerebrospinal fluid during operation, and no infection was found after corresponding treatment; pulmonary infection and urinary system infection occurred in 4 and 2 patients respectively, who relieved after received antibiotic therapy; 8 patients with poor wound healing received dressing change, adequate drainage, debridement and suture. No death, paralysis, central nervous system infection, or other complication was observed in these patients. Forty-six cases were followed up 12-72 months (mean, 36.2 months). Lumbago and backache and intermittent claudication of lower extremity were obviously improved. During follow-up, no screw incising, loosening and broken screws, or pseudarthrosis was noted under X-ray film and CT scanning. At last follow-up, the lumbar Cobb angle was reduced to (9.8 ± 3.6) degrees, while the lumbar lordotic angle was increased to (34.1 ± 9.4) degrees, which were significantly improved when compared with preoperative ones (t = 16.935, P = 0.000; t = 15.233, P = 0.000). At last follow-up, VAS, ODI, and JOA scores were 3.2 ± 1.2, 35.5% ± 14.0%, and 26.6 ± 5.7 respectively, showing significant differences when compared with preoperative scores (8.0 ± 2.2, 60.8% ± 13.3%, and 12.9 ± 3.4) (t = 19.857, P = 0.000; t = 16.642, P = 0.000; t = 15.922, P = 0.000). Multi-segment decompression by fenestration and crept enlargement plus internal fixation by interbody and posterior-lateral bone graft fusion is helpful to relieve nerve compression symptoms, rebuild spinal balance, and improve the life quality of the patients. It is a very effective way to treat DLS and multi-segment lumbar spinal stenosis.
Nardo, Lorenzo; Lane, Nancy E; Parimi, Neeta; Cawthon, Peggy M; Fan, Bo; Shepherd, John; Cauley, Jane; Zucker-Levin, Audrey; Murphy, Rachel A; Katzman, Wendy B
2014-11-15
A descriptive study of the association between diffuse idiopathic skeletal hyperostosis (DISH) and kyphosis. To investigate the association of DISH with Cobb angle of kyphosis in a large cohort of older subjects from the Health Aging and Body Composition Study. DISH and thoracic kyphosis are well-defined radiographical findings in spines of older individuals. Characteristics of DISH (ossifications between vertebral segments) reflect changes of spine anatomy and physiology that may be associated with Cobb angle of kyphosis. Using data from 1172 subjects aged 70 to 79 years, we measured DISH and Cobb angle of kyphosis from computed tomographic lateral scout scans. Characteristics of participants with and without DISH were assessed using the χ² and t tests. Association between DISH and Cobb angle was analyzed using linear regression. Cobb angle and DISH relationship was assessed at different spine levels (thoracic and lumbar). DISH was identified on computed tomographic scout scan in 152 subjects with 101 cases in only the thoracic spine and 51 in both thoracic and lumbar spine segments. The mean Cobb angle of kyphosis in the analytic sample was 31.3° (standard deviation = 11.2). The presence of DISH was associated with a greater Cobb angle of 9.1° and 95% confidence interval (95% CI) (5.6-12.6) among African Americans and a Cobb angle of 2.9° and 95% CI (0.5-5.2) among Caucasians compared with those with no DISH. DISH in the thoracic spine alone was associated with a greater Cobb angle of 10.6° and 95% CI (6.5-14.7) in African Americans and a Cobb angle of 3.8° and 95% CI (1.0-6.5) in Caucasians compared with those with no DISH. DISH is associated with greater Cobb angle of kyphosis, especially when present in the thoracic spine alone. The association of DISH with Cobb angle is stronger within the African American population.
Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon
2015-01-01
To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. Seventeen consecutive subjects (33 eyes) were recruited from the study hospital's Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other's analyses of OCT images. Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (P<0.01). The agreement for angle closure between AS-OCT and gonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59) and k=0.35 (95% CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49) and slight at k=0.17 (95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45). Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively.
Zhang, Yuan; Quan, Zhengxue; Zhao, Zenghui; Luo, Xiaoji; Tang, Ke; Li, Jie; Zhou, Xu; Jiang, Dianming
2014-01-01
To retrospectively compare the efficacy of the titanium mesh cage (TMC) and the nano-hydroxyapatite/polyamide66 cage (n-HA/PA66 cage) for 1- or 2-level anterior cervical corpectomy and fusion (ACCF) to treat multilevel cervical spondylotic myelopathy (MCSM). A total of 117 consecutive patients with MCSM who underwent 1- or 2-level ACCF using a TMC or an n-HA/PA66 cage were studied retrospectively at a mean follow-up of 45.28 ± 12.83 months. The patients were divided into four groups according to the level of corpectomy (1- or 2-level corpectomy) and cage type used (TMC or n-HA/PA66 cage). Clinical and radiological parameters were used to evaluate outcomes. At the one-year follow-up, the fusion rate in the n-HA/PA66 group was higher, albeit non-significantly, than that in the TMC group for both 1- and 2-level ACCF, but the fusion rates of the procedures were almost equal at the final follow-up. The incidence of cage subsidence at the final follow-up was significantly higher in the TMC group than in the n-HA/PA66 group for the 1-level ACCF (24% vs. 4%, p = 0.01), and the difference was greater for the 2-level ACCF between the TMC group and the n-HA/PA66 group (38% vs. 5%, p = 0.01). Meanwhile, a much greater loss of fused height was observed in the TMC group compared with the n-HA/PA66 group for both the 1- and 2-level ACCF. All four groups demonstrated increases in C2-C7 Cobb angle and JOA scores and decreases in VAS at the final follow-up compared with preoperative values. The lower incidence of cage subsidence, better maintenance of the height of the fused segment and similar excellent bony fusion indicate that the n-HA/PA66 cage may be a superior alternative to the TMC for cervical reconstruction after cervical corpectomy, in particular for 2-level ACCF.
System and process for detecting and monitoring surface defects
NASA Technical Reports Server (NTRS)
Mueller, Mark K. (Inventor)
1994-01-01
A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.
NASA Astrophysics Data System (ADS)
Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru
2018-02-01
We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.
Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian A; Chopra, Vikas
2017-03-23
First reported study to assess the effect of diurnal variation on anterior chamber angle measurements, as well as, to re-test the effects of lighting and angle-of-incidence variation on anterior chamber angle (ACA) measurements acquired by time-domain anterior segment optical coherence tomography (AS-OCT). A total of 30 eyes from 15 healthy, normal subjects underwent anterior chamber imaging using a Visante time-domain AS-OCT according to an IRB-approved protocol. For each eye, the inferior angle was imaged twice in the morning (8 am - 10 am) and then again in the afternoon (3 pm - 5 pm), under light meter-controlled conditions with ambient room lighting 'ON' and lights 'OFF', and at 5° angle of incidence increments. The ACA metrics measured for each eye were: angle opening distance (AOD, measured 500 and 750 μm anterior from scleral spur), the trabecular-iris-space area (TISA, measured 500 and 750 μm anterior from scleral spur), and scleral spur angle. Measurements were performed by masked, certified Reading Center graders using the Visante's Internal Measurement Tool. Differences in measurements between morning and afternoon, lighting variations, and angle of incidence were compared. Mean age of the participants was 31.2 years (range 23-58). Anterior chamber angle metrics did not differ significantly from morning to afternoon imaging, or when the angle of incidence was offset by 5° in either direction away from the inferior angle 6 o'clock position. (p-value 0.13-0.93). Angle metrics at the inferior corneal limbus, 6 o'clock position (IC270), with room lighting 'OFF', showed a significant decrease (p < 0.05) compared to room lighting 'ON'. There does not appear to be significant diurnal variation in AS-OCT parameters in normal individuals, but lighting conditions need to be strictly controlled since variation in lighting led to significant variability in AS-OCT parameters. No changes in ACA parameters were noted by varying the angle-of-incidence, which gives confidence in being able to perform longitudinal studies in approximately the same area (plus/minus 5° of original scan location).
Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong
2014-09-10
The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.
Sirenomelia type VI (sympus apus) in one of dizygotic twins at Chiang Mai University Hospital.
Nokeaingtong, Kwannapas; Kaewchai, Sirirat; Visrutaratna, Pannee; Khuwuthyakorn, Varangthip
2015-05-14
Those born with sirenomelia, a rare congenital anomaly, have features resembling a mermaid. Characteristics of sirenomelia are a single lower limb, sacral and pelvic bone defects, and anorectal and urogenital malformations. There is an increased incidence of sirenomelia in males and twins. This case was a preterm male, dizygotic twin and product of in vitro fertilisation. The baby was born by caesarean section due to breech presentation. He was found to have a fused lower extremity and absent external genitalia and anus. The baby passed away shortly after birth due to severe respiratory failure. Radiographic findings showed small lung volume and pneumothoraces. There were multiple segmental fusions of the vertebrae. Single femur and single tibia were presented in a fused lower limb. Autopsy demonstrated large intestinal atresia, intra-abdominal testes, absence of kidney, ureter and bladder, single umbilical artery, agenesis of blood vessels at lower extremity and agenesis of sacrum and coccyx. 2015 BMJ Publishing Group Ltd.
Komatsu, Shintaro; Kobayashi, Yukimasa
2012-05-01
The egg morphology and successive changes of developing embryos of the whirligig beetle, Dineutus mellyi (Adephaga: Gyrinidae) are described from observations based on light and scanning electron microscopy. The egg surface is characterized by minute conical projections covering the entire egg surface, a stalk-like micropylar projection at the anterior pole of the egg, and a longitudinal split line along which the chorion is cleaved during the middle embryonic stages. The germ band or embryo is formed on the ventral egg surface, and develops on the surface throughout the egg period; thus, the egg is a superficial type, as is the case in most coleopteran species. A pair of lateral tracheal gills (LTGs) of the first abdominal segment originates from appendage-like projections arising at the lateral side of pleuropodia, and the LTGs of the second to ninth abdominal segments are arranged in a row with that of the first segment. Therefore, LTGs are structures with serial homology. The paired dorsal tracheal gills (DTGs) of the ninth abdominal segment are formed on the regions just latero-dorsal to the LTGs of this segment. Regarding the pleuropodia as the structures being homologous with thoracic legs, neither the LTGs nor DTGs are homologous with thoracic legs, but originate in the more lateral region corresponding to the future pleura of the thoracic segments. The last (10th) abdominal segment in the larva is formed by the fusion of the embryonic 10th and 11th abdominal segments. Four terminal hooks at the end of the last abdominal segment originate from two pairs of swellings on the posterior end of the embryonic 11th abdominal segment. It is proposed that the terminal hooks possibly correspond to the claws of medially fused cerci of the embryonic 11th abdominal segment. Copyright © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
McFarland, Shane M.
2008-01-01
Field of view has always been a design feature paramount to helmet design, and in particular space suit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a slightly different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view is required. Through taxonimization of various parameters that affect suited FOV, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was able to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables without sacrificing fidelity. The specific field of view angles were defined by considering mission segment activities, historical performance of other suits, comparison between similar requirements (pressure visor up versus down, etc.), estimated requirements from other teams for field of view (Orion, Altair, EVA), previous field of view tests, medical data for shirtsleeve field of view performance, and mapping of visual field data to generate 45degree off-axis field of view requirements. Full resolution of several specific field of view angle requirements warranted further work, which consisted of low and medium fidelity field of view testing in the rear entry ISuit and DO27 helmet prototype. This paper serves to document this reduction progress and followup testing employed to write the Constellation requirements for helmet field of view.
Uribe, Juan S; Harris, Jeffrey E; Beckman, J M; Turner, Alexander W L; Mundis, Gregory M; Akbarnia, Behrooz A
2015-04-01
Restoring sagittal alignment is an important factor in the treatment of spinal deformities. Recent investigations have determined that releasing the anterior longitudinal ligament (ALL) and placing hyperlordotic cages can increase lordosis, while minimizing need for 3 column osteotomies. The influences of parameters such as cage height and angle have not been determined. Finite element analysis was employed to assess the extent of lordosis achievable after placement of different sized lordotic cages. A 3-dimensional model of a L3-4 segment was used. Disc distraction was simulated by inserting interbody cages mid-body in the disc space. Analyses were performed in the following conditions: (1) intact, (2) ALL release, (3) ALL release + facetectomy, and (4) ALL release + posterior column osteotomy. Changes in segmental lordosis, disc height, foraminal height, and foraminal area were measured. After ALL resection and insertion of hyperlordotic cages, lordosis was increased in all cases. The lordosis achieved by the shorter cages was less due to posterior disc height maintained by the facet joints. A facetectomy increased segmental lordosis, but led to contact between the spinous processes. For some configurations, a posterior column osteotomy was required if the end goal was to match cage angle to intradiscal angle. Increased segmental lumbar lordosis is achievable with hyperlordotic cages after ALL resection. Increased cage height tended to increase the amount of lordosis achieved, although in some cases additional posterior bone resection was required to maximize lordosis. Further studies are needed to evaluate the impact on regional lumbar lordosis.
Koda, Masao; Furuya, Takeo; Okawa, Akihiko; Aramomi, Masaaki; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Ikeda, Osamu; Takahashi, Kazuhisa; Mannoji, Chikato; Yamazaki, Masashi
2015-11-01
The motion at the non-ossified segment of the ossification of the posterior longitudinal ligament (OPLL) is thought to be highly correlated to aggravation of symptoms of myelopathy. The rationale for posterior decompression with instrumented fusion (PDF) surgery is to limit the motion of the non-ossified segment of OPLL by stabilization. The purpose of the present study was to elucidate the course of bone union and remodelling of the non-ossified segment of thoracic OPLL (T-OPLL) after PDF surgery. A total of 29 patients who underwent PDF surgery for T-OPLL were included in this study. We measured the thickness of the OPLLs by determining the thickest part of the OPLL in the sagittal multi-planer reconstruction CT images pre- and post-operatively. Five experienced spine surgeons independently performed CT measurements of OPLL thickness twice. Japanese Orthopaedic Association score for thoracic myelopathy was measured as clinical outcome measure. Non-ossified segment of OPLLs fused in 24 out of 29 (82.8 %) patients. The average thickness of the OPLL at its thickest segment was 8.0 mm and decreased to 7.3 mm at final follow-up. The decrease in ossification thickness was significantly larger in the patients who showed fusion of non-ossified segments of OPLL compared with that in the patients did not show fusion. There was no significant correlation between the clinical outcome and the decrease in thickness of the OPLLs. The results of this study showed that remodelling of the OPLLs, following fusion of non-ossified segment of OPLLs, resulted in a decreased OPLL thickness, with potential for a reduction of spinal cord compression.
Zhong, Zhao-Ming; Deviren, Vedat; Tay, Bobby; Burch, Shane; Berven, Sigurd H
2017-05-01
A potential long-term complication of lumbar fusion is the development of adjacent segment disease (ASD), which may necessitate second surgery and adversely affect outcomes. The objective of this is to determine the incidence of ASD following instrumented fusion in adult patients with lumbar spondylolisthesis and to identify the risk factors for this complication. We retrospectively assessed adult patients who had undergone decompression and instrumented fusion for lumbar spondylolisthesis between January 2006 and December 2012. The incidence of ASD was analyzed. Potential risk factors included the patient-related factors, surgery-related factors, and radiographic variables such as sagittal alignment, preexisting disc degeneration and spinal stenosis at the adjacent segment. A total of 154 patients (mean age, 58.4 years) were included. Mean duration of follow-up was 28.6 months. Eighteen patients (11.7%) underwent a reoperation for ASD; 15 patients had reoperation at cranial ASD and 3 at caudal ASD. The simultaneous decompression at adjacent segment (p=0.002) and preexisting spinal stenosis at cranial adjacent segment (p=0.01) were identified as risk factors for ASD. The occurrence of ASD was not affected by patient-related factors, the types, grades and levels of spondylolisthesis, surgical approach, fusion procedures, levels of fusion, number of levels fused, types of bone graft, use of bone morphogenetic proteins, sagittal alignment, preexisting adjacent disc degeneration and preexisting spinal stenosis at caudal adjacent segments. Our findings suggest the overall incidence of ASD is 11.7% in adult patients with lumbar spondylolisthesis after decompression and instrumented fusion at a mean follow-up of 28.6 months, the simultaneous decompression at the adjacent segment and preexisting spinal stenosis at cranial adjacent segment are risk factors for ASD. Copyright © 2017. Published by Elsevier B.V.
Extreme-UV lithography condenser
Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James
2001-01-01
Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.
3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images
NASA Astrophysics Data System (ADS)
Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.
2014-12-01
Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.
Multiple supervised residual network for osteosarcoma segmentation in CT images.
Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin
2018-01-01
Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Clausing, Eric; Vielhauer, Claus
2014-02-01
Locksmith forensics is an important area in crime scene forensics. Due to new optical, contactless, nanometer range sensing technology, such traces can be captured, digitized and analyzed more easily allowing a complete digital forensic investigation. In this paper we present a significantly improved approach for the detection and segmentation of toolmarks on surfaces of locking cylinder components (using the example of the locking cylinder component 'key pin') acquired by a 3D Confocal Laser Scanning Microscope. This improved approach is based on our prior work1 using a block-based classification approach with textural features. In this prior work1 we achieve a solid detection rate of 75-85% for the detection of toolmarks originating from illegal opening methods. Here, in this paper we improve, expand and fuse this prior approach with additional features from acquired surface topography data, color data and an image processing approach using adapted Gabor filters. In particular we are able of raising the detection and segmentation rates above 90% with our test set of 20 key pins with approximately 700 single toolmark traces of four different opening methods. We can provide a precise pixel- based segmentation as opposed to the rather imprecise segmentation of our prior block-based approach and as the use of the two additional data types (color and especially topography) require a specific pre-processing, we furthermore propose an adequate approach for this purpose.
Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.
Tambo, Asongu L; Bhanu, Bir
2016-05-01
The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.
Chen, Jiao-Xiang; Xu, Dao-Liang; Sheng, Sun-Ren; Goswami, Amit; Xuan, Jun; Jin, Hai-Ming; Chen, Jian; Chen, Yu; Zheng, Zeng-Ming; Chen, Xi-Bang; Wang, Xiang-Yang
2016-06-01
Our aim was to evaluate the results of short-segment pedicle instrumentation with screw insertion in the fracture level and find factors predicting kyphosis recurrence in thoracolumbar burst fractures. We retrospectively analysed 122 patients with thoracolumbar burst fracture who were divided into two groups: kyphosis recurrence and no kyphosis recurrence. Pre-operative radiographic data comprising Cobb angle (CA), regional angle, anterior vertebra height (AVH), upper intervertebral angle, vertebral wedge angle (VWA), pre-anteroposterior A/P approach, superior endplate fracture, load-sharing classification (LSC) score and clinical data including age, visual analogue scale (VAS) score, thoracolumbar injury classification and severity score were compared between groups. T test, Pearson's chi-square and multivariate logistic regression were calculated for variables. CA, VWA and AVH were significantly corrected after surgery. CA changed from 23.7 to 3.0 (p <0.001), VWA from 38.7 to 9.6 (p <0.001) and AVH from 48.8 % to 91.2 % (p <0.001). These parameters were well maintained during the follow-up period with a mild, tolerant loss of correction. Neurological function and pain were significantly improved without deterioration. Age, pre-A/P and pre-AVH < 50 % influenced kyphosis recurrence (p = 0.032, 0.026, 0.011, respectively). Short-segment pedicle instrumentation including the fractured vertebra was effective in treating thoracolumbar burst fractures. The loss of correction at follow-up after implant removal was associated with age, A/P ratio and anterior vertebral height < 50 %.
Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells.
