Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and panchromatic (PAN) images.
Jung, Hyung-Sup; Park, Sung-Whan
2014-12-18
Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN) and thermal infrared (TIR) images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.
A novel multisensor traffic state assessment system based on incomplete data.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.
A Novel Multisensor Traffic State Assessment System Based on Incomplete Data
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system. PMID:25162055
Multisensor data fusion for IED threat detection
NASA Astrophysics Data System (ADS)
Mees, Wim; Heremans, Roel
2012-10-01
In this paper we present the multi-sensor registration and fusion algorithms that were developed for a force protection research project in order to detect threats against military patrol vehicles. The fusion is performed at object level, using a hierarchical evidence aggregation approach. It first uses expert domain knowledge about the features used to characterize the detected threats, that is implemented in the form of a fuzzy expert system. The next level consists in fusing intra-sensor and inter-sensor information. Here an ordered weighted averaging operator is used. The object level fusion between candidate threats that are detected asynchronously on a moving vehicle by sensors with different imaging geometries, requires an accurate sensor to world coordinate transformation. This image registration will also be discussed in this paper.
Ofner, Johannes; Kamilli, Katharina A; Eitenberger, Elisabeth; Friedbacher, Gernot; Lendl, Bernhard; Held, Andreas; Lohninger, Hans
2015-09-15
The chemometric analysis of multisensor hyperspectral data allows a comprehensive image-based analysis of precipitated atmospheric particles. Atmospheric particulate matter was precipitated on aluminum foils and analyzed by Raman microspectroscopy and subsequently by electron microscopy and energy dispersive X-ray spectroscopy. All obtained images were of the same spot of an area of 100 × 100 μm(2). The two hyperspectral data sets and the high-resolution scanning electron microscope images were fused into a combined multisensor hyperspectral data set. This multisensor data cube was analyzed using principal component analysis, hierarchical cluster analysis, k-means clustering, and vertex component analysis. The detailed chemometric analysis of the multisensor data allowed an extensive chemical interpretation of the precipitated particles, and their structure and composition led to a comprehensive understanding of atmospheric particulate matter.
Multisensor Parallel Largest Ellipsoid Distributed Data Fusion with Unknown Cross-Covariances
Liu, Baoyu; Zhan, Xingqun; Zhu, Zheng H.
2017-01-01
As the largest ellipsoid (LE) data fusion algorithm can only be applied to two-sensor system, in this contribution, parallel fusion structure is proposed to introduce the LE algorithm into a multisensor system with unknown cross-covariances, and three parallel fusion structures based on different estimate pairing methods are presented and analyzed. In order to assess the influence of fusion structure on fusion performance, two fusion performance assessment parameters are defined as Fusion Distance and Fusion Index. Moreover, the formula for calculating the upper bounds of actual fused error covariances of the presented multisensor LE fusers is also provided. Demonstrated with simulation examples, the Fusion Index indicates fuser’s actual fused accuracy and its sensitivity to the sensor orders, as well as its robustness to the accuracy of newly added sensors. Compared to the LE fuser with sequential structure, the LE fusers with proposed parallel structures not only significantly improve their properties in these aspects, but also embrace better performances in consistency and computation efficiency. The presented multisensor LE fusers generally have better accuracies than covariance intersection (CI) fusion algorithm and are consistent when the local estimates are weakly correlated. PMID:28661442
Design of a multisensor data fusion system for target detection
NASA Astrophysics Data System (ADS)
Thomopoulos, Stelios C.; Okello, Nickens N.; Kadar, Ivan; Lovas, Louis A.
1993-09-01
The objective of this paper is to discuss the issues that are involved in the design of a multisensor fusion system and provide a systematic analysis and synthesis methodology for the design of the fusion system. The system under consideration consists of multifrequency (similar) radar sensors. However, the fusion design must be flexible to accommodate additional dissimilar sensors such as IR, EO, ESM, and Ladar. The motivation for the system design is the proof of the fusion concept for enhancing the detectability of small targets in clutter. In the context of down-selecting the proper configuration for multisensor (similar and dissimilar, and centralized vs. distributed) data fusion, the issues of data modeling, fusion approaches, and fusion architectures need to be addressed for the particular application being considered. Although the study of different approaches may proceed in parallel, the interplay among them is crucial in selecting a fusion configuration for a given application. The natural sequence for addressing the three different issues is to begin from the data modeling, in order to determine the information content of the data. This information will dictate the appropriate fusion approach. This, in turn, will lead to a global fusion architecture. Both distributed and centralized fusion architectures are used to illustrate the design issues along with Monte-Carlo simulation performance comparison of a single sensor versus a multisensor centrally fused system.
The advanced linked extended reconnaissance and targeting technology demonstration project
NASA Astrophysics Data System (ADS)
Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle
2007-06-01
The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.
Rolling bearing fault diagnosis based on information fusion using Dempster-Shafer evidence theory
NASA Astrophysics Data System (ADS)
Pei, Di; Yue, Jianhai; Jiao, Jing
2017-10-01
This paper presents a fault diagnosis method for rolling bearing based on information fusion. Acceleration sensors are arranged at different position to get bearing vibration data as diagnostic evidence. The Dempster-Shafer (D-S) evidence theory is used to fuse multi-sensor data to improve diagnostic accuracy. The efficiency of the proposed method is demonstrated by the high speed train transmission test bench. The results of experiment show that the proposed method in this paper improves the rolling bearing fault diagnosis accuracy compared with traditional signal analysis methods.
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2017-06-01
We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.
Multisensor multiresolution data fusion for improvement in classification
NASA Astrophysics Data System (ADS)
Rubeena, V.; Tiwari, K. C.
2016-04-01
The rapid advancements in technology have facilitated easy availability of multisensor and multiresolution remote sensing data. Multisensor, multiresolution data contain complementary information and fusion of such data may result in application dependent significant information which may otherwise remain trapped within. The present work aims at improving classification by fusing features of coarse resolution hyperspectral (1 m) LWIR and fine resolution (20 cm) RGB data. The classification map comprises of eight classes. The class names are Road, Trees, Red Roof, Grey Roof, Concrete Roof, Vegetation, bare Soil and Unclassified. The processing methodology for hyperspectral LWIR data comprises of dimensionality reduction, resampling of data by interpolation technique for registering the two images at same spatial resolution, extraction of the spatial features to improve classification accuracy. In the case of fine resolution RGB data, the vegetation index is computed for classifying the vegetation class and the morphological building index is calculated for buildings. In order to extract the textural features, occurrence and co-occurence statistics is considered and the features will be extracted from all the three bands of RGB data. After extracting the features, Support Vector Machine (SVMs) has been used for training and classification. To increase the classification accuracy, post processing steps like removal of any spurious noise such as salt and pepper noise is done which is followed by filtering process by majority voting within the objects for better object classification.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua
2015-01-01
An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067
Multisensor fusion with non-optimal decision rules: the challenges of open world sensing
NASA Astrophysics Data System (ADS)
Minor, Christian; Johnson, Kevin
2014-05-01
In this work, simple, generic models of chemical sensing are used to simulate sensor array data and to illustrate the impact on overall system performance that specific design choices impart. The ability of multisensor systems to perform multianalyte detection (i.e., distinguish multiple targets) is explored by examining the distinction between fundamental design-related limitations stemming from mismatching of mixture composition to fused sensor measurement spaces, and limitations that arise from measurement uncertainty. Insight on the limits and potential of sensor fusion to robustly address detection tasks in realistic field conditions can be gained through an examination of a) the underlying geometry of both the composition space of sources one hopes to elucidate and the measurement space a fused sensor system is capable of generating, and b) the informational impact of uncertainty on both of these spaces. For instance, what is the potential impact on sensor fusion in an open world scenario where unknown interferants may contaminate target signals? Under complex and dynamic backgrounds, decision rules may implicitly become non-optimal and adding sensors may increase the amount of conflicting information observed. This suggests that the manner in which a decision rule handles sensor conflict can be critical in leveraging sensor fusion for effective open world sensing, and becomes exponentially more important as more sensors are added. Results and design considerations for handling conflicting evidence in Bayes and Dempster-Shafer fusion frameworks are presented. Bayesian decision theory is used to provide an upper limit on detector performance of simulated sensor systems.
Adaptive multisensor fusion for planetary exploration rovers
NASA Technical Reports Server (NTRS)
Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri
1992-01-01
The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.
Target-type probability combining algorithms for multisensor tracking
NASA Astrophysics Data System (ADS)
Wigren, Torbjorn
2001-08-01
Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.
Falling Person Detection Using Multi-Sensor Signal Processing
NASA Astrophysics Data System (ADS)
Toreyin, B. Ugur; Soyer, A. Birey; Onaran, Ibrahim; Cetin, E. Enis
2007-12-01
Falls are one of the most important problems for frail and elderly people living independently. Early detection of falls is vital to provide a safe and active lifestyle for elderly. Sound, passive infrared (PIR) and vibration sensors can be placed in a supportive home environment to provide information about daily activities of an elderly person. In this paper, signals produced by sound, PIR and vibration sensors are simultaneously analyzed to detect falls. Hidden Markov Models are trained for regular and unusual activities of an elderly person and a pet for each sensor signal. Decisions of HMMs are fused together to reach a final decision.
NASA Astrophysics Data System (ADS)
Reid, J. S.; Zhang, J.; Hyer, E. J.; Campbell, J. R.; Christopher, S. A.; Ferrare, R. A.; Leptoukh, G. G.; Stackhouse, P. W.
2009-12-01
With the successful development of many aerosol products from the NASA A-train as well as new operational geostationary and polar orbiting sensors, the scientific community now has a host of new parameters to use in their analyses. The variety and quality of products has reached a point where the community has moved from basic observation-based science to sophisticated multi-component research that addresses the complex atmospheric environment. In order for these satellite data contribute to the science their uncertainty levels must move from semi-quantitative to quantitative. Initial attempts to quantify uncertainties have led to some recent debate in the community as to the efficacy of aerosol products from current and future NASA satellite sensors. In an effort to understand the state of satellite product fidelity, the Naval Research Laboratory and a newly reformed Global Energy and Water Cycle Experiment (GEWEX) aerosol panel have both initiated assessments of the nature of aerosol remote sensing uncertainty and bias. In this talk we go over areas of specific concern based on the authors’ experiences with the data, emphasizing the multi-sensor problem. We first enumerate potential biases, including retrieval, sampling/contextual, and cognitive bias. We show examples of how these biases can subsequently lead to the pitfalls of correlated/compensating errors, tautology, and confounding. The nature of bias is closely related to the information content of the sensor signal and its subsequent application to the derived aerosol quantity of interest (e.g., optical depth, flux, index of refraction, etc.). Consequently, purpose-specific validation methods must be employed, especially when generating multi-sensor products. Indeed, cloud and lower boundary condition biases in particular complicate the more typical methods of regressional bias elimination and histogram matching. We close with a discussion of sequestration of uncertainty in multi-sensor applications of these products in both pair-wise and fused fashions.
Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, V.; Gopalan, A.
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.
A method based on multi-sensor data fusion for fault detection of planetary gearboxes.
Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong
2012-01-01
Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.
Multisensor-based human detection and tracking for mobile service robots.
Bellotto, Nicola; Hu, Huosheng
2009-02-01
One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.
Study on the multi-sensors monitoring and information fusion technology of dangerous cargo container
NASA Astrophysics Data System (ADS)
Xu, Shibo; Zhang, Shuhui; Cao, Wensheng
2017-10-01
In this paper, monitoring system of dangerous cargo container based on multi-sensors is presented. In order to improve monitoring accuracy, multi-sensors will be applied inside of dangerous cargo container. Multi-sensors information fusion solution of monitoring dangerous cargo container is put forward, and information pre-processing, the fusion algorithm of homogenous sensors and information fusion based on BP neural network are illustrated, applying multi-sensors in the field of container monitoring has some novelty.
Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier
2017-01-01
The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087
De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier
2017-10-31
The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
Semiotic foundation for multisensor-multilook fusion
NASA Astrophysics Data System (ADS)
Myler, Harley R.
1998-07-01
This paper explores the concept of an application of semiotic principles to the design of a multisensor-multilook fusion system. Semiotics is an approach to analysis that attempts to process media in a united way using qualitative methods as opposed to quantitative. The term semiotic refers to signs, or signatory data that encapsulates information. Semiotic analysis involves the extraction of signs from information sources and the subsequent processing of the signs into meaningful interpretations of the information content of the source. The multisensor fusion problem predicated on a semiotic system structure and incorporating semiotic analysis techniques is explored and the design for a multisensor system as an information fusion system is explored. Semiotic analysis opens the possibility of using non-traditional sensor sources and modalities in the fusion process, such as verbal and textual intelligence derived from human observers. Examples of how multisensor/multimodality data might be analyzed semiotically is shown and discussion on how a semiotic system for multisensor fusion could be realized is outlined. The architecture of a semiotic multisensor fusion processor that can accept situational awareness data is described, although an implementation has not as yet been constructed.
Multisensor Fusion for Change Detection
NASA Astrophysics Data System (ADS)
Schenk, T.; Csatho, B.
2005-12-01
Combining sensors that record different properties of a 3-D scene leads to complementary and redundant information. If fused properly, a more robust and complete scene description becomes available. Moreover, fusion facilitates automatic procedures for object reconstruction and modeling. For example, aerial imaging sensors, hyperspectral scanning systems, and airborne laser scanning systems generate complementary data. We describe how data from these sensors can be fused for such diverse applications as mapping surface erosion and landslides, reconstructing urban scenes, monitoring urban land use and urban sprawl, and deriving velocities and surface changes of glaciers and ice sheets. An absolute prerequisite for successful fusion is a rigorous co-registration of the sensors involved. We establish a common 3-D reference frame by using sensor invariant features. Such features are caused by the same object space phenomena and are extracted in multiple steps from the individual sensors. After extracting, segmenting and grouping the features into more abstract entities, we discuss ways on how to automatically establish correspondences. This is followed by a brief description of rigorous mathematical models suitable to deal with linear and area features. In contrast to traditional, point-based registration methods, lineal and areal features lend themselves to a more robust and more accurate registration. More important, the chances to automate the registration process increases significantly. The result of the co-registration of the sensors is a unique transformation between the individual sensors and the object space. This makes spatial reasoning of extracted information more versatile; reasoning can be performed in sensor space or in 3-D space where domain knowledge about features and objects constrains reasoning processes, reduces the search space, and helps to make the problem well-posed. We demonstrate the feasibility of the proposed multisensor fusion approach with detecting surface elevation changes on the Byrd Glacier, Antarctica, with aerial imagery from 1980s and ICESat laser altimetry data from 2003-05. Change detection from such disparate data sets is an intricate fusion problem, beginning with sensor alignment, and on to reasoning with spatial information as to where changes occurred and to what extent.
Multi-Sensor Fused Interrogation of Brain to Determine ICP Level
1997-08-01
manifestations, but the decision is considerably more difficult for soldiers who are rendered immediately unconscious through blunt injury and concussion...is an example of swept sine excitation yielding low frequency resonance and attenuation data using head-down tilt to elevate ICP, and Figure 2 is an... excitation ) in an adult male excitation ) in female adult volunteer with ICP volunteer with ICP elevation induced through elevation induced through
Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks
NASA Astrophysics Data System (ADS)
Lim, Jaein; Udpa, Satish S.; Udpa, Lalita; Afzal, Muhammad
2001-04-01
The primary objective of multi-sensor data fusion, which offers both quantitative and qualitative benefits, has the ability to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from two sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The two sensors measure the axial and circumferential components of the MFL. Data is fused at the signal level. If the flux is oriented axially, the samples of the axial signal are measured along a direction parallel to the flaw, while the circumferential signal is measured in a direction that is perpendicular to the flaw. The two signals are combined as the real and imaginary components of a complex valued signal. Signals from an array of sensors are arranged in contiguous rows to obtain a complex valued image. A boundary extraction algorithm is used to extract the defect areas in the image. Signals from the defect regions are then processed to minimize noise and the effects of lift-off. Finally, a wavelet basis function (WBF) neural network is employed to map the complex valued image appropriately to obtain the geometrical profile of the defect. The feasibility of the approach was evaluated using the data obtained from the MFL inspection of natural gas transmission pipelines. Results show the effectiveness of the approach.
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device
He, Xiang; Aloi, Daniel N.; Li, Jia
2015-01-01
Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.
He, Xiang; Aloi, Daniel N; Li, Jia
2015-12-14
Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.
The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project
NASA Astrophysics Data System (ADS)
Edwards, Mark
2008-04-01
The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR field trials, most recently at Exercise Empire Challenge in China Lake CA, and at Trial Quest in Norway. Those exercises provided further opportunities to investigate operator interactions. The paper concludes with recommendations for future work in operator interface design.
NASA Astrophysics Data System (ADS)
Liu, Jie; Hu, Youmin; Wang, Yan; Wu, Bo; Fan, Jikai; Hu, Zhongxu
2018-05-01
The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.
Information Measures for Multisensor Systems
2013-12-11
permuted to generate spectra that were non- physical but preserved the entropy of the source spectra. Another 1000 spectra were constructed to mimic co...Research Laboratory (NRL) has yielded probabilistic models for spectral data that enable the computation of information measures such as entropy and...22308 Chemical sensing Information theory Spectral data Information entropy Information divergence Mass spectrometry Infrared spectroscopy Multisensor
Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Xie, Xia-zhu; Xu, Ya-wei
2017-11-01
On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
Infrared and visible image fusion method based on saliency detection in sparse domain
NASA Astrophysics Data System (ADS)
Liu, C. H.; Qi, Y.; Ding, W. R.
2017-06-01
Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-12-04
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.
A smart multisensor approach to assist blind people in specific urban navigation tasks.
Ando, B
2008-12-01
Visually impaired people are often discouraged in using electronic aids due to complexity of operation, large amount of training, nonoptimized degree of information provided to the user, and high cost. In this paper, a new multisensor architecture is discussed, which would help blind people to perform urban mobility tasks. The device is based on a multisensor strategy and adopts smart signal processing.
A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration
2004-09-01
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-01-01
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154
Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis
Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan
2016-01-01
Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster–Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection. PMID:27649193
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-01-01
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-02-03
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-01-01
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-06-09
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.
Advances in Multi-Sensor Information Fusion: Theory and Applications 2017.
Jin, Xue-Bo; Sun, Shuli; Wei, Hong; Yang, Feng-Bao
2018-04-11
The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.
Wastewater quality monitoring system using sensor fusion and machine learning techniques.
Qin, Xusong; Gao, Furong; Chen, Guohua
2012-03-15
A multi-sensor water quality monitoring system incorporating an UV/Vis spectrometer and a turbidimeter was used to monitor the Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and Oil & Grease (O&G) concentrations of the effluents from the Chinese restaurant on campus and an electrocoagulation-electroflotation (EC-EF) pilot plant. In order to handle the noise and information unbalance in the fused UV/Vis spectra and turbidity measurements during the calibration model building, an improved boosting method, Boosting-Iterative Predictor Weighting-Partial Least Squares (Boosting-IPW-PLS), was developed in the present study. The Boosting-IPW-PLS method incorporates IPW into boosting scheme to suppress the quality-irrelevant variables by assigning small weights, and builds up the models for the wastewater quality predictions based on the weighted variables. The monitoring system was tested in the field with satisfactory results, underlying the potential of this technique for the online monitoring of water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-01-01
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524
Multisensor system and artificial intelligence in housing for the elderly.
Chan, M; Bocquet, H; Campo, E; Val, T; Estève, D; Pous, J
1998-01-01
To improve the safety of a growing proportion of elderly and disabled people in the developed countries, a multisensor system based on Artificial Intelligence (AI), Advanced Telecommunications (AT) and Information Technology (IT) has been devised and fabricated. Thus, the habits and behaviours of these populations will be recorded without disturbing their daily activities. AI will diagnose any abnormal behavior or change and the system will warn the professionals. Gerontology issues are presented together with the multisensor system, the AI-based learning and diagnosis methodology and the main functionalities.
USDA-ARS?s Scientific Manuscript database
Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...
Proposed evaluation framework for assessing operator performance with multisensor displays
NASA Technical Reports Server (NTRS)
Foyle, David C.
1992-01-01
Despite aggressive work on the development of sensor fusion algorithms and techniques, no formal evaluation procedures have been proposed. Based on existing integration models in the literature, an evaluation framework is developed to assess an operator's ability to use multisensor, or sensor fusion, displays. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The operator's performance with the sensor fusion display can be compared to the models' predictions based on the operator's performance when viewing the original sensor displays prior to fusion. This allows for the determination as to when a sensor fusion system leads to: 1) poorer performance than one of the original sensor displays (clearly an undesirable system in which the fused sensor system causes some distortion or interference); 2) better performance than with either single sensor system alone, but at a sub-optimal (compared to the model predictions) level; 3) optimal performance (compared to model predictions); or, 4) super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays. An experiment demonstrating the usefulness of the proposed evaluation framework is discussed.
Performance Evaluation of Fusing Protected Fingerprint Minutiae Templates on the Decision Level
Yang, Bian; Busch, Christoph; de Groot, Koen; Xu, Haiyun; Veldhuis, Raymond N. J.
2012-01-01
In a biometric authentication system using protected templates, a pseudonymous identifier is the part of a protected template that can be directly compared. Each compared pair of pseudonymous identifiers results in a decision testing whether both identifiers are derived from the same biometric characteristic. Compared to an unprotected system, most existing biometric template protection methods cause to a certain extent degradation in biometric performance. Fusion is therefore a promising way to enhance the biometric performance in template-protected biometric systems. Compared to feature level fusion and score level fusion, decision level fusion has not only the least fusion complexity, but also the maximum interoperability across different biometric features, template protection and recognition algorithms, templates formats, and comparison score rules. However, performance improvement via decision level fusion is not obvious. It is influenced by both the dependency and the performance gap among the conducted tests for fusion. We investigate in this paper several fusion scenarios (multi-sample, multi-instance, multi-sensor, multi-algorithm, and their combinations) on the binary decision level, and evaluate their biometric performance and fusion efficiency on a multi-sensor fingerprint database with 71,994 samples. PMID:22778583
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
NASA Astrophysics Data System (ADS)
Rejas, J. G.; Martínez-Frías, J.; Bonatti, J.; Martínez, R.; Marchamalo, M.
2012-07-01
The aim of this work is the comparative study of the presence of hydrothermal alteration materials in the Turrialba volcano (Costa Rica) in relation with computed spectral anomalies from multitemporal and multisensor data adquired in spectral ranges of the visible (VIS), short wave infrared (SWIR) and thermal infrared (TIR). We used for this purposes hyperspectral and multispectral images from the HyMAP and MASTER airborne sensors, and ASTER and Hyperion scenes in a period between 2002 and 2010. Field radiometry was applied in order to remove the atmospheric contribution in an empirical line method. HyMAP and MASTER images were georeferenced directly thanks to positioning and orientation data that were measured at the same time in the acquisition campaign from an inertial system based on GPS/IMU. These two important steps were allowed the identification of spectral diagnostic bands of hydrothermal alteration minerals and the accuracy spatial correlation. Enviromental impact of the volcano activity has been studied through different vegetation indexes and soil patterns. Have been mapped hydrothermal materials in the crater of the volcano, in fact currently active, and their surrounding carrying out a principal components analysis differentiated for a high and low absorption bands to characterize accumulations of kaolinite, illite, alunite and kaolinite+smectite, delimitating zones with the presence of these minerals. Spectral anomalies have been calculated on a comparative study of methods pixel and subpixel focused in thermal bands fused with high-resolution images. Results are presented as an approach based on expert whose main interest lies in the automated identification of patterns of hydrothermal altered materials without prior knowledge or poor information on the area.
An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device
USDA-ARS?s Scientific Manuscript database
Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...
Situation exploration in a persistent surveillance system with multidimensional data
NASA Astrophysics Data System (ADS)
Habibi, Mohammad S.
2013-03-01
There is an emerging need for fusing hard and soft sensor data in an efficient surveillance system to provide accurate estimation of situation awareness. These mostly abstract, multi-dimensional and multi-sensor data pose a great challenge to the user in performing analysis of multi-threaded events efficiently and cohesively. To address this concern an interactive Visual Analytics (VA) application is developed for rapid assessment and evaluation of different hypotheses based on context-sensitive ontology spawn from taxonomies describing human/human and human/vehicle/object interactions. A methodology is described here for generating relevant ontology in a Persistent Surveillance System (PSS) and demonstrates how they can be utilized in the context of PSS to track and identify group activities pertaining to potential threats. The proposed VA system allows for visual analysis of raw data as well as metadata that have spatiotemporal representation and content-based implications. Additionally in this paper, a technique for rapid search of tagged information contingent to ranking and confidence is explained for analysis of multi-dimensional data. Lastly the issue of uncertainty associated with processing and interpretation of heterogeneous data is also addressed.
NASA Astrophysics Data System (ADS)
Theologou, I.; Patelaki, M.; Karantzalos, K.
2015-04-01
Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.
Regional Mapping of Plantation Extent Using Multisensor Imagery
NASA Astrophysics Data System (ADS)
Torbick, N.; Ledoux, L.; Hagen, S.; Salas, W.
2016-12-01
Industrial forest plantations are expanding rapidly across the tropics and monitoring extent is critical for understanding environmental and socioeconomic impacts. In this study, new, multisensor imagery were evaluated and integrated to extract the strengths of each sensor for mapping plantation extent at regional scales. Three distinctly different landscapes with multiple plantation types were chosen to consider scalability and transferability. These were Tanintharyi, Myanmar, West Kalimantan, Indonesia, and southern Ghana. Landsat-8 Operational Land Imager (OLI), Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2), and Sentinel-1A images were fused within a Classification and Regression Tree (CART) framework using random forest and high-resolution surveys. Multi-criteria evaluations showed both L-and C-band gamma nought γ° backscatter decibel (dB), Landsat reflectance ρλ, and texture indices were useful for distinguishing oil palm and rubber plantations from other land types. The classification approach identified 750,822 ha or 23% of the Taninathryi, Myanmar, and 216,086 ha or 25% of western West Kalimantan as plantation with very high cross validation accuracy. The mapping approach was scalable and transferred well across the different geographies and plantation types. As archives for Sentinel-1, Landsat-8, and PALSAR-2 continue to grow, mapping plantation extent and dynamics at moderate resolution over large regions should be feasible.
NASA Astrophysics Data System (ADS)
Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.
2009-05-01
Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.
Deng, Xinyang; Jiang, Wen
2017-09-12
Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.
Deng, Xinyang
2017-01-01
Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905
Distributed multi-sensor particle filter for bearings-only tracking
NASA Astrophysics Data System (ADS)
Zhang, Jungen; Ji, Hongbing
2012-02-01
In this article, the classical bearings-only tracking (BOT) problem for a single target is addressed, which belongs to the general class of non-linear filtering problems. Due to the fact that the radial distance observability of the target is poor, the algorithm-based sequential Monte-Carlo (particle filtering, PF) methods generally show instability and filter divergence. A new stable distributed multi-sensor PF method is proposed for BOT. The sensors process their measurements at their sites using a hierarchical PF approach, which transforms the BOT problem from Cartesian coordinate to the logarithmic polar coordinate and separates the observable components from the unobservable components of the target. In the fusion centre, the target state can be estimated by utilising the multi-sensor optimal information fusion rule. Furthermore, the computation of a theoretical Cramer-Rao lower bound is given for the multi-sensor BOT problem. Simulation results illustrate that the proposed tracking method can provide better performances than the traditional PF method.
Distributed resource allocation under communication constraints
NASA Astrophysics Data System (ADS)
Dodin, Pierre; Nimier, Vincent
2001-03-01
This paper deals with a study of the multi-sensor management problem for multi-target tracking. The collaboration between many sensors observing the same target means that they are able to fuse their data during the information process. Then one must take into account this possibility to compute the optimal association sensors-target at each step of time. In order to solve this problem for real large scale system, one must both consider the information aspect and the control aspect of the problem. To unify these problems, one possibility is to use a decentralized filtering algorithm locally driven by an assignment algorithm. The decentralized filtering algorithm we use in our model is the filtering algorithm of Grime, which relaxes the usual full-connected hypothesis. By full-connected, one means that the information in a full-connected system is totally distributed everywhere at the same moment, which is unacceptable for a real large scale system. We modelize the distributed assignment decision with the help of a greedy algorithm. Each sensor performs a global optimization, in order to estimate other information sets. A consequence of the relaxation of the full- connected hypothesis is that the sensors' information set are not the same at each step of time, producing an information dis- symmetry in the system. The assignment algorithm uses a local knowledge of this dis-symmetry. By testing the reactions and the coherence of the local assignment decisions of our system, against maneuvering targets, we show that it is still possible to manage with decentralized assignment control even though the system is not full-connected.
Intelligent multi-sensor integrations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Jain, Ramesh; Weymouth, Terry
1989-01-01
Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.
Multispectral multisensor image fusion using wavelet transforms
Lemeshewsky, George P.
1999-01-01
Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.
Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation
Ruotsalainen, Laura; Kirkko-Jaakkola, Martti; Rantanen, Jesperi; Mäkelä, Maija
2018-01-01
The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM) and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU), sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS) sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF), which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf) in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is tested via two experiments, one at a university’s premises and another in realistic tactical conditions. The results show significant improvement on the horizontal localization when the measurement errors are carefully modelled and their inclusion into the particle filtering implementation correctly realized. PMID:29443918
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.
Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G
2016-11-02
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.
Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.
2015-12-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be executed "near" the multi-sensor data. Decade-long, multi-sensor studies can be performed without pre-staging data, with the researcher paying only his own Cloud compute bill.
A multi-sensor scenario for coastal surveillance
NASA Astrophysics Data System (ADS)
van den Broek, A. C.; van den Broek, S. P.; van den Heuvel, J. C.; Schwering, P. B. W.; van Heijningen, A. W. P.
2007-10-01
Maritime borders and coastal zones are susceptible to threats such as drug trafficking, piracy, undermining economical activities. At TNO Defence, Security and Safety various studies aim at improving situational awareness in a coastal zone. In this study we focus on multi-sensor surveillance of the coastal environment. We present a study on improving classification results for small sea surface targets using an advanced sensor suite and a scenario in which a small boat is approaching the coast. A next generation sensor suite mounted on a tower has been defined consisting of a maritime surveillance and tracking radar system, capable of producing range profiles and ISAR imagery of ships, an advanced infrared camera and a laser range profiler. For this suite we have developed a multi-sensor classification procedure, which is used to evaluate the capabilities for recognizing and identifying non-cooperative ships in coastal waters. We have found that the different sensors give complementary information. Each sensor has its own specific distance range in which it contributes most. A multi-sensor approach reduces the number of misclassifications and reliable classification results are obtained earlier compared to a single sensor approach.
