Science.gov

Sample records for fusion materials program

  1. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  2. A carbon-carbon composite materials development program for fusion energy applications

    SciTech Connect

    Burchell, T.D.; Eatherly, W.P. ); Engle, G.B. ); Hollenberg, G.W. )

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible.

  3. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  4. Fusion Energy Sciences Advisory Committee Reports on Review of the Fusion Materials Research Program, Review of the Proposed Proof-of-Principle Programs, Review of the Possible Pathways for Pursuing Burning Plasma Physics, and Comments on the ER Facilities Roadmap

    SciTech Connect

    none,

    1998-07-01

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of current scientific excellence and recommendations for future goals and balance within the Program was requested.

  5. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  6. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  7. Fusion-breeder program

    SciTech Connect

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  8. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  9. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  10. Plasma-Materials Interactions (PMI) and High-Heat-Flux (HHF) component research and development in the US Fusion Program

    SciTech Connect

    Conn, R.W.

    1986-10-01

    Plasma particle and high heat fluxes to in-vessel components such as divertors, limiters, RF launchers, halo plasma scrapers, direct converters, and wall armor, and to the vacuum chamber itself, represent central technical issues for fusion experiments and reactors. This is well recognized and accepted. It is also well recognized that the conditions at the plasma boundary can directly influence core plasma confinement. This has been seen most dramatically, on the positive side, in the discovery of the H-mode using divertors in tokamaks. It is also reflected in the attention devoted worldwide to the problems of impurity control. Nowadays, impurities are controlled by wall conditioning, special discharge cleaning techniques, special coatings such as carbonization, the use of low-Z materials for limiters and armor, a careful tailoring of heat loads, and in some machines, through the use of divertors. All programs, all experiments, and all designers are now keenly aware that PMI and HHF issues are key to the successful performance of their machines. In this brief report we present general issues in Section 2, critical issues in Section 3, existing US PMI/HHF experiments and facilities in Section 4, US International Cooperative PMI/HHF activities in Section 5, and conclude with a discussion on major tasks in PMI/HHF in Section 6.

  11. Fusion Breeder Program interim report

    SciTech Connect

    Moir, R.; Lee, J.D.; Neef, W.

    1982-06-11

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

  12. Fusion Simulation Program

    SciTech Connect

    Project Staff

    2012-02-29

    Under this project, General Atomics (GA) was tasked to develop the experimental validation plans for two high priority ISAs, Boundary and Pedestal and Whole Device Modeling in collaboration with the theory, simulation and experimental communities. The following sections have been incorporated into the final FSP Program Plan (www.pppl.gov/fsp), which was delivered to the US Department of Energy (DOE). Additional deliverables by GA include guidance for validation, development of metrics to evaluate success and procedures for collaboration with experiments. These are also part of the final report.

  13. Carbon structural materials for fusion reactors

    SciTech Connect

    Virgiliev, Yu.S.; Kurolenkin, E.I.

    1993-12-31

    This report describes properties of several structural carbon materials being investigated as materials for fusion reactors. Materials include: graphite, graphite doped with boron and titanium; and C-C composites. Radiation effects and additive effects are described.

  14. (Fourth international conference on fusion reactor materials)

    SciTech Connect

    Bloom, E.E.

    1990-01-24

    This report summarizes the International Conference on Fusion Reactor Materials (ICFRM-4) which was held December 4--9, 1989, in Kyoto, Japan, as well as the results of several workshops, planning meetings, and laboratory visits made by the travelers. The ICFRM-4 is the major forum to present and exchange information on materials research and development in support of the world's fusion development efforts. About 360 papers were presented by the 347 conference attendees. Highlights of the conference are presented. A proposal by the United States to host ICFRM-5 was accepted by the International Advisory Committee. ORNL will be the host laboratory. A meeting of the DOE/JAERI Annex I Steering Committee to review the US/Japan Collaborative Testing of First Wall and Blanket Structural Materials with Mixed Spectrum Fission Reactors was held at JAERI Headquarters on December 1. The Japanese emphasized the critical importance of a resumption of HFIR operation. Even though the HFIR outage has lasted three plus years this program has continued to provide new and important data on materials behavior which has particular relevance to ITER.