Vaitkuviene, Aida; McDonald, Matthew; Vahidpour, Farnoosh; Noben, Jean-Paul; Sanen, Kathleen; Ameloot, Marcel; Ratautaite, Vilma; Kaseta, Vytautas; Biziuleviciene, Gene; Ramanaviciene, Almira; Nesladek, Milos; Ramanavicius, Arunas
2015-01-25
The aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment. Boron doped NCD coatings were also prepared and investigated. NCD surface wettability was determined by contact angle measurement. To assess biocompatibility of the NCD coatings, the neuroblastoma SH-SY5Y cell line was used. Cells were plated directly onto diamond surfaces and cultured in medium with or without fetal bovine serum (FBS), in order to evaluate the ability of cells to adhere and to proliferate. The obtained results showed that these cells adhered and proliferated better on NCD surfaces than on the bare fused silica. The cell proliferation on NCD in medium with and without FBS after 48h from plating was on average, respectively, 20 and 58% higher than that on fused silica, irrespective of NCD surface modification. Our results showed that the hydrogenated, oxygenated and boron-doped NCD coatings can be used for biomedical purposes, especially where good optical transparency is required. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of the zebrafish mesonephros.
Diep, Cuong Q; Peng, Zhenzhen; Ukah, Tobechukwu K; Kelly, Paul M; Daigle, Renee V; Davidson, Alan J
2015-01-01
The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. © 2015 Wiley Periodicals, Inc.
Generation, recognition, and consistent fusion of partial boundary representations from range images
NASA Astrophysics Data System (ADS)
Kohlhepp, Peter; Hanczak, Andrzej M.; Li, Gang
1994-10-01
This paper presents SOMBRERO, a new system for recognizing and locating 3D, rigid, non- moving objects from range data. The objects may be polyhedral or curved, partially occluding, touching or lying flush with each other. For data collection, we employ 2D time- of-flight laser scanners mounted to a moving gantry robot. By combining sensor and robot coordinates, we obtain 3D cartesian coordinates. Boundary representations (Brep's) provide view independent geometry models that are both efficiently recognizable and derivable automatically from sensor data. SOMBRERO's methods for generating, matching and fusing Brep's are highly synergetic. A split-and-merge segmentation algorithm with dynamic triangular builds a partial (21/2D) Brep from scattered data. The recognition module matches this scene description with a model database and outputs recognized objects, their positions and orientations, and possibly surfaces corresponding to unknown objects. We present preliminary results in scene segmentation and recognition. Partial Brep's corresponding to different range sensors or viewpoints can be merged into a consistent, complete and irredundant 3D object or scene model. This fusion algorithm itself uses the recognition and segmentation methods.
Jun, Min-Ho; Kim, Soochan; Ku, Boncho; Cho, JungHee; Kim, Kahye; Yoo, Ho-Ryong; Kim, Jaeuk U
2018-01-12
We investigated segmental phase angles (PAs) in the four limbs using a multi-frequency bioimpedance analysis (MF-BIA) technique for noninvasively diagnosing diabetes mellitus. We conducted a meal tolerance test (MTT) for 45 diabetic and 45 control subjects stratified by age, sex and body mass index (BMI). HbA1c and the waist-to-hip-circumference ratio (WHR) were measured before meal intake, and we measured the glucose levels and MF-BIA PAs 5 times for 2 hours after meal intake. We employed a t-test to examine the statistical significance and the area under the curve (AUC) of the receiver operating characteristics (ROC) to test the classification accuracy using segmental PAs at 5, 50, and 250 kHz. Segmental PAs were independent of the HbA1c or glucose levels, or their changes caused by the MTT. However, the segmental PAs were good indicators for noninvasively screening diabetes In particular, leg PAs in females and arm PAs in males showed best classification accuracy (AUC = 0.827 for males, AUC = 0.845 for females). Lastly, we introduced the PA at maximum reactance (PAmax), which is independent of measurement frequencies and can be obtained from any MF-BIA device using a Cole-Cole model, thus showing potential as a useful biomarker for diabetes.
Koh, Victor; Swamidoss, Issac Niwas; Aquino, Maria Cecilia D; Chew, Paul T; Sng, Chelvin
2018-04-27
Develop an algorithm to predict the success of laser peripheral iridotomy (LPI) in primary angle closure suspect (PACS), using pre-treatment anterior segment optical coherence tomography (ASOCT) scans. A total of 116 eyes with PACS underwent LPI and time-domain ASOCT scans (temporal and nasal cuts) were performed before and 1 month after LPI. All the post-treatment scans were classified to one of the following categories: (a) both angles open, (b) one of two angles open and (c) both angles closed. After LPI, success is defined as one or more angles changed from close to open. In this proposed method, the pre and post-LPI ASOCT scans were registered at the corresponding angles based on similarities between the respective local descriptor features and random sample consensus technique was used to identify the largest consensus set of correspondences between the pre and post-LPI ASOCT scans. Subsequently, features such as correlation co-efficient (CC) and structural similarity index (SSIM) were extracted and correlated with the success of LPI. We included 116 eyes and 91 (78.44%) eyes fulfilled the criteria for success after LPI. Using the CC and SSIM index scores from this training set of ASOCT images, our algorithm showed that the success of LPI in eyes with narrow angles can be predicted with 89.7% accuracy, specificity of 95.2% and sensitivity of 36.4% based on pre-LPI ASOCT scans only. Using pre-LPI ASOCT scans, our proposed algorithm showed good accuracy in predicting the success of LPI for PACS eyes. This fully-automated algorithm could aid decision making in offering LPI as a prophylactic treatment for PACS.
Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.
1996-03-12
The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Kim, Chi Heon; Chung, Chun Kee; Jahng, Tae-Ahn; Park, Sung Bae; Sohn, Seil; Lee, Sungjoon
2015-02-01
Retrospective comparative study. Two polyetheretherketone (PEEK) cages of different designs were compared in terms of the postoperative segmental kyphosis after anterior cervical discectomy and fusion. Segmental kyphosis occasionally occurs after the use of a stand-alone cage for anterior cervical discectomy and fusion. Although PEEK material seems to have less risk of segmental kyphosis compared with other materials, the occurrence of segmental kyphosis for PEEK cages has been reported to be from 0% to 29%. There have been a few reports that addressed the issue of PEEK cage design. A total of 41 consecutive patients who underwent single-level anterior discectomy and fusion with a stand-alone cage were included. Either a round tube-type (Solis; 18 patients, S-group) or a trapezoidal tube-type (MC+; 23 patients, M-group) cage was used. The contact area between the cage and the vertebral body is larger in MC+ than in Solis, and anchoring pins were present in the Solis cage. The effect of the cage type on the segmental angle (SA) (lordosis vs. kyphosis) at postoperative month 24 was analyzed. Preoperatively, segmental lordosis was present in 12/18 S-group and 16/23 M-group patients (P=0.84). The SA was more lordotic than the preoperative angle in both groups just after surgery, with no difference between groups (P=0.39). At 24 months, segmental lordosis was observed in 9/18 S-group and 20/23 M-group patients (P=0.01). The patients in M-group were 7.83 times more likely than patients in S-group (P=0.04; odds ratio, 7.83; 95% confidence interval, 1.09-56.28) not to develop segmental kyphosis. The design of the PEEK cage used may influence the SA, and this association needs to be considered when using stand-alone PEEK cages.
Melese, Ephrem; Peterson, Jeffrey R.; Feldman, Robert M.; Baker, Laura A.; Bell, Nicholas P.; Chuang, Alice Z.
2016-01-01
Purpose To evaluate the changes in anterior chamber angle (ACA) parameters in primary angle closure (PAC) spectrum eyes before and after cataract extraction (CE) and compare to the changes after laser peripheral iridotomy (LPI) using anterior segment optical coherence tomography (ASOCT). Methods Twenty-eight PAC spectrum eyes of 18 participants who underwent CE and 34 PAC spectrum eyes of 21 participants who underwent LPI were included. ASOCT images with 3-dimensional mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after CE or LPI. Mixed-effect model analysis was used to 1) compare best-corrected visual acuity, intraocular pressure, and ACA parameters before and after CE; 2) identify and estimate the effects of potential contributing factors affecting changes in ACA parameters; and 3) compare CE and LPI treatment groups. Results The increase in average angle parameters (TISA750 and TICV750) was significantly greater after CE than LPI. TICV750 increased by 102% (2.114 [±1.203] μL) after LPI and by 174% (4.546 [± 1.582] μL) after CE (P < 0.001). Change of TICV750 in the CE group was significantly affected by age (P = 0.002), race (P = 0.006), and intraocular lens power (P = 0.037). Conclusions CE results in greater anatomic changes in the ACA than LPI in PAC spectrum eyes. ASOCT may be used to follow anatomic changes in the angle after intervention. PMID:27606482
Low-loss VIS/IR-XUV beam splitter for high-power applications.
Pupeza, Ioachim; Fill, Ernst E; Krausz, Ferenc
2011-06-20
We present a low-loss VIS/IR-XUV beam splitter, suitable for high-power operation. The spatial separation of the VIS/IR and XUV components of a beam is achieved by the wedged top layer of a dielectric multilayer structure, onto which the beam is impinging under Brewster's angle (for VIS/IR). With a fused silica wedge with an angle of 0.5° we achieve a separation angle of 2.2° and an IR reflectivity of 0.9995. Typical XUV reflectivities amount to 0.1-0.2. The novel element is mechanically robust, exhibiting two major advantages over free-standing Brewster plates: (i) a significant improvement of heat conduction and (ii) easier handling, in particular for high-optical-quality fabrication. The beam splitter could be used as an output coupler for intracavity-generated XUV radiation, promising a boost of the power regime of current MHz-HHG experiments. It is also suited for single-pass experiments and as a beam combiner for pump-probe experiments.
N-(1-Allyl-1H-indazol-5-yl)-4-methylbenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
The asymmetric unit of the title compound, C17H17N3O2S, contains two independent molecules linked by an N—H⋯O hydrogen bond. The molecules show different conformations. In the first molecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methylbenzenesulfonamide group is 78.8 (1)°. On the other hand, in the second molecule, the dihedral angles between the indazole plane and the allyl and methylbenzenesulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, molecules are further linked by N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:24454264
9-(3,4-Dimeth-oxy-phen-yl)-3,3,6,6-tetra-methyl-4,5,6,9-tetra-hydro-3H-xanthene-1,8(2H,7H)-dione.
Mehdi, Sayed Hasan; Sulaiman, Othman; Ghalib, Raza Murad; Yeap, Chin Sing; Fun, Hoong-Kun
2011-07-01
The asymmetric unit of the title xanthene compound, C(25)H(30)O(5), contains two mol-ecules in which the pyran ring and the dimeth-oxy-phenyl ring are nearly perpendicular to one another [dihedral angles = 86.81 (8) and 84.45 (9)°]. One of the meth-oxy groups in one mol-ecule is twisted away from the phenyl ring [C-O-C-C torsion angle = -103.40 (16)°]. The pyran ring adopts a boat conformation whereas the two fused cyclo-hexane rings adopt envelope conformations in both mol-ecules. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯O hydrogen bonds.
Angle-of-Arrival Assisted GNSS Collaborative Positioning.
Huang, Bin; Yao, Zheng; Cui, Xiaowei; Lu, Mingquan
2016-06-20
For outdoor and global navigation satellite system (GNSS) challenged scenarios, collaborative positioning algorithms are proposed to fuse information from GNSS satellites and terrestrial wireless systems. This paper derives the Cramer-Rao lower bound (CRLB) and algorithms for the angle-of-arrival (AOA)-assisted GNSS collaborative positioning. Based on the CRLB model and collaborative positioning algorithms, theoretical analysis are performed to specify the effects of various factors on the accuracy of collaborative positioning, including the number of users, their distribution and AOA measurements accuracy. Besides, the influences of the relative location of the collaborative users are also discussed in order to choose appropriate neighboring users, which is in favor of reducing computational complexity. Simulations and actual experiment are carried out with several GNSS receivers in different scenarios, and the results are consistent with theoretical analysis.
Quantitative understanding of explosive stimulus transfer
NASA Technical Reports Server (NTRS)
Schimmel, M. L.
1973-01-01
The mechanisms of detonation transfer across hermetically sealed interfaces created by necessary interruptions in high explosive trains, such as at detonators to explosive columns, field joints in explosive columns, and components of munitions fuse trains are demostrated. Reliability of detonation transfer is limited by minimizing explosive quantities, the use of intensitive explosives for safety, and requirements to propagate across gaps and angles dictated by installation and production restraints. The major detonation transfer variables studied were: explosive quanity, sensitivity, and thickness, and the separation distances between donor and acceptor explosives.
Zhong, Hongliang; Wu, Chen-Hao; Li, Chang-Zhi; Carpenter, Joshua; Chueh, Chu-Chen; Chen, Jung-Yao; Ade, Harald; Jen, Alex K-Y
2016-02-03
Rigid fused perylene diimide (PDI) dimers bridged with heterocycles exhibit superior photovoltaic performance compared to their unfused semiflexible analogues. Changing the chalcogen atoms in the aromatic bridges gradually increases the twist angles between the two PDI planes, leading to a varied morphology in which the one bridged by thiophene achieves a balance and shows the best efficiency of 6.72%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
N-(1H-Indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2013-10-26
In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene-sulfonamide moiety. In the crystal, mol-ecules are connected through N-H⋯O hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network which is parallel to (010).
Inoue, Hiroto; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Kodama, Yuya; Ozaki, Toshifumi
2018-02-01
Anterior cruciate ligament (ACL) reconstruction can reduce the risk of developing osteoarthritic knees. The goals of ACL reconstruction are to restore knee stability and reduce post-traumatic meniscal tears and cartilage degradation. A chronic ACL insufficiency frequently results in medial meniscus (MM) injury at the posterior segment. How ACL reconstruction can reduce the deformation of the MM posterior segment remains unclear. In this study, we evaluated the form of the MM posterior segment and anterior tibial translation before and after ACL reconstruction using open magnetic resonance imaging (MRI). Seventeen patients who underwent ACL reconstructions without MM injuries were included in this study. MM deformation was evaluated using open MRI before surgery and 3 months after surgery. We measured medial meniscal length (MML), medial meniscal height (MMH), medial meniscal posterior body width (MPBW), MM-femoral condyle contact width (M-FCW) and posterior tibiofemoral distance (PTFD) at knee flexion angles of 10° and 90°. There were no significant pre- and postoperative differences during a flexion angle of 10°. At a flexion angle of 90°, MML decreased from 43.7 ± 4.5 to 41.4 ± 4.5 mm (P < 0.001), MMH from 7.5 ± 1.4 to 6.9 ± 1.4 mm (P = 0.006), MPBW from 13.1 ± 2.0 to 12.2 ± 1.9 mm (P < 0.001) and M-FCW from 10.0 ± 1.5 to 8.5 ± 1.5 mm (P < 0.001) after ACL reconstruction. The PTFD increased from 2.1 ± 2.8 to 2.7 ± 2.4 mm after ACL reconstruction (P = 0.015). ACL reconstruction affects the contact pattern between the MM posterior segment and medial femoral condyle and can reduce the deformation of the MM posterior segment in the knee-flexed position by reducing abnormal anterior tibial translation. It possibly prevents secondary injury to the MM posterior segment and cartilage that progresses to knee osteoarthritis. IV.
Dastiridou, Anna; Marion, Kenneth; Niemeyer, Moritz; Francis, Brian; Sadda, Srinivas; Chopra, Vikas
2018-04-11
To investigate the effects of ambient light level variation on spectral domain anterior segment optical coherence tomography (SD-ΟCT)-derived anterior chamber angle metrics in Caucasians versus Asians. Caucasian (n = 24) and Asian participants of Chinese ancestry (n = 24) with open angles on gonioscopy had one eye imaged twice at five strictly controlled, ambient light levels. Ethnicity was self-reported. Light levels were strictly controlled using a light meter at 1.0, 0.75, 0.5, 0.25, and 0 foot candle illumination levels. SD-OCT 5-line raster scans at the inferior 270° irido-corneal angle were measured by two trained, masked graders from the Doheny Image Reading Center using customized Image-J software. Schwalbe's line-angle opening distance (SL-AOD) and SL-trabecular iris space area (SL-TISA) in different light meter readings (LMRs) between the two groups were compared. Baseline light SL-AOD and SL-TISA measured 0.464 ± 0.115mm/0.351 ± 0.110mm 2 and 0.344 ± 0.118mm/0.257 ± 0.092mm 2 , respectively, in the Caucasian and the Asian group. SL-AOD and SL-TISA in each LMR were significantly larger in the Caucasian group compared to the Asian group (p < 0.05). Despite this difference in angle size between the groups, there were no statistically significant differences in the degree of change in angle parameters from light to dark (% changes in SL-AOD or SL-TISA between the two groups were statistically similar with all p-values >0.3). SL-based angle dimensions using SD-OCT are sensitive to changes in ambient illumination in participants with Caucasian and Asian ancestry. Although Caucasian eyes had larger baseline angle opening under bright light conditions, the light-to-dark change in angle dimensions was similar in the two groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankovich, N.J.; Lambert, T.; Zrimec, T.
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. The authors have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (pseudo-MRA/pseudo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic.more » The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model`s lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.« less
Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.
1995-05-01
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.
Advanced and standardized evaluation of neurovascular compression syndromes
NASA Astrophysics Data System (ADS)
Hastreiter, Peter; Vega Higuera, Fernando; Tomandl, Bernd; Fahlbusch, Rudolf; Naraghi, Ramin
2004-05-01
Caused by a contact between vascular structures and the root entry or exit zone of cranial nerves neurovascular compression syndromes are combined with different neurological diseases (trigeminal neurolagia, hemifacial spasm, vertigo, glossopharyngeal neuralgia) and show a relation with essential arterial hypertension. As presented previously, the semi-automatic segmentation and 3D visualization of strongly T2 weighted MR volumes has proven to be an effective strategy for a better spatial understanding prior to operative microvascular decompression. After explicit segmentation of coarse structures, the tiny target nerves and vessels contained in the area of cerebrospinal fluid are segmented implicitly using direct volume rendering. However, based on this strategy the delineation of vessels in the vicinity of the brainstem and those at the border of the segmented CSF subvolume are critical. Therefore, we suggest registration with MR angiography and introduce consecutive fusion after semi-automatic labeling of the vascular information. Additionally, we present an approach of automatic 3D visualization and video generation based on predefined flight paths. Thereby, a standardized evaluation of the fused image data is supported and the visualization results are optimally prepared for intraoperative application. Overall, our new strategy contributes to a significantly improved 3D representation and evaluation of vascular compression syndromes. Its value for diagnosis and surgery is demonstrated with various clinical examples.
NASA Astrophysics Data System (ADS)
Febriani, F.; Handayani, L.; Setyani, A.; Anggono, T.; Syuhada; Soedjatmiko, B.
2018-03-01
The dimensionality and regional strike analyses of the Cimandiri Fault, West Java, Indonesia have been investigated. The Cimandiri Fault consists of six segments. They are Loji, Cidadap, Nyalindung, Cibeber, Saguling and Padalarang segments. The magnetotelluric (MT) investigation was done in the Cibeber segment. There were 42 observation points of the magnetotelluric data, which were distributed along 2 lines. The magnetotelluric phase tensor has been applied to determine the dimensionality and regional strike of the Cibeber segment, Cimandiri Fault, West Java. The result of the dimensionality analysis shows that the range values of the skew angle value which indicate the dimensionality of the study area are -5 ≤ β ≥ 5. These values indicate if we would like to generate the subsurface model of the Cibeber segment by using the magnetotelluric data, it is safe to assume that the Cibeber segment has the 2-D. While the regional strike analysis presents that the regional strike of the Cibeber segment is about N70-80°E.