An Improved Multi-Sensor Fusion Navigation Algorithm Based on the Factor Graph
Zeng, Qinghua; Chen, Weina; Liu, Jianye; Wang, Huizhe
2017-01-01
An integrated navigation system coupled with additional sensors can be used in the Micro Unmanned Aerial Vehicle (MUAV) applications because the multi-sensor information is redundant and complementary, which can markedly improve the system accuracy. How to deal with the information gathered from different sensors efficiently is an important problem. The fact that different sensors provide measurements asynchronously may complicate the processing of these measurements. In addition, the output signals of some sensors appear to have a non-linear character. In order to incorporate these measurements and calculate a navigation solution in real time, the multi-sensor fusion algorithm based on factor graph is proposed. The global optimum solution is factorized according to the chain structure of the factor graph, which allows for a more general form of the conditional probability density. It can convert the fusion matter into connecting factors defined by these measurements to the graph without considering the relationship between the sensor update frequency and the fusion period. An experimental MUAV system has been built and some experiments have been performed to prove the effectiveness of the proposed method. PMID:28335570
An Improved Multi-Sensor Fusion Navigation Algorithm Based on the Factor Graph.
Zeng, Qinghua; Chen, Weina; Liu, Jianye; Wang, Huizhe
2017-03-21
An integrated navigation system coupled with additional sensors can be used in the Micro Unmanned Aerial Vehicle (MUAV) applications because the multi-sensor information is redundant and complementary, which can markedly improve the system accuracy. How to deal with the information gathered from different sensors efficiently is an important problem. The fact that different sensors provide measurements asynchronously may complicate the processing of these measurements. In addition, the output signals of some sensors appear to have a non-linear character. In order to incorporate these measurements and calculate a navigation solution in real time, the multi-sensor fusion algorithm based on factor graph is proposed. The global optimum solution is factorized according to the chain structure of the factor graph, which allows for a more general form of the conditional probability density. It can convert the fusion matter into connecting factors defined by these measurements to the graph without considering the relationship between the sensor update frequency and the fusion period. An experimental MUAV system has been built and some experiments have been performed to prove the effectiveness of the proposed method.
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
The use of multisensor images for Earth Science applications
NASA Technical Reports Server (NTRS)
Evans, D.; Stromberg, B.
1983-01-01
The use of more than one remote sensing technique is particularly important for Earth Science applications because of the compositional and textural information derivable from the images. The ability to simultaneously analyze images acquired by different sensors requires coregistration of the multisensor image data sets. In order to insure pixel to pixel registration in areas of high relief, images must be rectified to eliminate topographic distortions. Coregistered images can be analyzed using a variety of multidimensional techniques and the acquired knowledge of topographic effects in the images can be used in photogeologic interpretations.
Advances in multi-sensor data fusion: algorithms and applications.
Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying
2009-01-01
With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.
A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives
Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai
2013-01-01
This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.
Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui
2016-05-25
In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.
A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors
Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin
2014-01-01
Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy. PMID:25490581
A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.
Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin
2014-12-05
Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.
A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning
Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui
2016-01-01
In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917
A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2013-09-01
In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing
NASA Astrophysics Data System (ADS)
Wilson, Brian; Manipon, Gerald; Hua, Hook; Fetzer, Eric
2014-05-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map-reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in a hybrid Cloud (private eucalyptus & public Amazon). Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Multi-year datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. We will also present a concept and prototype for staging NASA's A-Train Atmospheric datasets (Levels 2 & 3) in the Amazon Cloud so that any number of compute jobs can be executed "near" the multi-sensor data. Given such a system, multi-sensor climate studies over 10-20 years of data could be perform
Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach.
Liu, Mengyun; Chen, Ruizhi; Li, Deren; Chen, Yujin; Guo, Guangyi; Cao, Zhipeng; Pan, Yuanjin
2017-12-08
After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to "see" which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas.
Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach
Chen, Ruizhi; Li, Deren; Chen, Yujin; Guo, Guangyi; Cao, Zhipeng
2017-01-01
After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to “see” which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas. PMID:29292761
Fast obstacle detection based on multi-sensor information fusion
NASA Astrophysics Data System (ADS)
Lu, Linli; Ying, Jie
2014-11-01
Obstacle detection is one of the key problems in areas such as driving assistance and mobile robot navigation, which cannot meet the actual demand by using a single sensor. A method is proposed to realize the real-time access to the information of the obstacle in front of the robot and calculating the real size of the obstacle area according to the mechanism of the triangle similarity in process of imaging by fusing datum from a camera and an ultrasonic sensor, which supports the local path planning decision. In the part of image analyzing, the obstacle detection region is limited according to complementary principle. We chose ultrasonic detection range as the region for obstacle detection when the obstacle is relatively near the robot, and the travelling road area in front of the robot is the region for a relatively-long-distance detection. The obstacle detection algorithm is adapted from a powerful background subtraction algorithm ViBe: Visual Background Extractor. We extracted an obstacle free region in front of the robot in the initial frame, this region provided a reference sample set of gray scale value for obstacle detection. Experiments of detecting different obstacles at different distances respectively, give the accuracy of the obstacle detection and the error percentage between the calculated size and the actual size of the detected obstacle. Experimental results show that the detection scheme can effectively detect obstacles in front of the robot and provide size of the obstacle with relatively high dimensional accuracy.
Enhancing user experience by using multi-sensor data fusion to predict phone's luminance
NASA Astrophysics Data System (ADS)
Marhoubi, Asmaa H.
2017-09-01
The movement of a phone in an environment with different brightness, makes the luminance prediction challenging. The ambient light sensor takes time to modify the brightness of the screen based on the environment it is placed in. This causes an unsatisfactory user experience and delays in adjustment of the screen brightness. In this research, a method is proposed for enhancing the prediction of luminance using accelerometer, gyroscope and speed measurement technique. The speed of the phone is identified using Sum-of-Sine parameters. The lux values are then fused with the accelerometer and gyroscope data to present more accurate luminance values for the ALS based on the movement of the phone. An investigation is made during the movement of the user in a standard lighting environment. This enhances the user experience and improves the screen brightness precision. The accuracy has given an R-Square value of up to 0.97.
NASA Astrophysics Data System (ADS)
Harney, Robert C.
1997-03-01
A novel methodology offering the potential for resolving two of the significant problems of implementing multisensor target recognition systems, i.e., the rational selection of a specific sensor suite and optimal allocation of requirements among sensors, is presented. Based on a sequence of conjectures (and their supporting arguments) concerning the relationship of extractable information content to recognition performance of a sensor system, a set of heuristics (essentially a reformulation of Johnson's criteria applicable to all sensor and data types) is developed. An approach to quantifying the information content of sensor data is described. Coupling this approach with the widely accepted Johnson's criteria for target recognition capabilities results in a quantitative method for comparing the target recognition ability of diverse sensors (imagers, nonimagers, active, passive, electromagnetic, acoustic, etc.). Extension to describing the performance of multiple sensors is straightforward. The application of the technique to sensor selection and requirements allocation is discussed.
Provenance in Data Interoperability for Multi-Sensor Intercomparison
NASA Technical Reports Server (NTRS)
Lynnes, Chris; Leptoukh, Greg; Berrick, Steve; Shen, Suhung; Prados, Ana; Fox, Peter; Yang, Wenli; Min, Min; Holloway, Dan; Enloe, Yonsook
2008-01-01
As our inventory of Earth science data sets grows, the ability to compare, merge and fuse multiple datasets grows in importance. This requires a deeper data interoperability than we have now. Efforts such as Open Geospatial Consortium and OPeNDAP (Open-source Project for a Network Data Access Protocol) have broken down format barriers to interoperability; the next challenge is the semantic aspects of the data. Consider the issues when satellite data are merged, cross-calibrated, validated, inter-compared and fused. We must match up data sets that are related, yet different in significant ways: the phenomenon being measured, measurement technique, location in space-time or quality of the measurements. If subtle distinctions between similar measurements are not clear to the user, results can be meaningless or lead to an incorrect interpretation of the data. Most of these distinctions trace to how the data came to be: sensors, processing and quality assessment. For example, monthly averages of satellite-based aerosol measurements often show significant discrepancies, which might be due to differences in spatio- temporal aggregation, sampling issues, sensor biases, algorithm differences or calibration issues. Provenance information must be captured in a semantic framework that allows data inter-use tools to incorporate it and aid in the intervention of comparison or merged products. Semantic web technology allows us to encode our knowledge of measurement characteristics, phenomena measured, space-time representation, and data quality attributes in a well-structured, machine-readable ontology and rulesets. An analysis tool can use this knowledge to show users the provenance-related distrintions between two variables, advising on options for further data processing and analysis. An additional problem for workflows distributed across heterogeneous systems is retrieval and transport of provenance. Provenance may be either embedded within the data payload, or transmitted from server to client in an out-of-band mechanism. The out of band mechanism is more flexible in the richness of provenance information that can be accomodated, but it relies on a persistent framework and can be difficult for legacy clients to use. We are prototyping the embedded model, incorporating provenance within metadata objects in the data payload. Thus, it always remains with the data. The downside is a limit to the size of provenance metadata that we can include, an issue that will eventually need resolution to encompass the richness of provenance information required for daata intercomparison and merging.
Technologies for Army Knowledge Fusion
2004-09-01
interpret it in context and understand the implications (Alberts et al., 2002). Note that the knowledge / information fusion issue arises immediately here...Army Knowledge Fusion Richard Scherl Department of Computer Science Monmouth University Dana L. Ulery Computational and Information Sciences...civilian and military sources. Knowledge fusion, also called information fusion and multisensor data fusion, names the body of techniques needed to
Multisensor Image Analysis System
1993-04-15
AD-A263 679 II Uli! 91 Multisensor Image Analysis System Final Report Authors. Dr. G. M. Flachs Dr. Michael Giles Dr. Jay Jordan Dr. Eric...or decision, unless so designated by other documentation. 93-09739 *>ft s n~. now illlllM3lMVf Multisensor Image Analysis System Final...Multisensor Image Analysis System 3. REPORT TYPE AND DATES COVERED FINAL: LQj&tt-Z JZOfVL 5. FUNDING NUMBERS 93 > 6. AUTHOR(S) Drs. Gerald
NASA Astrophysics Data System (ADS)
Li, Jun; Song, Minghui; Peng, Yuanxi
2018-03-01
Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.
Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E.
2013-05-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. We will also present a concept/prototype for staging NASA's A-Train Atmospheric datasets (Levels 2 & 3) in the Amazon Cloud so that any number of compute jobs can be executed "near" the multi-sensor data. Given such a system, multi-sensor climate studies over 10-20 years of data could be performed in an efficient way, with the researcher paying only his own Cloud compute bill.; Figure 1 -- Architecture.
Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.
2013-12-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the 'A-Train' platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (MERRA), stratify the comparisons using a classification of the 'cloud scenes' from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically 'sharded' by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will present the architecture of SciReduce, describe the achieved 'clock time' speedups in fusing datasets on our own compute nodes and in the public Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. We will also present a concept/prototype for staging NASA's A-Train Atmospheric datasets (Levels 2 & 3) in the Amazon Cloud so that any number of compute jobs can be executed 'near' the multi-sensor data. Given such a system, multi-sensor climate studies over 10-20 years of data could be performed in an efficient way, with the researcher paying only his own Cloud compute bill. SciReduce Architecture
NASA Astrophysics Data System (ADS)
Zan, Tao; Wang, Min; Hu, Jianzhong
2010-12-01
Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.
Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.
Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue
2018-05-25
A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.
Angiogram, fundus, and oxygen saturation optic nerve head image fusion
NASA Astrophysics Data System (ADS)
Cao, Hua; Khoobehi, Bahram
2009-02-01
A novel multi-modality optic nerve head image fusion approach has been successfully designed. The new approach has been applied on three ophthalmologic modalities: angiogram, fundus, and oxygen saturation retinal optic nerve head images. It has achieved an excellent result by giving the visualization of fundus or oxygen saturation images with a complete angiogram overlay. During this study, two contributions have been made in terms of novelty, efficiency, and accuracy. The first contribution is the automated control point detection algorithm for multi-sensor images. The new method employs retina vasculature and bifurcation features by identifying the initial good-guess of control points using the Adaptive Exploratory Algorithm. The second contribution is the heuristic optimization fusion algorithm. In order to maximize the objective function (Mutual-Pixel-Count), the iteration algorithm adjusts the initial guess of the control points at the sub-pixel level. A refinement of the parameter set is obtained at the end of each loop, and finally an optimal fused image is generated at the end of the iteration. It is the first time that Mutual-Pixel-Count concept has been introduced into biomedical image fusion area. By locking the images in one place, the fused image allows ophthalmologists to match the same eye over time and get a sense of disease progress and pinpoint surgical tools. The new algorithm can be easily expanded to human or animals' 3D eye, brain, or body image registration and fusion.
An enhanced inertial navigation system based on a low-cost IMU and laser scanner
NASA Astrophysics Data System (ADS)
Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok
2012-06-01
This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.
NASA Astrophysics Data System (ADS)
Hanlon, Nicholas P.
The National Air Space (NAS) can be easily described as a complex aviation system-of-systems that seamlessly works in harmony to provide safe transit for all aircraft within its domain. The number of aircraft within the NAS is growing and according the FAA, "[o]n any given day, more than 85,000 flights are in the skies in the United States...This translates into roughly 5,000 planes in the skies above the United States at any given moment. More than 15,000 federal air traffic controllers in airport traffic control towers, terminal radar approach control facilities and air route traffic control centers guide pilots through the system". The FAA is currently rolling out the Next Generation Air Transportation System (NextGen) to handle projected growth while leveraging satellite-based navigation for improved tracking. A key component to instantiating NextGen lies in the equipage of Automatic Dependent Surveillance-Broadcast (ADS-B), a performance based surveillance technology that uses GPS navigation for more precise positioning than radars providing increased situational awareness to air traffic controllers. Furthermore, the FAA is integrating UAS into the NAS, further congesting the airways and information load on air traffic controllers. The expected increase in aircraft density due to NextGen implementation and UAS integration will require innovative algorithms to cope with the increase data flow and to support air traffic controllers in their decision-making. This research presents a few innovative algorithms to support increased aircraft density and UAS integration into the NAS. First, it is imperative that individual tracks are correlated prior to fusing to ensure a proper picture of the environment is correct. However, current approaches do not scale well as the number of targets and sensors are increased. This work presents a fuzzy clustering design to hierarchically break the problem down into smaller subspaces prior to correlation. This approach provides nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.
Qian, Jun; Zi, Bin; Ma, Yangang; Zhang, Dan
2017-01-01
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields. PMID:28891964
Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong
2012-01-01
This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.
Study on fault diagnosis and load feedback control system of combine harvester
NASA Astrophysics Data System (ADS)
Li, Ying; Wang, Kun
2017-01-01
In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.
Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan
2017-09-10
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.
NASA Astrophysics Data System (ADS)
Wurm, Michael; Taubenböck, Hannes; Dech, Stefan
2010-10-01
Dynamics of urban environments are a challenge to a sustainable development. Urban areas promise wealth, realization of individual dreams and power. Hence, many cities are characterized by a population growth as well as physical development. Traditional, visual mapping and updating of urban structure information of cities is a very laborious and cost-intensive task, especially for large urban areas. For this purpose, we developed a workflow for the extraction of the relevant information by means of object-based image classification. In this manner, multisensoral remote sensing data has been analyzed in terms of very high resolution optical satellite imagery together with height information by a digital surface model to retrieve a detailed 3D city model with the relevant land-use / land-cover information. This information has been aggregated on the level of the building block to describe the urban structure by physical indicators. A comparison between the indicators derived by the classification and a reference classification has been accomplished to show the correlation between the individual indicators and a reference classification of urban structure types. The indicators have been used to apply a cluster analysis to group the individual blocks into similar clusters.
Geometrical and optical calibration of a vehicle-mounted IR imager for land mine localization
NASA Astrophysics Data System (ADS)
Aitken, Victor C.; Russell, Kevin L.; McFee, John E.
2000-08-01
Many present day vehicle-mounted landmine detection systems use IR imagers. Information furnished by these imaging systems usually consists of video and the location of targets within the video. In multisensor systems employing data fusion, there is a need to convert sensor information to a common coordinate system that all sensors share.
Performance evaluation of an asynchronous multisensor track fusion filter
NASA Astrophysics Data System (ADS)
Alouani, Ali T.; Gray, John E.; McCabe, D. H.
2003-08-01
Recently the authors developed a new filter that uses data generated by asynchronous sensors to produce a state estimate that is optimal in the minimum mean square sense. The solution accounts for communications delay between sensors platform and fusion center. It also deals with out of sequence data as well as latent data by processing the information in a batch-like manner. This paper compares, using simulated targets and Monte Carlo simulations, the performance of the filter to the optimal sequential processing approach. It was found that the new asynchronous Multisensor track fusion filter (AMSTFF) performance is identical to that of the extended sequential Kalman filter (SEKF), while the new filter updates its track at a much lower rate than the SEKF.
DOT National Transportation Integrated Search
2014-09-01
Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...
The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, focused electrode leak location (FELL), ...
Accountability for Information Flow via Explicit Formal Proof
2009-10-01
macrobenchmarks. The first (called OpenSSL in the table below), unpacks the OpenSSL source code, compiles it and deletes it. The other (called Fuse in...penalty for PCFS as compared to Fuse/Null is approximately 10% for OpenSSL , and 2.5% for Fuse. The difference arises because the OpenSSL benchmark depends...Macrobenchmarks Benchmark PCFS Fuse/Null Ext3 OpenSSL 126 114 94 Fuse x 5 79 77 70 15 In summary, assuming a low rate of cache misses, the
Automatic registration of optical imagery with 3d lidar data using local combined mutual information
NASA Astrophysics Data System (ADS)
Parmehr, E. G.; Fraser, C. S.; Zhang, C.; Leach, J.
2013-10-01
Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The effectiveness of intensity-based methods such as Mutual Information (MI) for automated registration of multi-sensor image has been previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 3D probability density function (pdf). In addition, a local similarity measure is introduced to decrease the complexity of optimisation at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in urban and rural areas is experimentally evaluated and the results obtained are discussed.
Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System
NASA Astrophysics Data System (ADS)
Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.
2009-04-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, perform pairwise instrument matchups for A-Train datasets, and compute fused products. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.
Multi-sensor Improved Sea Surface Temperature (MISST) for GODAE
2007-09-30
NAVOCEANO has improved on its methodology to add retrieval error information to the US Navy operational data stream. Quantitative estimates of...hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint Hurricane Testbed
Transmission Line Security Monitor
None
2017-12-09
The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1997-03-01
The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.
Pixel-based image fusion with false color mapping
NASA Astrophysics Data System (ADS)
Zhao, Wei; Mao, Shiyi
2003-06-01
In this paper, we propose a pixel-based image fusion algorithm that combines the gray-level image fusion method with the false color mapping. This algorithm integrates two gray-level images presenting different sensor modalities or at different frequencies and produces a fused false-color image. The resulting image has higher information content than each of the original images. The objects in the fused color image are easy to be recognized. This algorithm has three steps: first, obtaining the fused gray-level image of two original images; second, giving the generalized high-boost filtering images between fused gray-level image and two source images respectively; third, generating the fused false-color image. We use the hybrid averaging and selection fusion method to obtain the fused gray-level image. The fused gray-level image will provide better details than two original images and reduce noise at the same time. But the fused gray-level image can't contain all detail information in two source images. At the same time, the details in gray-level image cannot be discerned as easy as in a color image. So a color fused image is necessary. In order to create color variation and enhance details in the final fusion image, we produce three generalized high-boost filtering images. These three images are displayed through red, green and blue channel respectively. A fused color image is produced finally. This method is used to fuse two SAR images acquired on the San Francisco area (California, USA). The result shows that fused false-color image enhances the visibility of certain details. The resolution of the final false-color image is the same as the resolution of the input images.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-11-02
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-01-01
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832
Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE
2007-01-01
new data streams. NAVOCEANO has improved on its methodology to add retrieval error information to the US Navy operational data stream. Quantitative ...HYCOM)”: http://hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint
Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE
2008-01-01
its methodology to add 3 retrieval error information to the US Navy operational data stream. Quantitative estimates of reliability are added to...hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint Hurricane Testbed project
Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes
2018-02-01
Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.
Caduff, Andreas; Talary, Mark S; Mueller, Martin; Dewarrat, Francois; Klisic, Jelena; Donath, Marc; Heinemann, Lutz; Stahel, Werner A
2009-05-15
In vivo variations of blood glucose (BG) are affecting the biophysical characteristics (e.g. dielectric and optical) of skin and underlying tissue (SAUT) at various frequencies. However, the skin impedance spectra for instance can also be affected by other factors, perturbing the glucose related information, factors such as temperature, skin moisture and sweat, blood perfusion as well as body movements affecting the sensor-skin contact. In order to be able to correct for such perturbing factors, a Multisensor system was developed including sensors to measure the identified factors. To evaluate the quality of glucose monitoring, the Multisensor was applied in 10 patients with Type 1 diabetes. Glucose was administered orally to induce hyperglycaemic excursions at two different study visits. For analysis of the sensor signals, a global multiple linear regression model was derived. The respective coefficients of the variables were determined from the sensor signals of this first study visit (R(2)=0.74, MARD=18.0%--mean absolute relative difference). The identical set of modelling coefficients of the first study visit was re-applied to the test data of the second study visit to evaluate the predictive power of the model (R(2)=0.68, MARD=27.3%). It appears as if the Multisensor together with the global linear regression model applied, allows for tracking glucose changes non-invasively in patients with diabetes without requiring new model coefficients for each visit. Confirmation of these findings in a larger study group and under less experimentally controlled conditions is required for understanding whether a global parameterisation routine is feasible.
Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory
2011-01-01
Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.
Golkhou, V; Parnianpour, M; Lucas, C
2004-01-01
In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.
New false color mapping for image fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Walraven, Jan
1996-03-01
A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).
Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Myungsoo; Markel, Anthony J
Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less
Calibrating a novel multi-sensor physical activity measurement system.
John, D; Liu, S; Sasaki, J E; Howe, C A; Staudenmayer, J; Gao, R X; Freedson, P S
2011-09-01
Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed.
Interferometric side scan sonar and data fusion
NASA Astrophysics Data System (ADS)
Sintes, Christophe R.; Solaiman, Basel
2000-04-01
This paper concerns the possibilities of sea bottom imaging and altitude determining of each imaged point. The performances of new side scan sonars which are able to image the sea bottom with a high definition and are able to evaluate the relief with the same definition derive from an interferometric multisensor system. The drawbacks concern the precision of the numerical altitude model. One way to improve the measurements precision is to merge all the information issued from the multi-sensors system. This leads to increase the Signal to Noise Ratio (SNR) and the robustness of the used method. The aim of this paper is to clearly demonstrate the ability to derive benefits of all information issued from the three arrays side scan sonar by merging: (1) the three phase signals obtained at the output of the sensors, (2) this same set of data after the application of different processing methods, and (3) the a priori relief contextual information. The key idea the proposed fusion technique is to exploit the strength and the weaknesses of each data element in the fusion of process so that the global SNR will be improved as well as the robustness to hostile noisy environments.
Acquision of Geometrical Data of Small Rivers with AN Unmanned Water Vehicle
NASA Astrophysics Data System (ADS)
Sardemann, H.; Eltner, A.; Maas, H.-G.
2018-05-01
Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs) will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV) is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub-) catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle) based point clouds are fused.
Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach
Girrbach, Fabian; Hol, Jeroen D.; Bellusci, Giovanni; Diehl, Moritz
2017-01-01
The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem. PMID:28534857
Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach.
Girrbach, Fabian; Hol, Jeroen D; Bellusci, Giovanni; Diehl, Moritz
2017-05-19
The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem.
Shamwell, E Jared; Nothwang, William D; Perlis, Donald
2018-05-04
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.
Active Multimodal Sensor System for Target Recognition and Tracking
Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen
2017-01-01
High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609
A parallel implementation of a multisensor feature-based range-estimation method
NASA Technical Reports Server (NTRS)
Suorsa, Raymond E.; Sridhar, Banavar
1993-01-01
There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer.
Structured pedigree information for distributed fusion systems
NASA Astrophysics Data System (ADS)
Arambel, Pablo O.
2008-04-01
One of the most critical challenges in distributed data fusion is the avoidance of information double counting (also called "data incest" or "rumor propagation"). This occurs when a node in a network incorporates information into an estimate - e.g. the position of an object - and the estimate is injected into the network. Other nodes fuse this estimate with their own estimates, and continue to propagate estimates through the network. When the first node receives a fused estimate from the network, it does not know if it already contains its own contributions or not. Since the correlation between its own estimate and the estimate received from the network is not known, the node can not fuse the estimates in an optimal way. If it assumes that both estimates are independent from each other, it unknowingly double counts the information that has already being used to obtain the two estimates. This leads to overoptimistic error covariance matrices. If the double-counting is not kept under control, it may lead to serious performance degradation. Double counting can be avoided by propagating uniquely tagged raw measurements; however, that forces each node to process all the measurements and precludes the propagation of derived information. Another approach is to fuse the information using the Covariance Intersection (CI) equations, which maintain consistent estimates irrespective of the cross-correlation among estimates. However, CI does not exploit pedigree information of any kind. In this paper we present an approach that propagates multiple covariance matrices, one for each uncorrelated source in the network. This is a way to compress the pedigree information and avoids the need to propagate raw measurements. The approach uses a generalized version of the Split CI to fuse different estimates with appropriate weights to guarantee the consistency of the estimates.
Multisensor systems today and tomorrow: Machine control, diagnosis and thermal compensation
NASA Astrophysics Data System (ADS)
Nunzio, D'Addea
2000-05-01
Multisensor techniques that deal with control of tribology test rig and with diagnosis and thermal error compensation of machine tools are the starting point for some consideration about the use of these techniques as in fuzzy and neural net systems. The author comes to conclusion that anticipatory systems and multisensor techniques will have in the next future a great improvement and a great development mainly in the thermal error compensation of machine tools.
Adaptive Sensing and Fusion of Multi-Sensor Data and Historical Information
2009-11-06
integrate MTL and semi-supervised learning into a single framework , thereby exploiting two forms of contextual information. A key new objective of the...this report we integrate MTL and semi-supervised learning into a single framework , thereby exploiting two forms of contextual information. A key new...process [8], denoted as X ∼ BeP (B), where B is a measure on Ω. If B is continuous, X is a Poisson process with intensity B and can be constructed as X = N
Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient.
Shi, Fengjian; Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua
2017-10-16
In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster-Shafer evidence theory (D-S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D-S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method.
Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient
Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua
2017-01-01
In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster–Shafer evidence theory (D–S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D–S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method. PMID:29035341
Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Hua, H.
2012-12-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within SciReduce a versatile set of python operators for data lookup, access, subsetting, co-registration, mining, fusion, and statistical analysis. All operators take in sets of geo-located arrays and generate more arrays. Large, multi-year satellite and model datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of granules) can be compared or fused in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP or webification URLs, thereby minimizing the size of the stored input and intermediate datasets. A typical map function might assemble and quality control AIRS Level-2 water vapor profiles for a year of data in parallel, then a reduce function would average the profiles in lat/lon bins (again, in parallel), and a final reduce would aggregate the climatology and write it to output files. We are using SciReduce to automate the production of multiple versions of a multi-year water vapor climatology (AIRS & MODIS), stratified by Cloudsat cloud classification, and compare it to models (ECMWF & MERRA reanalysis). We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing huge datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer.
Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, B.; Manipon, G.; Hua, H.
2012-04-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within SciReduce a versatile set of python operators for data lookup, access, subsetting, co-registration, mining, fusion, and statistical analysis. All operators take in sets of geo-arrays and generate more arrays. Large, multi-year satellite and model datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of granules) can be compared or fused in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP or webification URLs, thereby minimizing the size of the stored input and intermediate datasets. A typical map function might assemble and quality control AIRS Level-2 water vapor profiles for a year of data in parallel, then a reduce function would average the profiles in bins (again, in parallel), and a final reduce would aggregate the climatology and write it to output files. We are using SciReduce to automate the production of multiple versions of a multi-year water vapor climatology (AIRS & MODIS), stratified by Cloudsat cloud classification, and compare it to models (ECMWF & MERRA reanalysis). We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing huge datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer.
Improved blood glucose estimation through multi-sensor fusion.
Xiong, Feiyu; Hipszer, Brian R; Joseph, Jeffrey; Kam, Moshe
2011-01-01
Continuous glucose monitoring systems are an integral component of diabetes management. Efforts to improve the accuracy and robustness of these systems are at the forefront of diabetes research. Towards this goal, a multi-sensor approach was evaluated in hospitalized patients. In this paper, we report on a multi-sensor fusion algorithm to combine glucose sensor measurements in a retrospective fashion. The results demonstrate the algorithm's ability to improve the accuracy and robustness of the blood glucose estimation with current glucose sensor technology.
NASA Astrophysics Data System (ADS)
Maimaitijiang, Maitiniyazi; Ghulam, Abduwasit; Sidike, Paheding; Hartling, Sean; Maimaitiyiming, Matthew; Peterson, Kyle; Shavers, Ethan; Fishman, Jack; Peterson, Jim; Kadam, Suhas; Burken, Joel; Fritschi, Felix
2017-12-01
Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAI was best predicted by RGB and thermal data fusion while multispectral and thermal data fusion was found to be best for biomass estimation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion, ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion of low-cost multiple sensor data within a machine learning framework can provide relatively accurate estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant stress assessment.
NASA Astrophysics Data System (ADS)
Bigdeli, Behnaz; Pahlavani, Parham
2017-01-01
Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.
GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems
NASA Astrophysics Data System (ADS)
Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.
2009-05-01
Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.
Improving precipitation estimates over the western United States using GOES-R precipitation data
NASA Astrophysics Data System (ADS)
Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.
2017-12-01
Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.
NASA Astrophysics Data System (ADS)
Erickson, Kyle J.; Ross, Timothy D.
2007-04-01
Decision-level fusion is an appealing extension to automatic/assisted target recognition (ATR) as it is a low-bandwidth technique bolstered by a strong theoretical foundation that requires no modification of the source algorithms. Despite the relative simplicity of decision-level fusion, there are many options for fusion application and fusion algorithm specifications. This paper describes a tool that allows trade studies and optimizations across these many options, by feeding an actual fusion algorithm via models of the system environment. Models and fusion algorithms can be specified and then exercised many times, with accumulated results used to compute performance metrics such as probability of correct identification. Performance differences between the best of the contributing sources and the fused result constitute examples of "gain." The tool, constructed as part of the Fusion for Identifying Targets Experiment (FITE) within the Air Force Research Laboratory (AFRL) Sensors Directorate ATR Thrust, finds its main use in examining the relationships among conditions affecting the target, prior information, fusion algorithm complexity, and fusion gain. ATR as an unsolved problem provides the main challenges to fusion in its high cost and relative scarcity of training data, its variability in application, the inability to produce truly random samples, and its sensitivity to context. This paper summarizes the mathematics underlying decision-level fusion in the ATR domain and describes a MATLAB-based architecture for exploring the trade space thus defined. Specific dimensions within this trade space are delineated, providing the raw material necessary to define experiments suitable for multi-look and multi-sensor ATR systems.