  15. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  16. Pulsed Power Fusion Program update

    SciTech Connect

    Quintenz, J.P.; Adams, R.G.; Allshouse, G.O.

    1998-06-01

    The US Department of Energy has supported a substantial research program in Inertial Confinement Fusion (ICF) since the early 1970s. Over the course of the ensuing 25 years, pulsed power energy, efficiency, and relatively low cost of the technology when compared to the mainline ICF approach involving large glass lasers. These compelling advantages of pulsed power, however, have been tempered with the difficulty that has been encountered in concentrating the energy in space and time to create the high energy and power density required to achieve temperatures useful in indirect drive ICF. Since the Beams `96 meeting two years ago, the situation has changed dramatically and extremely high x-ray power ({approximately}290 TW) and energy ({approximately}1.8 MJ) have been produced in fast x-pinch implosions on the Z accelerator. These sources have been utilized to heat hohlraums to >150 eV and have opened the door to important ICF capsule experiments.

  17. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    SciTech Connect

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  18. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    SciTech Connect

    Rowcliffe, A.F.

    1989-03-17

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor.

  19. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  20. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  1. Test design description for the Fusion Materials Open Test Assembly (Fusion MOTA-2A): Volume 1A, Part 1

    SciTech Connect

    Bauer, R.E.

    1988-11-01

    This document encompasses the test requirements, hardware design, fabrication, and safety analysis for the Fusion Materials Open Test Assembly experiment for irradiation in FFTF Cycle 11 (Fusion MOTA-2A). Fusion MOTA is equally shared by the US Fusion Material (DOE), Japanese Fusion Materials (MONBUSHO), and BEATRIX-II (IEA) programs. In the interest of providing optimum use of the irradiation space in the Fusion MOTA-2A and LMR MOTA-1G, eight of the Fusion MOTA canisters will be placed in MOTA-1G and an equal number of LMR canisters placed in Fusion MOTA-2A (Powell/Doran 1988). This eliminates the need to process Fusion MOTA-2A through the IEM cell prior to insertion for FFTF Cycle 11A. The LMR MOTA design and safety analysis (Greenslade 1984) is the basis for much of this design and safety analysis report. This design description and safety analysis for the Fusion MOTA-2A is presented per the outline given in Chapter IV of the FTR User`s Guide (Taylor 1978). 35 refs., 17 figs., 9 tabs.

  2. Composite materials for fusion applications

    SciTech Connect

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  3. Purdue Contribution of Fusion Simulation Program

    SciTech Connect

    Jeffrey Brooks

    2011-09-30

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall

  4. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  5. Fusion Simulation Program Definition. Final report

    SciTech Connect

    Cary, John R.

    2012-09-05

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.

  6. Fusion reactor materials. Semiannual progress report for period ending September 30, 1993

    SciTech Connect

    Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  7. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  8. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    SciTech Connect

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately.

  9. Fusion Materials Semiannual Progress Report for the Period Ending June 30, 1999

    SciTech Connect

    Rowcliffe, A.F.

    1999-09-01

    This is the twenty-sixth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and its reported separately.

  10. Fusion Safety Program annual report, fiscal year 1992

    SciTech Connect

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study.

  11. Fusion Safety Program annual report, fiscal year 1992

    SciTech Connect

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG&G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study.

  12. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  13. Strategic plan for the restructured US fusion energy sciences program

    SciTech Connect

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970`s, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department`s planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date.

  14. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section.