Dogan, Soner; Duivenvoorden, Raphaël; Grobbee, Diederick E; Kastelein, John J P; Shear, Charles L; Evans, Gregory W; Visseren, Frank L; Bots, Michiel L
2010-05-01
Ultrasound protocols to measure carotid intima media thickness (CIMT) differ considerably with regard to the inclusion of the number of carotid segments and angles used. Detailed information on the completeness of CIMT information is often lacking in published reports, and at most, overall percentages are presented. We therefore decided to study the completeness of CIMT measurements and its relation with vascular risk factors using data from two CIMT intervention studies: one among familial hypercholesterolemia (FH) patients, the Rating Atherosclerotic Disease change by Imaging With A New CETP Inhibitor (RADIANCE 1), and one among mixed dyslipidemia (MD) patients, the Rating Atherosclerotic Disease change by Imaging With A New CETP Inhibitor (RADIANCE 2). We used baseline ultrasound scans from the RADIANCE 1 (n=872) and RADIANCE 2 (n=752) studies. CIMT images were recorded for 12 artery-wall combinations (near and far walls of the left and right common carotid artery (CCA), bifurcation (BIF) and internal carotid artery (ICA) segments) at 4 set angles, resulting in 48 possible measurements per patient. The presence or absence of CIMT measurements was assessed per artery-wall combination and per angle. The relation between completeness and patient characteristics was evaluated with logistic regression analysis. In 89% of the FH patients, information on CIMT could be obtained on all twelve carotid segments, and in 7.6%, eleven segments had CIMT information (nearly complete 96.6%). For MD patients this was 74.6% and 17.9%, respectively (nearly complete: 92.5%). Increased body mass index and increased waist circumference were significantly (p=0.01) related to less complete data in FH patients. For MD patients, relations were seen with increased waist circumference (p<0.01). Segment-specific data indicated that in FH patients, completeness was less for the near wall of the left (96%) and right internal carotid artery (94%) as compared to other segments (all >98%). In MD patients, completeness was lower for the near wall of both the right and left carotid arteries: 86.0% and 90.8%, respectively, as compared to other segments (all >97%). With the current ultrasound protocols it is possible to obtain a very high level of completeness. Apart from the population studied, body mass index and waist circumference are important in achieving complete CIMT measurements.
Grasso, R; Zago, M; Lacquaniti, F
2000-01-01
Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.
Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein
Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.
2016-01-01
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774
Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul
2015-02-01
Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P < 0.0005) and segmental image quality (2.42 ± 0.99 vs. 1.93 ± 1.18, P < 0.005) compared to unfused 3D acquisitions. Levels achieved were closer to scores for 2D contrast images (CNR: 9.04 ± 2.21, P = 0.6; segmental image quality: 2.91 ± 0.37, P < 0.005). WMSI calculated from fused 3D volumes did not differ significantly from those obtained from 2D contrast echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.
Jinkins, J R
2001-01-01
In earlier evolutionary times, mammals were primarily quadrupeds. However, other bipeds have also been represented during the course of the Earth's several billion year history. In many cases, either the bipedal stance yielded a large tail and hypoplastic upper extremities (e.g., Tyrannosaurus rex and the kangaroo), or it culminated in hypoplasia of the tail and further development and specialization of the upper extremities (e.g., nonhuman primates and human beings). In the human species this relatively recently acquired posture resulted in a more or less pronounced lumbosacral kyphosis. In turn, certain compensatory anatomic features have since occurred. These include the normal characteristic posteriorly directed wedge-shape of the L5 vertebral body and the L5-S1 intervertebral disk; the L4 vertebral body and the L4-L5 disk may be similarly visibly affected. These compensatory mechanisms, however, have proved to be functionally inadequate over the long term of the human life span. Upright posture also leads to increased weight bearing in humans that progressively causes excess stresses at and suprajacent to the lumbosacral junction. These combined factors result in accelerated aging and degenerative changes and a predisposition to frank biomechanical failure of the subcomponents of the spinal column in these spinal segments. One other specific problem that occurs at the lumbosacral junction that predisposes toward premature degeneration is the singular relationship that exists between a normally mobile segment of spine (i.e., the lumbar spine) and a normally immobile one (i.e., the sacrum). It is well known that mobile spinal segments adjacent to congenitally or acquired fused segments have a predilection toward accelerated degenerative changes. The only segment of the spine in which this is invariably normally true is at the lumbosacral junction (i.e., the unfused lumbar spine adjoining the fused sacrum). Nevertheless, biomechanical failures of the human spine are not lethal traits; in most cases today, mankind reaches sexual maturity before spinal biomechanical failure precludes sexual reproduction. For this gene-preserving reason, degenerative spinal disorders will likely be a part of modern societies for the foreseeable eternity of the race. The detailed alterations accruing from the interrelated consequences of and phenomena contributing to acquired degenerative changes of the lumbosacral intervertebral segments as detailed in this discussion highlight the extraordinary problems that are associated with degenerative disease in this region of the spine. Further clinicoradiologic research in this area will progressively determine the clinical applications and clinical efficacy of the various traditional and newer methods of therapy in patients presenting with symptomatic acquired collapse of the intervertebral disks at and suprajacent to the lumbosacral junction and the interrelated degenerative alterations of the nondiskal structures of the spine.
Kim, Tae Kyong; Son, Je-Do; Seo, Hyungseok; Lee, Yun-Seok; Bae, Jinyoung; Park, Hee-Pyoung
2017-08-01
In patients with cervical immobilization, jaw thrust can cause cervical spine movement. Concurrent use of a laryngoscope may facilitate lightwand intubation, allowing midline placement and free movement of the lightwand in the oral cavity without jaw thrust. We compared the effects of laryngoscope-assisted lightwand intubation (LALI) versus conventional lightwand intubation (CLI) on cervical spine motion during intubation in patients with simulated cervical immobilization. In this randomized crossover study, the cervical spine angle was measured before and during intubation at the occiput-C1, C1-C2, and C2-C5 segments in 20 patients with simulated cervical immobilization who underwent intubation using both the LALI and CLI techniques. Cervical spine motion was defined as the change from baseline in angle measured at each cervical segment during intubation. Cervical spine motion at the occiput-C1 segment was 5.6° (4.3) and 9.3° (4.5) when we used the LALI and CLI techniques, respectively (mean difference [98.33% CI]; -3.8° [-7.2 to -0.3]; P = .007). At other cervical segments, it was not significantly different between the 2 techniques (-0.1° [-2.6 to 2.5]; P = .911 in the C1-C2 segment and -0.2° [-2.8 to 2.5]; P = .795 in the C2-C5 segment). The LALI technique produces less upper cervical spine motion during intubation than the CLI technique in patients with simulated cervical immobilization.
The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang, E-mail: griv@bgu.ac.il
As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysismore » of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.« less
Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P
2015-06-01
This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.
Rankenberg, Johanna M; Vostrikov, Vitaly V; DuVall, Christopher D; Greathouse, Denise V; Koeppe, Roger E; Grant, Christopher V; Opella, Stanley J
2012-05-01
By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet remains intact through Ala(21) in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than those observed for WALP family peptides that have more than two interfacial Trp residues.
Proline Kink Angle Distributions for GWALP23 in Lipid Bilayers of Different Thickness†
Rankenberg, Johanna M.; Vostrikov, Vitaly V.; DuVall, Christopher D.; Greathouse, Denise V.; Koeppe, Roger E.; Grant, Christopher V.; Opella, Stanley J.
2013-01-01
By using selected 2H and 15N labels, we have examined the influence of a central proline residue upon the properties of a defined peptide that spans lipid bilayer membranes by solid-state NMR spectroscopy. For this purpose, GWALP23 (acetyl-GGALW5LALALALALALALW19LAGA-ethanolamide) is a suitable model peptide that employs—for the purpose of interfacial anchoring—only one tryptophan residue on either end of a central alpha-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thickness (see J. Biol. Chem. 285, 31723), we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW5LALALAP12ALALALW19LAGA-ethanolamide. We synthesized the GWALP23-P12 with specifically placed 2H and 15N labels for solid-state NMR spectroscopy, and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2H)-GALA and (15N-1H) high resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by about 34° and 29° (± 5°), respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable or less than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of about 30° (± 5°), with an apparent helix unwinding or “swivel” angle of about 70°. In DLPC and DOPC, based on 2H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala-21 in the phospholipids DMPC and DLPC, yet remains intact through Ala-21 in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than observed for WALP-family peptides that have more than two interfacial Trp residues. PMID:22489564
Automated estimation of leaf distribution for individual trees based on TLS point clouds
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus
2017-04-01
Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation parameters was evaluated as the following: i) the sum area of the collected leaves and the point cloud, ii) the segmented leaf length-width ratio iii) the distribution of the leaf area for the segmented and the reference-ones were compared and the ideal parameter-set was found. The results show that the leaves can be captured with the developed workflow and the slope can be determined robustly for the segmented leaves. However, area, length and width values are systematically depending on the angle and the distance from the scanner. For correction of the systematic underestimation, more systematic measurement or LiDAR simulation is required for further detailed analysis. The results of leaf segmentation algorithm show high potential in generating more precise tree models with correctly located leaves in order to extract more precise input model for biological modeling of LAI or atmospheric corrections studies. The presented workflow also can be used in monitoring the change of angle of the leaves due to sun irradiation, water balance, and day-night rhythm.
Automatic anterior chamber angle assessment for HD-OCT images.
Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin
2011-11-01
Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.
Developmental identity versus typology: Lucy has only four sacral segments.
Machnicki, Allison L; Lovejoy, C Owen; Reno, Philip L
2016-08-01
Both interspecific and intraspecific variation in vertebral counts reflect the action of patterning control mechanisms such as Hox. The preserved A.L. 288-1 ("Lucy") sacrum contains five fused elements. However, the transverse processes of the most caudal element do not contact those of the segment immediately craniad to it, leaving incomplete sacral foramina on both sides. This conforms to the traditional definition of four-segmented sacra, which are very rare in humans and African apes. It was recently suggested that fossilization damage precludes interpretation of this specimen and that additional sacral-like features of its last segment (e.g., the extent of the sacral hiatus) suggest a general Australopithecus pattern of five sacral vertebrae. We provide updated descriptions of the original Lucy sacrum. We evaluate sacral/coccygeal variation in a large sample of extant hominoids and place it within the context of developmental variation in the mammalian vertebral column. We report that fossilization damage did not shorten the transverse processes of the fifth segment of Lucy's sacrum. In addition, we find that the extent of the sacral hiatus is too variable in apes and hominids to provide meaningful information on segment identity. Most importantly, a combination of sacral and coccygeal features is to be expected in vertebrae at regional boundaries. The sacral/caudal boundary appears to be displaced cranially in early hominids relative to extant African apes and humans, a condition consistent with the likely ancestral condition for Miocene hominoids. While not definitive in itself, a four-segmented sacrum accords well with the "long-back" model for the Pan/Homo last common ancestor. Am J Phys Anthropol 160:729-739, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Performing label-fusion-based segmentation using multiple automatically generated templates.
Chakravarty, M Mallar; Steadman, Patrick; van Eede, Matthijs C; Calcott, Rebecca D; Gu, Victoria; Shaw, Philip; Raznahan, Armin; Collins, D Louis; Lerch, Jason P
2013-10-01
Classically, model-based segmentation procedures match magnetic resonance imaging (MRI) volumes to an expertly labeled atlas using nonlinear registration. The accuracy of these techniques are limited due to atlas biases, misregistration, and resampling error. Multi-atlas-based approaches are used as a remedy and involve matching each subject to a number of manually labeled templates. This approach yields numerous independent segmentations that are fused using a voxel-by-voxel label-voting procedure. In this article, we demonstrate how the multi-atlas approach can be extended to work with input atlases that are unique and extremely time consuming to construct by generating a library of multiple automatically generated templates of different brains (MAGeT Brain). We demonstrate the efficacy of our method for the mouse and human using two different nonlinear registration algorithms (ANIMAL and ANTs). The input atlases consist a high-resolution mouse brain atlas and an atlas of the human basal ganglia and thalamus derived from serial histological data. MAGeT Brain segmentation improves the identification of the mouse anterior commissure (mean Dice Kappa values (κ = 0.801), but may be encountering a ceiling effect for hippocampal segmentations. Applying MAGeT Brain to human subcortical structures improves segmentation accuracy for all structures compared to regular model-based techniques (κ = 0.845, 0.752, and 0.861 for the striatum, globus pallidus, and thalamus, respectively). Experiments performed with three manually derived input templates suggest that MAGeT Brain can approach or exceed the accuracy of multi-atlas label-fusion segmentation (κ = 0.894, 0.815, and 0.895 for the striatum, globus pallidus, and thalamus, respectively). Copyright © 2012 Wiley Periodicals, Inc.
Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error
Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong
2013-01-01
A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526
Local contrast-enhanced MR images via high dynamic range processing.
Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart
2018-09-01
To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.
Hyperspectral image segmentation using a cooperative nonparametric approach
NASA Astrophysics Data System (ADS)
Taher, Akar; Chehdi, Kacem; Cariou, Claude
2013-10-01
In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.
Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have established the effects of different ampoule materials, temperature profiles, pressure differences, and silicon concentrations and that samples that are nearly completely detached can be grown repeatedly.
Two-year outcomes of transforaminal lumbar interbody fusion.
Poh, Seng Yew; Yue, Wai Mun; Chen, Li-Tat John; Guo, Chang-Ming; Yeo, William; Tan, Seang-Beng
2011-08-01
To evaluate the outcomes, fusion rates, complications, and adjacent segment degeneration associated with transforaminal lumbar interbody fusion (TLIF). 32 men and 80 women aged 15 to 85 (mean, 57) years underwent 141 fusions (84 one-level, 27 2-level, and one 3-level) and were followed up for 24 to 76 (mean, 33) months. 92% of the patients had degenerative lumbar disease, 15 of whom had had previous lumbar surgery. Radiographic and clinical outcomes were assessed at 2 years. The short-form 36 (SF-36) health survey, visual analogue scale (VAS) for pain, and the modified North American Spine Society (NASS) Low Back Pain Outcome Instrument were used. Of the 141 levels fused, 110 (78%) were fused with remodelling and trabeculae (grade I), and 31 (22%) had intact grafts but were not fully incorporated (grade II). No patient had pseudoarthroses (grade III or IV). For one-level fusions, poorer radiological fusion grades correlated with higher VAS scores for pain (p<0.01). All components of the SF-36, the VAS scores for pain, and the NASS scores improved significantly after TLIF (p<0.01), except for general health in the SF-36 (p=0.59). Improvement from postoperative 6 months to 2 years was not significant, except for physical function (p<0.01) and role function (physical) [p=0.01] in the SF-36. Two years after TLIF, 50% of the patients reported returning to full function, whereas 72% were satisfied. 26 (23%) of the patients had adjacent segment degeneration, but only 4 of them were symptomatic. TLIF is a safe and effective treatment for degenerative lumbar diseases.
Development of a robust MRI fiducial system for automated fusion of MR-US abdominal images.
Favazza, Christopher P; Gorny, Krzysztof R; Callstrom, Matthew R; Kurup, Anil N; Washburn, Michael; Trester, Pamela S; Fowler, Charles L; Hangiandreou, Nicholas J
2018-05-21
We present the development of a two-component magnetic resonance (MR) fiducial system, that is, a fiducial marker device combined with an auto-segmentation algorithm, designed to be paired with existing ultrasound probe tracking and image fusion technology to automatically fuse MR and ultrasound (US) images. The fiducial device consisted of four ~6.4 mL cylindrical wells filled with 1 g/L copper sulfate solution. The algorithm was designed to automatically segment the device in clinical abdominal MR images. The algorithm's detection rate and repeatability were investigated through a phantom study and in human volunteers. The detection rate was 100% in all phantom and human images. The center-of-mass of the fiducial device was robustly identified with maximum variations of 2.9 mm in position and 0.9° in angular orientation. In volunteer images, average differences between algorithm-measured inter-marker spacings and actual separation distances were 0.53 ± 0.36 mm. "Proof-of-concept" automatic MR-US fusions were conducted with sets of images from both a phantom and volunteer using a commercial prototype system, which was built based on the above findings. Image fusion accuracy was measured to be within 5 mm for breath-hold scanning. These results demonstrate the capability of this approach to automatically fuse US and MR images acquired across a wide range of clinical abdominal pulse sequences. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel
2017-05-01
In this work, single-piece fused silica capillaries with two different internal diameter segments featuring different inner surface roughness were prepared by new etching technology with supercritical water and used for volume coupling electrophoresis. The concept of separation and online pre-concentration of analytes in high conductivity matrix is based on the online large-volume sample pre-concentration by the combination of transient isotachophoretic stacking and sweeping of charged proteins in micellar electrokinetic chromatography using non-ionogenic surfactant. The modified surface roughness step helped to the significant narrowing of the zones of examined analytes. The sweeping and separating steps were accomplished simultaneously by the use of phosphate buffer (pH 7) containing ethanol, non-ionogenic surfactant Brij 35, and polyethylene glycol (PEG 10000) after sample injection. Sample solution of a large volume (maximum 3.7 μL) dissolved in physiological saline solution was injected into the wider end of capillary with inlet inner diameter from 150, 185 or 218 μm. The calibration plots were linear (R 2 ∼ 0.9993) over a 0.060-1 μg/mL range for the proteins used, albumin and cytochrome c. The peak area RSDs from at least 20 independent measuremens were below 3.2%. This online pre-concentration technique produced a more than 196-fold increase in sensitivity, and it can be applied for detection of, e.g. the presence of albumin in urine (0.060 μg/mL). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buldt, Andrew K; Levinger, Pazit; Murley, George S; Menz, Hylton B; Nester, Christopher J; Landorf, Karl B
2015-06-01
Variations in foot posture are associated with the development of some lower limb injuries. However, the mechanisms underlying this relationship are unclear. The objective of this study was to compare foot kinematics between normal, pes cavus and pes planus foot posture groups using a multi-segment foot model. Ninety-seven healthy adults, aged 18-47 were classified as either normal (n=37), pes cavus (n=30) or pes planus (n=30) based on normative data for the Foot Posture Index, Arch Index and normalised navicular height. A five segment foot model was used to measure tri-planar motion of the rearfoot, midfoot, medial forefoot, lateral forefoot and hallux during barefoot walking at a self-selected speed. Angle at heel contact, peak angle, time to peak angle and range of motion was measured for each segment. One way ANOVAs with post-hoc analyses of mean differences were used to compare foot posture groups. The pes cavus group demonstrated a distinctive pattern of motion compared to the normal and pes planus foot posture groups. Effect sizes of significant mean differences were large and comparable to similar studies. Three key differences in overall foot function were observed between the groups: (i) altered frontal and transverse plane angles of the rearfoot in the pes cavus foot; (ii) Less midfoot motion in the pes cavus foot during initial contact and midstance; and (iii) reduced midfoot frontal plane ROM in the pes planus foot during pre-swing. These findings indicate that foot posture does influence motion of the foot. Copyright © 2015 Elsevier B.V. All rights reserved.
Contijoch, Francisco; Witschey, Walter R T; Rogers, Kelly; Rears, Hannah; Hansen, Michael; Yushkevich, Paul; Gorman, Joseph; Gorman, Robert C; Han, Yuchi
2015-05-21
Data obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia. Multi-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias. ACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2 ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated. User-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias.
Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J
2016-02-01
Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (p<0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Powell, Douglas W; Long, Benjamin; Milner, Clare E; Zhang, Songning
2011-02-01
The functions of the medial longitudinal arch have been the focus of much research in recent years. Several studies have shown kinematic differences between high- and low-arched runners. No literature currently compares the inter-segmental foot motion of high- and low-arched recreational athletes. The purpose of this study was to examine inter-segmental foot motion in the frontal plane during dynamic loading activities in high- and low-arched female athletes. Inter-segmental foot motions were examined in 10 high- and 10 low-arched female recreational athletes. Subjects performed five barefooted trials in each of the following randomized movements: walking, running, downward stepping and landing. Three-dimensional kinematic data were recorded. High-arched athletes had smaller peak ankle eversion angles in walking, running and downward stepping than low-arched athletes. At the rear-midfoot joint high-arched athletes reached peak eversion later in walking and downward stepping than the low-arched athletes. The high-arched athletes had smaller peak mid-forefoot eversion angles in walking, running and downward stepping than the low-arched athletes. The current findings show that differences in foot kinematics between the high- and low-arched athletes were in position and not range of motion within the foot. Copyright © 2010 Elsevier B.V. All rights reserved.