Earth Science Data Fusion with Event Building Approach
NASA Technical Reports Server (NTRS)
Lukashin, C.; Bartle, Ar.; Callaway, E.; Gyurjyan, V.; Mancilla, S.; Oyarzun, R.; Vakhnin, A.
2015-01-01
Objectives of the NASA Information And Data System (NAIADS) project are to develop a prototype of a conceptually new middleware framework to modernize and significantly improve efficiency of the Earth Science data fusion, big data processing and analytics. The key components of the NAIADS include: Service Oriented Architecture (SOA) multi-lingual framework, multi-sensor coincident data Predictor, fast into-memory data Staging, multi-sensor data-Event Builder, complete data-Event streaming (a work flow with minimized IO), on-line data processing control and analytics services. The NAIADS project is leveraging CLARA framework, developed in Jefferson Lab, and integrated with the ZeroMQ messaging library. The science services are prototyped and incorporated into the system. Merging the SCIAMACHY Level-1 observations and MODIS/Terra Level-2 (Clouds and Aerosols) data products, and ECMWF re- analysis will be used for NAIADS demonstration and performance tests in compute Cloud and Cluster environments.
Precision Manipulation with Cooperative Robots
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghzarian, Hrand
2005-01-01
This work addresses several challenges of cooperative transportThis work addresses several challenges of cooperative transport and precision manipulation. Precision manipulation requires a rigid grasp, which places a hard constraint on the relative rover formation that must be accommodated, even though the rovers cannot directly observe their relative poses. Additionally, rovers must jointly select appropriate actions based on all available sensor information. Lastly, rovers cannot act on independent sensor information, but must fuse information to move jointly; the methods for fusing information must be determined.
Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling
NASA Technical Reports Server (NTRS)
Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.;
2014-01-01
Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.
Urban structure analysis of mega city Mexico City using multisensoral remote sensing data
NASA Astrophysics Data System (ADS)
Taubenböck, H.; Esch, T.; Wurm, M.; Thiel, M.; Ullmann, T.; Roth, A.; Schmidt, M.; Mehl, H.; Dech, S.
2008-10-01
Mega city Mexico City is ranked the third largest urban agglomeration to date around the globe. The large extension as well as dynamic urban transformation and sprawl processes lead to a lack of up-to-date and area-wide data and information to measure, monitor, and understand the urban situation. This paper focuses on the capabilities of multisensoral remotely sensed data to provide a broad range of products derived from one scientific field - remote sensing - to support urban managing and planning. Therefore optical data sets from the Landsat and Quickbird sensors as well as radar data from the Shuttle Radar Topography Mission (SRTM) and the TerraSAR-X sensor are utilised. Using the multi-sensoral data sets the analysis are scale-dependent. On the one hand change detection on city level utilising the derived urban footprints enables to monitor and to assess spatiotemporal urban transformation, areal dimension of urban sprawl, its direction, and the built-up density distribution over time. On the other hand, structural characteristics of an urban landscape - the alignment and types of buildings, streets and open spaces - provide insight in the very detailed physical pattern of urban morphology on higher scale. The results show high accuracies of the derived multi-scale products. The multi-scale analysis allows quantifying urban processes and thus leading to an assessment and interpretation of urban trends.
Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng
2015-01-01
Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384
NASA GES DISC Level 2 Aerosol Analysis and Visualization Services
NASA Technical Reports Server (NTRS)
Wei, Jennifer; Petrenko, Maksym; Ichoku, Charles; Yang, Wenli; Johnson, James; Zhao, Peisheng; Kempler, Steve
2015-01-01
Overview of NASA GES DISC Level 2 aerosol analysis and visualization services: DQViz (Data Quality Visualization)MAPSS (Multi-sensor Aerosol Products Sampling System), and MAPSS_Explorer (Multi-sensor Aerosol Products Sampling System Explorer).
Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information
NASA Astrophysics Data System (ADS)
Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.
2016-12-01
This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.
NASA Technical Reports Server (NTRS)
Harston, Craig; Schumacher, Chris
1992-01-01
Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-01-01
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355
General software design for multisensor data fusion
NASA Astrophysics Data System (ADS)
Zhang, Junliang; Zhao, Yuming
1999-03-01
In this paper a general method of software design for multisensor data fusion is discussed in detail, which adopts object-oriented technology under UNIX operation system. The software for multisensor data fusion is divided into six functional modules: data collection, database management, GIS, target display and alarming data simulation etc. Furthermore, the primary function, the components and some realization methods of each modular is given. The interfaces among these functional modular relations are discussed. The data exchange among each functional modular is performed by interprocess communication IPC, including message queue, semaphore and shared memory. Thus, each functional modular is executed independently, which reduces the dependence among functional modules and helps software programing and testing. This software for multisensor data fusion is designed as hierarchical structure by the inheritance character of classes. Each functional modular is abstracted and encapsulated through class structure, which avoids software redundancy and enhances readability.
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-04-03
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.
Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency
Abu Bakr, Muhammad; Lee, Sukhan
2017-01-01
The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure and communication. However, distributed multisensor data fusion is not without technical challenges to overcome: namely, dealing with cross-correlation and inconsistency among state estimates and sensor data. In this paper, we review the key theories and methodologies of distributed multisensor data fusion available to date with a specific focus on handling unknown correlation and data inconsistency. We aim at providing readers with a unifying view out of individual theories and methodologies by presenting a formal analysis of their implications. Finally, several directions of future research are highlighted. PMID:29077035
Persistent maritime surveillance using multi-sensor feature association and classification
NASA Astrophysics Data System (ADS)
van den Broek, Sebastiaan P.; Schwering, Piet B. W.; Liem, Kwan D.; Schleijpen, Ric
2012-06-01
In maritime operational scenarios, such as smuggling, piracy, or terrorist threats, it is not only relevant who or what an observed object is, but also where it is now and in the past in relation to other (geographical) objects. In situation and impact assessment, this information is used to determine whether an object is a threat. Single platform (ship, harbor) or single sensor information will not provide all this information. The work presented in this paper focuses on the sensor and object levels that provide a description of currently observed objects to situation assessment. For use of information of objects at higher information levels, it is necessary to have not only a good description of observed objects at this moment, but also from its past. Therefore, currently observed objects have to be linked to previous occurrences. Kinematic features, as used in tracking, are of limited use, as uncertainties over longer time intervals are so large that no unique associations can be made. Features extracted from different sensors (e.g., ESM, EO/IR) can be used for both association and classification. Features and classifications are used to associate current objects to previous object descriptions, allowing objects to be described better, and provide position history. In this paper a description of a high level architecture in which such a multi-sensor association is used is described. Results of an assessment of the usability of several features from ESM (from spectrum), EO and IR (shape, contour, keypoints) data for association and classification are shown.
Multi-sensor Navigation System Design
DOT National Transportation Integrated Search
1971-03-01
This report treats the design of naviggation systems that collect data from two or more on-board measurement subsystems and precess this data in an on-board computer. Such systems are called Multi-sensor Navigation Systems. : The design begins with t...
USDA-ARS?s Scientific Manuscript database
Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops and pr...
Characterization of Defects in Lumber Using Color, Shape, and Density Information
B.H. Bond; D. Earl Kline; Philip A. Araman
1998-01-01
To help guide the development of multi-sensor machine vision systems for defect detection in lumber, a fundamental understanding of wood defects is needed. The purpose of this research was to advance the basic understanding of defects in lumber by describing them in terms of parameters that can be derived from color and x-ray scanning technologies and to demonstrate...
The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration
NASA Astrophysics Data System (ADS)
Zhao, Ming; Han, Baoling
2016-11-01
The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.
NASA Astrophysics Data System (ADS)
Sun, Liang; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Alfieri, Joseph G.; Sharifi, Amirreza; McCarty, Gregory W.; Yang, Yun; Yang, Yang; Kustas, William P.; McKee, Lynn
2017-07-01
The health of the Chesapeake Bay ecosystem has been declining for several decades due to high levels of nutrients and sediments largely tied to agricultural production systems. Therefore, monitoring of agricultural water use and hydrologic connections between crop lands and Bay tributaries has received increasing attention. Remote sensing retrievals of actual evapotranspiration (ET) can provide valuable information in support of these hydrologic modeling efforts, spatially and temporally describing consumptive water use by crops and natural vegetation and quantifying response to expansion of irrigated area occurring with Bay watershed. In this study, a multisensor satellite data fusion methodology, combined with a multiscale ET retrieval algorithm, was applied over the Choptank River watershed located within the Lower Chesapeake Bay region on the Eastern Shore of Maryland, USA to produce daily 30 m resolution ET maps. ET estimates directly retrieved on Landsat satellite overpass dates have high accuracy with relative error (RE) of 9%, as evaluated using flux tower measurements. The fused daily ET time series have reasonable errors of 18% at the daily time step - an improvement from 27% errors using standard Landsat-only interpolation techniques. Annual water consumption by different land cover types was assessed, showing reasonable distributions of water use with cover class. Seasonal patterns in modeled crop transpiration and soil evaporation for dominant crop types were analyzed, and agree well with crop phenology at field scale. Additionally, effects of irrigation occurring during a period of rainfall shortage were captured by the fusion program. These results suggest that the ET fusion system will have utility for water management at field and regional scales over the Eastern Shore. Further efforts are underway to integrate these detailed water use data sets into watershed-scale hydrologic models to improve assessments of water quality and inform best management practices to reduce nutrient and sediment loads to the Chesapeake Bay.
Heuristic approach to image registration
NASA Astrophysics Data System (ADS)
Gertner, Izidor; Maslov, Igor V.
2000-08-01
Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.
Multi-Image Registration for an Enhanced Vision System
NASA Technical Reports Server (NTRS)
Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn
2002-01-01
An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under development at the NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm. The images from the different sensors do not have a uniform data structure: the three sensors not only operate at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image registration is the task of aligning images taken at different times, from different sensors, or from different viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for registering multiple multi-spectral images. The first method performs registration using sensor specifications to match the FOVs and resolutions directly through image resampling. In the second method, registration is obtained through geometric correction based on a spatial transformation defined by user selected control points and regression analysis.
PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.
Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao
2015-11-06
Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-01-01
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures. PMID:26007744
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-05-22
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.
A system for activity recognition using multi-sensor fusion.
Gao, Lei; Bourke, Alan K; Nelson, John
2011-01-01
This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.
Towards a social and context-aware multi-sensor fall detection and risk assessment platform.
De Backere, F; Ongenae, F; Van den Abeele, F; Nelis, J; Bonte, P; Clement, E; Philpott, M; Hoebeke, J; Verstichel, S; Ackaert, A; De Turck, F
2015-09-01
For elderly people fall incidents are life-changing events that lead to degradation or even loss of autonomy. Current fall detection systems are not integrated and often associated with undetected falls and/or false alarms. In this paper, a social- and context-aware multi-sensor platform is presented, which integrates information gathered by a plethora of fall detection systems and sensors at the home of the elderly, by using a cloud-based solution, making use of an ontology. Within the ontology, both static and dynamic information is captured to model the situation of a specific patient and his/her (in)formal caregivers. This integrated contextual information allows to automatically and continuously assess the fall risk of the elderly, to more accurately detect falls and identify false alarms and to automatically notify the appropriate caregiver, e.g., based on location or their current task. The main advantage of the proposed platform is that multiple fall detection systems and sensors can be integrated, as they can be easily plugged in, this can be done based on the specific needs of the patient. The combination of several systems and sensors leads to a more reliable system, with better accuracy. The proof of concept was tested with the use of the visualizer, which enables a better way to analyze the data flow within the back-end and with the use of the portable testbed, which is equipped with several different sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a Multi-Sensor Cancer Detection Probe Final Report CRADA No. TC-2026-01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, J.; Hular, R.
This collaboration continued work started under a previous CRADA (TSB-2023-00) to take a detailed concept specification for a multi-sensor needle/probe suitable for breast cancer analysis and produce a prototype system suitable for human FDA trials.
Chang, Ni-Bin; Bai, Kaixu; Chen, Chi-Farn
2017-10-01
Monitoring water quality changes in lakes, reservoirs, estuaries, and coastal waters is critical in response to the needs for sustainable development. This study develops a remote sensing-based multiscale modeling system by integrating multi-sensor satellite data merging and image reconstruction algorithms in support of feature extraction with machine learning leading to automate continuous water quality monitoring in environmentally sensitive regions. This new Earth observation platform, termed "cross-mission data merging and image reconstruction with machine learning" (CDMIM), is capable of merging multiple satellite imageries to provide daily water quality monitoring through a series of image processing, enhancement, reconstruction, and data mining/machine learning techniques. Two existing key algorithms, including Spectral Information Adaptation and Synthesis Scheme (SIASS) and SMart Information Reconstruction (SMIR), are highlighted to support feature extraction and content-based mapping. Whereas SIASS can support various data merging efforts to merge images collected from cross-mission satellite sensors, SMIR can overcome data gaps by reconstructing the information of value-missing pixels due to impacts such as cloud obstruction. Practical implementation of CDMIM was assessed by predicting the water quality over seasons in terms of the concentrations of nutrients and chlorophyll-a, as well as water clarity in Lake Nicaragua, providing synergistic efforts to better monitor the aquatic environment and offer insightful lake watershed management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multisensor Modeling Underwater with Uncertain Information
1988-07-01
133 Figure 6.4: Sidescan geometry artifacts ................................ 133 Figure 6.5: Sea MARC I intensity map of Clipperton ...area ................. 136 Figure 6.6: Sea MARC I intensity map of Clipperton area (from Kasiens et al.). .. 137 Figure 6.7: Sea Beam contour map of... Clipperton area .................... 138 Figure 6.8: Sea Beam contour map of Clipperton area (from Gallo ei al.) ....... 139 Figure 6.9: Sea Beam
Multi-Sensor Information Integration and Automatic Understanding
2008-11-01
also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real- world data – either using real-time...surveillance and airborne IED detection . 15. SUBJECT TERMS Multi-hypothesis tracking , particle filters, anomalous behavior detection , Bayesian...analyst to support decision making with large data sets. A key feature of the real-time tracking and behavior detection system developed is that the
Deep learning decision fusion for the classification of urban remote sensing data
NASA Astrophysics Data System (ADS)
Abdi, Ghasem; Samadzadegan, Farhad; Reinartz, Peter
2018-01-01
Multisensor data fusion is one of the most common and popular remote sensing data classification topics by considering a robust and complete description about the objects of interest. Furthermore, deep feature extraction has recently attracted significant interest and has become a hot research topic in the geoscience and remote sensing research community. A deep learning decision fusion approach is presented to perform multisensor urban remote sensing data classification. After deep features are extracted by utilizing joint spectral-spatial information, a soft-decision made classifier is applied to train high-level feature representations and to fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to enhance the classification results. A series of comparative experiments are conducted on the widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate the considerable advantages of the proposed deep learning decision fusion over the traditional classifiers.
Development of subminiature multi-sensor hot-wire probes
NASA Technical Reports Server (NTRS)
Westphal, Russell V.; Ligrani, Phillip M.; Lemos, Fred R.
1988-01-01
Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes.
NASA Astrophysics Data System (ADS)
Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.
2016-09-01
Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.
Space Object Classification Using Fused Features of Time Series Data
NASA Astrophysics Data System (ADS)
Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.
In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.
NASA Astrophysics Data System (ADS)
Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua
2017-05-01
The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.
Zahiri, Javad; Mohammad-Noori, Morteza; Ebrahimpour, Reza; Saadat, Samaneh; Bozorgmehr, Joseph H; Goldberg, Tatyana; Masoudi-Nejad, Ali
2014-12-01
Protein-protein interaction (PPI) detection is one of the central goals of functional genomics and systems biology. Knowledge about the nature of PPIs can help fill the widening gap between sequence information and functional annotations. Although experimental methods have produced valuable PPI data, they also suffer from significant limitations. Computational PPI prediction methods have attracted tremendous attentions. Despite considerable efforts, PPI prediction is still in its infancy in complex multicellular organisms such as humans. Here, we propose a novel ensemble learning method, LocFuse, which is useful in human PPI prediction. This method uses eight different genomic and proteomic features along with four types of different classifiers. The prediction performance of this classifier selection method was found to be considerably better than methods employed hitherto. This confirms the complex nature of the PPI prediction problem and also the necessity of using biological information for classifier fusion. The LocFuse is available at: http://lbb.ut.ac.ir/Download/LBBsoft/LocFuse. The results revealed that if we divide proteome space according to the cellular localization of proteins, then the utility of some classifiers in PPI prediction can be improved. Therefore, to predict the interaction for any given protein pair, we can select the most accurate classifier with regard to the cellular localization information. Based on the results, we can say that the importance of different features for PPI prediction varies between differently localized proteins; however in general, our novel features, which were extracted from position-specific scoring matrices (PSSMs), are the most important ones and the Random Forest (RF) classifier performs best in most cases. LocFuse was developed with a user-friendly graphic interface and it is freely available for Linux, Mac OSX and MS Windows operating systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab
NASA Technical Reports Server (NTRS)
Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.
2008-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS.' The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (l) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multisensor series oftrajectories
76 FR 82210 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... fuse pins that can fail earlier than the previously determined safe life limit of the pins. A fractured... retract actuator fuse pins that can fail earlier than previously determined safe life limit of the pins. A... Friday, except Federal holidays. For service information identified in this proposed AD, contact Boeing...
Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.
Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing
2012-04-01
This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.
Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael
2018-03-02
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †
Nof, Shimon Y.; Edan, Yael
2018-01-01
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683
Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk.
Mottram, Toby; Rudnitskaya, Alisa; Legin, Andrey; Fitzpatrick, Julie L; Eckersall, P David
2007-05-15
Automatic detection of clinical mastitis is an essential part of high performance and robotic milking. Currently available technology (conductivity monitoring) is unable to achieve acceptable specificity or sensitivity of detection of clinical mastitis or other clinical diseases. Arrays of sensors with high cross-sensitivity have been successfully applied for recognition and quantitative analysis of other multicomponent liquids. An experiment was conducted to determine whether a multisensor system ("electronic tongue") based on an array of chemical sensors and suitable data processing could be used to discriminate between milk secretions from infected and healthy glands. Measurements were made with a multisensor system of milk samples from two different farms in two experiments. A total of 67 samples of milk from both mastitic and healthy glands were in two sets. It was demonstrated that the multisensor system could distinguish between control and clinically mastitic milk samples (p=0.05). The sensitivity and specificity of the sensor system (93 and 96% correspondingly) showed an improvement over conductivity (56 and 82% correspondingly). The multisensor system offers a novel method of improving mastitis detection.
Semantic image segmentation with fused CNN features
NASA Astrophysics Data System (ADS)
Geng, Hui-qiang; Zhang, Hua; Xue, Yan-bing; Zhou, Mian; Xu, Guang-ping; Gao, Zan
2017-09-01
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network (CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field (CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.
Multisensor Modeling Underwater with Uncertain Information
1988-09-01
the Clipperton Zone. The data used for stochastic modeling were supplied by NECOR at the University of Rhode Island . by courtesy of Dr. Dave Gallo of...artifacts ............................. 133 Figure 6.5: Sea MARC I intensity map of Clipperton area ............... .136 Figure 6.6: Sea MARC I intensity...map of Clipperton area (from Kastens et ,11.). .. 137 Figure 6.7: Sea Beam contour map of Clipperton area .................. .138 Figure 6.8: Sea Beam
Theatre Ballistic Missile Defense-Multisensor Fusion, Targeting and Tracking Techniques
1998-03-01
Washington, D.C., 1994. 8. Brown , R., and Hwang , P., Introduction to Random Signals and Applied Kaiman Filtering, Third Edition, John Wiley and Sons...C. ADDING MEASUREMENT NOISE 15 III. EXTENDED KALMAN FILTER 19 A. DISCRETE TIME KALMAN FILTER 19 B. EXTENDED KALMAN FILTER 21 C. EKF IN TARGET...tracking algorithms. 17 18 in. EXTENDED KALMAN FILTER This chapter provides background information on the development of a tracking algorithm
Multi-Sensor Information Integration and Automatic Understanding
2008-05-27
distributions for target tracks and class which are utilized by an active learning cueing management framework to optimally task the appropriate sensor...modality to cued regions of interest. Moreover, this active learning approach also facilitates analyst cueing to help resolve track ambiguities in complex...scenes. We intend to leverage SIG’s active learning with analyst cueing under future efforts with ONR and other DoD agencies. Obtaining long- term
Multi-Sensor Information Integration and Automatic Understanding
2008-08-27
distributions for target tracks and class which are utilized by an active learning cueing management framework to optimally task the appropriate sensor modality...to cued regions of interest. Moreover, this active learning approach also facilitates analyst cueing to help resolve track ambiguities in complex...scenes. We intend to leverage SIG’s active learning with analyst cueing under future efforts with ONR and other DoD agencies. Obtaining long- term
Gao, Wei; Zhang, Ya; Wang, Jianguo
2014-01-01
The integrated navigation system with strapdown inertial navigation system (SINS), Beidou (BD) receiver and Doppler velocity log (DVL) can be used in marine applications owing to the fact that the redundant and complementary information from different sensors can markedly improve the system accuracy. However, the existence of multisensor asynchrony will introduce errors into the system. In order to deal with the problem, conventionally the sampling interval is subdivided, which increases the computational complexity. In this paper, an innovative integrated navigation algorithm based on a Cubature Kalman filter (CKF) is proposed correspondingly. A nonlinear system model and observation model for the SINS/BD/DVL integrated system are established to more accurately describe the system. By taking multi-sensor asynchronization into account, a new sampling principle is proposed to make the best use of each sensor's information. Further, CKF is introduced in this new algorithm to enable the improvement of the filtering accuracy. The performance of this new algorithm has been examined through numerical simulations. The results have shown that the positional error can be effectively reduced with the new integrated navigation algorithm. Compared with the traditional algorithm based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is improved, making the proposed nonlinear integrated navigation algorithm feasible and efficient. PMID:24434842
NASA Astrophysics Data System (ADS)
Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) are provided in order to give a detailed picture of the improvements and remaining challenges.
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur
2005-01-01
The purpose of this research was to develop enhancement and multi-sensor fusion algorithms and techniques to make it safer for the pilot to fly in what would normally be considered Instrument Flight Rules (IFR) conditions, where pilot visibility is severely restricted due to fog, haze or other weather phenomenon. We proposed to use the non-linear Multiscale Retinex (MSR) as the basic driver for developing an integrated enhancement and fusion engine. When we started this research, the MSR was being applied primarily to grayscale imagery such as medical images, or to three-band color imagery, such as that produced in consumer photography: it was not, however, being applied to other imagery such as that produced by infrared image sources. However, we felt that it was possible by using the MSR algorithm in conjunction with multiple imaging modalities such as long-wave infrared (LWIR), short-wave infrared (SWIR), and visible spectrum (VIS), we could substantially improve over the then state-of-the-art enhancement algorithms, especially in poor visibility conditions. We proposed the following tasks: 1) Investigate the effects of applying the MSR to LWIR and SWIR images. This consisted of optimizing the algorithm in terms of surround scales, and weights for these spectral bands; 2) Fusing the LWIR and SWIR images with the VIS images using the MSR framework to determine the best possible representation of the desired features; 3) Evaluating different mixes of LWIR, SWIR and VIS bands for maximum fog and haze reduction, and low light level compensation; 4) Modifying the existing algorithms to work with video sequences. Over the course of the 3 year research period, we were able to accomplish these tasks and report on them at various internal presentations at NASA Langley Research Center, and in presentations and publications elsewhere. A description of the work performed under the tasks is provided in Section 2. The complete list of relevant publications during the research periods is provided in Section 5. This research also resulted in the generation of intellectual property.
NASA Astrophysics Data System (ADS)
Yi, Cancan; Lv, Yong; Xiao, Han; Huang, Tao; You, Guanghui
2018-04-01
Since it is difficult to obtain the accurate running status of mechanical equipment with only one sensor, multisensor measurement technology has attracted extensive attention. In the field of mechanical fault diagnosis and condition assessment based on vibration signal analysis, multisensor signal denoising has emerged as an important tool to improve the reliability of the measurement result. A reassignment technique termed the synchrosqueezing wavelet transform (SWT) has obvious superiority in slow time-varying signal representation and denoising for fault diagnosis applications. The SWT uses the time-frequency reassignment scheme, which can provide signal properties in 2D domains (time and frequency). However, when the measured signal contains strong noise components and fast varying instantaneous frequency, the performance of SWT-based analysis still depends on the accuracy of instantaneous frequency estimation. In this paper, a matching synchrosqueezing wavelet transform (MSWT) is investigated as a potential candidate to replace the conventional synchrosqueezing transform for the applications of denoising and fault feature extraction. The improved technology utilizes the comprehensive instantaneous frequency estimation by chirp rate estimation to achieve a highly concentrated time-frequency representation so that the signal resolution can be significantly improved. To exploit inter-channel dependencies, the multisensor denoising strategy is performed by using a modulated multivariate oscillation model to partition the time-frequency domain; then, the common characteristics of the multivariate data can be effectively identified. Furthermore, a modified universal threshold is utilized to remove noise components, while the signal components of interest can be retained. Thus, a novel MSWT-based multisensor signal denoising algorithm is proposed in this paper. The validity of this method is verified by numerical simulation, and experiments including a rolling bearing system and a gear system. The results show that the proposed multisensor matching synchronous squeezing wavelet transform (MMSWT) is superior to existing methods.
Polarization-multiplexing ghost imaging
NASA Astrophysics Data System (ADS)
Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu
2018-03-01
A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.
2013-08-19
excellence in linear models , 2010. She successfully defended her dissertation, Linear System Design for Fusion and Compression, on Aug 13, 2013. Her work was...measurements into canonical coordinates, scaling, and rotation; there is a water-filling interpretation; (3) the optimum design of a linear secondary channel of...measurements to fuse with a primary linear channel of measurements maximizes a generalized Rayleigh quotient; (4) the asymptotically optimum
NASA Astrophysics Data System (ADS)
Paramanandham, Nirmala; Rajendiran, Kishore
2018-01-01
A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.
Multi-Sensor Scene Synthesis and Analysis
1981-09-01
Quad Trees for Image Representation and Processing ...... ... 126 2.6.2 Databases ..... ..... ... ..... ... ..... ..... 138 2.6.2.1 Definitions and...Basic Concepts ....... 138 2.6.3 Use of Databases in Hierarchical Scene Analysis ...... ... ..................... 147 2.6.4 Use of Relational Tables...Multisensor Image Database Systems (MIDAS) . 161 2.7.2 Relational Database System for Pictures .... ..... 168 2.7.3 Relational Pictorial Database
SenseCube--A Novel Inexpensive Wireless Multisensor for Physics Lab Experimentations
ERIC Educational Resources Information Center
Mehta, Vedant; Lane, Charles D.
2018-01-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and…
Fundamental Use of Surgical Energy (FUSE) certification: validation and predictors of success.
Robinson, Thomas N; Olasky, Jaisa; Young, Patricia; Feldman, Liane S; Fuchshuber, Pascal R; Jones, Stephanie B; Madani, Amin; Brunt, Michael; Mikami, Dean; Jackson, Gretchen P; Mischna, Jessica; Schwaitzberg, Steven; Jones, Daniel B
2016-03-01
The Fundamental Use of Surgical Energy (FUSE) program includes a Web-based didactic curriculum and a high-stakes multiple-choice question examination with the goal to provide certification of knowledge on the safe use of surgical energy-based devices. The purpose of this study was (1) to set a passing score through a psychometrically sound process and (2) to determine what pretest factors predicted passing the FUSE examination. Beta-testing of multiple-choice questions on 62 topics of importance to the safe use of surgical energy-based devices was performed. Eligible test takers were physicians with a minimum of 1 year of surgical training who were recruited by FUSE task force members. A pretest survey collected baseline information. A total of 227 individuals completed the FUSE beta-test, and 208 completed the pretest survey. The passing/cut score for the first test form of the FUSE multiple-choice examination was determined using the modified Angoff methodology and for the second test form was determined using a linear equating methodology. The overall passing rate across the two examination forms was 81.5%. Self-reported time studying the FUSE Web-based curriculum for a minimum of >2 h was associated with a passing examination score (p < 0.001). Performance was not different based on increased years of surgical practice (p = 0.363), self-reported expertise on one or more types of energy-based devices (p = 0.683), participation in the FUSE postgraduate course (p = 0.426), or having reviewed the FUSE manual (p = 0.428). Logistic regression found that studying the FUSE didactics for >2 h predicted a passing score (OR 3.61; 95% CI 1.44-9.05; p = 0.006) independent of the other baseline characteristics recorded. The development of the FUSE examination, including the passing score, followed a psychometrically sound process. Self-reported time studying the FUSE curriculum predicted a passing score independent of other pretest characteristics such as years in practice and self-reported expertise.
Cloudy-sky Longwave Downward Radiation Estimation by Combining MODIS and AIRS/AMSU Measurements
NASA Astrophysics Data System (ADS)
Wang, T.; Shi, J.
2017-12-01
Longwave downward radiation (LWDR) is another main energy source received by the earth's surface except solar radiation. Its importance in regulating air temperature and balancing surface energy is enlarged especially under cloudy-sky. Unfortunately, to date, a large number of efforts have been made to derive LWDR from space under only clear-sky conditions leading to difficulty in utilizing space-based LWDR in most models due to its spatio-temporal discontinuity. Currently, only few studies focused on LWDR estimation under cloudy-sky conditions, while their global application is still questionable. In this paper, an alternative strategy is proposed aiming to derive high resolution(1km) cloudy-sky LWDR by fusing collocated satellite multi-sensor measurements. The results show that the newly developed method can work well and can derive LWDR at better accuracy with RMSE<27 W/m2 and bias < 10 W/m2 even under cloudy skies and at 1km scales. By comparing to CALIPSO-CloudSat-CERES-MODIS (CCCM) and SSF products of CERES, MERRA, ERA-interim and NCEP-CSFR products, the new approach demonstrates its superiority in terms of accuracy, temporal variation and spatial distribution pattern of LWDR. The comprehensive comparison analyses also reveal that, except for the proposed product, other four products (CERES, MERRA, ERA-interim and NCEP-CSFR) also show a big difference from each other in the LWDR spatio-temporal distribution pattern and magnitude. The difference between these products can still up to 60W/m2 even at the monthly scale, implying large uncertainties in current LWDR estimations. Besides the higher accuracy of the proposed method, more importantly, it provides unprecedented possibilities for jointly generating high resolution global LWDR datasets by connecting the NASA's Earth Observing System-(EOS) mission (MODIS-AIRS/AMSU) and the Suomi National Polar-orbiting Partnership-(NPP) mission (VIIRS-CrIS/ATMS). Meanwhile, the scheme proposed in this study also gives some clues for multiple data fusing in the remote sensing community.