High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)
2001-01-01
A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.
Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
Liu, Kun; Liu, Tao; Shibata, Kyoko; Inoue, Yoshio; Zheng, Rencheng
2009-12-11
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2 degrees of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4 degrees and 4.9 degrees during normal gait that had a 45 degrees flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.
Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon
2015-01-01
AIM To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS Seventeen consecutive subjects (33 eyes) were recruited from the study hospital's Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other's analyses of OCT images. RESULTS Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (P<0.01). The agreement for angle closure between AS-OCT and gonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59) and k=0.35 (95% CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49) and slight at k=0.17 (95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45). CONCLUSION Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively. PMID:25938053
Method and apparatus for optimizing the efficiency and quality of laser material processing
Susemihl, Ingo
1990-01-01
The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.
Method and apparatus for optimizing the efficiency and quality of laser material processing
Susemihl, I.
1990-03-13
The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.
Gómez, Jorge E.; Navarro, Fabián H.; Sandoval, Junior E.
2015-01-01
A novel 3-hydroxypropyl (propanol) bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (~ 94%) over O-silylation, and high surface coverages of propanol groups (5±1 µmol/m2) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (IR and solid state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, tris(2,2’-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. PMID:24934906
LDR segmented mirror technology assessment study
NASA Technical Reports Server (NTRS)
Krim, M.; Russo, J.
1983-01-01
In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.
NASA Astrophysics Data System (ADS)
Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang
2018-03-01
Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.
Segmentation decreases the magnitude of the tilt illusion
Qiu, Cheng; Kersten, Daniel; Olman, Cheryl A.
2013-01-01
In the tilt illusion, the perceived orientation of a target grating depends strongly on the orientation of a surround. When the orientations of the center and surround gratings differ by a small angle, the center grating appears to tilt away from the surround orientation (repulsion), whereas for a large difference in angle, the center appears to tilt toward the surround orientation (attraction). In order to understand how segmentation/perceptual grouping of the center and surround affect the magnitude of the tilt illusion, we conducted three psychophysical experiments in which we measured observers' perception of center orientation as a function of center-surround relative contrast, relative disparity depth, and geometric features such as occlusion and collinearity. All of these manipulations affected the strength of perceived orientation bias in the center. Our results suggest that if stronger segmentation/perceptual grouping is induced between the center and surround, the tilt repulsion bias decreases/increases. A grouping-dependent tilt illusion plays an important role in visual search and detection by enhancing the sensitivity of our visual system to feature discrepancies, especially in relatively homogenous environments. PMID:24259671
Masis Solano, Marisse; Lin, Shan C
2018-01-29
Cataract extraction is a safe and effective surgery that has a lowering effect on the intraocular pressure. The specific mechanisms for this effect are still unclear. A direct inflammatory effect on the trabecular meshwork, alteration of the blood aqueous barrier, changes in the ciliary body and mechanical changes of the anterior segment anatomy are the key to understand cataract surgery and it's effects on aqueous humor dynamics. Additionally, with the advent of AS OCT, changes in the anterior segment of the eye have been studied and several parameters (such as lens vault, angle opening distance and anterior chamber depth) have been identified as predictors of intraocular pressure change. In eyes with narrow angles there is a greater drop in intraocular pressure after cataract surgery and it is correlated with parameters related to anterior chamber space. It is safe to affirm that cataract surgery is an important part of the modern glaucoma treatment and evidence should be analyzed as part of a bigger picture in order to more accurately understand its clinical relevance. Copyright © 2018. Published by Elsevier Ltd.
Sagittal alignment after single cervical disc arthroplasty.
Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc
2012-02-01
Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to postoperative C2C7 alignment. No significant correlation was observed between ROM and sagittal parameters. Few correlations were found between sagittal alignment and clinical results. CDR with this prosthesis provided favorable clinical outcomes and maintains ROM of the FSU, overall and segmental cervical alignment. Long-term follow-up will be needed to assess the effectiveness and advantages of this procedure.
3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells
Luo, Tong; Chen, Huan; Kassab, Ghassan S.
2016-01-01
Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342
Age and sex influences on running mechanics and coordination variability.
Boyer, Katherine A; Freedman Silvernail, Julia; Hamill, Joseph
2017-11-01
The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s -1 . A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex-age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh-shank transverse plane couple but greater coordination variability for the shank rotation-foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.
Angle imaging: Advances and challenges
Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin
2011-01-01
Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037
Optical absorption edge of ZnO thin films: The effect of substrate
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1997-05-01
The optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated. The band edge of films on C [(0001)] and R-plane [(1102)] sapphire, 3.29 and 3.32 eV, respectively, are found to be very close to the single crystal value of ZnO (3.3 eV) with the differences being accounted for in terms of the thermal mismatch strain using the known deformation potentials of ZnO. In contrast, films grown on fused silica consistently exhibit a band edge ˜0.1 eV lower than that predicted using the known deformation potential and the thermal mismatch strains. This behavior is attributed to the small grain size (50 nm) realized in these films and the effect of electrostatic potentials that exist at the grain boundaries. Additionally, the spread in the tail (E0) of the band edge for the different films is found to be very sensitive to the defect structure in the films. For films grown on sapphire substrates, values of E0 as low as 30 meV can be achieved on annealing in air, whereas films on fused silica always show a value >100 meV. We attribute this difference to the substantially higher density of high-angle grain boundaries in the films on fused silica.
FUSE SPECTROSCOPIC ANALYSIS OF THE SLOWEST SYMBIOTIC NOVA AG PEG DURING QUIESCENCE
NASA Astrophysics Data System (ADS)
Sion, Edward Michael; Godon, Patrick; Katynski, Marcus; Mikolajewska, Joanna
2018-01-01
We present a far ultraviolet spectroscopic analysis of the slowest known symbiotic nova AG Peg (MIII giant + hot white dwarf; P_orb = 818.4 days) which underwent a nova explosion in 1850 followed by a very slow decline that did not end until ~ 1996, marking the beginning of queiscence. Eight years of quiescence ended in June 2015, when AG Peg exhibited a Z And-type outburst with an optical amplitude of ~ 3 magnitudes. We have carried out accretion disk and WD photosphere synthetic spectral modeling of a FUSE spectrum (Froning et al. 2014) obtained on June 5.618, 2003 during the quiescence intervai ~ 12 years before the 2015 outburst. The spectrum is heavily affected by ISM absorption as well as strong broad emission lines. We de-reddened the FUSE fluxes with E(B-V) = 0.10 which is the maximum galactic reddening in the direction of AG Peg and took the distance of 800 pc (Kenyon et al. 1993) but used a range of white dwarf masses, surface temperatures and disk inclination angles. Our analysis also incororates archival HST FOS spectra obtained in 1996 at the onset of quiescence, 147 years after the 1850 nova explosion. The results of our analysis are presented and implications are discussed.This work is supported in part by NASA ADP grant NNX17AF36G to Villanova University.
An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.
Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling
2016-10-31
In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization
Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling
2016-01-01
In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230
On Interpreting Stereo Disparity
1989-04-01
denominators shall now be examined in some detail. The term _," (R) can h, expanded (with the aid of double angle formulas) as -x[&(x,y) .(cos 20, sin 20...histogram computations: Expand eight- connectivity regions about a central pixel until the desired number of inputs have been scanned. In this example, it...takes two iterations of the algorithm to locate the second line segment. For this figure, line segments are depicted with black; expanding serach
On the Aerodynamics of Windblast.
1981-11-13
streamline pattern that characterizes the cross-flow over two circular-cylindrical body segments in line contact with one another at time t = 0. That is, at...over the limbs of the ejection seat occupant. Note that MC may vary over different portions of the body that intercept the flow at different angles a...dimensional, rectilinear situation, one may estimate the kinematics of the ensuing motion of a body segment of mass Ms, subjected to the force
Uncertainty Analysis for Angle Calibrations Using Circle Closure
Estler, W. Tyler
1998-01-01
We analyze two types of full-circle angle calibrations: a simple closure in which a single set of unknown angular segments is sequentially compared with an unknown reference angle, and a dual closure in which two divided circles are simultaneously calibrated by intercomparison. In each case, the constraint of circle closure provides auxiliary information that (1) enables a complete calibration process without reference to separately calibrated reference artifacts, and (2) serves to reduce measurement uncertainty. We derive closed-form expressions for the combined standard uncertainties of angle calibrations, following guidelines published by the International Organization for Standardization (ISO) and NIST. The analysis includes methods for the quantitative evaluation of the standard uncertainty of small angle measurement using electronic autocollimators, including the effects of calibration uncertainty and air turbulence. PMID:28009359
Jarrín, E; Jarrín, I; Arnalich-Montiel, F
2015-08-01
We describe a simplified method to detect anterior lenticonus. Three eyes of 2 patients with anterior lenticonus, plus 16 eyes from 16 healthy controls underwent Scheimpflug imaging of their anterior segment with Pentacam. The anterior capsule apex angle was manually identified and automatically measured by AutoCAD. The mean angle was 173.06° (SD: 1.91) in healthy subjects, and 158.33° (SD: 3.05) in anterior lenticonus eyes. The angle obtained from patients was more than 3 SD steeper than those from healthy subjects. The apical angle calculation method seems to discriminate well between normal eyes and eyes suspected of having anterior lenticonus. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
Experimental Investigation of Heat Pipe Startup Under Reflux Mode
NASA Technical Reports Server (NTRS)
Ku, Jentung
2018-01-01
In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.
A power function profile of a ski jumping in-run hill.
Zanevskyy, Ihor
2011-01-01
The aim of the research was to find a function of the curvilinear segment profile which could make possible to avoid an instantaneous increasing of a curvature and to replace a circle arc segment on the in-run of a ski jump without any correction of the angles of inclination and the length of the straight-line segments. The methods of analytical geometry and trigonometry were used to calculate an optimal in-run hill profile. There were two fundamental conditions of the model: smooth borders between a curvilinear segment and straight-line segments of an in-run hill and concave of the curvilinear segment. Within the framework of this model, the problem has been solved with a reasonable precision. Four functions of a curvilinear segment profile of the in-run hill were investigated: circle arc, inclined quadratic parabola, inclined cubic parabola, and power function. The application of a power function to the in-run profile satisfies equal conditions for replacing a circle arc segment. Geometrical parameters of 38 modern ski jumps were investigated using the methods proposed.
Min-cut segmentation of cursive handwriting in tabular documents
NASA Astrophysics Data System (ADS)
Davis, Brian L.; Barrett, William A.; Swingle, Scott D.
2015-01-01
Handwritten tabular documents, such as census, birth, death and marriage records, contain a wealth of information vital to genealogical and related research. Much work has been done in segmenting freeform handwriting, however, segmentation of cursive handwriting in tabular documents is still an unsolved problem. Tabular documents present unique segmentation challenges caused by handwriting overlapping cell-boundaries and other words, both horizontally and vertically, as "ascenders" and "descenders" overlap into adjacent cells. This paper presents a method for segmenting handwriting in tabular documents using a min-cut/max-flow algorithm on a graph formed from a distance map and connected components of handwriting. Specifically, we focus on line, word and first letter segmentation. Additionally, we include the angles of strokes of the handwriting as a third dimension to our graph to enable the resulting segments to share pixels of overlapping letters. Word segmentation accuracy is 89.5% evaluating lines of the data set used in the ICDAR2013 Handwriting Segmentation Contest. Accuracy is 92.6% for a specific application of segmenting first and last names from noisy census records. Accuracy for segmenting lines of names from noisy census records is 80.7%. The 3D graph cutting shows promise in segmenting overlapping letters, although highly convoluted or overlapping handwriting remains an ongoing challenge.
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.
Dong, Pei; Wang, Li; Lin, Weili; Shen, Dinggang; Wu, Guorong
2017-03-15
The first year of life is the most dynamic and perhaps the most critical phase of postnatal brain development. The ability to accurately measure structure changes is critical in early brain development study, which highly relies on the performances of image segmentation and registration techniques. However, either infant image segmentation or registration, if deployed independently, encounters much more challenges than segmentation/registration of adult brains due to dynamic appearance change with rapid brain development. In fact, image segmentation and registration of infant images can assists each other to overcome the above challenges by using the growth trajectories (i.e., temporal correspondences) learned from a large set of training subjects with complete longitudinal data. Specifically, a one-year-old image with ground-truth tissue segmentation can be first set as the reference domain. Then, to register the infant image of a new subject at earlier age, we can estimate its tissue probability maps, i.e., with sparse patch-based multi-atlas label fusion technique, where only the training images at the respective age are considered as atlases since they have similar image appearance. Next, these probability maps can be fused as a good initialization to guide the level set segmentation. Thus, image registration between the new infant image and the reference image is free of difficulty of appearance changes, by establishing correspondences upon the reasonably segmented images. Importantly, the segmentation of new infant image can be further enhanced by propagating the much more reliable label fusion heuristics at the reference domain to the corresponding location of the new infant image via the learned growth trajectories, which brings image segmentation and registration to assist each other. It is worth noting that our joint segmentation and registration framework is also flexible to handle the registration of any two infant images even with significant age gap in the first year of life, by linking their joint segmentation and registration through the reference domain. Thus, our proposed joint segmentation and registration method is scalable to various registration tasks in early brain development studies. Promising segmentation and registration results have been achieved for infant brain MR images aged from 2-week-old to 1-year-old, indicating the applicability of our method in early brain development study.
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
Global Aeroheating Measurements of Shock-Shock Interactions on a Swept Cylinder
NASA Technical Reports Server (NTRS)
Mason, Michelle L.; Berry, Scott A.
2015-01-01
The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. The cylindrical leading-edge fin models, with radii varied from 0.25 to 0.75 inches, represent wings or struts on hypersonic vehicles. A 9deg wedge generated a planar oblique shock at 16.7deg. to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin sweep angle was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. These cases were chosen to explore three characterized shock-shock interaction types. Global temperature data were obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and any temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using a one-dimensional semi-infinite method, as well as one- and two-dimensional finite-volume methods. These results were compared to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for each explored shock-shock interaction type regardless of the leading-edge radius. However, the dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.
A small-angle large-acceptance detection system for hadrons
NASA Astrophysics Data System (ADS)
Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.
2000-04-01
The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.
ERIC Educational Resources Information Center
Eperson, D. B.
1991-01-01
This section includes eight problems to which the journal invites readers to respond. Problem topics include angles in alternate segments, pentominoes, a new triangle of numbers, cricket scores, symmetrical pentagons, inequalities, a pythagorean dissection, and magic squares. (MDH)
9-(3,4-Dimeth-oxy-phen-yl)-3,4,5,6,7,9-hexa-hydroxanthene-1,8(2H)-dione.
Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Yeap, Chin Sing; Fun, Hoong-Kun
2011-06-01
In the title compound, C(21)H(22)O(5), the mean planes of the pyran and dimeth-oxy-phenyl rings are nearly perpendicular to one another, with the dihedral angle between them being 88.21 (8)°. The pyran ring adopts a boat conformation whereas the two fused cyclo-hexane rings adopt envelope conformations. In the crystal, mol-ecules are linked into a three-dimensional network by inter-molecular C-H⋯O hydrogen bonds.
1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine
Tian, Zhongzhen; Li, Dongmei; Li, Zhong
2009-01-01
In the title compound, C15H19ClN4O3, an active agrochemical possessing insecticidal activity, the dihedral angle between the mean planes passing through the pyridine ring and the five-membered ring is 87.3 (2)°. The fused pyridine ring adopts a twisted sofa conformation. The molecular structure features close intramolecular C—H⋯N and C—H⋯O hydrogen bonding. PMID:21577964
4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.
Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl-benzene-sulfonamide moiety. In the crystal, mol-ecules are -connected through N-H⋯N hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network parallel to (001).
4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzenesulfonamide
Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methylbenzenesulfonamide moiety. In the crystal, molecules are connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093
N-(1H-Indazol-5-yl)-4-methoxybenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzenesulfonamide moiety. In the crystal, molecules are connected through N—H⋯O hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network which is parallel to (010). PMID:24454128
Design Models for Shaping of a Tooth Profile of External Fine-Module Ratchet Teeth
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2016-04-01
Simulation of the shaping for the fine-module external ratchet teeth at which the contacting surfaces are formed by the straight segments is considered in this paper. The design schemes for shaping of the proposed ratchet teeth by a shaper cutter and a rack are obtained. It is defined that the maximum length of the straight segment of the front edge ratchet teeth will be formed at shaping by a rack cutter. The effect of a module, a gradient angle and a radius of blank circles on the length of the straight segment of the front edge ratchet teeth is investigated.
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2015-01-01
Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L/D characteristics and minimum drag in cruise. In the present 3-D study, calculations show that for the same C(sub t), the 3-D circular arc camber wing segment produces the largest drag for a given lift, larger than either of the two 2-D configurations, as was also conjectured in the previous study. This study indicates a wing stall around 4.5 deg angle of attack.
DEM simulation of flow of dumbbells on a rough inclined plane
NASA Astrophysics Data System (ADS)
Mandal, Sandip; Khakhar, Devang
2015-11-01
The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.
Vortex nozzle for segmenting and transporting metal chips from turning operations
Bieg, L.F.
1993-04-20
Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.
Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki
2009-02-26
The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are unclear at the present stage.
Inter-segment foot motion in girls using a three-dimensional multi-segment foot model.
Jang, Woo Young; Lee, Dong Yeon; Jung, Hae Woon; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho
2018-05-06
Several multi-segment foot models (MFMs) have been introduced for in vivo analyses of dynamic foot kinematics. However, the normal gait patterns of healthy children and adolescents remain uncharacterized. We sought to determine normal foot kinematics according to age in clinically normal female children and adolescents using a Foot 3D model. Fifty-eight girls (age 7-17 years) with normal function and without radiographic abnormalities were tested. Three representative strides from five separate trials were analyzed. Kinematic data of foot segment motion were tracked and evaluated using an MFM with a 15-marker set (Foot 3D model). As controls, 50 symptom-free female adults (20-35 years old) were analyzed. In the hindfoot kinematic analysis, plantar flexion motion in the pre-swing phase was significantly greater in girls aged 11 years or older than in girls aged <11 years, thereby resulting in a larger sagittal range of motion. Coronal plane hindfoot motion exhibited pronation, whereas transverse plane hindfoot motion exhibited increased internal rotation in girls aged <11 years. Hallux valgus angles increased significantly in girls aged 11 years or older. The foot progression angle showed mildly increased internal rotation in the loading response phase and the swing phase in girls aged <11 years old. The patterns of inter-segment foot motion in girls aged 11 years or older showed low-arch kinematic characteristics, whereas those in girls aged 11 years or older were more similar to the patterns in young adult women. Copyright © 2018 Elsevier B.V. All rights reserved.
The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation
NASA Astrophysics Data System (ADS)
Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.
2018-04-01
The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.
Zhang, Yu; Tang, Yibo; Shen, Hongxing
2017-12-01
In order to reduce the incidence of adjacent segment disease (ASD), the current study was designed to establish Chinese finite element models of normal 3rd~7th cervical vertebrae (C3-C7) and anterior cervical corpectomy and fusion (ACCF) with internal fixation , and analyze the influence of screw sagittal angle (SSA) on stress on endplate of adjacent cervical segments. Mimics 8.1 and Abaqus/CAE 6.10 softwares were adopted to establish finite element models. For C4 superior endplate and C6 inferior endplate, their anterior areas had the maximum stress in anteflexion position, and their posterior areas had the maximum stress in posterior extension position. As SSA increased, the stress reduced. With an increase of 10° in SSA, the stress on anterior areas of C4 superior endplate and C6 inferior endplate reduced by 12.67% and 7.99% in anteflexion position, respectively. With an increase of 10° in SSA, the stress on posterior areas of C4 superior endplate and C6 inferior endplate reduced by 9.68% and 10.22% in posterior extension position, respectively. The current study established Chinese finite element models of normal C3-C7 and ACCF with internal fixation , and demonstrated that as SSA increased, the stress on endplate of adjacent cervical segments decreased. In clinical surgery, increased SSA is able to play important role in protecting the adjacent cervical segments and reducing the incidence of ASD.
Kida, Kazunobu; Tadokoro, Nobuaki; Kumon, Masashi; Ikeuchi, Masahiko; Kawazoe, Tateo; Tani, Toshikazu
2014-03-01
To determine if cantilever transforaminal lumbar interbody fusion (C-TLIF) using the crescent-shaped titanium interbody spacer (IBS) favors acquisition of segmental and lumbar lordosis even for degenerative spondylolisthesis (DS) on a long-term basis. We analyzed 23 consecutive patients who underwent C-TLIF with pedicle screw instrumentations fixed with compression for a single-level DS. Measurements on the lateral radiographs taken preoperatively, 2 weeks postoperatively and at final follow-up included disc angle (DA), segmental angle (SA), lumbar lordosis (LL), disc height (%DH) and slip rate (%slip). There was a good functional recovery with 100 % fusion rate at the mean follow-up of 62 months. Segmental lordosis (DA and SA) and %DH initially increased, but subsequently decreased with the subsidence of the interbody spacer, resulting in a significant increase (p = 0.046) only in SA from 13.2° ± 5.5° preoperatively to 14.7° ± 6.4° at the final follow-up. Changes of LL and %slip were more consistent without correction loss finally showing an increase of LL by 3.6° (p = 0.005) and a slip reduction by 6.7 % (p < 0.001). Despite the inherent limitation of placing the IBS against the anterior endplate of the upper vertebra in the presence of DS, the C-TLIF helped significantly restore segmental as well as lumbar lordosis on a long-term basis, which would be of benefit in preventing hypolordosis-induced back pain and the adjacent level disc disease.
Posterior fixation including the fractured vertebra for severe unstable thoracolumbar fractures.
Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S
2015-02-01
Traditional short-segment fixation of unstable thoracolumbar injuries can be associated with progressive kyphosis and implant failure. Load sharing classification (LSC) recommends supplemental anterior reconstruction for fractures of score 7 or greater. Posterior fixation including the fractured vertebra (PFFV) has biomechanical advantages over conventional short-segment fixation. However, its efficacy in severe thoracolumbar injuries (LSC≥7) has not been studied. To study the clinical, functional, and radiologic results of PFFV for severe, unstable thoracolumbar injuries (LSC≥7) at a minimum of 2 years. A retrospective review of case records. Thirty-two patients with an unstable burst fracture of LSC≥7 treated with PFFV were included. They included clinical outcomes: American Spinal Injury Association grade, visual analog scale (VAS), Oswestry Disability Index (ODI); and radiologic measures: segmental kyphosis angle, vertebral wedge angle, and percentage loss of anterior and posterior vertebral height. Thirty-two patients with LSC≥7 who had undergone PFFV, with a minimum follow-up of 2 years were studied for demographic, injury, and surgical details. Clinical and radiologic outcomes were measured before surgery and at 6, 12, and 24 months postoperatively. The presence of screw breakage, screw pullout, peri-implant loosening, and rod breakage were considered as criteria for implant failure. None of the patients had postoperative implant failure at the final follow-up. The mean preoperative kyphosis angle was 22.9°±7.6°. This improved significantly to 9.2°±6.6° after surgery (p=.000). There was a loss of mean 2.4° (mean kyphosis angle of 11.6°±6.3°) at the final follow-up. The mean preoperative wedge angle was 23.0°±8.1°. This was corrected to 9.7°±6.2° (p=.000). There was a loss of kyphosis (mean 1.2°) in the follow-up period. The mean anterior and posterior vertebral height also showed significant improvements postoperatively, which were maintained at the final follow-up. The mean ODI and VAS scores at the end of 2 years were 17.5% and 1.6, respectively. Reduction of unstable thoracolumbar injuries even with LSC≥7 can be achieved and maintained with the use of short-segment pedicle screw fixation including the fractured vertebra, avoiding the need for anterior reconstruction. In the current era of evolving concepts of fracture fixation, the relevance of LSC in the management of unstable burst fractures is questionable. Copyright © 2015 Elsevier Inc. All rights reserved.
Wnuk, Bartosz; Blicharska, Irmina; Błaszczak, Edward; Durmała, Jacek
2015-01-01
The use of manual therapy in the treatment of scoliosis has been controversial. Scientific reports do not clearly indicate its effectiveness or harmfulness. The aim of this study was to determine the effectiveness of passive and active derotation techniques of manual therapy according to Kaltenborn-Evjent on the reduction of the angle of trunk rotation in patients with idiopathic scoliosis. The study enrolled 33 female patients from the Department of Rehabilitation who were diagnosed with adolescent idiopathic scoliosis. The patients were divided into two groups according to the curve location (SRS classification). Group A consisted of 17 women, aged 14.±2.4 years, with single-curve scoliosis in the thoracolumbar segment and group B was composed of 16 women, aged 15±2.24 years, with double-curve scoliosis in the thoracic and lumbar segments. In both groups, the angle of trunk rotation, the magnitude of thoracic kyphosis and lumbar lordosis were measured twice, before and after each session of derotation techniques. Both groups demonstrated a positive impact of active and passive derotation techniques on the angle of trunk inclination. The greatest difference was observed after a session of active derotation in the patients with lumbar scoliosis. The angle of trunk rotation decreased on average by 4.5°±1.14°. No correlations were found between the curve angle values and the degree of thoracic derotation after the application of these techniques. Derotational mobilization techniques may be a valuable complement to scoliosis treatment methods as they increase their effectiveness.
Red blood cell transfusion probability and associated costs in neurosurgical procedures.
Barth, Martin; Weiss, Christel; Schmieder, Kirsten
2018-03-20
The extent of red blood cell units (RBC) needed for different neurosurgical procedures and the time point of their administration are widely unknown, which results in generously cross-matching prior to surgery. However, RBC are increasingly requested in the aging western populations, and blood donations are significantly reduced. Therefore, the knowledge of the extent and time point of administration of RBC is of major importance. This is a retrospective single center analysis. The incidence of RBC transfusion during surgery or within 48 h after surgery was analyzed for all neurosurgical patients within 3 years. Costs for cross-matched and transfused RBC were calculated and risk factors for RBC transfusion analyzed. The risk of intraoperative RBC administration was low for spinal and intracranial tumor resections (1.87%) and exceeded 10% only in spinal fusion procedures. This was dependent on the number of fused segments with an intraoperative transfusion risk of > 12.5% with fusion of more than three levels. Multiple logistic regression analysis showed a significantly increased risk for RBC transfusion for female gender (p = 0.006; OR 1.655), higher age (N = 4812; p < 0.0001; OR 1.028), and number of fused segments (N = 737; p < 0.0001; OR 1.433). Annual costs for cross-matching were 783,820.88 USD and for intraoperative RBC administration 121,322.13 USD. Neurosurgical procedures are associated with a low number of RBC needed intraoperatively. Only elective spine fusion procedures with ≥ 3 levels involved and AVM resections seem to require cross-matching of RBC. The present data may allow changing the preoperative algorithm of RBC cross-matching in neurosurgical procedures and help to save resources and costs.
Origin and diversification of wings: Insights from a neopteran insect.
Medved, Victor; Marden, James H; Fescemyer, Howard W; Der, Joshua P; Liu, Jin; Mahfooz, Najmus; Popadić, Aleksandar
2015-12-29
Winged insects underwent an unparalleled evolutionary radiation, but mechanisms underlying the origin and diversification of wings in basal insects are sparsely known compared with more derived holometabolous insects. In the neopteran species Oncopeltus fasciatus, we manipulated wing specification genes and used RNA-seq to obtain both functional and genomic perspectives. Combined with previous studies, our results suggest the following key steps in wing origin and diversification. First, a set of dorsally derived outgrowths evolved along a number of body segments including the first thoracic segment (T1). Homeotic genes were subsequently co-opted to suppress growth of some dorsal flaps in the thorax and abdomen. In T1 this suppression was accomplished by Sex combs reduced, that when experimentally removed, results in an ectopic T1 flap similar to prothoracic winglets present in fossil hemipteroids and other early insects. Global gene-expression differences in ectopic T1 vs. T2/T3 wings suggest that the transition from flaps to wings required ventrally originating cells, homologous with those in ancestral arthropod gill flaps/epipods, to migrate dorsally and fuse with the dorsal flap tissue thereby bringing new functional gene networks; these presumably enabled the T2/T3 wing's increased size and functionality. Third, "fused" wings became both the wing blade and surrounding regions of the dorsal thorax cuticle, providing tissue for subsequent modifications including wing folding and the fit of folded wings. Finally, Ultrabithorax was co-opted to uncouple the morphology of T2 and T3 wings and to act as a general modifier of hindwings, which in turn governed the subsequent diversification of lineage-specific wing forms.
Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia
2011-05-01
The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.
Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang
2011-01-01
The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344
Bonnet, V; Dumas, R; Cappozzo, A; Joukov, V; Daune, G; Kulić, D; Fraisse, P; Andary, S; Venture, G
2017-09-06
This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9N and 10Nm) were much lower than obtained using a classical inverse dynamics approach (22N and 30Nm). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
9-(3,4-Dimethoxyphenyl)-3,3,6,6-tetramethyl-4,5,6,9-tetrahydro-3H-xanthene-1,8(2H,7H)-dione
Mehdi, Sayed Hasan; Sulaiman, Othman; Ghalib, Raza Murad; Yeap, Chin Sing; Fun, Hoong-Kun
2011-01-01
The asymmetric unit of the title xanthene compound, C25H30O5, contains two molecules in which the pyran ring and the dimethoxyphenyl ring are nearly perpendicular to one another [dihedral angles = 86.81 (8) and 84.45 (9)°]. One of the methoxy groups in one molecule is twisted away from the phenyl ring [C—O—C—C torsion angle = −103.40 (16)°]. The pyran ring adopts a boat conformation whereas the two fused cyclohexane rings adopt envelope conformations in both molecules. In the crystal, molecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds. PMID:21837111
3β,5α,6β-Trihydroxyandrostan-17-one
Andrade, L.C.R.; de Almeida, M.J.B.M.; Paixão, J.A.; Carvalho, J.F.S.; Sá e Melo, M.L.
2011-01-01
The title compound, C19H30O4, is an androstan-17-one derivative synthesized from the dehydroepiandrosterone through a sequential addition of an oxidant, followed by a trans-diaxial opening of the epoxide generated, with Bi(OTf)3 (OTf is trifluoromethanesulfonate). The six-membered rings have a slightly flattened chair conformation, while the five-membered ring adopts a 14-α envelope conformation. All rings are trans fused. In the crystal, the molecules are connected by O—H⋯O hydrogen bonds involving the hydroxyl and carbonyl groups, forming a three-dimensional network. A quantum mechanical ab initio Roothan Hartree–Fock calculation of the free molecule gives bond lengths, valency angles and ring torsion angles of the free molecule at equilibrium geometry (energy minimum) close to the experimental values. PMID:21754383
N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-methoxybenzenesulfonamide hemihydrate
Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N—N—C—C torsion angle of 79.2 (3)°. In the crystal, the water molecule, lying on a twofold axis, forms O—H⋯N and accepts N—H⋯O hydrogen bonds. Additional C—H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction. PMID:24109418
N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide hemi-hydrate.
Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N-N-C-C torsion angle of 79.2 (3)°. In the crystal, the water mol-ecule, lying on a twofold axis, forms O-H⋯N and accepts N-H⋯O hydrogen bonds. Additional C-H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction.
The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Fanglin; Wu Xingan; Luo Wen
2007-03-23
Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinatedmore » by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice.« less
NASA Technical Reports Server (NTRS)
Arabian, Donald D.; Runckel, Jack F.; Reid, Charles F, Jr.
1961-01-01
Measurements of the normal force and chord force were made on the slats of a sting-mounted wing-fuselage model through a Mach number range of 0.60 to 1.03 and at angles of attack from 0 to 20 deg at subsonic speeds and from 0 to 8 deg at Mach number 1.03. The 20-percent-chord tapered leading-edge slats extended from 25 to 95 percent of the semispan and consisted of five segments. The model wing had 45 deg sweep, an aspect ratio of 3.56, a taper ratio of 0.3, and NACA 64(06)AO07 airfoil sections. Slat forces and moments were determined for the slats in the almost-closed and open positions for spanwise extents of 35 to 95 percent and 46 to 95 percent of the semispan. The results of the investigation showed little change in the slat maximum force and moment coefficients with Mach number. The coefficients for the open and almost-closed slat positions had similar variations with angle of attack. The loads on the individual slat segments were found to increase toward the tip for moderate angles of attack and decrease toward the tip for high angles of attack. An analysis of the opening and closing characteristics of aerodynamically operated slats opening on a circular-arc path is included.
NASA Astrophysics Data System (ADS)
Sheppard, Adrian; Latham, Shane; Middleton, Jill; Kingston, Andrew; Myers, Glenn; Varslot, Trond; Fogden, Andrew; Sawkins, Tim; Cruikshank, Ron; Saadatfar, Mohammad; Francois, Nicolas; Arns, Christoph; Senden, Tim
2014-04-01
This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation.
Inertial Sensor Error Reduction through Calibration and Sensor Fusion.
Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L
2016-02-17
This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.
Turtle Graphics of Morphic Sequences
NASA Astrophysics Data System (ADS)
Zantema, Hans
2016-02-01
The simplest infinite sequences that are not ultimately periodic are pure morphic sequences: fixed points of particular morphisms mapping single symbols to strings of symbols. A basic way to visualize a sequence is by a turtle curve: for every alphabet symbol fix an angle, and then consecutively for all sequence elements draw a unit segment and turn the drawing direction by the corresponding angle. This paper investigates turtle curves of pure morphic sequences. In particular, criteria are given for turtle curves being finite (consisting of finitely many segments), and for being fractal or self-similar: it contains an up-scaled copy of itself. Also space-filling turtle curves are considered, and a turtle curve that is dense in the plane. As a particular result we give an exact relationship between the Koch curve and a turtle curve for the Thue-Morse sequence, where until now for such a result only approximations were known.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong
2012-01-01
This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
Hong's grading for evaluating anterior chamber angle width.
Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul
2012-11-01
To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.
Does Lordotic Angle of Cage Determine Lumbar Lordosis in Lumbar Interbody Fusion?
Hong, Taek-Ho; Cho, Kyu-Jung; Kim, Young-Tae; Park, Jae-Woo; Seo, Beom-Ho; Kim, Nak-Chul
2017-07-01
Retrospective, radiological analysis. To determine that 15° lordotic angle cages create higher lumbar lordosis in open transforaminal lumbar interbody fusion (TLIF) than 4° and 8° cages. Restoration of lumbar lordosis is important to obtain good outcome after lumbar fusion surgery. Various shapes and angles of cages in interbody fusion have been used; however, it is not proved that lordotic angle of cages determine lumbar lordosis. Sixty-seven patients were evaluated after TLIF using 15° cages and screw instrumentation. For comparison, TLIF using 4° lordotic angle cages in 65 patients and 8° cages in 49 patients were analyzed. Lumbar lordosis angles, segmental lordosis angles, disc height, and bony union rate were measured on the radiographs. The lumbar lordosis was 31.1° preoperatively, improved to 42.9° postoperatively, and decreased to 36.4° at the last follow-up in the 15° group. It was 35.8° before surgery, corrected to 41.5° after surgery, and changed to 33.6° at the last follow-up in the 4° group. In the 8° group, it was 32.7° preoperatively, improved to 39.1° postoperatively, and decreased to 34.5° at the last follow-up. These changes showed statistical significances (P < 0.001). The segmental lordosis at L4-5 was 6.6° before surgery, 13.1° after surgery, and 9.8° at the last follow-up in the 15° group. It was 6.9°, 9.5°, and 6.2° in the 4° group and 6.7°, 9.8°, and 8.1° in the 8° group, respectively (P < 0.001). The disc height restoration was better in the 15° group than in the 4° and 8° groups (P < 0.001). Bony union rate was not significant among the three groups (P = 0.087). The lordotic angle of the cages determined restoration of lumbar lordosis after TLIF. Cages with sufficient lordotic angle showed better restoration of lumbar lordosis and prevention of loss of correction. 4.
LCS-TA to identify similar fragments in RNA 3D structures.
Wiedemann, Jakub; Zok, Tomasz; Milostan, Maciej; Szachniuk, Marta
2017-10-23
In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds' rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/ . The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures.
Ocular Biometrics of Myopic Eyes With Narrow Angles.
Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay
2016-02-01
The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.
Morphology and Growth Kinetics of Straight and Kinked Tin Whiskers
NASA Astrophysics Data System (ADS)
Susan, Donald; Michael, Joseph; Grant, Richard P.; McKenzie, Bonnie; Yelton, W. Graham
2013-03-01
Time-lapse SEM studies of Sn whiskers were conducted to estimate growth kinetics and document whisker morphologies. For straight whiskers, growth rates of 3 to 4 microns per day were measured at room temperature. Two types of kinked whiskers were observed. For Type A kinks, the original growth segment spatial orientation remains unchanged, there are no other changes in morphology or diameter, and growth continues. For Type B kinks, the spatial orientation of the original segment changes and it appears that the whisker bends over. Whiskers with Type B kinks show changes in morphology and diameter at the base, indicating grain boundary motion in the film, which eliminates the conditions suitable for long-term whisker growth. To estimate the errors in the whisker growth measurements, a technique is presented to correct for SEM projection effects. With this technique, the actual growth angles and lengths of a large number of whiskers were collected. It was found that most whiskers grow at moderate or shallow angles with respect to the surface; few straight whiskers grow nearly normal to the surface. In addition, there is no simple correlation between growth angles and lengths for whiskers observed over an approximate 2-year period.
Relationship between intraocular pressure and angle configuration: an anterior segment OCT study.
Chong, Rachel S; Sakata, Lisandro M; Narayanaswamy, Arun K; Ho, Sue-Wei; He, Mingguang; Baskaran, Mani; Wong, Tien Yin; Perera, Shamira A; Aung, Tin
2013-03-05
To assess the relationship between intraocular pressure (IOP) and anterior chamber angle (ACA) configuration as assessed by gonioscopy and anterior segment optical coherence tomography (AS-OCT). A total of 2045 subjects aged 50 years and older, were recruited from a community clinic and underwent AS-OCT, Goldmann applanation tonometry, and gonioscopy. A quadrant was classified as closed on gonioscopy if the posterior trabecular meshwork could not be seen. A closed quadrant on AS-OCT was defined by the presence of any contact between the iris and angle wall anterior to the scleral spur. Customized software (Zhongshan Angle Assessment Program, Guangzhou, China) was used to measure AS-OCT parameters on AS-OCT scans, including anterior chamber depth, area, and volume; iris thickness (IT) and curvature; lens vault; angle opening distance; and trabecular-iris space area. IOP values were adjusted for age, sex, diabetes and hypertension status, body mass index, central corneal thickness, and presence of peripheral anterior synechiae. Mean age of study subjects was 63.2 ± 8.0 years, 52.6% were female, and 89.4% were Chinese. Mean IOP was 14.8 ± 2.4 mm Hg (range 826). IOP (mean ± SE) increased with number of quadrants with gonioscopic angle closure (none: 14.6 ± 0.2; one: 14.7 ± 0.3; two: 15.0 ± 0.3; three: 15.0 ± 0.3; four: 15.6 ± 0.3 mm Hg; P < 0.001), and on AS-OCT (none: 14.7 ± 0.2; one: 15.0 ± 0.2; two: 14.8 ± 0.2; three: 15.1 ± 0.3; four: 16.0 ± 0.3 mm Hg; P < 0.001). IOP also increased in association with most of the ACA quantitative parameters measured on AS-OCT images, except for IT and lens vault. There was an association between the extent of angle closure, as assessed on AS-OCT and gonioscopy, with increasing IOP.
Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F
2011-01-01
The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.
2011-01-01
Background It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS. Methods Twelve individuals with chronic stroke (53.17 ± 7.52 years old) participated of a gait training program with BWS during overground walking, and were evaluated before and after the gait training period. In both evaluations, individuals were videotaped walking at a self-selected comfortable speed with no BWS. Measurements were obtained for mean walking speed, step length, stride length and speed, toe-clearance, durations of total double stance and single-limb support, and minimum and maximum foot, shank, thigh, and trunk segmental angles. Results After gait training, individuals walked faster, with symmetrical steps, longer and faster strides, and increased toe-clearance. Also, they displayed increased rotation of foot, shank, thigh, and trunk segmental angles on both sides of the body. However, the duration of single-limb support remained asymmetrical between each side of the body after gait training. Conclusions Gait training individuals with chronic stroke with BWS during overground walking improved walking in terms of temporal-spatial parameters and segmental angles. This training strategy might be adopted as a safe, specific and promising strategy for gait rehabilitation after stroke. PMID:21864373
Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M
2011-01-01
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Grasso, R; Peppe, A; Stratta, F; Angelini, D; Zago, M; Stanzione, P; Lacquaniti, F
1999-05-01
Gait coordination was analyzed (four-camera 100 Hz ELITE system) in two groups of idiopathic Parkinson disease (PD) patients. Five patients underwent continuous infusion of apomorphine and were recorded in two different sessions (APO OFF and APO ON) in the same day. Three patients with a previous chronic electrode implantation in both internal globi pallidi (GPi) were recorded in the same experimental session with the electrodes on and off (STIM ON and STIM OFF). The orientation of both the trunk and the lower-limb segments was described with respect to the vertical in the sagittal plane. Lower-limb inter-segmental coordination was evaluated by analyzing the co-variation between thigh, shank, and foot elevation angles by means of orthogonal planar regression. At least 30 gait cycles per experimental condition were processed. We found that the trunk was bent forward in STIM OFF, whereas it was better aligned with the vertical in STIM ON in both PD groups. The legs never fully extended during the gait cycle in STIM OFF, whereas they extended before heel strike in STIM ON. The multisegmental coordination of the lower limb changed almost in parallel with the changes in trunk orientation. In STIM OFF, both the shape and the spatial orientation of the planar gait loops (thigh angle vs. shank angle vs. foot angle) differed from those of physiological locomotion, whereas in STIM ON the gait loop tended to resume features closer to the control. Switching the electrodes on and off in patients with GPi electrodes resulted in quasi-parallel changes of the trunk inclination and of the planar gait loop. The bulk of the data suggest that the basal-ganglia circuitry may be relevant in locomotion by providing an appropriate spatio-temporal framework for the control of posture and movement in a gravity-based body-centered frame of reference. Pallido-thalamic and/or pallido-mesencephalic pathways may influence the timing of the inter-segmental coordination for gait.
Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C
2018-03-01
To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.
Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study
Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.
2015-01-01
Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156
Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.
Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K
2015-01-01
Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.
NASA Technical Reports Server (NTRS)
Gross, B.; Srawley, J. E.
1983-01-01
The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.
NASA Technical Reports Server (NTRS)
Tanner, C. S.; Glass, R. E.
1974-01-01
A series of noise measurements were made during engineering evaluation tests of two-segment approaches in a 727-200 aircraft equipped with acoustically treated nacelles. A two-segment approach having a 6-degree upper glide slope angle intercepting the Instrument Landing System (ILS) 2.9-degree glide slope at an altitude of 690 feet gave a 5-EPNdB decrease in measured noise at distances greater than 3 nautical miles from the runway threshold when compared with a normal ILS approach. Several of the noise measurements were taken under adverse weather conditions which were outside the specified limits of FAR Part 36. This may introduce uncertainties into the data from several approaches.
Imaging the spectral reflectance properties of bipolar radiofrequency-fused bowel tissue
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Arya, Shobhit; Stoyanov, Danail; Du, Xiaofei; Hanna, George B.; Elson, Daniel S.
2015-07-01
Delivery of radiofrequency (RF) electrical energy is used during surgery to heat and seal tissue, such as vessels, allowing resection without blood loss. Recent work has suggested that this approach may be extended to allow surgical attachment of larger tissue segments for applications such as bowel anastomosis. In a large series of porcine surgical procedures bipolar RF energy was used to resect and re-seal the small bowel in vivo with a commercial tissue fusion device (Ligasure; Covidien PLC, USA). The tissue was then imaged with a multispectral imaging laparoscope to obtain a spectral datacube comprising both fused and healthy tissue. Maps of blood volume, oxygen saturation and scattering power were derived from the measured reflectance spectra using an optimised light-tissue interaction model. A 60% increase in reflectance of visible light (460-700 nm) was observed after fusion, with the tissue taking on a white appearance. Despite this the distinctive shape of the haemoglobin absorption spectrum was still noticeable in the 460-600 nm wavelength range. Scattering power increased in the fused region in comparison to normal serosa, while blood volume and oxygen saturation decreased. Observed fusion-induced changes in the reflectance spectrum are consistent with the biophysical changes induced through tissue denaturation and increased collagen cross-linking. The multispectral imager allows mapping of the spatial extent of these changes and classification of the zone of damaged tissue. Further analysis of the spectral data in parallel with histopathological examination of excised specimens will allow correlation of the optical property changes with microscopic alterations in tissue structure.
Probability of conductive bond formation in a percolating network of nanowires with fusible tips
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; Wang, Robert Y.
2018-03-01
Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.
Geologic framework of the Aleutian arc, Alaska
Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.
1994-01-01
The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence lessens to the west (Minster and Jordan, 1978). Along the central Aleutian Ridge, underthrusting is about 30° from normal to the volcanic axis. Motion between plates is approximately parallel along the western Aleutian Ridge.In this paper we briefly describe and interpret the Cenozoic evolution of the Aleutian arc by focusing on the onshore and offshore geologic frameworks in four of its sectors, two sectors each from the Aleutian Ridge and Alaska Peninsula-Kodiak Island segments (Fig. 1). We compare the geologic evolution of the segments and comment on the implications of some new, previously unpublished data.
Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.
Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C
2016-04-01
As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7 patients who underwent surgery for ASD after a remote fusion. These patients later developed a fracture of the fusion mass after hardware removal from their previously successfully fused segment. All patients had a high sagittal imbalance and had previously undergone multiple spinal operations. The development of a spontaneous fracture of the fusion mass may be related to sagittal imbalance. Consideration should be given to reimplanting hardware for these patients, even across good fusions, to prevent spontaneous fracture of these areas if the sagittal imbalance is not corrected.
(abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films
NASA Technical Reports Server (NTRS)
Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.
1994-01-01
Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.
9-(3,4-Dimethoxyphenyl)-3,4,5,6,7,9-hexahydroxanthene-1,8(2H)-dione
Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Yeap, Chin Sing; Fun, Hoong-Kun
2011-01-01
In the title compound, C21H22O5, the mean planes of the pyran and dimethoxyphenyl rings are nearly perpendicular to one another, with the dihedral angle between them being 88.21 (8)°. The pyran ring adopts a boat conformation whereas the two fused cyclohexane rings adopt envelope conformations. In the crystal, molecules are linked into a three-dimensional network by intermolecular C—H⋯O hydrogen bonds. PMID:21754824
2013-01-01
cross section quartz channel with wall thickness of 1.75 mm. Two plane quartz windows are fused to the ends of the channel at Brewster angle (for ~308...ttp :// ar c. ai aa .o rg | D O I: 1 0. 25 14 /6 .2 01 3- 43 2 4 about 1 J/pulse, softly focused over the flame using a lens with a focal...region with an f=550 mm lens . The LIF signal sampling volume was about 100 mm away from the laser focal point, to avoid transition saturation. The
NASA Astrophysics Data System (ADS)
Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari
2008-03-01
In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.
Enhancement of optic cup detection through an improved vessel kink detection framework
NASA Astrophysics Data System (ADS)
Wong, Damon W. K.; Liu, Jiang; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin
2010-03-01
Glaucoma is a leading cause of blindness. The presence and extent of progression of glaucoma can be determined if the optic cup can be accurately segmented from retinal images. In this paper, we present a framework which improves the detection of the optic cup. First, a region of interest is obtained from the retinal fundus image, and a pallor-based preliminary cup contour estimate is determined. Patches are then extracted from the ROI along this contour. To improve the usability of the patches, adaptive methods are introduced to ensure the patches are within the optic disc and to minimize redundant information. The patches are then analyzed for vessels by an edge transform which generates pixel segments of likely vessel candidates. Wavelet, color and gradient information are used as input features for a SVM model to classify the candidates as vessel or non-vessel. Subsequently, a rigourous non-parametric method is adopted in which a bi-stage multi-resolution approach is used to probe and localize the location of kinks along the vessels. Finally, contenxtual information is used to fuse pallor and kink information to obtain an enhanced optic cup segmentation. Using a batch of 21 images obtained from the Singapore Eye Research Institute, the new method results in a 12.64% reduction in the average overlap error against a pallor only cup, indicating viable improvements in the segmentation and supporting the use of kinks for optic cup detection.
Region-Based Building Rooftop Extraction and Change Detection
NASA Astrophysics Data System (ADS)
Tian, J.; Metzlaff, L.; d'Angelo, P.; Reinartz, P.
2017-09-01
Automatic extraction of building changes is important for many applications like disaster monitoring and city planning. Although a lot of research work is available based on 2D as well as 3D data, an improvement in accuracy and efficiency is still needed. The introducing of digital surface models (DSMs) to building change detection has strongly improved the resulting accuracy. In this paper, a post-classification approach is proposed for building change detection using satellite stereo imagery. Firstly, DSMs are generated from satellite stereo imagery and further refined by using a segmentation result obtained from the Sobel gradients of the panchromatic image. Besides the refined DSMs, the panchromatic image and the pansharpened multispectral image are used as input features for mean-shift segmentation. The DSM is used to calculate the nDSM, out of which the initial building candidate regions are extracted. The candidate mask is further refined by morphological filtering and by excluding shadow regions. Following this, all segments that overlap with a building candidate region are determined. A building oriented segments merging procedure is introduced to generate a final building rooftop mask. As the last step, object based change detection is performed by directly comparing the building rooftops extracted from the pre- and after-event imagery and by fusing the change indicators with the roof-top region map. A quantitative and qualitative assessment of the proposed approach is provided by using WorldView-2 satellite data from Istanbul, Turkey.
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2015-01-01
Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM). Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.
Automatic exudate detection by fusing multiple active contours and regionwise classification.
Harangi, Balazs; Hajdu, Andras
2014-11-01
In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naïve-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Testing and Calibration of Phase Plates for JWST Optical Simulator
NASA Technical Reports Server (NTRS)
Gong, Qian; Chu, Jenny; Tournois, Severine; Eichhorn, William; Kubalak, David
2011-01-01
Three phase plates were designed to simulate the JWST segmented primary mirror wavefront at three on-orbit alignment stages: coarse phasing, intermediate phasing, and fine phasing. The purpose is to verify JWST's on-orbit wavefront sensing capability. Amongst the three stages, coarse alignment is defined to have piston error between adjacent segments being 30 m to 300 m, intermediate being 0.4 m to 10 m, and fine is below 0.4 m. The phase plates were made of fused silica, and were assembled in JWST Optical Simulator (OSIM). The piston difference was realized by the thickness difference of two adjacent segments. The two important parameters to phase plates are piston and wavefront errors. Dispersed Fringe Sensor (DFS) method was used for initial coarse piston evaluation, which is the emphasis of this paper. Point Diffraction Interferometer (PDI) is used for fine piston and wavefront error. In order to remove piston's 2 pi uncertainty with PDI, three laser wavelengths, 640nm, 660nm, and 780nm, are used for the measurement. The DHS test setup, analysis algorithm and results are presented. The phase plate design concept and its application (i.e. verifying the JWST on-orbit alignment algorithm) are described. The layout of JWST OSIM and the function of phase plates in OSIM are also addressed briefly.
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
Liu, Jing; Li, Chunpeng; Fan, Xuefeng; Wang, Zhaoqi
2015-01-01
Depth estimation is a classical problem in computer vision, which typically relies on either a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive and textureless regions where stereo matching is not effective. However, stereo matching can obtain more accurate results in rich texture regions and object boundaries where the depth sensor often fails. We fuse stereo matching and the depth sensor using their complementary characteristics to improve the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a novel pseudo-two-layer model is used to represent the relationship between disparities in different pixels and segments. It is more robust to luminance variation by treating information obtained from a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury datasets, which shows that our method performs almost 20% better than other “fused” algorithms in the aspect of precision. PMID:26308003
Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Yang, Jian; Zhao, Yifan; Chen, Duanduan; Wang, Yongtian
2017-01-01
Leakage in retinal angiography currently is a key feature for confirming the activities of lesions in the management of a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. This paper proposes a new saliency-based method for the detection of leakage in fluorescein angiography. A superpixel approach is firstly employed to divide the image into meaningful patches (or superpixels) at different levels. Two saliency cues, intensity and compactness, are then proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. The two saliency maps over different cues are fused using a pixel-wise multiplication operator. Leaking regions are finally detected by thresholding the saliency map followed by a graph-cut segmentation. The proposed method has been validated using the only two publicly available datasets: one for malarial retinopathy and the other for diabetic retinopathy. The experimental results show that it outperforms one of the latest competitors and performs as well as a human expert for leakage detection and outperforms several state-of-the-art methods for saliency detection.
Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S
2018-05-02
Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
NASA Astrophysics Data System (ADS)
Civitani, M. M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Citterio, O.; Ghigo, M.; Pareschi, G.; Parodi, G.; Incorvaia, S.
2017-09-01
The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arc second Half Energy Width, HEW), but with a much larger throughput (2.5 m2 effective area @1 keV), represents a compelling request by the scientific community. To this end the Lynx/XRS mission is being studied in USA, with the participation of international partners. In order to figure out the challenging technological task of the mirror fabrication, different approaches are considered, based on monolithic and segmented shells. Starting from the experience done on the glass prototypal shell realized in the past years, the direct polishing of thin (2 mm thick) fused silica monolithic shells is being investigated as a possible solution. A temporary stiffening structure is designed to support the shell during the figuring and polishing operations and to manage the handling up to its integration in the telescope structure. After the grinding and the polishing phases, in order to achieve the required surface accuracy, a final ion beam figuring correction is foreseen. In this paper, we present the technological process and the results achieved so far on a prototypal shell under development.
Grewal, D S; Brar, G S; Jain, R; Grewal, S P S
2011-05-01
To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898-0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm(3), ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4-10.0) and 0.11 (95% CI=0.03-0.4), respectively. ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles.
Hell, A K; Campbell, R M; Hefti, F
2005-01-01
Children with congenital thoracic scoliosis associated with fused ribs and unilateral unsegmented bars adjacent to convex hemivertebrae will inevitably develop thoracic insufficiency syndrome and curve progression with hemithorax compression without treatment. It is assumed that the concave side of such curves and their unilateral unsegmented bars do not grow. In the past early spinal fusion was performed with consecutive short thoracic spines and loss of lung volume. Little attention has been paid to lung function. These patients often suffered from lung failure and early death due to a small thorax. A new surgical technique is based on an indirect deformity correction and enlargement of the thorax due to a longitudinal implant, the vertical expandable prosthetic titanium rib (VEPTR). The spine is not fused, thus promoting growth of the spine, the thorax and the lungs. Elongation of the implant is done every six months. Since 2002 this method has been performed on fifteen children in Basel as the first European center. Patients (mean age 6 years; 11 months to 12 years) were suffering from thoracic insufficiency syndrome due to unilateral unsegmented bars with fused ribs (n = 4), absent ribs (n = 2), bilaterally fused ribs (n = 2), hemivertebrae (n = 3) or neuromuscular scoliosis (n = 6). Doing fifteen primarily implantations and thirteen elongations there were three complications (two hook dislocations, one skin breakage). All patients improved cosmetically, functionally and radiologically which was shown on X-rays as a reduction of the Cobb angle from an average of 76 degrees (40-110 degrees ) to 55 degrees (30-67 degrees ). Expansion thoracoplasty and VEPTR implantation is a new treatment concept for children with thoracic insufficiency syndrome due to spinal deformities, which is based on distraction and expansion of the thorax thus allowing growth of the spine, the thorax and probably lungs. Presently it seems to be superior to any other method for the treatment of small children with progressive scoliosis and thoracic insufficiency syndrome.
Antonica, Filippo; Asabella, Artor Niccoli; Ferrari, Cristina; Rubini, Domenico; Notaristefano, Antonio; Nicoletti, Adriano; Altini, Corinna; Merenda, Nunzio; Mossa, Emilio; Guarini, Attilio; Rubini, Giuseppe
2014-01-01
In the last decade numerous attempts were considered to co-register and integrate different imaging data. Like PET/CT the integration of PET to MR showed great interest. PET/MR scanners are recently tested on different distrectual or systemic pathologies. Unfortunately PET/MR scanners are expensive and diagnostic protocols are still under studies and investigations. Nuclear Medicine imaging highlights functional and biometabolic information but has poor anatomic details. The aim of this study is to integrate MR and PET data to produce distrectual or whole body fused images acquired from different scanners even in different days. We propose an offline method to fuse PET with MR data using an open-source software that has to be inexpensive, reproducible and capable to exchange data over the network. We also evaluate global quality, alignment quality, and diagnostic confidence of fused PET-MR images. We selected PET/CT studies performed in our Nuclear Medicine unit, MR studies provided by patients on DICOM CD media or network received. We used Osirix 5.7 open source version. We aligned CT slices with the first MR slice, pointed and marked for co-registration using MR-T1 sequence and CT as reference and fused with PET to produce a PET-MR image. A total of 100 PET/CT studies were fused with the following MR studies: 20 head, 15 thorax, 24 abdomen, 31 pelvis, 10 whole body. An interval of no more than 15 days between PET and MR was the inclusion criteria. PET/CT, MR and fused studies were evaluated by two experienced radiologist and two experienced nuclear medicine physicians. Each one filled a five point based evaluation scoring scheme based on image quality, image artifacts, segmentation errors, fusion misalignment and diagnostic confidence. Our fusion method showed best results for head, thorax and pelvic districts in terms of global quality, alignment quality and diagnostic confidence,while for the abdomen and pelvis alignement quality and global quality resulted poor due to internal organs filling variation and time shifting beetwen examinations. PET/CT images with time of flight reconstruction and real attenuation correction were combined with anatomical detailed MRI images. We used Osirix, an image processing Open Source Software dedicated to DICOM images. No additional costs, to buy and upgrade proprietary software are required for combining data. No high technology or very expensive PET/MR scanner, that requires dedicated shielded room spaces and personnel to be employed or to be trained, are needed. Our method allows to share patient PET/MR fused data with different medical staff using dedicated networks. The proposed method may be applied to every MR sequence (MR-DWI and MR-STIR, magnet enhanced sequences) to characterize soft tissue alterations and improve discrimination diseases. It can be applied not only to PET with MR but virtually to every DICOM study.