Multi-dimension feature fusion for action recognition
NASA Astrophysics Data System (ADS)
Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin
2018-04-01
Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
Paisitkriangkrai, Sakrapee; Quek, Kelly; Nievergall, Eva; Jabbour, Anissa; Zannettino, Andrew; Kok, Chung Hoow
2018-06-07
Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing. Notably, Co-fuse is based on pattern mining and statistical analysis which enables the identification of hidden patterns of recurrent fusion genes. In this report, we show that Co-fuse can be used to identify 2 distinct groups within a set of 49 leukemic cell lines based on their recurrent fusion genes: a multiple myeloma (MM) samples-enriched cluster and an acute myeloid leukemia (AML) samples-enriched cluster. Our experimental results further demonstrate that Co-fuse can identify known driver fusion genes (e.g., IGH-MYC, IGH-WHSC1) in MM, when compared to AML samples, indicating the potential of Co-fuse to aid the discovery of yet unknown driver fusion genes through cohort comparisons. Additionally, using a 272 primary glioma sample RNA-seq dataset, Co-fuse was able to validate recurrent fusion genes, further demonstrating the power of this analysis tool to identify recurrent fusion genes. Taken together, Co-fuse is a powerful new analysis tool that can be readily applied to large RNA-seq datasets, and may lead to the discovery of new disease subgroups and potentially new driver genes, for which, targeted therapies could be developed. The Co-fuse R source code is publicly available at https://github.com/sakrapee/co-fuse .
JPRS report: Science and technology. Central Eurasia
NASA Astrophysics Data System (ADS)
1994-05-01
Translated articles cover the following topics: optimal systems to detect and classify moving objects; multiple identification of optical readings in multisensor information and measurement system; method of first integrals in synthesis of optimal control; study of the development of turbulence in the region of a break above a triangular wing; electroerosion machining in aviation engine construction; and cumulation of a flat shock wave in a tube by a thin parietal gas layer of lower density.
Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan
2015-10-21
The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.
Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan
2015-01-01
The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine. PMID:26506347
NASA Astrophysics Data System (ADS)
Stack, J. R.; Guthrie, R. S.; Cramer, M. A.
2009-05-01
The purpose of this paper is to outline the requisite technologies and enabling capabilities for network-centric sensor data analysis within the mine warfare community. The focus includes both automated processing and the traditional humancentric post-mission analysis (PMA) of tactical and environmental sensor data. This is motivated by first examining the high-level network-centric guidance and noting the breakdown in the process of distilling actionable requirements from this guidance. Examples are provided that illustrate the intuitive and substantial capability improvement resulting from processing sensor data jointly in a network-centric fashion. Several candidate technologies are introduced including the ability to fully process multi-sensor data given only partial overlap in sensor coverage and the ability to incorporate target identification information in stride. Finally the critical enabling capabilities are outlined including open architecture, open business, and a concept of operations. This ability to process multi-sensor data in a network-centric fashion is a core enabler of the Navy's vision and will become a necessity with the increasing number of manned and unmanned sensor systems and the requirement for their simultaneous use.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
NASA Astrophysics Data System (ADS)
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
FFT-enhanced IHS transform method for fusing high-resolution satellite images
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2007-01-01
Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Fusion of the 2nd maxillary molar with the impacted 3rd molar.
Strecha, J; Jurkovic, R; Siebert, T
2012-01-01
Subject matter: The dentist has to deal with complicated cases of fused molars, which are rather rare and morphologically very varied. A wrong or incomplete diagnosis can considerably complicate a planned therapy. The authors describe a case of apical periodontal complication of fused teeth that had to be removed surgically. The upper 2nd molar fused with the impacted 3rd molar and was diagnosed for extraction. Even a careful diagnostic procedure and X-ray image sometimes may not indicate the exact location and mutual position of the fused teeth. The authors make us aware of the possible occurrence of fused roots, and the necessity to inform the patient ahead of time about the course of endodontic or surgical interventions, possible complications and their removal. They describe the positive influence of PRP (platelet rich plasma) in wound healing. In order to establish the exact indication and therapy, they emphasize the importance of using CT imaging diagnostics or a 3D-CT examination (Fig. 7, Ref. 15).
FPGA-based real-time embedded system for RISS/GPS integrated navigation.
Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd
2012-01-01
Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.
Integrating optical finger motion tracking with surface touch events.
MacRitchie, Jennifer; McPherson, Andrew P
2015-01-01
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.
Integrating optical finger motion tracking with surface touch events
MacRitchie, Jennifer; McPherson, Andrew P.
2015-01-01
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732
NASA Astrophysics Data System (ADS)
Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.
2015-05-01
The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.
FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation
Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd
2012-01-01
Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460
Automated Health Alerts Using In-Home Sensor Data for Embedded Health Assessment
Guevara, Rainer Dane; Rantz, Marilyn
2015-01-01
We present an example of unobtrusive, continuous monitoring in the home for the purpose of assessing early health changes. Sensors embedded in the environment capture behavior and activity patterns. Changes in patterns are detected as potential signs of changing health. We first present results of a preliminary study investigating 22 features extracted from in-home sensor data. A 1-D alert algorithm was then implemented to generate health alerts to clinicians in a senior housing facility. Clinicians analyze each alert and provide a rating on the clinical relevance. These ratings are then used as ground truth for training and testing classifiers. Here, we present the methodology for four classification approaches that fuse multisensor data. Results are shown using embedded sensor data and health alert ratings collected on 21 seniors over nine months. The best results show similar performance for two techniques, where one approach uses only domain knowledge and the second uses supervised learning for training. Finally, we propose a health change detection model based on these results and clinical expertise. The system of in-home sensors and algorithms for automated health alerts provides a method for detecting health problems very early so that early treatment is possible. This method of passive in-home sensing alleviates compliance issues. PMID:27170900
Geocoding and stereo display of tropical forest multisensor datasets
NASA Technical Reports Server (NTRS)
Welch, R.; Jordan, T. R.; Luvall, J. C.
1990-01-01
Concern about the future of tropical forests has led to a demand for geocoded multisensor databases that can be used to assess forest structure, deforestation, thermal response, evapotranspiration, and other parameters linked to climate change. In response to studies being conducted at the Braulino Carrillo National Park, Costa Rica, digital satellite and aircraft images recorded by Landsat TM, SPOT HRV, Thermal Infrared Multispectral Scanner, and Calibrated Airborne Multispectral Scanner sensors were placed in register using the Landsat TM image as the reference map. Despite problems caused by relief, multitemporal datasets, and geometric distortions in the aircraft images, registration was accomplished to within + or - 20 m (+ or - 1 data pixel). A digital elevation model constructed from a multisensor Landsat TM/SPOT stereopair proved useful for generating perspective views of the rugged, forested terrain.
Towards operational multisensor registration
NASA Technical Reports Server (NTRS)
Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.
1991-01-01
To use data from a number of different remote sensors in a synergistic manner, a multidimensional analysis of the data is necessary. However, prior to this analysis, processing to correct for the systematic geometric distortion characteristic of each sensor is required. Furthermore, the registration process must be fully automated to handle a large volume of data and high data rates. A conceptual approach towards an operational multisensor registration algorithm is presented. The performance requirements of the algorithm are first formulated given the spatially, temporally, and spectrally varying factors that influence the image characteristics and the science requirements of various applications. Several registration techniques that fit within the structure of this algorithm are also presented. Their performance was evaluated using a multisensor test data set assembled from LANDSAT TM, SEASAT, SIR-B, Thermal Infrared Multispectral Scanner (TIMS), and SPOT sensors.
A comparative study of multi-focus image fusion validation metrics
NASA Astrophysics Data System (ADS)
Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael
2016-05-01
Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).
Additive manufacturing of transparent fused quartz
NASA Astrophysics Data System (ADS)
Luo, Junjie; Hostetler, John M.; Gilbert, Luke; Goldstein, Jonathan T.; Urbas, Augustine M.; Bristow, Douglas A.; Landers, Robert G.; Kinzel, Edward C.
2018-04-01
This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing material onto the workpiece. Spectroscopy and pyrometry are used to measure the thermal radiation incandescently emitted from the molten region. The effects of the laser power and scan speed are determined by measuring the morphology of single tracks. Thin walls are printed to study the effects of layer-to-layer height. This information is used to deposit solid pieces including a cylindrical-convex shape capable of focusing visible light. The transmittance and index homogeneity of the printed fused quartz are measured. These results show that the filament-fed process has the potential to print transmissive optics.
HRATIS first year evaluation report
DOT National Transportation Integrated Search
2001-09-01
The ITS integration project, the Hampton Roads Advanced Traveler Information System (HRATIS), is a public-private partnership. The service collects information from multiple sources, fuses the data elements, and distributes the information through va...
Limited Scope Design Study for Multi-Sensor Towbody
2016-06-01
FINAL REPORT Limited Scope Design Study for Multi-Sensor Towbody SERDP Project MR-2501 JUNE 2016 Dr. Kevin Williams Tim McGinnis...prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this...Left Blank REPORT DOCUMENTATION PAGE Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public
Neil A. Clark
2001-01-01
A multisensor video system has been developed incorporating a CCD video camera, a 3-axis magnetometer, and a laser-rangefinding device, for the purpose of measuring individual tree stems. While preliminary results show promise, some changes are needed to improve the accuracy and efficiency of the system. Image matching is needed to improve the accuracy of length...
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.
Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-07-15
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.
BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-02-27
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.
Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.
Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa
2016-01-01
A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.
BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-01-01
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology
Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-01-01
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884
Multisensor fusion for the detection of mines and minelike targets
NASA Astrophysics Data System (ADS)
Hanshaw, Terilee
1995-06-01
The US Army's Communications and Electronics Command through the auspices of its Night Vision and Electronics Sensors Directorate (CECOM-NVESD) is actively applying multisensor techniques to the detection of mine targets. This multisensor research results from the 'detection activity' with its broad range of operational conditions and targets. Multisensor operation justifies significant attention by yielding high target detection and low false alarm statistics. Furthermore, recent advances in sensor and computing technologies make its practical application realistic and affordable. The mine detection field-of-endeavor has since its WWI baptismal investigated the known spectra for applicable mine observation phenomena. Countless sensors, algorithms, processors, networks, and other techniques have been investigated to determine candidacy for mine detection. CECOM-NVESD efforts have addressed a wide range of sensors spanning the spectrum from gravity field perturbations, magentic field disturbances, seismic sounding, electromagnetic fields, earth penetrating radar imagery, and infrared/visible/ultraviolet surface imaging technologies. Supplementary analysis has considered sensor candidate applicability by testing under field conditions (versus laboratory), in determination of fieldability. As these field conditions directly effect the probability of detection and false alarms, sensor employment and design must be considered. Consequently, as a given sensor's performance is influenced directly by the operational conditions, tradeoffs are necessary. At present, mass produced and fielded mine detection techniques are limited to those incorporating a single sensor/processor methodology such as, pulse induction and megnetometry, as found in hand held detectors. The most sensitive fielded systems can detect minute metal components in small mine targets but result in very high false alarm rates reducing velocity in operation environments. Furthermore, the actual speed of advance for the entire mission (convoy, movement to engagement, etc.) is determined by the level of difficulty presented in clearance or avoidance activities required in response to the potential 'targets' marked throughout a detection activity. Therefore the application of fielded hand held systems to convoy operations in clearly impractical. CECOM-NVESD efforts are presently seeking to overcome these operational limitations by substantially increasing speed of detection while reducing the false alarm rate through the application of multisensor techniques. The CECOM-NVESD application of multisensor techniques through integration/fusion methods will be defined in this paper.
NASA Technical Reports Server (NTRS)
Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS. The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (1) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multi-sensor series of trajectories.
2010-11-01
S.A. Horn, A. Zegers ; DRDC CORA TM 2010-252 ; R & D pour la défense Canada – CARO ; novembre 2010. Contexte : La pêche au filet dérivant est une... 13 3.1 Characterizing the Information Provided by the Sensors . . . . . . . . . . . . . . 13 3.2 Operational Decision Support...ship for a given RS2 cut-off length based on measurements of length deviations. . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 13 : AS-IS
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Karnofsky, K. F.; Stevens, K. N.; Alakel, M. N.
1983-12-01
The use of multiple sensors to transduce speech was investigated. A data base of speech and noise was collected from a number of transducers located on and around the head of the speaker. The transducers included pressure, first order gradient, second order gradient microphones and an accelerometer. The effort analyzed this data and evaluated the performance of a multiple sensor configuration. The conclusion was: multiple transducer configurations can provide a signal containing more useable speech information than that provided by a microphone.
Multi-Sensor Fusion and Enhancement for Object Detection
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur
2005-01-01
This was a quick &week effort to investigate the ability to detect changes along the flight path of an unmanned airborne vehicle (UAV) over time. Video was acquired by the UAV during several passes over the same terrain. Concurrently, GPS data and UAV attitude data were also acquired. The purpose of the research was to use information from all of these sources to detect if any change had occurred in the terrain encompassed by the flight path.
NASA Astrophysics Data System (ADS)
Brenot, H.; Theys, N.; van Gent, J.; Van Roozendael, M.; van der A, R.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Coheur, P.-F.; Clerbaux, C.
2012-04-01
The "Support to Aviation Control Service" (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy. The service provides near real-time (NRT) global SO2 and volcanic ash data, as well as alerts in case of volcanic eruptions. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories and research scientists. SACS is based on the combined use of UV-visible (SCIAMACHY, OMI, GOME-2) and infrared (AIRS, IASI) satellite instruments. When a volcanic eruption is detected, SACS issues an alert that takes the form of a notification sent by e-mail to users. This notification points to a dedicated web page where all relevant information is available and can be visualized with user-friendly tools. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimizing the time-lag for detection and enhancing the reliability of such alerts. This paper will give a general presentation of the SACS service, different techniques used to detect volcanic plumes. It will also highlight the strengths and limitations of the service and measurements.
A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest
NASA Astrophysics Data System (ADS)
Reith, Ernest
The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.
Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving
Elfring, Jos; Appeldoorn, Rein; van den Dries, Sjoerd; Kwakkernaat, Maurice
2016-01-01
The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture. PMID:27727171
NASA Astrophysics Data System (ADS)
Zhang, Xi; Zhang, Jie; Meng, Junmin
2016-08-01
The objectives of Dragon-3 programme (ID: 10501) are to develop methods for classification sea ice types and retrieving ice thickness based on multi-sensor data. In this final results paper, we give a briefly introduction for our research work and mainly results. Key words: the Bohai Sea ice, Sea ice, optical and
Hypothesis Testing Using Spatially Dependent Heavy Tailed Multisensor Data
2014-12-01
Office of Research 113 Bowne Hall Syracuse, NY 13244 -1200 ABSTRACT HYPOTHESIS TESTING USING SPATIALLY DEPENDENT HEAVY-TAILED MULTISENSOR DATA Report...consistent with the null hypothesis of linearity and can be used to estimate the distribution of a test statistic that can discrimi- nate between the null... Test for nonlinearity. Histogram is generated using the surrogate data. The statistic of the original time series is represented by the solid line
Geometric Factors in Target Positioning and Tracking
2009-07-01
Shalom and X.R. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YBS Publishing, Storrs, CT, 1995. [2] S. Blackman and R. Popoli, Design...Multitarget-Multisensor Tracking: Applications and Advances, Vol.2, Y. Bar- Shalom (Ed.), 325-392, Artech House, Norwood, MA, 1999. [10] B. Ristic...R. Yarlagadda, I. Ali , N. Al-Dhahir, and J. Hershey, “GPS GDOP Metric,” IEE Proc. Radar, Sonar Navig, 147(5), Oct. 2000. [14] A. Kelly
Multisensor benchmark data for riot control
NASA Astrophysics Data System (ADS)
Jäger, Uwe; Höpken, Marc; Dürr, Bernhard; Metzler, Jürgen; Willersinn, Dieter
2008-10-01
Quick and precise response is essential for riot squads when coping with escalating violence in crowds. Often it is just a single person, known as the leader of the gang, who instigates other people and thus is responsible of excesses. Putting this single person out of action in most cases leads to a de-escalating situation. Fostering de-escalations is one of the main tasks of crowd and riot control. To do so, extensive situation awareness is mandatory for the squads and can be promoted by technical means such as video surveillance using sensor networks. To develop software tools for situation awareness appropriate input data with well-known quality is needed. Furthermore, the developer must be able to measure algorithm performance and ongoing improvements. Last but not least, after algorithm development has finished and marketing aspects emerge, meeting of specifications must be proved. This paper describes a multisensor benchmark which exactly serves this purpose. We first define the underlying algorithm task. Then we explain details about data acquisition and sensor setup and finally we give some insight into quality measures of multisensor data. Currently, the multisensor benchmark described in this paper is applied to the development of basic algorithms for situational awareness, e.g. tracking of individuals in a crowd.
NASA Technical Reports Server (NTRS)
Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong
2004-01-01
The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.
Fusing face-verification algorithms and humans.
O'Toole, Alice J; Abdi, Hervé; Jiang, Fang; Phillips, P Jonathon
2007-10-01
It has been demonstrated recently that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparably or whether algorithms and humans can be fused to improve performance. In this paper, we fused humans and algorithms using partial least square regression (PLSR). In the first experiment, we applied PLSR to face-pair similarity scores generated by seven algorithms participating in the Face Recognition Grand Challenge. The PLSR produced an optimal weighting of the similarity scores, which we tested for generality with a jackknife procedure. Fusing the algorithms' similarity scores using the optimal weights produced a twofold reduction of error rate over the most accurate algorithm. Next, human-subject-generated similarity scores were added to the PLSR analysis. Fusing humans and algorithms increased the performance to near-perfect classification accuracy. These results are discussed in terms of maximizing face-verification accuracy with hybrid systems consisting of multiple algorithms and humans.
Joint University Program for Air Transportation Research, 1990-1991
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1991-01-01
The goals of this program are consistent with the interests of both NASA and the FAA in furthering the safety and efficiency of the National Airspace System. Research carried out at the Massachusetts Institute of Technology (MIT), Ohio University, and Princeton University are covered. Topics studied include passive infrared ice detection for helicopters, the cockpit display of hazardous windshear information, fault detection and isolation for multisensor navigation systems, neural networks for aircraft system identification, and intelligent failure tolerant control.
Horizontal Estimation and Information Fusion in Multitarget and Multisensor Environments
1987-09-01
provided needed inspirations. Special thanks are due to Distinguished Professor G . J. Thaler, Professor R . Panholzer, Professor N. F. Schneidewind, and...Guidance McGraw Hill, pp. 338-340, 1964. 31. Battin, R . H., and Levine, G . M., A22lication of Kalman Filtering Techniaues in The Aoollo Program, in Theory...FL.. pp. 171 -175, Dec. 197 1. 43. Singer, R . A., Sea R . G ., and Housewright K. B., Derivation and Evaluation of Imoroved Tracking Filters for Use in
Stochastic model for threat assessment in multi-sensor defense system
NASA Astrophysics Data System (ADS)
Wang, Yongcheng; Wang, Hongfei; Jiang, Changsheng
2007-11-01
This paper puts forward a stochastic model for target detecting and tracking in multi-sensor defense systems and applies the Lanchester differential equations to threat assessment in combat. The two different modes of targets tracking and their respective Lanchester differential equations are analyzed and established. By use of these equations, we could briefly estimate the loss of each combat side and accordingly get the threat estimation results, given the situation analysis is accomplished.
Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain
Garcia, Gabriel J.; Corrales, Juan A.; Pomares, Jorge; Torres, Fernando
2009-01-01
Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors. PMID:22303146
Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place
NASA Technical Reports Server (NTRS)
Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.
2005-01-01
The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.
A Vision for an International Multi-Sensor Snow Observing Mission
NASA Technical Reports Server (NTRS)
Kim, Edward
2015-01-01
Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.
Multi-Sensor Characterization of the Boreal Forest: Initial Findings
NASA Technical Reports Server (NTRS)
Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan
2001-01-01
Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.
Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.
Gao, Xiang; Acar, Levent
2016-07-04
This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.
Joint FACET: the Canada-Netherlands initiative to study multisensor data fusion systems
NASA Astrophysics Data System (ADS)
Bosse, Eloi; Theil, Arne; Roy, Jean; Huizing, Albert G.; van Aartsen, Simon
1998-09-01
This paper presents the progress of a collaborative effort between Canada and The Netherlands in analyzing multi-sensor data fusion systems, e.g. for potential application to their respective frigates. In view of the overlapping interest in studying and comparing applicability and performance and advanced state-of-the-art Multi-Sensor Data FUsion (MSDF) techniques, the two research establishments involved have decided to join their efforts in the development of MSDF testbeds. This resulted in the so-called Joint-FACET, a highly modular and flexible series of applications that is capable of processing both real and synthetic input data. Joint-FACET allows the user to create and edit test scenarios with multiple ships, sensor and targets, generate realistic sensor outputs, and to process these outputs with a variety of MSDF algorithms. These MSDF algorithms can also be tested using typical experimental data collected during live military exercises.
NASA Astrophysics Data System (ADS)
Singh, Dharmendra; Kumar, Harish
Earth observation satellites provide data that covers different portions of the electromagnetic spectrum at different spatial and spectral resolutions. The increasing availability of information products generated from satellite images are extending the ability to understand the patterns and dynamics of the earth resource systems at all scales of inquiry. In which one of the most important application is the generation of land cover classification from satellite images for understanding the actual status of various land cover classes. The prospect for the use of satel-lite images in land cover classification is an extremely promising one. The quality of satellite images available for land-use mapping is improving rapidly by development of advanced sensor technology. Particularly noteworthy in this regard is the improved spatial and spectral reso-lution of the images captured by new satellite sensors like MODIS, ASTER, Landsat 7, and SPOT 5. For the full exploitation of increasingly sophisticated multisource data, fusion tech-niques are being developed. Fused images may enhance the interpretation capabilities. The images used for fusion have different temporal, and spatial resolution. Therefore, the fused image provides a more complete view of the observed objects. It is one of the main aim of image fusion to integrate different data in order to obtain more information that can be de-rived from each of the single sensor data alone. A good example of this is the fusion of images acquired by different sensors having a different spatial resolution and of different spectral res-olution. Researchers are applying the fusion technique since from three decades and propose various useful methods and techniques. The importance of high-quality synthesis of spectral information is well suited and implemented for land cover classification. More recently, an underlying multiresolution analysis employing the discrete wavelet transform has been used in image fusion. It was found that multisensor image fusion is a tradeoff between the spectral information from a low resolution multi-spectral images and the spatial information from a high resolution multi-spectral images. With the wavelet transform based fusion method, it is easy to control this tradeoff. A new transform, the curvelet transform was used in recent years by Starck. A ridgelet transform is applied to square blocks of detail frames of undecimated wavelet decomposition, consequently the curvelet transform is obtained. Since the ridgelet transform possesses basis functions matching directional straight lines therefore, the curvelet transform is capable of representing piecewise linear contours on multiple scales through few significant coefficients. This property leads to a better separation between geometric details and background noise, which may be easily reduced by thresholding curvelet coefficients before they are used for fusion. The Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands ranging in wavelength from 0.4 m to 14.4 m and also it is freely available. Two bands are imaged at a nominal resolution of 250 m at nadir, with five bands at 500 m, and the remaining 29 bands at 1 km. In this paper, the band 1 of spatial resolution 250 m and bandwidth 620-670 nm, and band 2, of spatial resolution of 250m and bandwidth 842-876 nm is considered as these bands has special features to identify the agriculture and other land covers. In January 2006, the Advanced Land Observing Satellite (ALOS) was successfully launched by the Japan Aerospace Exploration Agency (JAXA). The Phased Arraytype L-band SAR (PALSAR) sensor onboard the satellite acquires SAR imagery at a wavelength of 23.5 cm (frequency 1.27 GHz) with capabilities of multimode and multipolarization observation. PALSAR can operate in several modes: the fine-beam single (FBS) polarization mode (HH), fine-beam dual (FBD) polariza-tion mode (HH/HV or VV/VH), polarimetric (PLR) mode (HH/HV/VH/VV), and ScanSAR (WB) mode (HH/VV) [15]. These makes PALSAR imagery very attractive for spatially and temporally consistent monitoring system. The Overview of Principal Component Analysis is that the most of the information within all the bands can be compressed into a much smaller number of bands with little loss of information. It allows us to extract the low-dimensional subspaces that capture the main linear correlation among the high-dimensional image data. This facilitates viewing the explained variance or signal in the available imagery, allowing both gross and more subtle features in the imagery to be seen. In this paper we have explored the fusion technique for enhancing the land cover classification of low resolution satellite data espe-cially freely available satellite data. For this purpose, we have considered to fuse the PALSAR principal component data with MODIS principal component data. Initially, the MODIS band 1 and band 2 is considered, its principal component is computed. Similarly the PALSAR HH, HV and VV polarized data are considered, and there principal component is also computed. con-sequently, the PALSAR principal component image is fused with MODIS principal component image. The aim of this paper is to analyze the effect of classification accuracy on major type of land cover types like agriculture, water and urban bodies with fusion of PALSAR data to MODIS data. Curvelet transformation has been applied for fusion of these two satellite images and Minimum Distance classification technique has been applied for the resultant fused image. It is qualitatively and visually observed that the overall classification accuracy of MODIS image after fusion is enhanced. This type of fusion technique may be quite helpful in near future to use freely available satellite data to develop monitoring system for different land cover classes on the earth.
Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.
Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino
2016-05-28
Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.
Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere
NASA Astrophysics Data System (ADS)
Davis, Tim; McClurg, Bryce; Sohl, John
2008-10-01
We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.
Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings
Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino
2016-01-01
Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leary, T.J.; Lamb, A.
The Department of Energy`s Office of Arms Control and Non-Proliferation (NN-20) has developed a suite of airborne remote sensing systems that simultaneously collect coincident data from a US Navy P-3 aircraft. The primary objective of the Airborne Multisensor Pod System (AMPS) Program is {open_quotes}to collect multisensor data that can be used for data research, both to reduce interpretation problems associated with data overload and to develop information products more complete than can be obtained from any single sensor.{close_quotes} The sensors are housed in wing-mounted pods and include: a Ku-Band Synthetic Aperture Radar; a CASI Hyperspectral Imager; a Daedalus 3600 Airbornemore » Multispectral Scanner; a Wild Heerbrugg RC-30 motion compensated large format camera; various high resolution, light intensified and thermal video cameras; and several experimental sensors (e.g. the Portable Hyperspectral Imager of Low-Light Spectroscopy (PHILLS)). Over the past year or so, the Coastal Marine Resource Assessment (CAMRA) group at the Florida Department of Environmental Protection`s Marine Research Institute (FMRI) has been working with the Department of Energy through the Naval Research Laboratory to develop applications and products from existing data. Considerable effort has been spent identifying image formats integration parameters. 2 refs., 3 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Nelson, B. R.; Prat, O. P.; Stevens, S. E.; Seo, D. J.; Zhang, J.; Howard, K.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is nearly completed for the period covering from 2001 to 2012. Reanalysis data are available at 1-km and 5-minute resolution. An important step in generating the best possible precipitation data is to assess the bias in the radar-only product. In this work, we use data from a combination of rain gauge networks to assess the bias in the NMQ reanalysis. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network Daily (GHCN-D) are combined for use in the assessment. These rain gauge networks vary in spatial density and temporal resolution. The challenge hence is to optimally utilize them to assess the bias at the finest resolution possible. For initial assessment, we propose to subset the CONUS data in climatologically representative domains, and perform bias assessment using information in the Q2 dataset on precipitation type and phase.
Wireless sensor placement for structural monitoring using information-fusing firefly algorithm
NASA Astrophysics Data System (ADS)
Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan
2017-10-01
Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
Determination of urine ionic composition with potentiometric multisensor system.
Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Borisova, Irina; Legin, Andrey
2015-01-01
The ionic composition of urine is a good indicator of patient's general condition and allows for diagnostics of certain medical problems such as e.g., urolithiasis. Due to environmental factors and malnutrition the number of registered urinary tract cases continuously increases. Most of the methods currently used for urine analysis are expensive, quite laborious and require skilled personnel. The present work deals with feasibility study of potentiometric multisensor system of 18 ion-selective and cross-sensitive sensors as an analytical tool for determination of urine ionic composition. In total 136 samples from patients of Urolithiasis Laboratory and healthy people were analyzed by the multisensor system as well as by capillary electrophoresis as a reference method. Various chemometric approaches were implemented to relate the data from electrochemical measurements with the reference data. Logistic regression (LR) was applied for classification of samples into healthy and unhealthy producing reasonable misclassification rates. Projection on Latent Structures (PLS) regression was applied for quantitative analysis of ionic composition from potentiometric data. Mean relative errors of simultaneous prediction of sodium, potassium, ammonium, calcium, magnesium, chloride, sulfate, phosphate, urate and creatinine from multisensor system response were in the range 3-13% for independent test sets. This shows a good promise for development of a fast and inexpensive alternative method for urine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Fukui, Norihito; Cha, Wonhee; Shimizu, Daiki; Oh, Juwon
2017-01-01
Oxidative fusion reactions of meso-phenoxazino Ni(ii) porphyrin were found to be temperature dependent, giving rise to either a doubly phenylene-fused product at room temperature or a singly phenoxazine-fused product at 70 °C. The latter was further oxidized to a doubly phenoxazine-fused Ni(ii) porphyrin, which was subsequently converted to the corresponding free base porphyrin and Zn(ii) porphyrin. Compared to previously reported diphenylamine-fused porphyrins that displayed a molecular twist, doubly phenoxazine-fused porphyrins exhibited distinctly different properties owing to their highly planar structures, such as larger fluorescence quantum yields, formation of an offset face-to-face dimer both in solution and the solid state, and the generation of a mixed-valence π-radical cation dimer upon electrochemical oxidation. One-electron oxidation of the phenoxazine-fused Ni(ii) porphyrin with Magic Blue gave the corresponding radical cation, which was certainly stable and could be isolated by separation over a silica gel column but slowly chlorinated at the reactive β-positions in the solid state. This finding led to us to examine β,β′-dichlorinated phenoxazine-fused and diphenylamine-fused Ni(ii) porphyrins, which, upon treatment with Magic Blue, provided remarkably stable radical cations to an unprecedented level. It is actually possible to purify these radical cations by silica gel chromatography, and they can be stored for over 6 months without any sign of deterioration. Moreover, they exhibited no degradation even after the CH2Cl2 solution was washed with water. However, subtle structural differences (planar versus partly twisted) led to different crystal packing structures and solid-state magnetic properties. PMID:28451165
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2018-02-13
In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.
Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei
2016-01-01
Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation. PMID:27649190
Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei
2016-09-15
Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation.
Fusion of infrared and visible images based on saliency scale-space in frequency domain
NASA Astrophysics Data System (ADS)
Chen, Yanfei; Sang, Nong; Dan, Zhiping
2015-12-01
A fusion algorithm of infrared and visible images based on saliency scale-space in the frequency domain was proposed. Focus of human attention is directed towards the salient targets which interpret the most important information in the image. For the given registered infrared and visible images, firstly, visual features are extracted to obtain the input hypercomplex matrix. Secondly, the Hypercomplex Fourier Transform (HFT) is used to obtain the salient regions of the infrared and visible images respectively, the convolution of the input hypercomplex matrix amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale which is equivalent to an image saliency detector are done. The saliency maps are obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. Thirdly, the salient regions are fused with the adoptive weighting fusion rules, and the nonsalient regions are fused with the rule based on region energy (RE) and region sharpness (RS), then the fused image is obtained. Experimental results show that the presented algorithm can hold high spectrum information of the visual image, and effectively get the thermal targets information at different scales of the infrared image.
Research on the use of data fusion technology to evaluate the state of electromechanical equipment
NASA Astrophysics Data System (ADS)
Lin, Lin
2018-04-01
Aiming at the problems of different testing information modes and the coexistence of quantitative and qualitative information in the state evaluation of electromechanical equipment, the paper proposes the use of data fusion technology to evaluate the state of electromechanical equipment. This paper introduces the state evaluation process of mechanical and electrical equipment in detail, uses the D-S evidence theory to fuse the decision-making layers of mechanical and electrical equipment state evaluation and carries out simulation tests. The simulation results show that it is feasible and effective to apply the data fusion technology to the state evaluation of the mechatronic equipment. After the multiple decision-making information provided by different evaluation methods are fused repeatedly and the useful information is extracted repeatedly, the fuzziness of judgment can be reduced and the state evaluation Credibility.
Multi-Sensor Documentation of Metric and Qualitative Information of Historic Stone Structures
NASA Astrophysics Data System (ADS)
Adamopoulos, E.; Tsilimantou, E.; Keramidas, V.; Apostolopoulou, M.; Karoglou, M.; Tapinaki, S.; Ioannidis, C.; Georgopoulos, A.; Moropoulou, A.
2017-08-01
This paper focuses on the integration of multi-sensor techniques regarding the acquisition, processing, visualisation and management of data regarding historic stone structures. The interdisciplinary methodology that is carried out here comprises of two parts. In the first part, the acquisition of qualitative and quantitative data concerning the geometry, the materials and the degradation of the tangible heritage asset each time, is discussed. The second part, refers to the analysis, management and visualization of the interrelated data by using spatial information technologies. Through the paradigm of the surveying of the ancient temple of Pythian Apollo at Acropolis of Rhodes, Rhodes Island, Greece, it is aimed to highlight the issues deriving from the separate application of documentation procedures and how the fusion of these methods can contribute effectively to ensure the completeness of the measurements for complex structures. The surveying results are further processed to be compatible and integrated with GIS. Also, the geometric documentation derivatives are combined with environmental data and the results of the application of non-destructive testing and evaluation techniques in situ and analytical techniques in lab after sampling. GIS operations are utilized to document the building materials but also to model and to analyse the decay extent and patterns. Detailed surface measurements and geo-processing analysis are executed. This integrated approach, helps the assessment of past interventions on the monument, identify main causes of damage and decay, and finally assist the decision making on the most compatible materials and techniques for protection and restoration works.
Development of a fusion approach selection tool
NASA Astrophysics Data System (ADS)
Pohl, C.; Zeng, Y.
2015-06-01
During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.
NASA Astrophysics Data System (ADS)
Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.
2017-10-01
Farmers throughout the world are constantly searching for ways to maximize their returns. Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop vigor problems. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. However, due to the various sensor characteristics, there are differences among VIs derived from multiple sensors for the same target. Therefore, multi-sensor VI capability and effectiveness are critical but complicated issues in the application of multi-sensor vegetation observations. Various factors such as the atmospheric conditions during acquisition, sensor and geometric characteristics, such as viewing angle, field of view, and sun elevation influence direct comparability of vegetation indicators among different sensors. In the present study, two experimental areas were used which are located near the villages Nea Lefki and Melia of Larissa Prefecture in Thessaly Plain area, containing a wheat and a cotton crop, respectively. Two satellite systems with different spatial resolution, WorldView-2 (W2) and Sentinel-2 (S2) with 2 and 10 meters pixel size, were used. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were calculated and a statistical comparison of the VIs was made to designate their correlation and dependency. Finally, several other innovative indices were calculated and compared to evaluate their effectiveness in the detection of problematic plant growth areas.
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion
Dou, Qingxu; Wei, Lijun; Magee, Derek R.; Atkins, Phil R.; Chapman, David N.; Curioni, Giulio; Goddard, Kevin F.; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R.; Rustighi, Emiliano; Swingler, Steven G.; Rogers, Christopher D. F.; Cohn, Anthony G.
2016-01-01
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. PMID:27827836
Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.
2012-01-01
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Gao, Lei; Bourke, A K; Nelson, John
2014-06-01
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Multi-sensor analysis of urban ecosystems
Gallo, Kevin P.; Ji, Lei
2004-01-01
This study examines the synthesis of multiple space-based sensors to characterize the urban environment Single scene data (e.g., ASTER visible and near-IR surface reflectance, and land surface temperature data), multi-temporal data (e.g., one year of 16-day MODIS and AVHRR vegetation index data), and DMSP-OLS nighttime light data acquired in the early 1990s and 2000 were evaluated for urban ecosystem analysis. The advantages of a multi-sensor approach for the analysis of urban ecosystem processes are discussed.
Study on parallel and distributed management of RS data based on spatial database
NASA Astrophysics Data System (ADS)
Chen, Yingbiao; Qian, Qinglan; Wu, Hongqiao; Liu, Shijin
2009-10-01
With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.
Multi-sensor satellite monitoring of ash and SO2 volcanic plume in support to aviation control
NASA Astrophysics Data System (ADS)
Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; van Geffen, Jos; van Gent, Jeroen; Van Roozendael, Michel; van der A, Ronald; Hurtmans, Daniel; Coheur, Pierre-Francois; Clerbaux, Cathy; Valks, Pieter; Hedelt, Pascal; Prata, Fred; Rasson, Olivier; Sievers, Klaus; Zehner, Claus
2014-05-01
The 'Support to Aviation Control Service' (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy since 2007. The service provides near real-time (NRT) global volcanic ash and SO2 observations, as well as notifications in case of volcanic eruptions (success rate >95% for ash and SO2). SACS is based on the combined use of UV-visible (OMI, GOME-2 MetOp-A, GOME-2 MetOp-B) and infrared (AIRS, IASI MetOp-A, IASI MetOp-B) satellite instruments. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories, research scientists and airliner pilots. When a volcanic eruption is detected, SACS issues a warning that takes the form of a notification sent by e-mail to users. The SACS notification points to a dedicated web page where all relevant information is available and can be visualised with user-friendly tools. Information about the volcanic plume height from GOME-2 (MetOp-A and MetOp-B) are also available. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimising the time-lag for detection and enhancing the reliability of such alerts. This presentation will give an overview of the SACS service, and of the different techniques used to detect volcanic plumes (ash, SO2 and plume height). It will also highlight the strengths and limitations of the service and measurements, and some perspectives.
Study on parallel and distributed management of RS data based on spatial data base
NASA Astrophysics Data System (ADS)
Chen, Yingbiao; Qian, Qinglan; Liu, Shijin
2006-12-01
With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.
NASA Astrophysics Data System (ADS)
Chiabrando, F.; Sammartano, G.; Spanò, A.
2017-02-01
In sudden emergency contexts that affect urban centres and built heritage, the latest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In recent times, Unmanned Vehicle System (UAV) equipped with cameras are more and more involved in aerial survey and reconnaissance missions, and they are behaving in a very cost-effective way in the direction of 3D documentation and preliminary damage assessment. More and more UAV equipment with low-cost sensors must become, in the future, suitable in every situation of documentation, but above all in damages and uncertainty frameworks. Rapidity in acquisition times and low-cost sensors are challenging marks, and they could be taken into consideration maybe with time spending processing. The paper will analyze and try to classify the information content in 3D aerial and terrestrial models and the importance of metric and non-metric withdrawable information that should be suitable for further uses, as the structural analysis one. The test area is an experience of Team Direct from Politecnico di Torino in centre Italy, where a strong earthquake occurred in August 2016. This study is carried out on a stand-alone damaged building in Pescara del Tronto (AP), with a multi-sensor 3D survey. The aim is to evaluate the contribution of terrestrial and aerial quick documentation by a SLAM based LiDAR and a camera equipped multirotor UAV, for a first reconnaissance inspection and modelling in terms of level of details, metric and non-metric information.
NASA Astrophysics Data System (ADS)
Hua, H.; Wilson, B. D.; Manipon, G.; Pan, L.; Fetzer, E.
2011-12-01
Multi-decadal climate data records are critical to studying climate variability and change. These often also require merging data from multiple instruments such as those from NASA's A-Train that contain measurements covering a wide range of atmospheric conditions and phenomena. Multi-decadal climate data record of water vapor measurements from sensors on A-Train, operational weather, and other satellites are being assembled from existing data sources, or produced from well-established methods published in peer-reviewed literature. However, the immense volume and inhomogeneity of data often requires an "exploratory computing" approach to product generation where data is processed in a variety of different ways with varying algorithms, parameters, and code changes until an acceptable intermediate product is generated. This process is repeated until a desirable final merged product can be generated. Typically the production legacy is often lost due to the complexity of processing steps that were tried along the way. The data product information associated with source data, processing methods, parameters used, intermediate product outputs, and associated materials are often hidden in each of the trials and scattered throughout the processing system(s). We will discuss methods to help users better capture and explore the production legacy of the data, metadata, ancillary files, code, and computing environment changes used during the production of these merged and multi-sensor data products. By leveraging existing semantic and provenance tools, we can capture sufficient information to enable users to track, perform faceted searches, and visualize the provenance of the products and processing lineage. We will explore if sufficient provenance information can be captured to enable science reproducibility of these climate data records.
Case retrieval in medical databases by fusing heterogeneous information.
Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice
2011-01-01
A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.
Image Fusion Algorithms Using Human Visual System in Transform Domain
NASA Astrophysics Data System (ADS)
Vadhi, Radhika; Swamy Kilari, Veera; Samayamantula, Srinivas Kumar
2017-08-01
The endeavor of digital image fusion is to combine the important visual parts from various sources to advance the visibility eminence of the image. The fused image has a more visual quality than any source images. In this paper, the Human Visual System (HVS) weights are used in the transform domain to select appropriate information from various source images and then to attain a fused image. In this process, mainly two steps are involved. First, apply the DWT to the registered source images. Later, identify qualitative sub-bands using HVS weights. Hence, qualitative sub-bands are selected from different sources to form high quality HVS based fused image. The quality of the HVS based fused image is evaluated with general fusion metrics. The results show the superiority among the state-of-the art resolution Transforms (MRT) such as Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Contourlet Transform (CT), and Non Sub Sampled Contourlet Transform (NSCT) using maximum selection fusion rule.
Multisensor data fusion for physical activity assessment.
Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John W; Freedson, Patty S
2012-03-01
This paper presents a sensor fusion method for assessing physical activity (PA) of human subjects, based on support vector machines (SVMs). Specifically, acceleration and ventilation measured by a wearable multisensor device on 50 test subjects performing 13 types of activities of varying intensities are analyzed, from which activity type and energy expenditure are derived. The results show that the method correctly recognized the 13 activity types 88.1% of the time, which is 12.3% higher than using a hip accelerometer alone. Also, the method predicted energy expenditure with a root mean square error of 0.42 METs, 22.2% lower than using a hip accelerometer alone. Furthermore, the fusion method was effective in reducing the subject-to-subject variability (standard deviation of recognition accuracies across subjects) in activity recognition, especially when data from the ventilation sensor were added to the fusion model. These results demonstrate that the multisensor fusion technique presented is more effective in identifying activity type and energy expenditure than the traditional accelerometer-alone-based methods.
Breath analysis system for early detection of lung diseases based on multi-sensor array
NASA Astrophysics Data System (ADS)
Jeon, Jin-Young; Yu, Joon-Boo; Shin, Jeong-Suk; Byun, Hyung-Gi; Lim, Jeong-Ok
2013-05-01
Expiratory breath contains various VOCs(Volatile Organic Compounds) produced from the human. When a certain disease exists, the exhalation has specific VOCs which may be generated from diseases. Many researchers have been actively working to find different types of biomarkers which are characteristic for particular diseases. Research regarding the identification of specific diseases from exhalation is still in progress. The aim of this research is to implement early detection of lung disease such as lung cancer and COPD(Chronic Obstructive Pulmonary Disease), which was nominated on the 6th of domestic death rate in 2010, based on multi-sensor array system. The system has been used to acquire sampled expiratory gases data and PCA(Principle Component Analysis) technique was applied to analyze signals from multi-sensor array. Throughout the experimental trials, a clearly distinguishable difference between lung disease patients and healthy controls was found from the measurement and analysis of their respective expiratory gases.
Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification.
Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Goshvarpour, Atefeh
2017-11-01
Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes, respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments. Copyright © 2017 Elsevier B.V. All rights reserved.
Perception-oriented fusion of multi-sensor imagery: visible, IR, and SAR
NASA Astrophysics Data System (ADS)
Sidorchuk, D.; Volkov, V.; Gladilin, S.
2018-04-01
This paper addresses the problem of image fusion of optical (visible and thermal domain) data and radar data for the purpose of visualization. These types of images typically contain a lot of complimentary information, and their joint visualization can be useful and more convenient for human user than a set of individual images. To solve the image fusion problem we propose a novel algorithm that utilizes some peculiarities of human color perception and based on the grey-scale structural visualization. Benefits of presented algorithm are exemplified by satellite imagery.
Experimental evaluation of candidate graphical microburst alert displays
NASA Technical Reports Server (NTRS)
Wanke, Craig R.; Hansman, R. John
1992-01-01
A piloted flight simulator experiment was conducted to evaluate issues related to the display of microburst alerts on electronic cockpit instrumentation. Issues addressed include display clarity, usefulness of multilevel microburst intensity information, and whether information from multiple sensors should be presented separately or 'fused' into combined alerts. Nine active airline pilots of 'glass cockpit' aircraft participated in the study. Microburst alerts presented on a moving map display were found to be visually clear and useful to pilots. Also, multilevel intensity information coded by colors or patterns was found to be important for decision making purposes. Pilot opinion was mixed on whether to 'fuse' data from multiple sensors, and some resulting design tradeoffs were identified. The positional information included in the graphical alert presentation was found useful by the pilots for planning lateral missed approach maneuvers, but may result in deviations which could interfere with normal airport operations. A number of flight crew training issues were also identified.
NASA Astrophysics Data System (ADS)
Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.
2018-01-01
A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans
2013-01-01
Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045
Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration
Badura, Pawel; Juszczyk, Jan; Pietka, Ewa
2016-01-01
Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
Multi-INT fusion to support port and harbor security and general maritime awareness
NASA Astrophysics Data System (ADS)
Von Kahle, Louis; Alexander, Robert
2006-05-01
The international community's focus on deterring terrorism has identified many vulnerabilities to a country's borders. These vulnerabilities include not only airports and rail lines but also the ports, harbors and miles of coastline which many countries must protect. In seeking to address this challenge, many technologies, processes and procedures have been identified that utilize single point or single source INT's (i.e., sources of intelligence - signals: SIGINT, imagery: IMINT, and open-source: INTERNET). These single source data sets include the information gleaned from shipping lines, port arrival and departure information and information from shipboard based electronic systems like the Automatic Identification System (AIS). Typically these are evaluated and incorporated into products or decisions in a singular manner and not with any reference or relationship to each other. In this work, an identification and analysis of these data sets will be performed in order to determine: •Any commonality between these data sets, •The ability to fuse information between these data sets, •The ability to determine relationships between these data sets, and •The ability to present any fused information or relationships in a timely manner In summary, the work served as a means for determining the data sets that were of the highest value and for determining the fusion method for producing a product of value. More work can be done to define the data sets that have the most commonality and thus will help to produce a fused product in the most timely and efficient manner.
Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu
2018-01-05
Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.
Multisource information fusion applied to ship identification for the recognized maritime picture
NASA Astrophysics Data System (ADS)
Simard, Marc-Alain; Lefebvre, Eric; Helleur, Christopher
2000-04-01
The Recognized Maritime Picture (RMP) is defined as a composite picture of activity over a maritime area of interest. In simplistic terms, building an RAMP comes down to finding if an object of interest, a ship in our case, is there or not, determining what it is, determining what it is doing and determining if some type of follow-on action is required. The Canadian Department of National Defence currently has access to or may, in the near future, have access to a number of civilians, military and allied information or sensor systems to accomplish these purposes. These systems include automatic self-reporting positional systems, air patrol surveillance systems, high frequency surface radars, electronic intelligence systems, radar space systems and high frequency direction finding sensors. The ability to make full use of these systems is limited by the existing capability to fuse data from all sources in a timely, accurate and complete manner. This paper presents an information fusion systems under development that correlates and fuses these information and sensor data sources. This fusion system, named Adaptive Fuzzy Logic Correlator, correlates the information in batch but fuses and constructs ship tracks sequentially. It applies standard Kalman filter techniques and fuzzy logic correlation techniques. We propose a set of recommendations that should improve the ship identification process. Particularly it is proposed to utilize as many non-redundant sources of information as possible that address specific vessel attributes. Another important recommendation states that the information fusion and data association techniques should be capable of dealing with incomplete and imprecise information. Some fuzzy logic techniques capable of tolerating imprecise and dissimilar data are proposed.
Regional Drought Monitoring Based on Multi-Sensor Remote Sensing
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Im, Jungho; Park, Seonyoung
2014-05-01
Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.
NASA Astrophysics Data System (ADS)
Weisenseel, Robert A.; Karl, William C.; Castanon, David A.; DiMarzio, Charles A.
1999-02-01
We present an analysis of statistical model based data-level fusion for near-IR polarimetric and thermal data, particularly for the detection of mines and mine-like targets. Typical detection-level data fusion methods, approaches that fuse detections from individual sensors rather than fusing at the level of the raw data, do not account rationally for the relative reliability of different sensors, nor the redundancy often inherent in multiple sensors. Representative examples of such detection-level techniques include logical AND/OR operations on detections from individual sensors and majority vote methods. In this work, we exploit a statistical data model for the detection of mines and mine-like targets to compare and fuse multiple sensor channels. Our purpose is to quantify the amount of knowledge that each polarimetric or thermal channel supplies to the detection process. With this information, we can make reasonable decisions about the usefulness of each channel. We can use this information to improve the detection process, or we can use it to reduce the number of required channels.
A Fusion Architecture for Tracking a Group of People Using a Distributed Sensor Network
2013-07-01
Determining the composition of the group is done using several classifiers. The fusion is done at the UGS level to fuse information from all the modalities to...to classification and counting of the targets. Section III also presents the algorithms for fusion of distributed sensor data at the UGS level and...ultrasonic sensors. Determining the composition of the group is done using several classifiers. The fusion is done at the UGS level to fuse
Land mine detection using multispectral image fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-03-29
Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less
Cellular self-organization by autocatalytic alignment feedback
Junkin, Michael; Leung, Siu Ling; Whitman, Samantha; Gregorio, Carol C.; Wong, Pak Kin
2011-01-01
Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis. PMID:22193956
Crossed fused renal ectopia in a Persian cat
Seo, Sang-Hyuk; Lee, Hyun-A; Suh, Sang-Il; Choi, Ran; Park, In-Chul; Hyun, Changbaig
2017-01-01
Case summary This report describes a rare case of crossed fused renal ectopia (CFRE) in a cat. A mature intact male Persian cat presented with bloody nasal discharge and ascites. Diagnostic studies revealed an ectopic left kidney fused with an orthotopic right kidney and a concurrent feline infectious peritonitis (FIP) infection. The FIP was responsible for clinical signs in this cat, while clinical signs associated with CFRE were not obvious. Despite receiving intensive treatment, the cat died. A post-mortem examination was not performed because the owners declined approval. Relevance and novel information To the best of our knowledge, this is the first report of L-shaped CFRE in a cat. In addition, this report describes the CT features of L-shaped CFRE in a cat. PMID:28491454
A Low Power, Parallel Wearable Multi-Sensor System for Human Activity Evaluation.
Li, Yuecheng; Jia, Wenyan; Yu, Tianjian; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui
2015-04-01
In this paper, the design of a low power heterogeneous wearable multi-sensor system, built with Zynq System-on-Chip (SoC), for human activity evaluation is presented. The powerful data processing capability and flexibility of this SoC represent significant improvements over our previous ARM based system designs. The new system captures and compresses multiple color images and sensor data simultaneously. Several strategies are adopted to minimize power consumption. Our wearable system provides a new tool for the evaluation of human activity, including diet, physical activity and lifestyle.
ARC - A source of multisensor satellite data for polar science
NASA Technical Reports Server (NTRS)
Van Woert, Michael L.; Whritner, Robert H.; Waliser, Duane E.; Bromwich, David H.; Comiso, J. C.
1992-01-01
The NSF's Antarctic Research Center (ARC) has been established to furnish real-time polar-orbiting satellite data in support of Antarctic field studies, as well as to maintain a multisensor satellite data (MSD) archive for retrospective data analysis. An account is presently given of the ways in which the complementary nature of an MSD set can deepen understanding of Antarctic physical processes. An active microwave SAR with 30-m resolution and a radar altimeter will be added to the ARC resources later in this decade, as will the Earth Observing System.
MATSurv: multisensor air traffic surveillance system
NASA Astrophysics Data System (ADS)
Yeddanapudi, Murali; Bar-Shalom, Yaakov; Pattipati, Krishna R.; Gassner, Richard R.
1995-09-01
This paper deals with the design and implementation of MATSurv 1--an experimental Multisensor Air Traffic Surveillance system. The proposed system consists of a Kalman filter based state estimator used in conjunction with a 2D sliding window assignment algorithm. Real data from two FAA radars is used to evaluate the performance of this algorithm. The results indicate that the proposed algorithm provides a superior classification of the measurements into tracks (i.e., the most likely aircraft trajectories) when compared to the aircraft trajectories obtained using the measurement IDs (squawk or IFF code).
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
Bougrini, Madiha; Tahri, Khalid; Haddi, Zouhair; El Bari, Nezha; Llobet, Eduard; Jaffrezic-Renault, Nicole; Bouchikhi, Benachir
2014-12-01
A combined approach based on a multisensor system to get additional chemical information from liquid samples through the analysis of the solution and its headspace is illustrated and commented. In the present work, innovative analytical techniques, such as a hybrid e-nose and a voltammetric e-tongue were elaborated to differentiate between different pasteurized milk brands and for the exact recognition of their storage days through the data fusion technique of the combined system. The Principal Component Analysis (PCA) has shown an acceptable discrimination of the pasteurized milk brands on the first day of storage, when the two instruments were used independently. Contrariwise, PCA indicated that no clear storage day's discrimination can be drawn when the two instruments are applied separately. Mid-level of abstraction data fusion approach has demonstrated that results obtained by the data fusion approach outperformed the classification results of the e-nose and e-tongue taken individually. Furthermore, the Support Vector Machine (SVM) supervised method was applied to the new subset and confirmed that all storage days were correctly identified. This study can be generalized to several beverage and food products where their quality is based on the perception of odor and flavor. Copyright © 2014 Elsevier B.V. All rights reserved.
Oviedo-Caro, Miguel Ángel; Bueno-Antequera, Javier; Munguía-Izquierdo, Diego
2018-03-19
To transculturally adapt the Spanish version of Pregnancy Physical Activity Questionnaire (PPAQ) analyzing its psychometric properties. The PPAQ was transculturally adapted into Spanish. Test-retest reliability was evaluated in a subsample of 109 pregnant women. The validity was evaluated in a sample of 208 pregnant women who answered the questionnaire and wore the multi-sensor monitor for 7 valid days. The reliability (intraclass correlation coefficient), concordance (concordance correlation coefficient), correlation (Pearson correlation coefficient), agreement (Bland-Altman plots) and relative activity levels (Jonckheere-Terpstra test) between both administrations and methods were examined. Intraclass correlation coefficients between both administrations were good for all categories except transportation. A low but significant correlation was found for total activity (light and above) whereas no correlation was found for other intensities between both methods. Relative activity levels analysis showed a significant linear trend for increased total activity between both methods. Spanish version of PPAQ is a brief and easily interpretable questionnaire with good reliability and ability to rank individuals, and poor validity compared with multi-sensor monitor. The use of PPAQ provides information of pregnancy-specific activities in order to establish physical activity levels of pregnant women and adapt health promotion interventions. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Real-time sensor validation and fusion for distributed autonomous sensors
NASA Astrophysics Data System (ADS)
Yuan, Xiaojing; Li, Xiangshang; Buckles, Bill P.
2004-04-01
Multi-sensor data fusion has found widespread applications in industrial and research sectors. The purpose of real time multi-sensor data fusion is to dynamically estimate an improved system model from a set of different data sources, i.e., sensors. This paper presented a systematic and unified real time sensor validation and fusion framework (RTSVFF) based on distributed autonomous sensors. The RTSVFF is an open architecture which consists of four layers - the transaction layer, the process fusion layer, the control layer, and the planning layer. This paradigm facilitates distribution of intelligence to the sensor level and sharing of information among sensors, controllers, and other devices in the system. The openness of the architecture also provides a platform to test different sensor validation and fusion algorithms and thus facilitates the selection of near optimal algorithms for specific sensor fusion application. In the version of the model presented in this paper, confidence weighted averaging is employed to address the dynamic system state issue noted above. The state is computed using an adaptive estimator and dynamic validation curve for numeric data fusion and a robust diagnostic map for decision level qualitative fusion. The framework is then applied to automatic monitoring of a gas-turbine engine, including a performance comparison of the proposed real-time sensor fusion algorithms and a traditional numerical weighted average.
NASA Astrophysics Data System (ADS)
Coogan, A.; Avanzi, F.; Akella, R.; Conklin, M. H.; Bales, R. C.; Glaser, S. D.
2017-12-01
Automatic meteorological and snow stations provide large amounts of information at dense temporal resolution, but data quality is often compromised by noise and missing values. We present a new gap-filling and cleaning procedure for networks of these stations based on Kalman filtering and expectation maximization. Our method utilizes a multi-sensor, regime-switching Kalman filter to learn a latent process that captures dependencies between nearby stations and handles sharp changes in snowfall rate. Since the latent process is inferred using observations across working stations in the network, it can be used to fill in large data gaps for a malfunctioning station. The procedure was tested on meteorological and snow data from Wireless Sensor Networks (WSN) in the American River basin of the Sierra Nevada. Data include air temperature, relative humidity, and snow depth from dense networks of 10 to 12 stations within 1 km2 swaths. Both wet and dry water years have similar data issues. Data with artificially created gaps was used to quantify the method's performance. Our multi-sensor approach performs better than a single-sensor one, especially with large data gaps, as it learns and exploits the dominant underlying processes in snowpack at each site.
Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package
NASA Technical Reports Server (NTRS)
Masunaga, Hirohiko; Matsui, Toshihisa; Tao, Wei-Kuo; Hou, Arthur Y.; Kummerow, Christian D.; Nakajima, Teruyuki; Bauer, Peter; Olson, William S.; Sekiguchi, Miho; Nakajima, Teruyuki
2010-01-01
Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be useful for future geostationary satellites with a microwave radiometer and/or a radar aboard, which could become more feasible as engineering challenges are met. In this short article, the SDSU algorithm architecture and potential applications are reviewed in brief.
A satellite-driven, client-server hydro-economic model prototype for agricultural water management
NASA Astrophysics Data System (ADS)
Maneta, Marco; Kimball, John; He, Mingzhu; Payton Gardner, W.
2017-04-01
Anticipating agricultural water demand, land reallocation, and impact on farm revenues associated with different policy or climate constraints is a challenge for water managers and for policy makers. While current integrated decision support systems based on programming methods provide estimates of farmer reaction to external constraints, they have important shortcomings such as the high cost of data collection surveys necessary to calibrate the model, biases associated with inadequate farm sampling, infrequent model updates and recalibration, model overfitting, or their deterministic nature, among other problems. In addition, the administration of water supplies and the generation of policies that promote sustainable agricultural regions depend on more than one bureau or office. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. To overcome these limitations, we present a client-server, integrated hydro-economic modeling and observation framework driven by satellite remote sensing and other ancillary information from regional monitoring networks. The core of the framework is a stochastic data assimilation system that sequentially ingests remote sensing observations and corrects the parameters of the hydro-economic model at unprecedented spatial and temporal resolutions. An economic model of agricultural production, based on mathematical programming, requires information on crop type and extent, crop yield, crop transpiration and irrigation technology. A regional hydro-climatologic model provides biophysical constraints to an economic model of agricultural production with a level of detail that permits the study of the spatial impact of large- and small-scale water use decisions. Crop type and extent is obtained from the Cropland Data Layer (CDL), which is multi-sensor operational classification of crops maintained by the United States Department of Agriculture. Because this product is only available for the conterminous United States, the framework is currently only applicable in this region. To obtain information on crop phenology, productivity and transpiration at adequate spatial and temporal frequencies we blend high spatial resolution Landsat information with high temporal fidelity MODIS imagery. The result is a 30 m, 8-day fused dataset of crop greenness that is subsequently transformed into productivity and transpiration by adapting existing forest productivity and transpiration algorithms for agricultural applications. To ensure all involved agencies work with identical information and that end-users are sheltered from the computational burden of storing and processing remote sensing data, this modeling framework is integrated in a client-server architecture based on the Hydra platform (www.hydraplatform.org). Assimilation and processing of resource-intensive remote sensing information, as well as hydrologic and other ancillary data, occur on the server side. With this architecture, our decision support system becomes a light weight 'app' that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. This architecture ensures that all agencies and teams involved in water management use the same, up-to-date information in their simulations.
Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A; Lo, Chung Mau; Man, Kwan; Sun, Dong
2016-02-04
Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao
2015-12-01
The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.