Wu, Ting-Kui; Meng, Yang; Wang, Bei-Yu; Hong, Ying; Rong, Xin; Ding, Chen; Chen, Hua; Liu, Hao
2018-04-27
Hybrid surgery (HS), consisting of cervical disc arthroplasty (CDA) at the mobile level, along with anterior cervical discectomy and fusion at the spondylotic level, could be a promising treatment for patients with multilevel cervical degenerative disc disease (DDD). An advantage of this technique is that it uses an optimal procedure according to the status of each level. However, information is lacking regarding the influence of the relative location of the replacement and the fusion segment in vivo. We conducted the present study to investigate whether the location of the fusion affected the behavior of the disc replacement and adjacent segments in HS in vivo. This is an observational study. The numbers of patients in the arthroplasty-fusion (AF) and fusion-arthroplasty (FA) groups were 51 and 24, respectively. The Japanese Orthopedic Association (JOA), Neck Disability Index (NDI), and Visual Analog Scale (VAS) scores were evaluated. Global and segmental lordosis, the range of motion (ROM) of C2-C7, and the operated and adjacent segments were measured. Fusion rate and radiological changes at adjacent levels were observed. Between January 2010 and July 2016, 75 patients with cervical DDD at two contiguous levels undergoing a two-level HS were retrospectively reviewed. The patients were divided into AF and FA groups according to the locations of the disc replacement. Clinical outcomes were evaluated according to the JOA, NDI, and VAS scores. Radiological parameters, including global and segmental lordosis, the ROM of C2-C7, the operated and adjacent segments, and complications, were also evaluated. Although the JOA, NDI, and VAS scores were improved in both the AF and the FA groups, no significant differences were found between the two groups at any follow-up point. Both groups maintained cervical lordosis, but no difference was found between the groups. Segmental lordosis at the fusion segment was significantly improved postoperatively (p<.001), whereas it was maintained at the arthroplasty segment. The ROM of C2-C7 was significantly decreased in both groups postoperatively (AF p=.001, FA p=.014), but no difference was found between the groups. The FA group exhibited a non-significant improvement in ROM at the arthroplasty segment. The ROM adjacent to the arthroplasty segment was increased, although not significantly, whereas the ROM adjacent to the fusion segment was significantly improved after surgery in both groups (p<.001). Fusion was achieved in all patients. No significant difference in complications was found between the groups. In HS, cephalic or caudal fusion segments to the arthroplasty segment did not affect the clinical outcomes and the behavior of CDA. However, the ROM of adjacent segments was affected by the location of the fusion segment; segments adjacent to fusion segments had greater ROMs than segments adjacent to arthroplasty segments. Copyright © 2018 Elsevier Inc. All rights reserved.
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
3D-SIFT-Flow for atlas-based CT liver image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yan, E-mail: xuyan04@gmail.com; Xu, Chenchao, E-mail: chenchaoxu33@gmail.com; Kuang, Xiao, E-mail: kuangxiao.ace@gmail.com
Purpose: In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. Methods: In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors computed the dense SIFT features for the source image and the target image and designed an objective function to obtain the correspondence between these two images. Labeling of the source image was then mapped to the target image according to the former correspondence, resulting in accurate segmentation.more » In the fusion work, the 2D-based nonparametric label transfer method was extended to 3D for fusing the registered 3D atlases. Results: Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage in matching anatomical structures (such as the liver) that observe large variation/deformation. The authors observed consistent improvement over widely adopted state-of-the-art registration methods such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice overlap ratio 96.27% ± 0.96% by our method compared with the previous state-of-the-art result of 94.90% ± 2.86%. Conclusions: Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective and efficient for improving the registration accuracy.« less
Effect of Unifocal versus Multifocal Lenses on Cervical Spine Posture in Patients with Presbyopia.
Abbas, Rami L; Houri, Mohamad T; Rayyan, Mohammad M; Hamada, Hamada Ahmad; Saab, Ibtissam M
2018-04-04
There are many environmental considerations which may or may not lead to the development of faulty cervical mechanics. The design of near vision lenses could contribute to the development of such cervical dysfunction and consequently neck pain. Decision making regarding proper type of lens prescription seems important for presbyopic individuals. To investigate the effect of unifocal and multifocal lenses on cervical posture. Thirty subjects (18 females and 12 males) participated in the study with an age range from 40 to 64 years. Each subject wore consequently both unifocal and multifocal lenses randomly while reading. Then lateral cervical spine X-ray films were taken for each subject during each lens wearing. X-ray films were analyzed with digital software (Autocad software, 2 D) to measure segmental angles of the cervical vertebrae (Occiput/C1, C1/C2, C2/C3, C3/C4, C4/C5, C5/C6, C6/C7, C3/C7, C0/C3, and occiput/C7). Higher significant extension angle in the segments C0/C7, C1/C2, C5/C6, C6/C7, and C3/C7 (p<0.05) during multifocal lenses wearing were observed in contrast with higher flexion angle between C3/C4 and C4/C5 (p<0.05) with unifocal lenses wear. Multifocal lens spectacles produces increased extension in the cervical vertebrae angles when compared with the use of unifocal lenses.
NASA Astrophysics Data System (ADS)
Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel
2008-03-01
Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.
2013-01-01
Background The so-called ventral organs are amongst the most enigmatic structures in Onychophora (velvet worms). They were described as segmental, ectodermal thickenings in the onychophoran embryo, but the same term has also been applied to mid-ventral, cuticular structures in adults, although the relationship between the embryonic and adult ventral organs is controversial. In the embryo, these structures have been regarded as anlagen of segmental ganglia, but recent studies suggest that they are not associated with neural development. Hence, their function remains obscure. Moreover, their relationship to the anteriorly located preventral organs, described from several onychophoran species, is also unclear. To clarify these issues, we studied the anatomy and development of the ventral and preventral organs in several species of Onychophora. Results Our anatomical data, based on histology, and light, confocal and scanning electron microscopy in five species of Peripatidae and three species of Peripatopsidae, revealed that the ventral and preventral organs are present in all species studied. These structures are covered externally with cuticle that forms an internal, longitudinal, apodeme-like ridge. Moreover, phalloidin-rhodamine labelling for f-actin revealed that the anterior and posterior limb depressor muscles in each trunk and the slime papilla segment attach to the preventral and ventral organs, respectively. During embryonic development, the ventral and preventral organs arise as large segmental, paired ectodermal thickenings that decrease in size and are subdivided into the smaller, anterior anlagen of the preventral organs and the larger, posterior anlagen of the ventral organs, both of which persist as paired, medially-fused structures in adults. Our expression data of the genes Delta and Notch from embryos of Euperipatoides rowelli revealed that these genes are expressed in two, paired domains in each body segment, corresponding in number, position and size with the anlagen of the ventral and preventral organs. Conclusions Our findings suggest that the ventral and preventral organs are a common feature of onychophorans that serve as attachment sites for segmental limb depressor muscles. The origin of these structures can be traced back in the embryo as latero-ventral segmental, ectodermal thickenings, previously suggested to be associated with the development of the nervous system. PMID:24308783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiubin; Gao, Yaozong; Shen, Dinggang, E-mail: dgshen@med.unc.edu
2015-05-15
Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmark-guided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation. Methods: To localize the prostate in the daily treatment images, the authors first automatically detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark detection method. Specifically, in this method, a two-layer regression forest is trained as amore » detector for each target landmark. Once all the newly detected landmarks from new treatment images are reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as new patient-specific information to update all the two-layer regression forests for the next treatment day. As more and more treatment images of the current patient are acquired, the two-layer regression forests can be continually updated by incorporating the patient-specific information into the training procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented prostates of the current patient after they are aligned to the current treatment image. Subsequently, the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed) by clinicians before including it as a new shape example into the prostate shape dataset for helping localize the entire prostate in the next treatment image. Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors’ proposed online update scheme in improving the accuracies of both landmark detection and prostate segmentation. Besides, compared to the other state-of-the-art prostate segmentation methods, the authors’ method achieves the best performance. Conclusions: By appropriate use of valuable patient-specific information contained in the previous treatment images, the authors’ proposed online update scheme can obtain satisfactory results for both landmark detection and prostate segmentation.« less
METHOD AND MEANS FOR RECOGNIZING COMPLEX PATTERNS
Hough, P.V.C.
1962-12-18
This patent relates to a method and means for recognizing a complex pattern in a picture. The picture is divided into framelets, each framelet being sized so that any segment of the complex pattern therewithin is essentially a straight line. Each framelet is scanned to produce an electrical pulse for each point scanned on the segment therewithin. Each of the electrical pulses of each segment is then transformed into a separate strnight line to form a plane transform in a pictorial display. Each line in the plane transform of a segment is positioned laterally so that a point on the line midway between the top and the bottom of the pictorial display occurs at a distance from the left edge of the pictorial display equal to the distance of the generating point in the segment from the left edge of the framelet. Each line in the plane transform of a segment is inclined in the pictorial display at an angle to the vertical whose tangent is proportional to the vertical displacement of the generating point in the segment from the center of the framelet. The coordinate position of the point of intersection of the lines in the pictorial display for each segment is determined and recorded. The sum total of said recorded coordinate positions being representative of the complex pattern. (AEC)
An Approach with Hybrid Segmental Mechanics.
Mishra, Harsh Ashok; Maurya, Raj Kumar
2016-06-01
Present case report provides an insight into the hybrid segmental mechanics with treatment of 13-year-old male, considering the side effects of sole continuous arch wire sliding mechanics. Patient was diagnosed as a case of skeletal class I jaw relationship, low mandibular plane angle, class II molar relation on right and class I molar relation on left side, anterior cross bite, crowding of 12mm in upper, 5mm in lower arch. He also had proclined upper and lower anteriors by 2mm, convex profile and incompetent lips. Total treatment duration was 20 months, during which segmental canine retraction was performed with TMA (Titanium, Molybdenum, Aluminum) 'T' loop retraction spring followed by consolidation of spaces with continuous arch mechanics. Most of the treatment objectives were met with good intraoral and facial results within reasonable framework of time. This approach used traditional twin brackets, which offered the versatility to use continuous arch-wire mechanics, segmental mechanics and hybrid sectional mechanics.
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-12-30
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2004-12-28
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Kim, Ki-Tack; Lee, Sang-Hun; Suk, Kyung-Soo; Lee, Jung-Hee; Jeong, Bi-O
2010-06-01
The purpose of this study was to analyze the biomechanical effects of three different constrained types of an artificial disc on the implanted and adjacent segments in the lumbar spine using a finite element model (FEM). The created intact model was validated by comparing the flexion-extension response without pre-load with the corresponding results obtained from the published experimental studies. The validated intact lumbar model was tested after implantation of three artificial discs at L4-5. Each implanted model was subjected to a combination of 400 N follower load and 5 Nm of flexion/extension moments. ABAQUS version 6.5 (ABAQUS Inc., Providence, RI, USA) and FEMAP version 8.20 (Electronic Data Systems Corp., Plano, TX, USA) were used for meshing and analysis of geometry of the intact and implanted models. Under the flexion load, the intersegmental rotation angles of all the implanted models were similar to that of the intact model, but under the extension load, the values were greater than that of the intact model. The facet contact loads of three implanted models were greater than the loads observed with the intact model. Under the flexion load, three types of the implanted model at the L4-5 level showed the intersegmental rotation angle similar to the one measured with the intact model. Under the extension load, all of the artificial disc implanted models demonstrated an increased extension rotational angle at the operated level (L4-5), resulting in an increase under the facet contact load when compared with the adjacent segments. The increased facet load may lead to facet degeneration.
Vossmerbaeumer, Urs; Schuster, Alexander K; Fischer, Joachim E
2013-12-01
Optical coherence tomography (OCT) of the anterior segment allows quantitative analysis of the geometry of the chamber angle. We performed bilateral spectral-domain OCT measurements in healthy, emmetropic, hyperopic, and myopic subjects to establish correlations between the width of the angle, the refraction, and intraocular pressure of the test persons. Out of 4,617 eyes (2,309 subjects), those with refractive errors of < -4 or > +3 diopters were identified by objective refraction measurement (KR-8800 Kerato-Refractometer, Topcon Inc., Japan) and examined using the anterior segment mode of a spectral-domain 3D OCT-2000 (Topcon Inc., Japan). Non-contact tonometry was performed (CT-80, Topcon Inc., Japan). One hundred and eight eyes of 54 emmetropic subjects (± 0.5 dpt) served as reference group. Previous ocular surgery was exclusion criterion in all groups. Width of the chamber angle was determined using semi-automated software tools and statistical analysis of the data (Pearson correlation, ANOVA with post-hoc test and Bonferroni correction, regression analysis) was performed using SPSS software (SPSS 19.0, Chicago, IL, USA). Six hundred and sixty-eight eyes of 398 persons (292 male, 96 female) were included in the study. Mean hyperopic refraction was +4.24 (+3 to +7.75) dpt, mean myopic refraction was -5.86 (-4 to -11.75) dpt. Valid chamber angle OCT measurements could be obtained from 50 (69.4 %) hyperopic and 400 (71.4 %) myopic eyes meeting the inclusion criteria. The mean width of the chamber angle was determined as 31.8° (range: 13.5 to 45.6, SD 7.49) in the hyperopic group, 40.8° (range: 19.3 to 66.0, SD 8.1) in the myopic group, and 36.3° (range: 21.1 to 51.8, SD 6.8) in the emmetropic reference group. Correlation was highly significant (p > 0.001) between refractive error and the aperture of the chamber angle as measured from OCT. The association of the intraocular pressure and the refraction was also highly significant (p > 0.001) for the three groups. The spectral-domain OCT yielded measurements that could be used for digital analysis of the chamber angle geometry. Our results highlight the correlation between refraction and aperture of the angle in hyperopia and myopia as determined by the 3D OCT-2000: hyperopia is associated with a narrower chamber angle, myopia with a wider aperture of the angle.
NASA Astrophysics Data System (ADS)
Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.
2017-12-01
The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of extension expressed as the border fault. Thus, further studies of the Precambrian foliation in the subsurface are necessary to understand the characterization of the fault where it is unexposed at depth.
Hartman Testing of X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Biskasch, Michael; Zhang, William W.
2013-01-01
Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.
Computational aspects of real-time simulation of rotary-wing aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Houck, J. A.
1976-01-01
A study was conducted to determine the effects of degrading a rotating blade element rotor mathematical model suitable for real-time simulation of rotorcraft. Three methods of degradation were studied, reduction of number of blades, reduction of number of blade segments, and increasing the integration interval, which has the corresponding effect of increasing blade azimuthal advance angle. The three degradation methods were studied through static trim comparisons, total rotor force and moment comparisons, single blade force and moment comparisons over one complete revolution, and total vehicle dynamic response comparisons. Recommendations are made concerning model degradation which should serve as a guide for future users of this mathematical model, and in general, they are in order of minimum impact on model validity: (1) reduction of number of blade segments; (2) reduction of number of blades; and (3) increase of integration interval and azimuthal advance angle. Extreme limits are specified beyond which a different rotor mathematical model should be used.
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Romanovich, L. G.; Chekhovskoy, E. I.
2018-03-01
The article presents the results of experimental studies on the grinding process of a clinker preliminarily ground in press roller mills in a ball mill equipped with energy exchange devices. The authors studied the influence of the coefficients of loading for grinding bodies of the first and second mill chambers, their lengths, angles of inclination, and the mutual location of energy exchange devices (the ellipse segment and the double-acting blade) on the output parameters of the grinding process (productivity, drive power consumption and specific energy consumption). It is clarified that the best results of the disaggregation and grinding process, judging by the minimum specific energy consumption in the grinding of clinker with an anisotropic texture after force deformation between the rolls of a press roller shredder, are achieved at a certain angle of ellipse segment inclination; the length of the first chamber and the coefficients of loading the chambers with grinding bodies.
NASA Astrophysics Data System (ADS)
Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren
2011-10-01
An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.
Effects of rotor model degradation on the accuracy of rotorcraft real time simulation
NASA Technical Reports Server (NTRS)
Houck, J. A.; Bowles, R. L.
1976-01-01
The effects are studied of degrading a rotating blade element rotor mathematical model to meet various real-time simulation requirements of rotorcraft. Three methods of degradation were studied: reduction of number of blades, reduction of number of blade segments, and increasing the integration interval, which has the corresponding effect of increasing blade azimuthal advance angle. The three degradation methods were studied through static trim comparisons, total rotor force and moment comparisons, single blade force and moment comparisons over one complete revolution, and total vehicle dynamic response comparisons. Recommendations are made concerning model degradation which should serve as a guide for future users of this mathematical model, and in general, they are in order of minimum impact on model validity: (1) reduction of number of blade segments, (2) reduction of number of blades, and (3) increase of integration interval and azimuthal advance angle. Extreme limits are specified beyond which the rotating blade element rotor mathematical model should not be used.
The influence of kyphosis correction surgery on pulmonary function and thoracic volume.
Zeng, Yan; Chen, Zhongqiang; Ma, Desi; Guo, Zhaoqing; Qi, Qiang; Li, Weishi; Sun, Chuiguo; Liu, Ning; White, Andrew P
2014-10-01
A clinical study. To measure the changes in pulmonary function and thoracic volume associated with surgical correction of kyphotic deformities. No prior study has focused on the pulmonary function and thoracic cavity volume before and after corrective surgery for kyphosis. Thirty-four patients with kyphosis underwent posterior deformity correction with instrumented fusion. Preoperative and postoperative pulmonary function was measured, and pulmonary function grade was evaluated as mild, significant, or severe. The change in preoperative to postoperative pulmonary function was analyzed, using 6 comparative subgroupings of patients on the basis of age, severity of kyphosis, location of kyphosis apex, length of follow-up time after surgery, degree of kyphosis correction, and number of segments fused. A second group of 19 patients also underwent posterior surgical correction of kyphosis, which had thoracic volume measured preoperatively and postoperatively with computed tomographic scanning. All of the pulmonary impairments were found to be restrictive. After surgery, most of the patients had improvement of the pulmonary function. Before surgery, the pulmonary function differences were found to be significant based on both severity of preoperative kyphosis (<60° vs. >60°) and location of the kyphosis apex (above T10 vs. below T10). Younger patients (younger than 35 yr) were more likely to exhibit statistically significant improvements in pulmonary function after surgery. However, thoracic volume was not significantly related to pulmonary function parameters. After surgery, average thoracic volume had no significant change. The major pulmonary impairment caused by kyphosis was found to be restrictive. Patients with kyphosis angle of 60° or greater or with kyphosis apex above T10 had more severe pulmonary dysfunction. Patients' age was significantly related to change in pulmonary function after surgery. However, the average thoracic volume had no significant change after surgery. 3.
Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Santoro, G. J.
1986-01-01
The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.
Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Santoro, Gilbert J.
1986-01-01
The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.
Feature detection in satellite images using neural network technology
NASA Technical Reports Server (NTRS)
Augusteijn, Marijke F.; Dimalanta, Arturo S.
1992-01-01
A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.
Automatic Generation of Building Models with Levels of Detail 1-3
NASA Astrophysics Data System (ADS)
Nguatem, W.; Drauschke, M.; Mayer, H.
2016-06-01
We present a workflow for the automatic generation of building models with levels of detail (LOD) 1 to 3 according to the CityGML standard (Gröger et al., 2012). We start with orienting unsorted image sets employing (Mayer et al., 2012), we compute depth maps using semi-global matching (SGM) (Hirschmüller, 2008), and fuse these depth maps to reconstruct dense 3D point clouds (Kuhn et al., 2014). Based on planes segmented from these point clouds, we have developed a stochastic method for roof model selection (Nguatem et al., 2013) and window model selection (Nguatem et al., 2014). We demonstrate our workflow up to the export into CityGML.
Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle
NASA Astrophysics Data System (ADS)
McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.
2014-02-01
The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.
Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.
Cheng, Kuangyou B; Hubbard, Mont
2005-09-01
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.
Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio
2017-12-01
Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution. Copyright © 2017 John Wiley & Sons, Ltd.