Gene network inference by fusing data from diverse distributions
Žitnik, Marinka; Zupan, Blaž
2015-01-01
Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequencing, often violates this assumption. Furthermore, when collected data arise from multiple related but otherwise nonidentical distributions, their underlying networks are likely to have common features. New principled statistical approaches are needed that can deal with different data distributions and jointly consider collections of datasets. Results: We present FuseNet, a Markov network formulation that infers networks from a collection of nonidentically distributed datasets. Our approach is computationally efficient and general: given any number of distributions from an exponential family, FuseNet represents model parameters through shared latent factors that define neighborhoods of network nodes. In a simulation study, we demonstrate good predictive performance of FuseNet in comparison to several popular graphical models. We show its effectiveness in an application to breast cancer RNA-sequencing and somatic mutation data, a novel application of graphical models. Fusion of datasets offers substantial gains relative to inference of separate networks for each dataset. Our results demonstrate that network inference methods for non-Gaussian data can help in accurate modeling of the data generated by emergent high-throughput technologies. Availability and implementation: Source code is at https://github.com/marinkaz/fusenet. Contact: blaz.zupan@fri.uni-lj.si Supplementary information: Supplementary information is available at Bioinformatics online. PMID:26072487
An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.
Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin
2016-11-04
An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.
An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †
Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin
2016-01-01
An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904
RadMAP: The Radiological Multi-sensor Analysis Platform
NASA Astrophysics Data System (ADS)
Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai
2016-12-01
The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.
Preventing Terrorism Using Information Sharing Networks
2006-09-01
in fusing information and providing valuable intelligence that thwarted a terrorist attack at Disneyland . A videotape was received that contained a...creditable threat of a Sarin gas attack at Disneyland . The LA TEW conducted the initial analysis of the tape and the initial investigation that
Medical decision-making inspired from aerospace multisensor data fusion concepts.
Pombo, Nuno; Bousson, Kouamana; Araújo, Pedro; Viana, Joaquim
2015-01-01
In recent years, Internet-delivered treatments have been largely used for pain monitoring, offering healthcare professionals and patients the ability to interact anywhere and at any time. Electronic diaries have been increasingly adopted as the preferred methodology to collect data related to pain intensity and symptoms, replacing traditional pen-and-paper diaries. This article presents a multisensor data fusion methodology based on the capabilities provided by aerospace systems to evaluate the effects of electronic and pen-and-paper diaries on pain. We examined English-language studies of randomized controlled trials that use computerized systems and the Internet to collect data about chronic pain complaints. These studies were obtained from three data sources: BioMed Central, PubMed Central and ScienceDirect from the year 2000 until 30 June 2012. Based on comparisons of the reported pain intensity collected during pre- and post-treatment in both the control and intervention groups, the proposed multisensor data fusion model revealed that the benefits of technology and pen-and-paper are qualitatively equivalent [Formula: see text]. We conclude that the proposed model is suitable, intelligible, easy to implement, time efficient and resource efficient.
Zhu, Qingyuan; Xiao, Chunsheng; Hu, Huosheng; Liu, Yuanhui; Wu, Jinjin
2018-01-13
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DaSilva, L.; Marion, J.; Chase, C.
BioLuminate, Inc. planned to develop, produce and market a revolutionary diagnostic device for early breast cancer diagnosis. The device was originally invented by NASA; and exclusively licensed to BioLuminate for commercialization. At the time of the CRADA, eighty-five percent (85%) of all biopsies in the United States were found negative each year. The number of biopsies cost the health care system $23 billio n annually. A multi-sensor probe would allow surgeons to improve breast cancer scre ening and significantly reduce the number of biopsies. BioLuminate was developing an in-vivo system for the detection of cancer using a multi-sensor needle/probe. Themore » first system would be developed for the detection of breast cancer. LLNL, in collaboration with BioLuminate worked toward a detailed concept specification for the prototype multi-sensor needle/probe suitable for breast cancer analysis. BioLuminate in collaboration with LLNL, worked to develop a new version of the needle probe that would be the same size as needles commonly used to draw blood.« less
Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan
2018-04-18
A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.
SVM-based multi-sensor fusion for free-living physical activity assessment.
Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John; Freedson, Patty S
2011-01-01
This paper presents a sensor fusion method for assessing physical activity (PA) of human subjects, based on the support vector machines (SVMs). Specifically, acceleration and ventilation measured by a wearable multi-sensor device on 50 test subjects performing 13 types of activities of varying intensities are analyzed, from which the activity types and related energy expenditures are derived. The result shows that the method correctly recognized the 13 activity types 84.7% of the time, which is 26% higher than using a hip accelerometer alone. Also, the method predicted the associated energy expenditure with a root mean square error of 0.43 METs, 43% lower than using a hip accelerometer alone. Furthermore, the fusion method was effective in reducing the subject-to-subject variability (standard deviation of recognition accuracies across subjects) in activity recognition, especially when data from the ventilation sensor was added to the fusion model. These results demonstrate that the multi-sensor fusion technique presented is more effective in assessing activities of varying intensities than the traditional accelerometer-alone based methods.
Xiao, Chunsheng; Liu, Yuanhui; Wu, Jinjin
2018-01-01
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy. PMID:29342850
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information
Wang, Xiaohong; Wang, Lizhi
2017-01-01
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system. PMID:28926930
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.
Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi
2017-09-15
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.
Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring
Alldieck, Thiemo; Bahnsen, Chris H.; Moeslund, Thomas B.
2016-01-01
In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion. PMID:27869730
Remote sensing advances in agricultural inventories
NASA Technical Reports Server (NTRS)
Dragg, J. L.; Bizzell, R. M.; Trichel, M. C.; Hatch, R. E.; Phinney, D. E.; Baker, T. C.
1984-01-01
As the complexity of the world's agricultural industry increases, more timely and more accurate world-wide agricultural information is required to support production and marketing decisions, policy formulation, and technology development. The Inventory Technology Development Project of the AgRISTARS Program has developed new automated technology that uses data sets acquired by spaceborne remote sensors. Research has emphasized the development of multistage, multisensor sampling and estimation techniques for use in global environments where reliable ground observations are not available. This paper presents research results obtained from data sets acquired by four different sensors: Landsat MSS, Landsat TM, Shuttle-Imaging Radar and environmental satellite (AVHRR).
Volume 3. Information Age Anthology: The Information Age Military
2001-03-01
Science Applications International Corporation, 1996 “Information- Based Warfare and the PRC” by M. Ehsan Ahrari, appeared as an earlier version of...GSRT fused sensor data, tapped data bases , activated resources, and passed templated neurally collated information to each person in exactly the format...because IT binds together hitherto disparate social organizations, including the armed forces, into networks based on shared information and situational
The FUSE Survey of Algol-Type Interacting Binary Systems
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.; Andersson, B.; Ake, T. B.; Sankrit, R.
2006-12-01
A survey of Algol binaries at random phases is currently being carried through with the FUSE spacecraft as part of the FUSE survey and supplemental program. A similar program was undertaken in FUSE Cycle 3. Both programs have produced multiple observations of 12 Algol systems with periods ranging from 1.2 37 d and include direct-impact and disk systems. We report on the status of the program. The absence of O VI absorption in the systems observed to date allows us to place an upper limit on the column density and temperature of the High Temperature Accretion Region, HTAR ( 100,000 K) confirmed in some Algols from earlier IUE data. The HTAR plasma component appears to be distinct from an O VI-emitting polar plasma discovered in FUSE totality observations of RY Per, V356 Sgr, and TT Hya. New observations of the direct-impact system U Cep have provided more information on the geometry and mass flow (including a splash plasma) in the vicinity of a hot spot at phase 0.90 that was discovered earlier. The extent of disk asymmetries in the long period ( 33 d) systems SX Cas and RX Cas is discussed. Models for direct-impact and the disk systems will be presented. The authors appreciate support from NASA grants NAG5-12253, NNG04GL17G, and NAS5-32985.
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2010-01-01
Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.
Multisensor fusion for 3D target tracking using track-before-detect particle filter
NASA Astrophysics Data System (ADS)
Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.
2015-05-01
This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.
Multisensor data fusion across time and space
NASA Astrophysics Data System (ADS)
Villeneuve, Pierre V.; Beaven, Scott G.; Reed, Robert A.
2014-06-01
Field measurement campaigns typically deploy numerous sensors having different sampling characteristics for spatial, temporal, and spectral domains. Data analysis and exploitation is made more difficult and time consuming as the sample data grids between sensors do not align. This report summarizes our recent effort to demonstrate feasibility of a processing chain capable of "fusing" image data from multiple independent and asynchronous sensors into a form amenable to analysis and exploitation using commercially-available tools. Two important technical issues were addressed in this work: 1) Image spatial registration onto a common pixel grid, 2) Image temporal interpolation onto a common time base. The first step leverages existing image matching and registration algorithms. The second step relies upon a new and innovative use of optical flow algorithms to perform accurate temporal upsampling of slower frame rate imagery. Optical flow field vectors were first derived from high-frame rate, high-resolution imagery, and then finally used as a basis for temporal upsampling of the slower frame rate sensor's imagery. Optical flow field values are computed using a multi-scale image pyramid, thus allowing for more extreme object motion. This involves preprocessing imagery to varying resolution scales and initializing new vector flow estimates using that from the previous coarser-resolution image. Overall performance of this processing chain is demonstrated using sample data involving complex too motion observed by multiple sensors mounted to the same base. Multiple sensors were included, including a high-speed visible camera, up to a coarser resolution LWIR camera.
Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents.
Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam
2017-01-13
The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions.
Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents
Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam
2017-01-01
The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions. PMID:28098797
Machine Learning Algorithms for Automated Satellite Snow and Sea Ice Detection
NASA Astrophysics Data System (ADS)
Bonev, George
The continuous mapping of snow and ice cover, particularly in the arctic and poles, are critical to understanding the earth and atmospheric science. Much of the world's sea ice and snow covers the most inhospitable places, making measurements from satellite-based remote sensors essential. Despite the wealth of data from these instruments many challenges remain. For instance, remote sensing instruments reside on-board different satellites and observe the earth at different portions of the electromagnetic spectrum with different spatial footprints. Integrating and fusing this information to make estimates of the surface is a subject of active research. In response to these challenges, this dissertation will present two algorithms that utilize methods from statistics and machine learning, with the goal of improving on the quality and accuracy of current snow and sea ice detection products. The first algorithm aims at implementing snow detection using optical/infrared instrument data. The novelty in this approach is that the classifier is trained using ground station measurements of snow depth that are collocated with the reflectance observed at the satellite. Several classification methods are compared using this training data to identify the one yielding the highest accuracy and optimal space/time complexity. The algorithm is then evaluated against the current operational NASA snow product and it is found that it produces comparable and in some cases superior accuracy results. The second algorithm presents a fully automated approach to sea ice detection that integrates data obtained from passive microwave and optical/infrared satellite instruments. For a particular region of interest the algorithm generates sea ice maps of each individual satellite overpass and then aggregates them to a daily composite level, maximizing the amount of high resolution information available. The algorithm is evaluated at both, the individual satellite overpass level, and at the daily composite level. Results show that at the single overpass level for clear-sky regions, the developed multi-sensor algorithm performs with accuracy similar to that of the optical/infrared products, with the advantage of being able to also classify partially cloud-obscured regions with the help of passive microwave data. At the daily composite level, results show that the algorithm's performance with respect to total ice extent is in line with other daily products, with the novelty of being fully automated and having higher resolution.
Zhou, Tao; Li, Zhaofu; Pan, Jianjun
2018-01-27
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
Caduff, Andreas; Zanon, Mattia; Mueller, Martin; Zakharov, Pavel; Feldman, Yuri; De Feo, Oscar; Donath, Marc; Stahel, Werner A; Talary, Mark S
2015-07-01
We study here the influence of different patients and the influence of different devices with the same patients on the signals and modeling of data from measurements from a noninvasive Multisensor glucose monitoring system in patients with type 1 diabetes. The Multisensor includes several sensors for biophysical monitoring of skin and underlying tissue integrated on a single substrate. Two Multisensors were worn simultaneously, 1 on the upper left and 1 on the upper right arm by 4 patients during 16 study visits. Glucose was administered orally to induce 2 consecutive hyperglycemic excursions. For the analysis, global (valid for a population of patients), personal (tailored to a specific patient), and device-specific multiple linear regression models were derived. We find that adjustments of the model to the patients improves the performance of the glucose estimation with an MARD of 17.8% for personalized model versus a MARD of 21.1% for the global model. At the same time the effect of the measurement side is negligible. The device can equally well measure on the left or right arm. We also see that devices are equal in the linear modeling. Thus hardware calibration of the sensors is seen to be sufficient to eliminate interdevice differences in the measured signals. We demonstrate that the hardware of the 2 devices worn on the left and right arms are consistent yielding similar measured signals and thus glucose estimation results with a global model. The 2 devices also return similar values of glucose errors. These errors are mainly due to nonstationarities in the measured signals that are not solved by the linear model, thus suggesting for more sophisticated modeling approaches. © 2015 Diabetes Technology Society.
Estimation of forest biomass using remote sensing
NASA Astrophysics Data System (ADS)
Sarker, Md. Latifur Rahman
Forest biomass estimation is essential for greenhouse gas inventories, terrestrial carbon accounting and climate change modelling studies. The availability of new SAR, (C-band RADARSAT-2 and L-band PALSAR) and optical sensors (SPOT-5 and AVNIR-2) has opened new possibilities for biomass estimation because these new SAR sensors can provide data with varying polarizations, incidence angles and fine spatial resolutions. 'Therefore, this study investigated the potential of two SAR sensors (RADARSAT-2 with C-band and PALSAR with L-band) and two optical sensors (SPOT-5 and AVNIR2) for the estimation of biomass in Hong Kong. Three common major processing steps were used for data processing, namely (i) spectral reflectance/intensity, (ii) texture measurements and (iii) polarization or band ratios of texture parameters. Simple linear and stepwise multiple regression models were developed to establish a relationship between the image parameters and the biomass of field plots. The results demonstrate the ineffectiveness of raw data. However, significant improvements in performance (r2) (RADARSAT-2=0.78; PALSAR=0.679; AVNIR-2=0.786; SPOT-5=0.854; AVNIR-2 + SPOT-5=0.911) were achieved using texture parameters of all sensors. The performances were further improved and very promising performances (r2) were obtained using the ratio of texture parameters (RADARSAT-2=0.91; PALSAR=0.823; PALSAR two-date=0.921; AVNIR-2=0.899; SPOT-5=0.916; AVNIR-2 + SPOT-5=0.939). These performances suggest four main contributions arising from this research, namely (i) biomass estimation can be significantly improved by using texture parameters, (ii) further improvements can be obtained using the ratio of texture parameters, (iii) multisensor texture parameters and their ratios have more potential than texture from a single sensor, and (iv) biomass can be accurately estimated far beyond the previously perceived saturation levels of SAR and optical data using texture parameters or the ratios of texture parameters. A further important contribution resulting from the fusion of SAR & optical images produced accuracies (r2) of 0.706 and 0.77 from the simple fusion, and the texture processing of the fused image, respectively. Although these performances were not as attractive as the performances obtained from the other four processing steps, the wavelet fusion procedure improved the saturation level of the optical (AVNIR-2) image very significantly after fusion with SAR, image. Keywords: biomass, climate change, SAR, optical, multisensors, RADARSAT-2, PALSAR, AVNIR-2, SPOT-5, texture measurement, ratio of texture parameters, wavelets, fusion, saturation
FUSE: a profit maximization approach for functional summarization of biological networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry
2012-03-21
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.
Adaptive Multi-sensor Data Fusion Model for In-situ Exploration of Mars
NASA Astrophysics Data System (ADS)
Schneiderman, T.; Sobron, P.
2014-12-01
Laser Raman spectroscopy (LRS) and laser-induced breakdown spectroscopy (LIBS) can be used synergistically to characterize the geochemistry and mineralogy of potential microbial habitats and biosignatures. The value of LRS and LIBS has been recognized by the planetary science community: (i) NASA's Mars2020 mission features a combined LRS-LIBS instrument, SuperCam, and an LRS instrument, SHERLOC; (ii) an LRS instrument, RLS, will fly on ESA's 2018 ExoMars mission. The advantages of combining LRS and LIBS are evident: (1) LRS/LIBS can share hardware components; (2) LIBS reveals the relative concentration of major (and often trace) elements present in a sample; and (3) LRS yields information on the individual mineral species and their chemical/structural nature. Combining data from LRS and LIBS enables definitive mineral phase identification with precise chemical characterization of major, minor, and trace mineral species. New approaches to data processing are needed to analyze large amounts of LRS+LIBS data efficiently and maximize the scientific return of integrated measurements. Multi-sensor data fusion (MSDF) is a method that allows for robust sample identification through automated acquisition, processing, and combination of data. It optimizes information usage, yielding a more robust characterization of a target than could be acquired through single sensor use. We have developed a prototype fuzzy logic adaptive MSDF model aimed towards the unsupervised characterization of Martian habitats and their biosignatures using LRS and LIBS datasets. Our model also incorporates fusion of microimaging (MI) data - critical for placing analyses in geological and spatial context. Here, we discuss the performance of our novel MSDF model and demonstrate that automated quantification of the salt abundance in sulfate/clay/phyllosilicate mixtures is possible through data fusion of collocated LRS, LIBS, and MI data.
NASA Technical Reports Server (NTRS)
Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki
2016-01-01
Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level.
FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae
NASA Astrophysics Data System (ADS)
Dinerstein, H.
We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.
NASA Astrophysics Data System (ADS)
McEnery, J. A.; Jitkajornwanich, K.
2012-12-01
This presentation will describe the methodology and overall system development by which a benchmark dataset of precipitation information has been used to characterize the depth-area-duration relations in heavy rain storms occurring over regions of Texas. Over the past two years project investigators along with the National Weather Service (NWS) West Gulf River Forecast Center (WGRFC) have developed and operated a gateway data system to ingest, store, and disseminate NWS multi-sensor precipitation estimates (MPE). As a pilot project of the Integrated Water Resources Science and Services (IWRSS) initiative, this testbed uses a Standard Query Language (SQL) server to maintain a full archive of current and historic MPE values within the WGRFC service area. These time series values are made available for public access as web services in the standard WaterML format. Having this volume of information maintained in a comprehensive database now allows the use of relational analysis capabilities within SQL to leverage these multi-sensor precipitation values and produce a valuable derivative product. The area of focus for this study is North Texas and will utilize values that originated from the West Gulf River Forecast Center (WGRFC); one of three River Forecast Centers currently represented in the holdings of this data system. Over the past two decades, NEXRAD radar has dramatically improved the ability to record rainfall. The resulting hourly MPE values, distributed over an approximate 4 km by 4 km grid, are considered by the NWS to be the "best estimate" of rainfall. The data server provides an accepted standard interface for internet access to the largest time-series dataset of NEXRAD based MPE values ever assembled. An automated script has been written to search and extract storms over the 18 year period of record from the contents of this massive historical precipitation database. Not only can it extract site-specific storms, but also duration-specific storms and storms separated by user defined inter-event periods. A separate storm database has been created to store the selected output. By storing output within tables in a separate database, we can make use of powerful SQL capabilities to perform flexible pattern analysis. Previous efforts have made use of historic data from limited clusters of irregularly spaced physical gauges. Spatial extent of the observational network has been a limiting factor. The relatively dense distribution of MPE provides a virtual mesh of observations stretched over the landscape. This work combines a unique hydrologic data resource with programming and database analysis to characterize storm depth-area-duration relationships.
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-01-01
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-08-27
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.
A Multi-Sensor Approach to Documenting a Large Collapse Sinkhole in West-Central Florida
NASA Astrophysics Data System (ADS)
Collins, L. D.; Kiflu, H. G.; Robinson, T.; Doering, T.; Eilers, D.; Rodgers, M.; Kruse, S.; Landry, S.; Braunmiller, J.; Speed, G.; Gonzalez, J.; McKenzie, R.
2017-12-01
The Saxon Lake sinkhole collapse of July 14, 2017 in Land O Lakes, Florida, caused the destruction of two homes and the evacuation of nine additional residences. The sinkhole is slightly oval with dimensions of approximately 51 meters east-west and 42 meters north-south, and it is reportedly 15 meters deep. This is presumably the largest sinkhole to form in Pasco County during the last 30 years. The surface collapse happened rapidly and continued over three days, with slumping and erosion increasing the size. The site is located near two natural lakes in a housing development from the late 1960s. This occurrence is within an area of well-developed karst, with a number of natural lakes. We present preliminary analysis of the sequence of deformation, sinkhole geometry, surrounding subsurface structures, and seismic activity. Data are assembled from terrestrial and aerial LiDAR, UAS survey and PhoDAR modeling, aerial imagery, ground penetrating radar, lake-bottom profiling, and seismic monitoring. Additionally, multi-sensor data were brought together in a Geographic Information Systems (GIS) and included an analysis of georeferenced historic imagery and maps. These spatial data indicate historic land use change and development alterations that included lake shore reconfiguration, canal construction, and connection of lake water systems in the area of impact. Three subsidence reports from the 1980s are also recorded within 500 meters of the collapse.
Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu
2015-01-01
In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396
Swallow segmentation with artificial neural networks and multi-sensor fusion.
Lee, Joon; Steele, Catriona M; Chau, Tom
2009-11-01
Swallow segmentation is a critical precursory step to the analysis of swallowing signal characteristics. In an effort to automatically segment swallows, we investigated artificial neural networks (ANN) with information from cervical dual-axis accelerometry, submental MMG, and nasal airflow. Our objectives were (1) to investigate the relationship between segmentation performance and the number of signal sources and (2) to identify the signals or signal combinations most useful for swallow segmentation. Signals were acquired from 17 healthy adults in both discrete and continuous swallowing tasks using five stimuli. Training and test feature vectors were constructed with variances from single or multiple signals, estimated within 200 ms moving windows with 50% overlap. Corresponding binary target labels (swallow or non-swallow) were derived by manual segmentation. A separate 3-layer ANN was trained for each participant-signal combination, and all possible signal combinations were investigated. As more signal sources were included, segmentation performance improved in terms of sensitivity, specificity, accuracy, and adjusted accuracy. The combination of all four signal sources achieved the highest mean accuracy and adjusted accuracy of 88.5% and 89.6%, respectively. A-P accelerometry proved to be the most discriminatory source, while the inclusion of MMG or nasal airflow resulted in the least performance improvement. These findings suggest that an ANN, multi-sensor fusion approach to segmentation is worthy of further investigation in swallowing studies.
Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Yasui, Nobuhiko; Nishizawa, Masafumi; Fujiwara, Takeshi; Shigezumi, Takeya; Nagai, Ryozo; Harada, Hiroshi
We have developed a multisensor home and ambulatory blood pressure (BP) monitoring system for monitoring 24-h central and brachial BP variability concurrent with physical activity (PA), temperature, and atmospheric pressure. The new BP monitoring system utilizes our recently developed biological and environmental signal monitoring Information Communication Technology/Internet of Things system, which can simultaneously monitor the environment (temperature, illumination, etc.) of different rooms in a house (entryway, bedroom, living room, bathing room, and toilet), and a wrist-type high-sensitivity actigraph for identifying the location of patients. By collecting both data on BP and environmental parameters, the system can assess the brachial and central hemodynamic BP reactivity profiles of patients, such as actisensitivity (BP change with PA), thermosensitivity (with temperature), and atmospheric sensitivity (with atmospheric pressure). We used this new system to monitor ambulatory BP variability in outpatients with one or more cardiovascular disease (CVD) risk factors both in summer and winter. Actisensitivity (the slope of the regression line of ambulatory BP against the log-physical activity) was higher in winter than summer. By multi-level analysis using the parameters monitored by this system, we estimated the ambulatory BPs under different conditions. The individual time-series big data collected by this system will contribute to anticipation medicine for CVD. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical processing for landmark identification
NASA Technical Reports Server (NTRS)
Casasent, D.; Luu, T. K.
1981-01-01
A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced.
Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery.
Sarkar, Anjan; Banerjee, Anjan; Banerjee, Nilanjan; Brahma, Siddhartha; Kartikeyan, B; Chakraborty, Manab; Majumder, K L
2005-05-01
This work deals with multisensor data fusion to obtain landcover classification. The role of feature-level fusion using the Dempster-Shafer rule and that of data-level fusion in the MRF context is studied in this paper to obtain an optimally segmented image. Subsequently, segments are validated and classification accuracy for the test data is evaluated. Two examples of data fusion of optical images and a synthetic aperture radar image are presented, each set having been acquired on different dates. Classification accuracies of the technique proposed are compared with those of some recent techniques in literature for the same image data.
NASA Astrophysics Data System (ADS)
Ding, Quanxin; Guo, Chunjie; Cai, Meng; Liu, Hua
2007-12-01
Adaptive Optics Expand System is a kind of new concept spatial equipment, which concerns system, cybernetics and informatics deeply, and is key way to improve advanced sensors ability. Traditional Zernike Phase Contrast Method is developed, and Accelerated High-level Phase Contrast Theory is established. Integration theory and mathematical simulation is achieved. Such Equipment, which is based on some crucial components, such as, core optical system, multi mode wavefront sensor and so on, is established for AOES advantageous configuration and global design. Studies on Complicated Spatial Multisensor System Integratation and measurement Analysis including error analysis are carried out.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Barhen, Jacob; Glover, Charles Wayne
2012-01-01
Multi-sensor networks may face resource limitations in a dynamically evolving multiple target tracking scenario. It is necessary to task the sensors efficiently so that the overall system performance is maximized within the system constraints. The central sensor resource manager may control the sensors to meet objective functions that are formulated to meet system goals such as minimization of track loss, maximization of probability of target detection, and minimization of track error. This paper discusses the variety of techniques that may be utilized to optimize sensor performance for either near term gain or future reward over a longer time horizon.
Multisensor configurations for early sniper detection
NASA Astrophysics Data System (ADS)
Lindgren, D.; Bank, D.; Carlsson, L.; Dulski, R.; Duval, Y.; Fournier, G.; Grasser, R.; Habberstad, H.; Jacquelard, C.; Kastek, M.; Otterlei, R.; Piau, G.-P.; Pierre, F.; Renhorn, I.; Sjöqvist, L.; Steinvall, O.; Trzaskawka, P.
2011-11-01
This contribution reports some of the fusion results from the EDA SNIPOD project, where different multisensor configurations for sniper detection and localization have been studied. A project aim has been to cover the whole time line from sniper transport and establishment to shot. To do so, different optical sensors with and without laser illumination have been tested, as well as acoustic arrays and solid state projectile radar. A sensor fusion node collects detections and background statistics from all sensors and employs hypothesis testing and multisensor estimation programs to produce unified and reliable sniper alarms and accurate sniper localizations. Operator interfaces that connect to the fusion node should be able to support both sniper countermeasures and the guidance of personnel to safety. Although the integrated platform has not been actually built, sensors have been evaluated at common field trials with military ammunitions in the caliber range 5.56 to 12.7 mm, and at sniper distances up to 900 m. It is concluded that integrating complementary sensors for pre- and postshot sniper detection in a common system with automatic detection and fusion will give superior performance, compared to stand alone sensors. A practical system is most likely designed with a cost effective subset of available complementary sensors.
Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng
2013-01-01
This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263
Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng
2013-07-12
This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.
NASA Astrophysics Data System (ADS)
Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.
2017-09-01
In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.
Case-Based Multi-Sensor Intrusion Detection
NASA Astrophysics Data System (ADS)
Schwartz, Daniel G.; Long, Jidong
2009-08-01
Multi-sensor intrusion detection systems (IDSs) combine the alerts raised by individual IDSs and possibly other kinds of devices such as firewalls and antivirus software. A critical issue in building a multi-sensor IDS is alert-correlation, i.e., determining which alerts are caused by the same attack. This paper explores a novel approach to alert correlation using case-based reasoning (CBR). Each case in the CBR system's library contains a pattern of alerts raised by some known attack type, together with the identity of the attack. Then during run time, the alert streams gleaned from the sensors are compared with the patterns in the cases, and a match indicates that the attack described by that case has occurred. For this purpose the design of a fast and accurate matching algorithm is imperative. Two such algorithms were explored: (i) the well-known Hungarian algorithm, and (ii) an order-preserving matching of our own device. Tests were conducted using the DARPA Grand Challenge Problem attack simulator. These showed that the both matching algorithms are effective in detecting attacks; but the Hungarian algorithm is inefficient; whereas the order-preserving one is very efficient, in fact runs in linear time.
NASA Astrophysics Data System (ADS)
Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.
2010-12-01
Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential optimization. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, an OAS spatially variable adjustment with multiplicative factors, ordinary cokriging, and kriging with external drift. In theory, it could be equally applicable to gauge-satellite estimates and other hydrometeorological variables.
Thrust control system design of ducted rockets
NASA Astrophysics Data System (ADS)
Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren
2011-07-01
The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.
Manufacturing techniques for gyroscopes in gravity probe B
NASA Technical Reports Server (NTRS)
Rasquin, J. R.
1976-01-01
The design of the fused silica gyroscope configuration is presented. The first gyroscope was made for erection and spin tests only and does not contain the angle readout loops necessary for a functioning experimental gyroscope. The rotor ball described is not coated with the ultimate material, niobium, but instead with a sandwich of titanium, cooper, and titanium for spin-up test purposes. Background, historical information, manufacturing procedures, and sketches for this gyroscope are included to provide a better understanding of the device and the techniques and special tools required to manufacture a fused silica gyroscope to the required specifications.
Four-point bending as a method for quantitatively evaluating spinal arthrodesis in a rat model.
Robinson, Samuel T; Svet, Mark T; Kanim, Linda A; Metzger, Melodie F
2015-02-01
The most common method of evaluating the success (or failure) of rat spinal fusion procedures is manual palpation testing. Whereas manual palpation provides only a subjective binary answer (fused or not fused) regarding the success of a fusion surgery, mechanical testing can provide more quantitative data by assessing variations in strength among treatment groups. We here describe a mechanical testing method to quantitatively assess single-level spinal fusion in a rat model, to improve on the binary and subjective nature of manual palpation as an end point for fusion-related studies. We tested explanted lumbar segments from Sprague-Dawley rat spines after single-level posterolateral fusion procedures at L4-L5. Segments were classified as 'not fused,' 'restricted motion,' or 'fused' by using manual palpation testing. After thorough dissection and potting of the spine, 4-point bending in flexion then was applied to the L4-L5 motion segment, and stiffness was measured as the slope of the moment-displacement curve. Results demonstrated statistically significant differences in stiffness among all groups, which were consistent with preliminary grading according to manual palpation. In addition, the 4-point bending results provided quantitative information regarding the quality of the bony union formed and therefore enabled the comparison of fused specimens. Our results demonstrate that 4-point bending is a simple, reliable, and effective way to describe and compare results among rat spines after fusion surgery.
A Remote Sensing Image Fusion Method based on adaptive dictionary learning
NASA Astrophysics Data System (ADS)
He, Tongdi; Che, Zongxi
2018-01-01
This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.