Yu, Hongbo; Wang, Xudong; Fang, Bing; Shen, Steve Guofang
2012-11-01
Conventional maxillary distraction osteogenesis and anterior maxillary segmental distraction were applied in the treatment of severe maxillary hypoplasia secondary to cleft clip and palate. The aim of the present study was to compare the difference between these 2 osteotomy modalities used for rigid external distraction. Ten patients with severe maxillary hypoplasia secondary to CLP were enrolled in our study. They were randomly divided into 2 groups. Conventional maxillary distraction osteogenesis was performed in 5 patients and anterior maxillary segmental distraction in 5 patients. The preoperative and postoperative lateral cephalograms were compared, and cephalometric analysis was performed. The independent sample t test was used to evaluate the differences between the 2 groups. All patients healed uneventfully, and the maxillae moved forward satisfactorily. The sella-nasion-point A angles, nasion-point A-Frankfort horizontal plane angles, overjets, and 0-meridian to subnasale distances had increased significantly after distraction osteogenesis. Significant differences were found in the changes in palatal length between the 2 groups (P < .05). A mean increase of 7.50 mm in palatal length was found in the anterior maxillary segmental distraction group. No significant difference in the changes in palatopharyngeal depth or soft palatal length was found. With the ability of increasing the palatal and arch length, avoiding changes in palatopharyngeal depth, and preserving palatopharyngeal closure function, anterior maxillary segmental distraction has great value in the treatment of maxillary hypoplasia secondary to CLP. It is a promising and valuable technique in this potentially complicated procedure. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Giblin-Davis, Robin M.; Kanzaki, Natsumi; Ye, Weimin; Mundo-Ocampo, Manuel; Baldwin, James G.; Thomas, W. Kelley
2006-01-01
Bursaphelenchus platzeri n. sp., an associate of nitidulid beetles in southern California, is described and illustrated. Adult males and females of B. platzeri n. sp. were examined by scanning electron microscopy for ultrastructural comparisons with other members of the genus. Bursaphelenchus cocophilus (red ring nematode) appears to be the closest related taxon to B. platzeri n. sp. based upon shared morphological features of the fused spicules, female tail shape, phoresy with non-scolytid beetles, and molecular analysis of the near full-length small subunit (SSU) rDNA. Unfortunately, sequence data from the D2D3 expansion segments of the large subunit (LSU) rDNA and partial mitochondrial DNA COI did not help resolve the relationship of nearest relative. In addition to significant molecular sequence differences in SSU, LSU, and COI, B. platzeri n. sp., which is an obligate fungal feeder, can be differentiated from B. cocophilus because it is an obligate parasite of palms. Bursaphelenchus platzeri n. sp. can be differentiated from all other species of Bursaphelenchus by the length and shape of the female tail and spicule morphology. The spicules are fused along the ventral midline and possess unfused cucullae; the fused unit appears to function as a conduit for sperm. Population growth of B. platzeri n. sp. was measured in a time-course experiment at 25°C in the laboratory on cultures of the fungus Monilinia fructicola grown on 5% glycerol-supplemented potato dextrose agar (GPDA). Nematode population densities rapidly increased from 25 to approximately 200,000/culture within 14 d and then plateaued for up to 28 d. PMID:19259440
Thilak, Vimal; Voelz, David G; Creusere, Charles D
2007-10-20
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Voelz, David G.; Creusere, Charles D.
2007-10-01
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-11-25
A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.
A SMALL-ANGLE DRILL-HOLE WHIPSTOCK
Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.
1963-01-29
A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)
Degenerative changes of the canine cervical spine after discectomy procedures, an in vivo study.
Grunert, Peter; Moriguchi, Yu; Grossbard, Brian P; Ricart Arbona, Rodolfo J; Bonassar, Lawrence J; Härtl, Roger
2017-06-23
Discectomies are a common surgical treatment for disc herniations in the canine spine. However, the effect of these procedures on intervertebral disc tissue is not fully understood. The objective of this study was to assess degenerative changes of cervical spinal segments undergoing discectomy procedures, in vivo. Discectomies led to a 60% drop in disc height and 24% drop in foraminal height. Segments did not fuse but showed osteophyte formation as well as endplate sclerosis. MR imaging revealed terminal degenerative changes with collapse of the disc space and loss of T2 signal intensity. The endplates showed degenerative type II Modic changes. Quantitative MR imaging revealed that over 95% of Nucleus Pulposus tissue was extracted and that the nuclear as well as overall disc hydration significantly decreased. Histology confirmed terminal degenerative changes with loss of NP tissue, loss of Annulus Fibrosus organization and loss of cartilage endplate tissue. The bony endplate displayed sclerotic changes. Discectomies lead to terminal degenerative changes. Therefore, these procedures should be indicated with caution specifically when performed for prophylactic purposes.
NASA Astrophysics Data System (ADS)
Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.
2016-10-01
Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.
Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao
2015-03-09
Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.
NASA Astrophysics Data System (ADS)
Chen, Xinyuan; Gong, Xiaolin; Graff, Christian G.; Santana, Maira; Sturgeon, Gregory M.; Sauer, Thomas J.; Zeng, Rongping; Glick, Stephen J.; Lo, Joseph Y.
2017-03-01
While patient-based breast phantoms are realistic, they are limited by low resolution due to the image acquisition and segmentation process. The purpose of this study is to restore the high frequency components for the patient-based phantoms by adding power law noise (PLN) and breast structures generated based on mathematical models. First, 3D radial symmetric PLN with β=3 was added at the boundary between adipose and glandular tissue to connect broken tissue and create a high frequency contour of the glandular tissue. Next, selected high-frequency features from the FDA rule-based computational phantom (Cooper's ligaments, ductal network, and blood vessels) were fused into the phantom. The effects of enhancement in this study were demonstrated by 2D mammography projections and digital breast tomosynthesis (DBT) reconstruction volumes. The addition of PLN and rule-based models leads to a continuous decrease in β. The new β is 2.76, which is similar to what typically found for reconstructed DBT volumes. The new combined breast phantoms retain the realism from segmentation and gain higher resolution after restoration.
Synthesis of nanocrystalline ZnO thin films by electron beam evaporation
NASA Astrophysics Data System (ADS)
Kondkar, V.; Rukade, D.; Bhattacharyya, V.
2018-05-01
Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.
1-Do-decyl-indoline-2,3-dione.
Qachchachi, Fatima-Zahrae; Ouazzani Chahdi, Fouad; Misbahi, Houria; Bodensteiner, Michael; El Ammari, Lahcen
2014-02-01
The structure of the title compound, C20H29NO2, is isotypic to that of its homologue 1-octylindoline-2,3-dione. The indoline ring and the two carbonyl-group O atoms are approximately coplanar, the largest deviation from the mean plane being 0.0760 (10) Å. The mean plane through the fused-ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain [dihedral angle = 77.69 (5)°]. All C atoms of the dodecyl group are in an anti-periplanar arrangement. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming a three-dimensional network.
Polarization mode control of long-wavelength VCSELs by intracavity patterning
Long, Christopher Michael; Mickovic, Zlatko; Dwir, Benjamin; ...
2016-04-26
Polarization mode control is enhanced in wafer-fused vertical-cavity surface-emitting lasers emitting at 1310 nm wavelength by etching two symmetrically arranged arcs above the gain structure within the laser cavity. The intracavity patterning introduces birefringence and dichroism, which discriminates between the two polarization states of the fundamental transverse modes. We find that the cavity modifications define the polarization angle at threshold with respect to the crystal axes, and increase the gain anisotropy and birefringence on average, leading to an increase in the polarization switching current. As a result, experimental measurements are explained using the spin-flip model of VCSEL polarization dynamics.
Biomechanical Characterization of an Annulus Sparing Spinal Disc Prosthesis
Buttermann, Glenn R.; Beaubien, Brian P.
2009-01-01
Background Context Current spine arthroplasty devices, require disruption of the annulus fibrosus for implantation. Preliminary studies of a unique annulus sparing intervertebral prosthetic disc (IPD), found that preservation of the annulus resulted in load sharing of the annulus with the prosthesis. Purpose Determine flexibility of the IPD versus fusion constructs in normal and degenerated human spines. Study design/Setting Biomechanical comparison of motion segments in the intact, fusion and mechanical nucleus replacement states for normal and degenerated states. Patient setting Thirty lumbar motion segments. Outcomes Measures Intervertebral height; motion segment range-of-motion (ROM), neutral zone (NZ), stiffness. Methods Motion segments had multi-directional flexibility testing to 7.5 Nm for intact discs, discs reconstructed using the IPD (n=12), or after anterior/posterior fusions (n=18). Interbody height and axial compression stiffness changes were determined for the reconstructed discs by applying axial compression to 1500 N. Analysis included stratifying results to normal mobile vs. rigid degenerated intact motion segments. Results The mean interbody height increase was 1.5 mm for IPD reconstructed discs. vs 3.0 mm for fused segments. Axial compression stiffness was 3.0 ± 0.9 kN/mm for intact compared to 1.2 ± 0.4 kN/mm for IPD reconstructed segments. Reconstructed disc ROM was 9.0° ± 3.7° in flexion-extension, 10.6° ± 3.4° in lateral bending and 2.8° ± 1.4° in axial torsion which was similar to intact values and significantly greater than respective fusion values (p<0.001). Mobile intact segments exhibited significantly greater rotation after fusion vs. their more rigid counterparts (p<0.05), however, intact motion was not related to motion after IPD reconstruction. The NZ and rotational stiffness followed similar trends. Differences in NZ between mobile and rigid intact specimens tended to decrease in the IPD reconstructed state. Conclusion The annulus sparing IPD generally reproduced the intact segment biomechanics in terms of ROM, NZ, and stiffness. Furthermore, the IPD reconstructed discs imparted stability by maintaining a small neutral zone. The IPD reconstructed discs were significantly less rigid than the fusion constructs and may be an attractive alternative for the treatment of DDD. PMID:19540816
Hung, Huynh Minh; Hang, Tran Dieu; Nguyen, Minh Tho
2016-09-09
Hepatitis C virus (HCV) is one of the most crucial global health issues, in which the HCV non-structural protein 2 (NS2), particularly its three transmembrane segments, plays a crucial role in HCV assembly. In this context, multiscale MD simulations have been applied to investigate the preferred orientation of transmembrane domain of NS2 protein (TNS2) in a POPC bilayer, structural stability and characteristic of intramembrane protein-lipid and protein-protein interaction. Our study indicates that NS2 protein adopts three trans-membrane segments with highly stable α-helix structure in a POPC bilayer and a short helical luminal segment. While the first and second TM segment involved in continuous helical domain, the third TM segment is however cleaved into two sub-segments with different tilt angles via a kink at L87G88. Salt bridges K81-E45, R32-PO4 and R43-PO4 are determined as the key factor to stabilize the structure of TM2 and TM3 which consist of charged residues located in the hydrophobic region of the membrane. Copyright © 2016 Elsevier Inc. All rights reserved.
Johnson, Todd J; Gupta, Kavita M; Fabian, Judit; Albright, Theodore H; Kiser, Patrick F
2010-02-19
Dual segment polyurethane intravaginal rings (IVRs) were fabricated to enable sustained release of antiretroviral agents dapivirine and tenofovir to prevent the male to female sexual transmission of the human immunodeficiency virus. Due to the contrasting hydrophilicity of the two drugs, dapivirine and tenofovir were separately formulated into polymers with matching hydrophilicity via solvent casting and hot melt extrusion. The resultant drug loaded rods were then joined together to form dual segment IVRs. Compression testing of the IVRs revealed that they are mechanically comparable to the widely accepted NuvaRing IVR. Physical characterization of the individual IVR segments using wide angle X-ray scattering and differential scanning calorimetry determined that dapivirine and tenofovir are amorphous and crystalline within their polymeric segments, respectively. In vitro release of tenofovir from the dual segment IVR was sustained over 30 days while dapivirine exhibited linear release over the time period. A 90 day accelerated stability study confirmed that dapivirine and tenofovir are stable in the IVR formulation. Altogether, these results suggest that multisegment polyurethane IVRs are an attractive formulation for the sustained vaginal delivery of drugs with contrasting hydrophilicity such as dapivirine and tenofovir. 2009 Elsevier B.V. All rights reserved.
Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis
NASA Astrophysics Data System (ADS)
Che, E.; Olsen, M. J.
2017-09-01
Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.
Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method
NASA Astrophysics Data System (ADS)
Wang, Duo; Zhang, Rui; Zhu, Jin; Teng, Zhongzhao; Huang, Yuan; Spiga, Filippo; Du, Michael Hong-Fei; Gillard, Jonathan H.; Lu, Qingsheng; Liò, Pietro
2018-03-01
Medical imaging examination on patients usually involves more than one imaging modalities, such as Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission Tomography(PET) imaging. Multimodal imaging allows examiners to benefit from the advantage of each modalities. For example, for Abdominal Aortic Aneurysm, CT imaging shows calcium deposits in the aorta clearly while MR imaging distinguishes thrombus and soft tissues better.1 Analysing and segmenting both CT and MR images to combine the results will greatly help radiologists and doctors to treat the disease. In this work, we present methods on using deep neural network models to perform such multi-modal medical image segmentation. As CT image and MR image of the abdominal area cannot be well registered due to non-affine deformations, a naive approach is to train CT and MR segmentation network separately. However, such approach is time-consuming and resource-inefficient. We propose a new approach to fuse the high-level part of the CT and MR network together, hypothesizing that neurons recognizing the high level concepts of Aortic Aneurysm can be shared across multiple modalities. Such network is able to be trained end-to-end with non-registered CT and MR image using shorter training time. Moreover network fusion allows a shared representation of Aorta in both CT and MR images to be learnt. Through experiments we discovered that for parts of Aorta showing similar aneurysm conditions, their neural presentations in neural network has shorter distances. Such distances on the feature level is helpful for registering CT and MR image.
NASA Astrophysics Data System (ADS)
Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd
2018-01-01
The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.
3-(2,3-Dioxoindolin-1-yl)propanenitrile
Qachchachi, Fatima-Zahrae; Kandri Rodi, Youssef; Essassi, El Mokhtar; Bodensteiner, Michael; El Ammari, Lahcen
2014-01-01
The asymmetric unit of the title compound, C11H8N2O2, contains two independent molecules (A and B). Each molecule is build up from fused five- and six-membered rings with the former linked to a cyanoethyl group. The indoline ring and two carbonyl O atoms of each molecule are nearly coplanar, with the largest deviations from the mean planes being 0.0198 (9) (molecule A) and 0.0902 (9) Å (molecule B), each by a carbonyl O atom. The fused ring system is nearly perpendicular to the mean plane passing through the cyanoethyl chains, as indicated by the dihedral angles between them of 69.72 (9) (molecule A) and 69.15 (9)° (molecule B). In the crystal, molecules are linked by C—H⋯O and π–π [intercentroid distance between inversion-related indoline (A) rings = 3.6804 (7) Å] interactions into a double layer that stacks along the a-axis direction. PMID:24765047
Hong, Xun Jie Jeesmond; Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke Matham; Baskaran, Mani; Aung, Tin
2017-01-01
Abstract. A flexible handheld imaging probe consisting of a 3 mm×3 mm charge-coupled device camera, light-emitting diode light sources, and near-infrared laser source is designed and developed. The imaging probe is designed with specifications to capture the iridocorneal angle images and posterior segment images. Light propagation from the anterior chamber of the eye to the exterior is considered analytically using Snell’s law. Imaging of the iridocorneal angle region and fundus is performed on ex vivo porcine samples and subsequently on small laboratory animals, such as the New Zealand white rabbit and nonhuman primate, in vivo. The integrated flexible handheld probe demonstrates high repeatability in iridocorneal angle and fundus documentation. The proposed concept and methodology are expected to find potential application in the diagnosis, prognosis, and management of glaucoma. PMID:28413809
Gür Güngör, Sirel; Bayer, Atilla; Akman, Ahmet; Asena, Leyla
2017-01-01
To determine the early signs of pseudoexfoliation (PEX) in fellow eyes of cases with unilateral PEX. Fellow eyes of 34 cases with unilateral PEX were evaluated by slit-lamp and gonioscopy. Findings associated with PEX were recorded. Mean age was 67.8±8.1 years (range 55-86 years). Twenty-five patients (73.5%) had pigmentation in the inferior angle and 23 patients (67.6%) had Sampaolesi's line located on the inferior angle in fellow eyes. The other most common findings were loss of peripupillary ruff in 10 patients (29.4%) and pigment dispersion following pupil dilation in 14 patients (41.1%). Pigmentation in the inferior angle and Sampaolesi's line on the inferior angle seem to be the most common early findings associated with PEX. Special attention should be paid to these findings in cases with ocular hypertension for proper management.
Adaptive reference voltage generator for firing angle control of line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R. (Inventor)
1983-01-01
A control system for a permanent-magnet motor driven by a multiphase line-commulated inverter is described. It is provided with integrators for integrating the back EMF of each phase of the motor for use in generating system control signals for an inverter gate logic using a sync and firing angle control generator connected to the outputs of the integrators. The firing angle control signals are produced by the control generator by means for combining 120 deg segments of the integrated back EMF signals symmetrical about their maxima into composite positive and negative waveforms, and means for sampling the maxima of each waveform every 120 deg. These samples are then used as positive and negative firing angle control signals. Whereby any change in amplitude of the integrated back EMF signals will not affect a change in the operating power factor of the motor and inverter.
Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Molar axis estimation from computed tomography images.
Dongxia Zhang; Yangzhou Gan; Zeyang Xia; Xinwen Zhou; Shoubin Liu; Jing Xiong; Guanglin Li
2016-08-01
Estimation of tooth axis is needed for some clinical dental treatment. Existing methods require to segment the tooth volume from Computed Tomography (CT) images, and then estimate the axis from the tooth volume. However, they may fail during estimating molar axis due to that the tooth segmentation from CT images is challenging and current segmentation methods may get poor segmentation results especially for these molars with angle which will result in the failure of axis estimation. To resolve this problem, this paper proposes a new method for molar axis estimation from CT images. The key innovation point is that: instead of estimating the 3D axis of each molar from the segmented volume, the method estimates the 3D axis from two projection images. The method includes three steps. (1) The 3D images of each molar are projected to two 2D image planes. (2) The molar contour are segmented and the contour's 2D axis are extracted in each 2D projection image. Principal Component Analysis (PCA) and a modified symmetry axis detection algorithm are employed to extract the 2D axis from the segmented molar contour. (3) A 3D molar axis is obtained by combining the two 2D axes. Experimental results verified that the proposed method was effective to estimate the axis of molar from CT images.
Smith, Scott D; Singh, Kuldev; Lin, Shan C; Chen, Philip P; Chen, Teresa C; Francis, Brian A; Jampel, Henry D
2013-10-01
To assess the published literature pertaining to the association between anterior segment imaging and gonioscopy and to determine whether such imaging aids in the diagnosis of primary angle closure (PAC). Literature searches of the PubMed and Cochrane Library databases were last conducted on July 6, 2011. The searches yielded 371 unique citations. Members of the Ophthalmic Technology Assessment Committee Glaucoma Panel reviewed the titles and abstracts of these articles and selected 134 of possible clinical significance for further review. The panel reviewed the full text of these articles and identified 79 studies meeting the inclusion criteria, for which the panel methodologist assigned a level of evidence based on a standardized grading scheme adopted by the American Academy of Ophthalmology. Three, 70, and 6 studies were rated as providing level I, II, and III evidence, respectively. Quantitative and qualitative parameters defined from ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (OCT), Scheimpflug photography, and the scanning peripheral anterior chamber depth analyzer (SPAC) demonstrate a strong association with the results of gonioscopy. There is substantial variability in the type of information obtained from each imaging method. Imaging of structures posterior to the iris is possible only with UBM. Direct imaging of the anterior chamber angle (ACA) is possible using UBM and OCT. The ability to acquire OCT images in a completely dark environment allows greater sensitivity in detecting eyes with appositional angle closure. Noncontact imaging using OCT, Scheimpflug photography, or SPAC makes these methods more attractive for large-scale PAC screening than contact imaging using UBM. Although there is evidence suggesting that anterior segment imaging provides useful information in the evaluation of PAC, none of these imaging methods provides sufficient information about the ACA anatomy to be considered a substitute for gonioscopy. Longitudinal studies are needed to validate the diagnostic significance of the parameters measured by these instruments for prospectively identifying individuals at risk for PAC. Proprietary or commercial disclosure may be found after the references. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.