Multispectral image fusion for detecting land mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-04-01
This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.
Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed formore » discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.« less
NASA Technical Reports Server (NTRS)
Schmullius, C.; Nithack, J.
1992-01-01
On July 12, the MAC Europe '91 (Multi-Sensor Airborne Campaign) took place over test site Oberpfaffenhofen. The DLR Institute of Radio-Frequency Technology participated with its C-VV, X-VV, and X-HH Experimental Synthetic Aperture Radar (E-SAR). The high resolution E-SAR images with a pixel size between 1 and 2 m and the polarimetric AIRSAR images were analyzed. Using both sensors in combination is a unique opportunity to evaluate SAR images in a frequency range from P- to X-band and to investigate polarimetric information.
NASA Technical Reports Server (NTRS)
Liu, Zhong; Heo, Gil
2015-01-01
Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.
An assessment of Landsat MSS and TM data for urban and near-urban land-cover digital classification
NASA Technical Reports Server (NTRS)
Haack, Barry; Bryant, Nevin; Adams, Steven
1987-01-01
The information content of Landsat TM and MSS data was examined to assess the ability to digitally differentiate urban and near-urban land covers around Miami, FL. This examination included comparisons of unsupervised signature extractions for various cover types, training site statistics for intraclass and interclass separability, and band and band combination selection from an 11-band multisensor data set. The principal analytical tool used in this study was transformed divergence calculations. The TM digital data are typically more useful than the MSS data in the homogeneous near-urban land-covers and less useful in the heterogeneous urban areas.
Future of clip-on weapon sights: pros and cons from an applications perspective
NASA Astrophysics Data System (ADS)
Knight, C. Reed; Greenslade, Ken; Francisco, Glen
2015-05-01
US Domestic, International, allied Foreign National Warfighters and Para-Military First Responders (Police, SWAT, Special Operations, Law Enforcement, Government, Security and more) are put in harm's way all the time. To successfully complete their missions and return home safely are the primary goals of these professionals. Tactical product improvements that affect mission effectiveness and solider survivability are pivotal to understanding the past, present and future of Clip-On in-line weapon sights. Clip-On Weapon Sight (WS) technology was deemed an interim solution by the US Government for use until integrated and fused (day/night multi-sensor) Weapon Sights (WSs) were developed/fielded. Clip-On has now become the solution of choice by Users, Warriors, Soldiers and the US Government. SWaP-C (size, weight and power -cost) has been improved through progressive advances in Clip-On Image Intensified (I2), passive thermal, LL-CMOS and fused technology. Clip-On Weapon Sights are now no longer mounting position sensitive. Now they maintain aim point boresight, so they can be used for longer ranges with increased capabilities while utilizing the existing zeroed weapon and daysight optic. Active illuminated low-light level (both analog I2 and digital LL-CMOS) imaging is rightfully a real-world technology, proven to deliver daytime and low-light level identification confidence. Passive thermal imaging is also a real-world technology, proven to deliver daytime, nighttime and all-weather (including dirty battlefield) target detection confidence. Image processing detection algorithms with intelligent analytics provide documented promise to improve confidence by reducing Users, Warriors and Soldiers' work-loads and improving overall system engagement solution outcomes. In order to understand the future of Clip-On in-line weapon sights, addressing pros and cons, this paper starts with an overview of historical weapon sight applications, technologies and stakeholder decisions driving milestone events that helped shape the Clip-On weapon sight industry. Then, this paper systematically reviews current attributes of integrated multispectral wavelength electro-optical imaging systems that successfully (and sometimes unsuccessfully) shape today's Warrior, Soldier and User's net-capabilities. Finally, this paper explores the evolution, pros and cons, of future Clip-On weapon sights, from a manufacturing and real world applications perspective for tomorrow's military soldier and paramilitary first responder.
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu
2016-03-11
This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.
Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu
2016-01-01
This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361
Fault tolerant multi-sensor fusion based on the information gain
NASA Astrophysics Data System (ADS)
Hage, Joelle Al; El Najjar, Maan E.; Pomorski, Denis
2017-01-01
In the last decade, multi-robot systems are used in several applications like for example, the army, the intervention areas presenting danger to human life, the management of natural disasters, the environmental monitoring, exploration and agriculture. The integrity of localization of the robots must be ensured in order to achieve their mission in the best conditions. Robots are equipped with proprioceptive (encoders, gyroscope) and exteroceptive sensors (Kinect). However, these sensors could be affected by various faults types that can be assimilated to erroneous measurements, bias, outliers, drifts,… In absence of a sensor fault diagnosis step, the integrity and the continuity of the localization are affected. In this work, we present a muti-sensors fusion approach with Fault Detection and Exclusion (FDE) based on the information theory. In this context, we are interested by the information gain given by an observation which may be relevant when dealing with the fault tolerance aspect. Moreover, threshold optimization based on the quantity of information given by a decision on the true hypothesis is highlighted.
AN ONLINE CATALOG OF CATACLYSMIC VARIABLE SPECTRA FROM THE FAR-ULTRAVIOLET SPECTROSCOPIC EXPLORER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godon, Patrick; Sion, Edward M.; Levay, Karen
2012-12-15
We present an online catalog containing spectra and supporting information for cataclysmic variables that have been observed with the Far-Ultraviolet Spectroscopic Explorer (FUSE). For each object in the catalog we list some of the basic system parameters such as (R.A., decl.), period, inclination, and white dwarf mass, as well as information on the available FUSE spectra: data ID, observation date and time, and exposure time. In addition, we provide parameters needed for the analysis of the FUSE spectra such as the reddening E(B - V), distance, and state (high, low, intermediate) of the system at the time it was observed.more » For some of these spectra we have carried out model fits to the continuum with synthetic stellar and/or disk spectra using the codes TLUSTY and SYNSPEC. We provide the parameters obtained from these model fits; this includes the white dwarf temperature, gravity, projected rotational velocity, and elemental abundances of C, Si, S, and N, together with the disk mass accretion rate, the resulting inclination, and model-derived distance (when unknown). For each object one or more figures are provided (as gif files) with line identification and model fit(s) when available. The FUSE spectra and the synthetic spectra are directly available for download as ASCII tables. References are provided for each object, as well as for the model fits. In this article we present 36 objects, and additional ones will be added to the online catalog in the future. In addition to cataclysmic variables, we also include a few related objects, such as a wind-accreting white dwarf, a pre-cataclysmic variable, and some symbiotics.« less
NASA Technical Reports Server (NTRS)
Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen
2009-01-01
Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007
Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele
2017-01-01
This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. PMID:28561750
Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele
2017-05-31
This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.
Reliability measurement during software development. [for a multisensor tracking system
NASA Technical Reports Server (NTRS)
Hecht, H.; Sturm, W. A.; Trattner, S.
1977-01-01
During the development of data base software for a multi-sensor tracking system, reliability was measured. The failure ratio and failure rate were found to be consistent measures. Trend lines were established from these measurements that provided good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined.
NASA Astrophysics Data System (ADS)
Emter, Thomas; Petereit, Janko
2014-05-01
An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.
A scale space feature based registration technique for fusion of satellite imagery
NASA Technical Reports Server (NTRS)
Raghavan, Srini; Cromp, Robert F.; Campbell, William C.
1997-01-01
Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.
NASA Astrophysics Data System (ADS)
Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.
2004-12-01
The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII output - for all plot types; and (5) image animation - for area plot. Planned output options for the near-future include correlation plots and GIS-compatible outputs. The AIS will enable the remote, interoperable access to distributed data, because the current Giovanni implementation incorporates the GrADS-DODS Server (GDS), a stable, secure data server that provides subsetting and analysis services across the Internet, for any GrADS-readable data set. The subsetting capability allows users to retrieve a specified spatial region from a large data set, eliminating the need to first download the entire data set. The analysis capability allows users to retrieve the results of an operation applied to one or more data sets on the server. The Giovanni-GDS technology allows the serving of data, through convenient on-line analysis tools, from any location where GDS and a few GrADS scripts are installed. The GES-DISC implementation of this technology is unique in the way it enables multi-sensor processing and analysis.
NASA Astrophysics Data System (ADS)
Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan
2015-03-01
Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.
29 CFR 1910.399 - Definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... assembly of a fuse support with either a fuseholder, fuse carrier, or disconnecting blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade... in which all or part of the fuse support and its fuse link or disconnecting blade are mounted in oil...
29 CFR 1910.399 - Definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... assembly of a fuse support with either a fuseholder, fuse carrier, or disconnecting blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade... in which all or part of the fuse support and its fuse link or disconnecting blade are mounted in oil...
29 CFR 1910.399 - Definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... assembly of a fuse support with either a fuseholder, fuse carrier, or disconnecting blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade... in which all or part of the fuse support and its fuse link or disconnecting blade are mounted in oil...
29 CFR 1910.399 - Definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... assembly of a fuse support with either a fuseholder, fuse carrier, or disconnecting blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade... in which all or part of the fuse support and its fuse link or disconnecting blade are mounted in oil...
29 CFR 1910.399 - Definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... assembly of a fuse support with either a fuseholder, fuse carrier, or disconnecting blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade... in which all or part of the fuse support and its fuse link or disconnecting blade are mounted in oil...
AOD furnace splash soft-sensor in the smelting process based on improved BP neural network
NASA Astrophysics Data System (ADS)
Ma, Haitao; Wang, Shanshan; Wu, Libin; Yu, Ying
2017-11-01
In view of argon oxygen refining low carbon ferrochrome production process, in the splash of smelting process as the research object, based on splash mechanism analysis in the smelting process , using multi-sensor information fusion and BP neural network modeling techniques is proposed in this paper, using the vibration signal, the audio signal and the flame image signal in the furnace as the characteristic signal of splash, the vibration signal, the audio signal and the flame image signal in the furnace integration and modeling, and reconstruct splash signal, realize the splash soft measurement in the smelting process, the simulation results show that the method can accurately forecast splash type in the smelting process, provide a new method of measurement for forecast splash in the smelting process, provide more accurate information to control splash.
Application of data fusion technology based on D-S evidence theory in fire detection
NASA Astrophysics Data System (ADS)
Cai, Zhishan; Chen, Musheng
2015-12-01
Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.
Integration of heterogeneous data for classification in hyperspectral satellite imagery
NASA Astrophysics Data System (ADS)
Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.
2012-06-01
As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.
Multisensor data fusion for enhanced respiratory rate estimation in thermal videos.
Pereira, Carina B; Xinchi Yu; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen
2016-08-01
Scientific studies have demonstrated that an atypical respiratory rate (RR) is frequently one of the earliest and major indicators of physiological distress. However, it is also described in the literature as "the neglected vital parameter", mainly due to shortcomings of clinical available monitoring techniques, which require attachment of sensors to the patient's body. The current paper introduces a novel approach that uses multisensor data fusion for an enhanced RR estimation in thermal videos. It considers not only the temperature variation around nostrils and mouth, but the upward and downward movement of both shoulders. In order to analyze the performance of our approach, two experiments were carried out on five healthy candidates. While during phase A, the subjects breathed normally, during phase B they simulated different breathing patterns. Thoracic effort was the gold standard elected to validate our algorithm. Our results show an excellent agreement between infrared thermography (IRT) and ground truth. While in phase A a mean correlation of 0.983 and a root-mean-square error of 0.240 bpm (breaths per minute) was obtained, in phase B they hovered around 0.995 and 0.890 bpm, respectively. In sum, IRT may be a promising clinical alternative to conventional sensors. Additionally, multisensor data fusion contributes to an enhancement of RR estimation and robustness.
ATR architecture for multisensor fusion
NASA Astrophysics Data System (ADS)
Hamilton, Mark K.; Kipp, Teresa A.
1996-06-01
The work of the U.S. Army Research Laboratory (ARL) in the area of algorithms for the identification of static military targets in single-frame electro-optical (EO) imagery has demonstrated great potential in platform-based automatic target identification (ATI). In this case, the term identification is used to mean being able to tell the difference between two military vehicles -- e.g., the M60 from the T72. ARL's work includes not only single-sensor forward-looking infrared (FLIR) ATI algorithms, but also multi-sensor ATI algorithms. We briefly discuss ARL's hybrid model-based/data-learning strategy for ATI, which represents a significant step forward in ATI algorithm design. For example, in the case of single sensor FLIR it allows the human algorithm designer to build directly into the algorithm knowledge that can be adequately modeled at this time, such as the target geometry which directly translates into the target silhouette in the FLIR realm. In addition, it allows structure that is not currently well understood (i.e., adequately modeled) to be incorporated through automated data-learning algorithms, which in a FLIR directly translates into an internal thermal target structure signature. This paper shows the direct applicability of this strategy to both the single-sensor FLIR as well as the multi-sensor FLIR and laser radar.
Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng
2017-01-01
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne
2012-01-01
Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.
Formulation of image fusion as a constrained least squares optimization problem
Dwork, Nicholas; Lasry, Eric M.; Pauly, John M.; Balbás, Jorge
2017-01-01
Abstract. Fusing a lower resolution color image with a higher resolution monochrome image is a common practice in medical imaging. By incorporating spatial context and/or improving the signal-to-noise ratio, it provides clinicians with a single frame of the most complete information for diagnosis. In this paper, image fusion is formulated as a convex optimization problem that avoids image decomposition and permits operations at the pixel level. This results in a highly efficient and embarrassingly parallelizable algorithm based on widely available robust and simple numerical methods that realizes the fused image as the global minimizer of the convex optimization problem. PMID:28331885
FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.
Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto
2010-01-01
Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.
Clark, Martyn P.; Slater, Andrew G.; Rupp, David E.; Woods, Ross A.; Vrugt, Jasper A.; Gupta, Hoshin V.; Wagener, Thorsten; Hay, Lauren E.
2008-01-01
The problems of identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure remain outstanding research challenges for the discipline of hydrology. Progress on these problems requires understanding of the nature of differences between models. This paper presents a methodology to diagnose differences in hydrological model structures: the Framework for Understanding Structural Errors (FUSE). FUSE was used to construct 79 unique model structures by combining components of 4 existing hydrological models. These new models were used to simulate streamflow in two of the basins used in the Model Parameter Estimation Experiment (MOPEX): the Guadalupe River (Texas) and the French Broad River (North Carolina). Results show that the new models produced simulations of streamflow that were at least as good as the simulations produced by the models that participated in the MOPEX experiment. Our initial application of the FUSE method for the Guadalupe River exposed relationships between model structure and model performance, suggesting that the choice of model structure is just as important as the choice of model parameters. However, further work is needed to evaluate model simulations using multiple criteria to diagnose the relative importance of model structural differences in various climate regimes and to assess the amount of independent information in each of the models. This work will be crucial to both identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure. To facilitate research on these problems, the FORTRAN‐90 source code for FUSE is available upon request from the lead author.
Fusing Communication and Writing Skills in the 21st Century's IT/IS Curricula
ERIC Educational Resources Information Center
Liu, Michelle; Murphy, Diane
2012-01-01
Written and oral communication has been listed as the top explicitly requested skill by employers for a long time. Despite pressure from industry, the gap still exists between the expectations and average written and oral communication skills of current information technology/information systems graduates. This paper addresses the above issues and…
NASA Astrophysics Data System (ADS)
Benedetto, J.; Cloninger, A.; Czaja, W.; Doster, T.; Kochersberger, K.; Manning, B.; McCullough, T.; McLane, M.
2014-05-01
Successful performance of radiological search mission is dependent on effective utilization of mixture of signals. Examples of modalities include, e.g., EO imagery and gamma radiation data, or radiation data collected during multiple events. In addition, elevation data or spatial proximity can be used to enhance the performance of acquisition systems. State of the art techniques in processing and exploitation of complex information manifolds rely on diffusion operators. Our approach involves machine learning techniques based on analysis of joint data- dependent graphs and their associated diffusion kernels. Then, the significant eigenvectors of the derived fused graph Laplace and Schroedinger operators form the new representation, which provides integrated features from the heterogeneous input data. The families of data-dependent Laplace and Schroedinger operators on joint data graphs, shall be integrated by means of appropriately designed fusion metrics. These fused representations are used for target and anomaly detection.
Semantically enabled image similarity search
NASA Astrophysics Data System (ADS)
Casterline, May V.; Emerick, Timothy; Sadeghi, Kolia; Gosse, C. A.; Bartlett, Brent; Casey, Jason
2015-05-01
Georeferenced data of various modalities are increasingly available for intelligence and commercial use, however effectively exploiting these sources demands a unified data space capable of capturing the unique contribution of each input. This work presents a suite of software tools for representing geospatial vector data and overhead imagery in a shared high-dimension vector or embedding" space that supports fused learning and similarity search across dissimilar modalities. While the approach is suitable for fusing arbitrary input types, including free text, the present work exploits the obvious but computationally difficult relationship between GIS and overhead imagery. GIS is comprised of temporally-smoothed but information-limited content of a GIS, while overhead imagery provides an information-rich but temporally-limited perspective. This processing framework includes some important extensions of concepts in literature but, more critically, presents a means to accomplish them as a unified framework at scale on commodity cloud architectures.
Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan
2017-01-01
Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices are not yet equivalent to the best research-grade devices or indeed equivalent to each other. We propose independent quality standards and/or accuracy ratings for consumer devices are required.
Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan
2017-01-01
Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices are not yet equivalent to the best research-grade devices or indeed equivalent to each other. We propose independent quality standards and/or accuracy ratings for consumer devices are required. PMID:28234979
Pan, Jianjun
2018-01-01
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073
2016-01-01
planning exercises and wargaming. Initial Experimentation Late in the research , the prototype platform and the various fusion methods came together. This...Chapter Four points to prior research 2 Uncertainty-Sensitive Heterogeneous Information Fusion in mind multimethod fusing of complex information...our research is assessing the threat of terrorism posed by individuals or groups under scrutiny. Broadly, the ultimate objec- tives, which go well
Advantages and Challenges in using Multi-Sensor Data for Studying Aerosols from Space
NASA Astrophysics Data System (ADS)
Leptoukh, Gregory
We are living now in the golden era of numerous sensors measuring aerosols from space, e.g., MODIS, MISR, MERIS, OMI, POLDER, etc. Data from multiple sensors provide a more complete coverage of physical phenomena than data from a single sensor. These sensors are rather different from each other, are sensitive to various parts of the atmosphere, use different aerosol models and treat surface differently when retrieving aerosols. However, they complement each other thus providing more information about spatial, vertical and temporal distribution of aerosols. In addition to differences in instrumentation, retrieval algorithms and calibration, there are quite substantial differences in processing algorithms from Level 0 up to Level 3 and 4. Some of these differences in processing steps, at times not well documented and not widely known by users, can lead to quite significant differences in final products. Without documenting all the steps leading to the final product, data users will not trust the data and/or may use data incorrectly. Data by themselves without quality assessment and provenance are not sufficient to make accurate scientific conclusions. In this paper we provide examples of striking differences between aerosol optical depth data from MODIS, MISR, and MERIS that can be attributed to differences in a certain threshold, aggregation methods, and the dataday definition. We talk about challenges in developing processing provenance. Also, we address issues of harmonization of data, quality and provenance that is needed to guide the multi-sensor data usage and avoid apples-to-oranges comparison and fusion.
Close-in detection system for the Mine Hunter/Killer program
NASA Astrophysics Data System (ADS)
Bishop, Steven S.; Campana, Stephen B.; Lang, David A.; Wiggins, Carl M.
2000-08-01
The Close-in Detection (CID) System is the vehicle-mounted multisensor landmine detection system for the Army CECOM Night Vision Electronic Sensors Directorate (NVESD) Mine Hunter/Killer (MH/K) Program. The CID System is being developed by BAE Systems in San Diego, CA. TRW Systems and Information Technology Group in Arlington, VA and a team of specialists for ERIM, E-OIR, SNL, and APL/JHU support NVESD in the development, analysis and testing of the CID and associated signal and data processing. The CID System includes tow down-looking sensor arrays: a ground- penetrating radar (GPR) array, and a set of Electro-Magnetic Induction (EMI) coils for metal detection. These arrays span a 3-meter wide swath in front of a high mobility, multipurpose wheeled vehicle. The system also includes a forward looking IR imaging system mounted on the roof of the vehicle and covering a swath of the road ahead of the vehicle. Signals from each sensor are processed separately to detect and localize objects of interest. Features of candidate objects are integrated in a processor that uses them to discriminates between anti-tank miens and clutter. Mine locations are passed to the neutralization subsystem of MH/K. This paper reviews the design of the sensors and signal processing of the CID system and gives examples and analysis of recent test results at the NVESD mine lanes. The strengths and weaknesses of each sensor are discussed, and the application of multisensor fusion is illustrated.
Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling
NASA Astrophysics Data System (ADS)
Turner, Darren; Lucieer, Arko; Malenovský, Zbyněk; King, Diana; Robinson, Sharon A.
2018-06-01
Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.
Tools and Data Services from the NASA Earth Satellite Observations for Climate Applications
NASA Technical Reports Server (NTRS)
Vicente, Gilberto A.
2005-01-01
Climate science and applications require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation to data reduction, combination and data product production. This time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions. In order to address these issues the Goddard Space Flight Center (GSFC) Earth Sciences (GES), Data and Information Service Center (DISC) Distributed Active Archive Center (DAAC) has made great progress in facilitating science and applications research by developing innovative tools and data services applied to the Earth sciences atmospheric and climate data. The GES/DISC/DAAC has successfully implemented and maintained a long-term climate satellite data archive and developed tools and services to a variety of atmospheric science missions including AIRS, AVHRR, MODIS, SeaWiFS, SORCE, TOMS, TOVS, TRMM, and UARS and Aura instruments providing researchers with excellent opportunities to acquire accurate and continuous atmospheric measurements. Since the number of climate science products from these various missions is steadily increasing as a result of more sophisticated sensors and new science algorithms, the main challenge for data centers like the GES/DISC/DAAC is to guide users through the variety of data sets and products, provide tools to visualize and reduce the volume of the data and secure uninterrupted and reliable access to data and related products. This presentation will describe the effort at the GES/DISC/DAAC to build a bridge between multi-sensor data and the effective scientific use of the data, with an emphasis on the heritage satellite observations and science products for climate applications. The intent is to inform users of the existence of this large collection of data and products; suggest starting points for cross-platform science projects and data mining activities and provide data services and tools information. More information about the GES/DISC/DAAC satellite data and products, tools, and services can be found at http://daac.gsfc.nasa.gov.
NASA Technical Reports Server (NTRS)
Jones, N. D.; Kinsinger, R. E.; Harris, L. P.
1973-01-01
The mercury-filled self-healing fuses developed for this program afford very good protection from circuit faults with rapid reclosure. Fuse performance and design parameters have been characterized. Life tests indicate a capability of 500 fuse operations. Fuse ratings are 150 v at 5, 15, 25 and 50 circuit A. A series of sample fuses using alumina and beryllia insulation have been furnished to NASA for circuit evaluation.
Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening
NASA Astrophysics Data System (ADS)
Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry
2011-05-01
In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).
NASA Astrophysics Data System (ADS)
Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.
2017-11-01
In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.
A general CFD framework for fault-resilient simulations based on multi-resolution information fusion
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-10-01
We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.
NASA Technical Reports Server (NTRS)
Vicente, Gilberto
2005-01-01
Several commercial applications of remote sensing data, such as water resources management, environmental monitoring, climate prediction, agriculture, forestry, preparation for and migration of extreme weather events, require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation of data reduction, combination and data product production. The time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions.
Analysis of a multisensor image data set of south San Rafael Swell, Utah
NASA Technical Reports Server (NTRS)
Evans, D. L.
1982-01-01
A Shuttle Imaging Radar (SIR-A) image of the southern portion of the San Rafael Swell in Utah has been digitized and registered to coregistered Landsat, Seasat, and HCMM thermal inertia images. The addition of the SIR-A image to the registered data set improves rock type discrimination in both qualitative and quantitative analyses. Sedimentary units can be separated in a combined SIR-A/Seasat image that cannot be seen in either image alone. Discriminant Analyses show that the classification accuracy is improved with addition of the SIR-A image to Landsat images. Classification accuracy is further improved when texture information from the Seasat and SIR-A images is included.
Gu, Yingxin; Brown, Jesslyn F.; Miura, Tomoaki; van Leeuwen, Willem J.D.; Reed, Bradley C.
2010-01-01
This study introduces a new geographic framework, phenological classification, for the conterminous United States based on Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data and a digital elevation model. The resulting pheno-class map is comprised of 40 pheno-classes, each having unique phenological and topographic characteristics. Cross-comparison of the pheno-classes with the 2001 National Land Cover Database indicates that the new map contains additional phenological and climate information. The pheno-class framework may be a suitable basis for the development of an Advanced Very High Resolution Radiometer (AVHRR)-MODIS NDVI translation algorithm and for various biogeographic studies.
Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing
2016-04-30
FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament
Li, Ziyi; Safo, Sandra E; Long, Qi
2017-07-11
Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.
Shinkawa, Norihiro; Hirai, Toshinori; Nishii, Ryuichi; Yukawa, Nobuhiro
2017-06-01
To determine the feasibility of human identification through the two-dimensional (2D) fusion of postmortem computed tomography (PMCT) and antemortem chest radiography. The study population consisted of 15 subjects who had undergone chest radiography studies more than 12 months before death. Fused images in which a chest radiograph was fused with a PMCT image were obtained for those subjects using a workstation, and the minimum distance gaps between corresponding anatomical landmarks (located at soft tissue and bone sites) in the images obtained with the two modalities were calculated. For each fused image, the mean of all these minimum distance gaps was recorded as the mean distance gap (MDG). For each subject, the MDG obtained for the same-subject fused image (i.e., where both of the images that were fused derived from that subject) was compared with the MDGs for different-subject fused images (i.e., where only one of the images that were fused derived from that subject; the other image derived from a different subject) in order to determine whether same-subject fused images can be reliably distinguished from different-subject fused images. The MDGs of the same-subject fused images were found to be significantly smaller than the MDGs of the different-subject fused images (p < 0.01). When bone landmarks were used, the same-subject fused image was found to be the fused image with the lowest MDG for 33.3% of the subjects, the fused image with the lowest or second-lowest MDG for 73.3% of the subjects, and the fused image with the lowest, second-lowest, or third-lowest MDG for 86.7% of the subjects. The application of bone landmarks rather than soft-tissue landmarks made it significantly more likely that, for each subject, the same-subject fused image would have the lowest MDG (or one of the lowest MDGs) of all the fused images compared (p < 0.05). The 2D fusion of antemortem chest radiography and postmortem CT images may assist in human identification.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification.
Rajagopal, Gayathri; Palaniswamy, Ramamoorthy
2015-01-01
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database.
Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification
Rajagopal, Gayathri; Palaniswamy, Ramamoorthy
2015-01-01
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database. PMID:26640813
Investigation of automated feature extraction using multiple data sources
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.
2003-04-01
An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G
2013-12-01
To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.
NASA Technical Reports Server (NTRS)
Volponi, Al; Simon, Donald L. (Technical Monitor)
2008-01-01
A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid engine model for a propulsion gas turbine engine, which is the result of fusing two diverse modeling methodologies: a physics-based model approach and an empirical model approach. The report describes the process and methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine. Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance changes and engine parameter synthesis for fault detection and accommodation.
FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts
Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto
2010-01-01
Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304
Reducing multi-sensor data to a single time course that reveals experimental effects
2013-01-01
Background Multi-sensor technologies such as EEG, MEG, and ECoG result in high-dimensional data sets. Given the high temporal resolution of such techniques, scientific questions very often focus on the time-course of an experimental effect. In many studies, researchers focus on a single sensor or the average over a subset of sensors covering a “region of interest” (ROI). However, single-sensor or ROI analyses ignore the fact that the spatial focus of activity is constantly changing, and fail to make full use of the information distributed over the sensor array. Methods We describe a technique that exploits the optimality and simplicity of matched spatial filters in order to reduce experimental effects in multivariate time series data to a single time course. Each (multi-sensor) time sample of each trial is replaced with its projection onto a spatial filter that is matched to an observed experimental effect, estimated from the remaining trials (Effect-Matched Spatial filtering, or EMS filtering). The resulting set of time courses (one per trial) can be used to reveal the temporal evolution of an experimental effect, which distinguishes this approach from techniques that reveal the temporal evolution of an anatomical source or region of interest. Results We illustrate the technique with data from a dual-task experiment and use it to track the temporal evolution of brain activity during the psychological refractory period. We demonstrate its effectiveness in separating the means of two experimental conditions, and in significantly improving the signal-to-noise ratio at the single-trial level. It is fast to compute and results in readily-interpretable time courses and topographies. The technique can be applied to any data-analysis question that can be posed independently at each sensor, and we provide one example, using linear regression, that highlights the versatility of the technique. Conclusion The approach described here combines established techniques in a way that strikes a balance between power, simplicity, speed of processing, and interpretability. We have used it to provide a direct view of parallel and serial processes in the human brain that previously could only be measured indirectly. An implementation of the technique in MatLab is freely available via the internet. PMID:24125590
Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang
2016-01-01
Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO2, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO2 and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO2; smoke and temperature; smoke, CO2 and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%–92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition. PMID:27527175
Multianalyte imaging in one-shot format sensors for natural waters.
Lapresta-Fernández, A; Huertas, Rafael; Melgosa, Manuel; Capitán-Vallvey, L F
2009-03-23
A one-shot multisensor based on ionophore-chromoionophore chemistry for optical monitoring of potassium, magnesium and hardness in water is presented. The analytical procedure uses a black and white non-cooled CCD camera for image acquisition of the one-shot multisensor after reaction, followed by data treatment for quantitation using the grey value pixel average from a defined region of interest from each sensing area to build the analytical parameter 1-alpha. In optimised experimental conditions, the procedure shows a large linear range, up to 6 orders using the linearised model and good detection limits: 9.92 x 10(-5)mM, 1.86 x 10(-3)mM and 1.30 x 10(-2)mgL(-1) of CaCO(3) for potassium, magnesium and hardness, respectively. This analysis system exhibits good precision in terms of relative standard deviation (RSD%) from 2.3 to 3.8 for potassium, from 5.0 to 6.8 for magnesium and from 5.4 to 5.9 for hardness. The trueness of this multisensor procedure was demonstrated comparing it with results obtained by a DAD spectrophotometer used as a reference. Finally, it was satisfactorily applied to the analysis of these analytes in miscellaneous samples, such as water and beverage samples from different origins, validating the results against atomic absorption spectrometry (AAS) as the reference procedure.
NASA Technical Reports Server (NTRS)
Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.;
2014-01-01
We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng
2014-09-02
Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers. Copyright © 2014 Elsevier B.V. All rights reserved.
Automatic parameter selection for feature-based multi-sensor image registration
NASA Astrophysics Data System (ADS)
DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan
2006-05-01
Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.
Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang
2016-08-04
Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.
Solid-Body Fuse Developed for High- Voltage Space Power Missions
NASA Technical Reports Server (NTRS)
Dolce, James L.; Baez, Anastacio N.
2001-01-01
AEM Incorporated has completed the development, under a NASA Glenn Research Center contract, of a solid-body fuse for high-voltage power systems of satellites and spacecraft systems. High-reliability fuses presently defined by MIL-PRF-23419 do not meet the increased voltage and amperage requirements for the next generation of spacecraft. Solid-body fuses exhibit electrical and mechanical attributes that enable these fuses to perform reliably in the vacuum and high-vibration and -shock environments typically present in spacecraft applications. The construction and screening techniques for solid-body fuses described by MIL-PRF-23419/12 offer an excellent roadmap for the development of high-voltage solid-body fuses.
NASA Astrophysics Data System (ADS)
Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.
2016-12-01
Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice cloud microphysical properties and remote sensing applications will be discussed. Chen Zhou and Ping Yang : Backscattering peak of ice cloud particles, Opt. Express 23, 11995-12003 (2015) Holz, R. E. et al : Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075-5090 (2016)
NASA Technical Reports Server (NTRS)
Case, Jonathan L.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center has been running a real-time version of the Land Information System (LIS) since summer 2010 (hereafter, SPoRTLIS). The real-time SPoRT-LIS runs the Noah land surface model (LSM) in an offline capacity apart from a numerical weather prediction model, using input atmospheric and precipitation analyses (i.e., "forcings") to drive the Noah LSM integration at 3-km resolution. Its objectives are to (1) produce local-scale information about the soil state for NOAA/National Weather Service (NWS) situational awareness applications such as drought monitoring and assessing flood potential, and (2) provide land surface initialization fields for local modeling initiatives. The current domain extent has been limited by the input atmospheric analyses that drive the Noah LSM integration within SPoRT-LIS, specifically the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analyses. Due to the nature of the geographical edges of the Stage IV precipitation grid and its limitations in the western U.S., the SPoRT-LIS was originally confined to a domain fully nested within the Stage IV grid, over the southeastern half of the Conterminous United States (CONUS). In order to expand the real-time SPoRT-LIS to a full CONUS domain, alternative precipitation forcing datasets were explored in year-long, offline comparison runs of the Noah LSM. Based on results of these comparison simulations, we chose to implement the radar/gauge-based precipitation analyses from the National Severe Storms Laboratory as a replacement to the Stage IV product. The Multi-Radar Multi-Sensor (MRMS; formerly known as the National Mosaic and multi-sensor Quantitative precipitation estimate) product has full CONUS coverage at higher-resolution, thereby providing better coverage and greater detail than that of the Stage IV product. This paper will describe the expanded/upgraded SPoRT-LIS, present comparisons between the original and upgraded SPoRT-LIS, and discuss the path forward for future collaboration opportunities with SPoRT partners in the NWS.
NASA Astrophysics Data System (ADS)
Maksyutov, S. S.; Shvidenko, A.; Shchepashchenko, D.
2014-12-01
The verified full carbon assessment of Russian forests (FCA) is based on an Integrated Land Information System (ILIS) that includes a multi-layer and multi-scale GIS with basic resolution of 1 km and corresponding attributive databases. The ILIS aggregates all available information about ecosystems and landscapes, sets of empirical and semi-empirical data and aggregations, data of different inventories and surveys, and multi-sensor remote sensing data. The ILIS serves as an information base for application of the landscape-ecosystem approach (LEA) of the FCA and as a systems design for comparison and mutual constraints with other methods of study of carbon cycling of forest ecosystems (eddy covariance; process models; inverse modeling; and multi-sensor application of remote sensing). The LEA is based on a complimentary use of the flux-based method with some elements of the pool-based method. Introduction of climatic parameters of individual years in the LEA, as well as some process-based elements, allows providing a substantial decrease of the uncertainties of carbon cycling yearly indicators of forest ecosystems. Major carbon pools (live biomass, coarse woody debris, soil organic carbon) are estimated based on data on areas, distribution and major biometric characteristics of Russian forests presented in form of the ILIS for the country. The major fluxes accounted for include Net Primary Production (NPP), Soil Heterotrophic Respiration (SHR), as well as fluxes caused by decomposition of Coarse Woody Debris (CWD), harvest and use of forest products, fluxes caused by natural disturbances (fire, insect outbreaks, impacts of unfavorable environment) and lateral fluxes to hydrosphere and lithosphere. Use of landscape-ecosystem approach resulted in the NECB at 573±140 Tg C yr-1 (CI 0.9). While the total carbon sink is high, large forest areas, particularly on permafrost, serve as a carbon source. The ratio between net primary production and soil heterotrophic respiration, together with natural and human-induced disturbances are major drivers of the magnitude and spatial distribution of the NECB of forest ecosystems. We also present comparison to the recent top-down estimates of the Siberian carbon sink.
Hybrid Arrays for Chemical Sensing
NASA Astrophysics Data System (ADS)
Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.
In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.
Visualization of conserved structures by fusing highly variable datasets.
Silverstein, Jonathan C; Chhadia, Ankur; Dech, Fred
2002-01-01
Skill, effort, and time are required to identify and visualize anatomic structures in three-dimensions from radiological data. Fundamentally, automating these processes requires a technique that uses symbolic information not in the dynamic range of the voxel data. We were developing such a technique based on mutual information for automatic multi-modality image fusion (MIAMI Fuse, University of Michigan). This system previously demonstrated facility at fusing one voxel dataset with integrated symbolic structure information to a CT dataset (different scale and resolution) from the same person. The next step of development of our technique was aimed at accommodating the variability of anatomy from patient to patient by using warping to fuse our standard dataset to arbitrary patient CT datasets. A standard symbolic information dataset was created from the full color Visible Human Female by segmenting the liver parenchyma, portal veins, and hepatic veins and overwriting each set of voxels with a fixed color. Two arbitrarily selected patient CT scans of the abdomen were used for reference datasets. We used the warping functions in MIAMI Fuse to align the standard structure data to each patient scan. The key to successful fusion was the focused use of multiple warping control points that place themselves around the structure of interest automatically. The user assigns only a few initial control points to align the scans. Fusion 1 and 2 transformed the atlas with 27 points around the liver to CT1 and CT2 respectively. Fusion 3 transformed the atlas with 45 control points around the liver to CT1 and Fusion 4 transformed the atlas with 5 control points around the portal vein. The CT dataset is augmented with the transformed standard structure dataset, such that the warped structure masks are visualized in combination with the original patient dataset. This combined volume visualization is then rendered interactively in stereo on the ImmersaDesk in an immersive Virtual Reality (VR) environment. The accuracy of the fusions was determined qualitatively by comparing the transformed atlas overlaid on the appropriate CT. It was examined for where the transformed structure atlas was incorrectly overlaid (false positive) and where it was incorrectly not overlaid (false negative). According to this method, fusions 1 and 2 were correct roughly 50-75% of the time, while fusions 3 and 4 were correct roughly 75-100%. The CT dataset augmented with transformed dataset was viewed arbitrarily in user-centered perspective stereo taking advantage of features such as scaling, windowing and volumetric region of interest selection. This process of auto-coloring conserved structures in variable datasets is a step toward the goal of a broader, standardized automatic structure visualization method for radiological data. If successful it would permit identification, visualization or deletion of structures in radiological data by semi-automatically applying canonical structure information to the radiological data (not just processing and visualization of the data's intrinsic dynamic range). More sophisticated selection of control points and patterns of warping may allow for more accurate transforms, and thus advances in visualization, simulation, education, diagnostics, and treatment planning.
Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach
NASA Astrophysics Data System (ADS)
Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.
2012-12-01
Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks
Lam, William H. K.; Li, Qingquan
2017-01-01
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.
Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan
2017-12-06
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.
Predicting individual fusional range from optometric data
NASA Astrophysics Data System (ADS)
Endrikhovski, Serguei; Jin, Elaine; Miller, Michael E.; Ford, Robert W.
2005-03-01
A model was developed to predict the range of disparities that can be fused by an individual user from optometric measurements. This model uses parameters, such as dissociated phoria and fusional reserves, to calculate an individual user"s fusional range (i.e., the disparities that can be fused on stereoscopic displays) when the user views a stereoscopic stimulus from various distances. This model is validated by comparing its output with data from a study in which the individual fusional range of a group of users was quantified while they viewed a stereoscopic display from distances of 0.5, 1.0, and 2.0 meters. Overall, the model provides good data predictions for the majority of the subjects and can be generalized for other viewing conditions. The model may, therefore, be used within a customized stereoscopic system, which would render stereoscopic information in a way that accounts for the individual differences in fusional range. Because the comfort of an individual user also depends on the user"s ability to fuse stereo images, such a system may, consequently, improve the comfort level and viewing experience for people with different stereoscopic fusional capabilities.
SO2 plume height retrieval from UV satellite measurements in support to aviation control
NASA Astrophysics Data System (ADS)
van Gent, Jeroen; Brenot, Hugues; Lerot, Christophe; Theys, Nicolas; Van Roozendael, Michel
2014-05-01
The Support to Aviation Control Service (SACS), operated at our institute, uses multi-sensor UV-visible and infrared satellite measurements to provide near real-time information on volcanic ash and SO2 concentrations. In case of enhanced SO2 concentrations, notifications are send out to subscribing organisations and individuals, with details regarding the volcanic event. This information may be used by aviation control organisations to judge the risc to air traffic and provide possible alternative routing. One of the latest additions to the system is information on the altitude of SO2 plumes, based on UV measurements of the GOME-2 sensors on the platforms METOP-A and METOP-B. Further improvement of this system is ongoing. This poster shows examples of plume height retrieval from GOME-2 (METOP-A and -B) and OMI (EOS-AURA). Results are shown for a number of recent major volcanic eruptions, each with different characteristics. The applied technique to retrieve altitude information will be discussed, as well as the applicability, quality and limitations of the method.
Accuracy Assessment of Professional Grade Unmanned Systems for High Precision Airborne Mapping
NASA Astrophysics Data System (ADS)
Mostafa, M. M. R.
2017-08-01
Recently, sophisticated multi-sensor systems have been implemented on-board modern Unmanned Aerial Systems. This allows for producing a variety of mapping products for different mapping applications. The resulting accuracies match the traditional well engineered manned systems. This paper presents the results of a geometric accuracy assessment project for unmanned systems equipped with multi-sensor systems for direct georeferencing purposes. There are a number of parameters that either individually or collectively affect the quality and accuracy of a final airborne mapping product. This paper focuses on identifying and explaining these parameters and their mutual interaction and correlation. Accuracy Assessment of the final ground object positioning accuracy is presented through real-world 8 flight missions that were flown in Quebec, Canada. The achievable precision of map production is addressed in some detail.
METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM
Wiswall, R.H.
1958-06-24
A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.
NASA Astrophysics Data System (ADS)
Grimes, J.; Mahoney, A. R.; Heinrichs, T. A.; Eicken, H.
2012-12-01
Sensor data can be highly variable in nature and also varied depending on the physical quantity being observed, sensor hardware and sampling parameters. The sea ice mass balance site (MBS) operated in Barrow by the University of Alaska Fairbanks (http://seaice.alaska.edu/gi/observatories/barrow_sealevel) is a multisensor platform consisting of a thermistor string, air and water temperature sensors, acoustic altimeters above and below the ice and a humidity sensor. Each sensor has a unique specification and configuration. The data from multiple sensors are combined to generate sea ice data products. For example, ice thickness is calculated from the positions of the upper and lower ice surfaces, which are determined using data from downward-looking and upward-looking acoustic altimeters above and below the ice, respectively. As a data clearinghouse, the Geographic Information Network of Alaska (GINA) processes real time data from many sources, including the Barrow MBS. Doing so requires a system that is easy to use, yet also offers the flexibility to handle data from multisensor observing platforms. In the case of the Barrow MBS, the metadata system needs to accommodate the addition of new and retirement of old sensors from year to year as well as instrument configuration changes caused by, for example, spring melt or inquisitive polar bears. We also require ease of use for both administrators and end users. Here we present the data and processing steps of using sensor data system powered by the NoSQL storage engine, MongoDB. The system has been developed to ingest, process, disseminate and archive data from the Barrow MBS. Storing sensor data in a generalized format, from many different sources, is a challenging task, especially for traditional SQL databases with a set schema. MongoDB is a NoSQL (not only SQL) database that does not require a fixed schema. There are several advantages using this model over the traditional relational database management system (RDBMS) model databases. The lack of a required schema allows flexibility in how the data can be ingested into the database. For example, MongoDB imposes no restrictions on field names. For researchers using the system, this means that the name they have chosen for the sensor is carried through the database, any processing, and to the final output helping to preserve data integrity. Also, MongoDB allows the data to be pushed to it dynamically meaning that field attributes can be defined at the point of ingestion. This allows any sensor data to be ingested as a document and for this functionality to be transferred to the user interface, allowing greater adaptability to different use-case scenarios. In presenting the MondoDB data system being developed for the Barrow MBS, we demonstrate the versatility of this approach and its suitability as the foundation of a Barrow node of the Arctic Observing Network. Authors Jason Grimes - Geographic Information Network of Alaska - jason@gina.alaska.edu Andy Mahony - Geophysical Institute - mahoney@gi.alaska.edu Hajo Eiken - Geophysical Institute - Hajo.Eicken@gi.alaska.edu Tom Heinrichs - Geographic Information Network of Alaska - Tom.Heinrichs@alaska.edu
75 FR 13730 - Marine Mammals; File No. 14118
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
...) extended fine-scale behavioral ecology studies using multi-sensor data recording packages. Initial efforts..., photography and video both above water and underwater, and collection of sloughed skin. Other animals...
INTEGRATING AIR QUALITY DATA TO INFORM HUMAN HEALTH DECISIONS
The August 1-2, 2005 EPA-NIEHS workshop is addressing the linkages between air quality and human health. My presentation will discuss the strengths and limitations of various databases for relating air quality to health impacts. Specifically, the need for fusing ground-based, s...
From Information Center to Discovery System: Next Step for Libraries?
ERIC Educational Resources Information Center
Marcum, James W.
2001-01-01
Proposes a discovery system model to guide technology integration in academic libraries that fuses organizational learning, systems learning, and knowledge creation techniques with constructivist learning practices to suggest possible future directions for digital libraries. Topics include accessing visual and continuous media; information…
Re-Fusing the Edifice: Postmodernism and the Reconstruction of English Studies.
ERIC Educational Resources Information Center
Grant, Gordon A., III
1994-01-01
Outlines the historical development of modernism and its impact on literary studies in today's classrooms. Advocates abandoning modernist teaching modes. Describes an alternative postmodernist epistemology and how it might inform literary studies, particularly in fostering an ethics of reading and writing. (HB)
Semantic Fission through Dialect Fusion.
ERIC Educational Resources Information Center
Linn, Michael D.
The linguistic atlas projects have provided much information on the regional distribution of pronunciation, vocabulary, and syntax and have given important evidence for a greater understanding of problems involved in semantic change, particularly in pointing out transition areas where dialects become fused. In a study supplementary to that…
Computer Enrichment Handbook [and] Supplement A.
ERIC Educational Resources Information Center
White, Bonnie Roe, Ed.; And Others
This handbook contains computer-related, classroom-tested ideas that were contributed by business education teachers and administrators to fuse computer information into computer and noncomputer courses. An alphabetical listing of contributors identifies the category/categories in which their enrichment idea can be found. The contributions are…
A new method based on Dempster-Shafer theory and fuzzy c-means for brain MRI segmentation
NASA Astrophysics Data System (ADS)
Liu, Jie; Lu, Xi; Li, Yunpeng; Chen, Xiaowu; Deng, Yong
2015-10-01
In this paper, a new method is proposed to decrease sensitiveness to motion noise and uncertainty in magnetic resonance imaging (MRI) segmentation especially when only one brain image is available. The method is approached with considering spatial neighborhood information by fusing the information of pixels with their neighbors with Dempster-Shafer (DS) theory. The basic probability assignment (BPA) of each single hypothesis is obtained from the membership function of applying fuzzy c-means (FCM) clustering to the gray levels of the MRI. Then multiple hypotheses are generated according to the single hypothesis. Then we update the objective pixel’s BPA by fusing the BPA of the objective pixel and those of its neighbors to get the final result. Some examples in MRI segmentation are demonstrated at the end of the paper, in which our method is compared with some previous methods. The results show that the proposed method is more effective than other methods in motion-blurred MRI segmentation.
Fourier domain image fusion for differential X-ray phase-contrast breast imaging.
Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne
2017-04-01
X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.
[An improved medical image fusion algorithm and quality evaluation].
Chen, Meiling; Tao, Ling; Qian, Zhiyu
2009-08-01
Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.
Fusion of radar and satellite target measurements
NASA Astrophysics Data System (ADS)
Moy, Gabriel; Blaty, Donald; Farber, Morton; Nealy, Carlton
2011-06-01
A potentially high payoff for the ballistic missile defense system (BMDS) is the ability to fuse the information gathered by various sensor systems. In particular, it may be valuable in the future to fuse measurements made using ground based radars with passive measurements obtained from satellite-based EO/IR sensors. This task can be challenging in a multitarget environment in view of the widely differing resolution between active ground-based radar and an observation made by a sensor at long range from a satellite platform. Additionally, each sensor system could have a residual pointing bias which has not been calibrated out. The problem is further compounded by the possibility that an EO/IR sensor may not see exactly the same set of targets as a microwave radar. In order to better understand the problems involved in performing the fusion of metric information from EO/IR satellite measurements with active microwave radar measurements, we have undertaken a study of this data fusion issue and of the associated data processing techniques. To carry out this analysis, we have made use of high fidelity simulations to model the radar observations from a missile target and the observations of the same simulated target, as gathered by a constellation of satellites. In the paper, we discuss the improvements seen in our tests when fusing the state vectors, along with the improvements in sensor bias estimation. The limitations in performance due to the differing phenomenology between IR and microwave radar are discussed as well.
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
NASA Astrophysics Data System (ADS)
Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean
2016-09-01
The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.
NASA Astrophysics Data System (ADS)
McFee, John E.; Russell, Kevin L.; Chesney, Robert H.; Faust, Anthony A.; Das, Yogadhish
2006-05-01
The Improved Landmine Detection System (ILDS) is intended to meet Canadian military mine clearance requirements in rear area combat situations and peacekeeping on roads and tracks. The system consists of two teleoperated vehicles and a command vehicle. The teleoperated protection vehicle precedes, clearing antipersonnel mines and magnetic and tilt rod-fuzed antitank mines. It consists of an armoured personnel carrier with a forward looking infrared imager, a finger plow or roller and a magnetic signature duplicator. The teleoperated detection vehicle follows to detect antitank mines. The purpose-built vehicle carries forward looking infrared and visible imagers, a 3 m wide, down-looking sensitive electromagnetic induction detector array and a 3 m wide down-looking ground probing radar, which scan the ground in front of the vehicle. Sensor information is combined using navigation sensors and custom navigation, registration, spatial correspondence and data fusion algorithms. Suspicious targets are then confirmed by a thermal neutron activation detector. The prototype, designed and built by Defence R&D Canada, was completed in October 1997. General Dynamics Canada delivered four production units, based on the prototype concept and technologies, to the Canadian Forces (CF) in 2002. ILDS was deployed in Afghanistan in 2003, making the system the first militarily fielded, teleoperated, multi-sensor vehicle-mounted mine detector and the first with a fielded confirmation sensor. Performance of the prototype in Canadian and independent US trials is summarized and recent results from the production version of the confirmation sensor are discussed. CF operations with ILDS in Afghanistan are described.
A multi-focus image fusion method via region mosaicking on Laplacian pyramids
Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong
2018-01-01
In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912
MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification
NASA Technical Reports Server (NTRS)
Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.
1993-01-01
During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
The use of multisensor data for robotic applications
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Gonzalez, R. C.
1990-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is shown through two experiments involving a fluid interchange system and a module interchange system. In both cases, autonomous location of the mating element, autonomous location of the guiding light target, mating, and demating of the system were performed. Specifically, vision-driven techniques were implemented to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. The robotic system was also equipped with a force/torque sensor that continuously monitored the six components of force and torque exerted on the end effector. Using vision, force, torque, proximity, and touch sensors, the two experiments were completed successfully and autonomously.
Comments on airborne ISR radar utilization
NASA Astrophysics Data System (ADS)
Doerry, A. W.
2016-05-01
A sensor/payload operator for modern multi-sensor multi-mode Intelligence, Surveillance, and Reconnaissance (ISR) platforms is often confronted with a plethora of options in sensors and sensor modes. This often leads an over-worked operator to down-select to favorite sensors and modes; for example a justifiably favorite Full Motion Video (FMV) sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. At best, sensors might be used in a serial monogamous fashion with some cross-cueing. The challenge is then to increase the utilization of the radar modes in a manner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into `super-modes'.
Franklin, Daniel; Flavel, Ambika
2015-05-01
The clavicle is the first bone to ossify in the developing embryo and the last to complete epiphyseal union. It is the latter sustained period of growth that has attracted the interest of skeletal biologists and forensic practitioners alike, who collectively recognize the important opportunity this bone affords to estimate skeletal age across the prenatal to early adult lifespan. Current research is largely directed towards evaluating the applicability of assessing fusion in the medial epiphysis, specifically for determining age of majority in the living. This study aims to contribute further insights, and inform medicolegal practice, by evaluating the Schmeling five-stage system for the assessment of clavicular development in a Western Australian population. We retrospectively evaluated high-resolution multiple detector computed tomography (MDCT) scans of 388 individuals (210 male; 178 female) between 10 and 35 years of age. Scans are viewed in axial and multiplanar reconstructed (MPR) images using OsiriX®. Fusion status is scored according to a five-stage system. Transition analysis is used to calculate age ranges and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates (in years) for transition from unfused to fusing is 20.60 (male) and 19.19 (female); transition from fusing to complete fusion is 21.92 (male) and 21.47 (female). Results of the present study confirm the reliability of the assessed method and demonstrate remarkable consistency to data reported for other global populations.
The Effects of Pushing the Digital Divide to the Fighting Hole
2006-02-03
information technologies (IT), and new ways of horizontally fusing information across the battlespace...The opportunity to exploit this new “digital...brought technology , such as the Internet Protocol (IP), to the forefront. It is incumbent upon the leaders of the communications community to ensure...in a recent interview with SIGNAL magazine: In terms of potential, I see the fundamental technologies associated with Internet Protocol (IP
Applicability of Visual Analytics to Defence and Security Operations
2011-06-01
It shows the events importance in the news over time. Topics are extracted from fused video, audio and closed captions. Since viewing video...Detection of Anomalous Maritime Behavior, In Banissi, E. et al. (Eds.) Proceedings of the 12th IEEE International Conference on Information Visualisation
A Meta-Model Architecture for Fusing Battlefield Information
2005-05-01
that a body of force acts as a (possibly loosely) coordinated organization. The totality of actions motivated by force intent define an operational...assume that deception and operational errors represent a minority propotion of the total evidence present on the battlefield based on the principles of
78 FR 57542 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... cracked retract actuator fuse pins that could fail earlier than the previously determined safe life limit... 5 p.m., Monday through Friday, except Federal holidays. For service information identified in this proposed AD, contact Boeing Commercial Airplanes, Attention: Data & Services Management, P.O. Box 3707, MC...
Fusion of arkosic sand by intrusive andesite
Bailey, Roy A.
1954-01-01
An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.
Multirobot autonomous landmine detection using distributed multisensor information aggregation
NASA Astrophysics Data System (ADS)
Jumadinova, Janyl; Dasgupta, Prithviraj
2012-06-01
We consider the problem of distributed sensor information fusion by multiple autonomous robots within the context of landmine detection. We assume that different landmines can be composed of different types of material and robots are equipped with different types of sensors, while each robot has only one type of landmine detection sensor on it. We introduce a novel technique that uses a market-based information aggregation mechanism called a prediction market. Each robot is provided with a software agent that uses sensory input of the robot and performs calculations of the prediction market technique. The result of the agent's calculations is a 'belief' representing the confidence of the agent in identifying the object as a landmine. The beliefs from different robots are aggregated by the market mechanism and passed on to a decision maker agent. The decision maker agent uses this aggregate belief information about a potential landmine and makes decisions about which other robots should be deployed to its location, so that the landmine can be confirmed rapidly and accurately. Our experimental results show that, for identical data distributions and settings, using our prediction market-based information aggregation technique increases the accuracy of object classification favorably as compared to two other commonly used techniques.
Assessment of Data Fusion Algorithms for Earth Observation Change Detection Processes.
Molina, Iñigo; Martinez, Estibaliz; Morillo, Carmen; Velasco, Jesus; Jara, Alvaro
2016-09-30
In this work a parametric multi-sensor Bayesian data fusion approach and a Support Vector Machine (SVM) are used for a Change Detection problem. For this purpose two sets of SPOT5-PAN images have been used, which are in turn used for Change Detection Indices (CDIs) calculation. For minimizing radiometric differences, a methodology based on zonal "invariant features" is suggested. The choice of one or the other CDI for a change detection process is a subjective task as each CDI is probably more or less sensitive to certain types of changes. Likewise, this idea might be employed to create and improve a "change map", which can be accomplished by means of the CDI's informational content. For this purpose, information metrics such as the Shannon Entropy and "Specific Information" have been used to weight the changes and no-changes categories contained in a certain CDI and thus introduced in the Bayesian information fusion algorithm. Furthermore, the parameters of the probability density functions (pdf's) that best fit the involved categories have also been estimated. Conversely, these considerations are not necessary for mapping procedures based on the discriminant functions of a SVM. This work has confirmed the capabilities of probabilistic information fusion procedure under these circumstances.
Fiber fuse behavior in kW-level continuous-wave double-clad field laser
NASA Astrophysics Data System (ADS)
Jun-Yi, Sun; Qi-Rong, Xiao; Dan, Li; Xue-Jiao, Wang; Hai-Tao, Zhang; Ma-Li, Gong; Ping, Yan
2016-01-01
In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. Project supported by the Key Laboratory of Science and Technology on High Energy Laser and China Academy of Engineering Physics (Grant No. 2014HEL02) and the National Natural Science Foundation of China (Grant No. 61307057).
Research relative to automated multisensor image registration
NASA Technical Reports Server (NTRS)
Kanal, L. N.
1983-01-01
The basic aproaches to image registration are surveyed. Three image models are presented as models of the subpixel problem. A variety of approaches to the analysis of subpixel analysis are presented using these models.
ASPECT (Airborne Spectral Photometric Environmental Collection Technology) Fact Sheet
This multi-sensor screening tool provides infrared and photographic images with geospatial, chemical, and radiological data within minutes to support emergency responses, home-land security missions, environmental surveys, and climate monitoring missions.
SAMuS: Service-Oriented Architecture for Multisensor Surveillance in Smart Homes
Van de Walle, Rik
2014-01-01
The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically compose Web APIs that can be applied with existing Semantic Web reasoners. We evaluated the solution by building a smart Kinect sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events. The performance results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in almost all cases. PMID:24778579
Towards Simpler Custom and OpenSearch Services for Voluminous NEWS Merged A-Train Data (Invited)
NASA Astrophysics Data System (ADS)
Hua, H.; Fetzer, E.; Braverman, A. J.; Lewis, S.; Henderson, M. L.; Guillaume, A.; Lee, S.; de La Torre Juarez, M.; Dang, H. T.
2010-12-01
To simplify access to large and complex satellite data sets for climate analysis and model verification, we developed web services that is used to study long-term and global-scale trends in climate, water and energy cycle, and weather variability. A related NASA Energy and Water Cycle Study (NEWS) task has created a merged NEWS Level 2 data from multiple instruments in NASA’s A-Train constellation of satellites. We used this data to enable creation of climatologies that include correlation between observed temperature, water vapor and cloud properties from the A-Train sensors. Instead of imposing on the user an often rigid and limiting web-based analysis environment, we recognize the need for simple and well-designed services so that users can perform analysis in their own familiar computing environments. Custom on-demand services were developed to improve data accessibility of voluminous multi-sensor data. Services enabling geospatial, geographical, and multi-sensor parameter subsets of the data, as well a custom time-averaged Level 3 service will be presented. We will also show how a Level 3Q data reduction approach can be used to help “browse” the voluminous multi-sensor Level 2 data. An OpenSearch capability with full text + space + time search of data products will also be presented as an approach to facilitated interoperability with other data systems. We will present our experiences for improving user usability as well as strategies for facilitating interoperability with other data systems.
NASA Astrophysics Data System (ADS)
Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.
2014-12-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
NASA Technical Reports Server (NTRS)
Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.
2012-01-01
The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
Swann, William B; Gómez, Angel; Buhrmester, Michael D; López-Rodríguez, Lucía; Jiménez, Juan; Vázquez, Alexandra
2014-05-01
Although most people acknowledge the moral virtue in sacrificing oneself to save others, few actually endorse self-sacrifice. Seven experiments explored the cognitive and emotional mechanisms that underlie such endorsements. Participants responded to 1 of 2 moral dilemmas in which they could save 5 members of their country only by sacrificing themselves. Over 90% of participants acknowledged that the moral course of action was to sacrifice oneself to save others (Experiment 1), yet only those who were strongly fused with the group preferentially endorsed self-sacrifice (Experiments 2-7). The presence of a concern with saving group members rather than the absence of a concern with self-preservation motivated strongly fused participants to endorse sacrificing themselves for the group (Experiment 3). Analyses of think aloud protocols suggested that saving others was motivated by emotional engagement with the group among strongly fused participants but by utilitarian concerns among weakly fused participants (Experiment 4). Hurrying participants' responses increased self-sacrifice among strongly fused participants but decreased self-sacrifice among weakly fused participants (Experiment 5). Priming the personal self increased endorsement of self-sacrifice among strongly fused participants but further reduced endorsement of self-sacrifice among weakly fused participants (Experiment 6). Strongly fused participants ignored utilitarian considerations, but weakly fused persons endorsed self-sacrifice more when it would save more people (Experiment 7). Apparently, the emotional engagement with the group experienced by strongly fused persons overrides the desire for self-preservation and compels them to translate their moral beliefs into self-sacrificial behavior.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.3 Fuses. (a) Fireworks devices that require a fuse shall: (1) Utilize only a fuse that has been... it will support either the weight of the fireworks device plus 8 ounces of dead weight or double the...
77 FR 37781 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... actuator fuse pins that can fail earlier than the previously determined safe life limit of the pins. A... that can fail earlier than the previously determined safe life limit of the pins. A fractured retract... July 30, 2012. ADDRESSES: For service information identified in this AD, contact Boeing Commercial...