  15. Overview of the RFX fusion science program

    NASA Astrophysics Data System (ADS)

    Martin, P.; Adamek, J.; Agostinetti, P.; Agostini, M.; Alfier, A.; Angioni, C.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Barison, S.; Baruzzo, M.; Bettini, P.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Boozer, A. H.; Brombin, M.; Brotankova, J.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chacon, L.; Chitarin, G.; Cooper, W. A.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J. Q.; Drevlak, M.; Escande, D. F.; Fantini, F.; Fassina, A.; Fellin, F.; Ferro, A.; Fiameni, S.; Fiorentin, A.; Franz, P.; Gaio, E.; Garbet, X.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Hirano, Y.; Hirshman, S. P.; Ide, S.; Igochine, V.; In, Y.; Innocente, P.; Kiyama, S.; Liu, S. F.; Liu, Y. Q.; Lòpez Bruna, D.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Mansfield, D. K.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Matsunaga, G.; Martines, E.; Mazzitelli, G.; McCollam, K.; Menmuir, S.; Milani, F.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Okabayashi, M.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Perverezev, G. V.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Pomphrey, N.; Predebon, I.; Puiatti, M. E.; Rigato, V.; Rizzolo, A.; Rostagni, G.; Rubinacci, G.; Ruzzon, A.; Sakakita, H.; Sanchez, R.; Sarff, J. S.; Sattin, F.; Scaggion, A.; Scarin, P.; Schneider, W.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spong, D. A.; Spizzo, G.; Takechi, M.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veranda, M.; Vianello, N.; Villone, F.; Wang, Z.; White, R. B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.

    2011-09-01

    This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.

  16. Fusion materials semiannual progress report for the period ending June 30, 1998

    SciTech Connect

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1987

    SciTech Connect

    none,

    1987-09-01

    This is the second in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities in the following areas: (1) Alloy Development for Irradiation Performance; (2) Damage Analysis and Fundamental Studies; and (3) Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. Separate analytics were prepared for the reports in this volume.

  18. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 200/sup 0/C

    SciTech Connect

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200/sup 0/C. The design description and results of the prototype capsule performance are presented.

  19. Contribution to Fusion Materials Semiannual Report

    SciTech Connect

    Marian, J; Meier, W

    2012-02-24

    The objectives of this work are the following: (1) The application of micro and mesoscale modeling techniques to study dislocation properties in ferritic and W-based materials; and (2) The development of computational models and tools to study damage accumulation in >1 dpa (fusion-like) conditions, both for Fe and W-based alloys. The high-temperature strength of structural ferritic alloys (ferritic/martensitic steels, ODS steels, bcc refractory alloys) hinges on the thermal stability of second phase particles and their interactions with dislocations. Irradiation damage can modify the structure and stability of both the particles and dislocations, particularly by the introduction of gas atoms, point defects and point defect clusters. The three aspects of materials strength that we are studying are: (a) Computation of dislocation mobility functions (stress-velocity relations) as a function of temperature and dislocation character. This will be done via molecular dynamics (MD) simulations of single dislocation motion under applied shear stress. This is a fundamental input to dislocation dynamics (DD) simulations and also provides fundamental insights into the high-temperature plastic behavior of ferritic materials. (b) Simulations of dislocation-obstacle interactions using MD and DD. This subtask includes simulating the effect on dislocation glide of precipitates (e.g., {alpha}' Cr precipitates), ODS particles, and irradiation induced defect clusters (e.g. voids, dislocation loops, etc.). (c) Implementation of this information (dislocation mobilities and dislocation-defect interaction rules) into DD codes that will allow us to study plasticity of single crystals Fe alloys under relevant irradiation conditions.

  20. Fusion Power Program biannual progress report, April-September 1979

    SciTech Connect

    Not Available

    1980-02-01

    This biannual report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the April-September 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Separate abstracts were prepared for three sections. (MOW)

  1. Fusion fuel cycle: material requirements and potential effluents

    SciTech Connect

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  2. Fusion materials semiannual progress report for the period ending March 31, 1995

    SciTech Connect

    1995-07-01

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: {sm_bullet} Alloy Development for Irradiation Performance. {sm_bullet} Damage Analysis and Fundamental Studies. {sm_bullet} Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged.

  3. Fusion reactor materials: Semiannual progress report for period ending September 30, 1987

    SciTech Connect

    none,

    1988-03-01

    This is the third in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development for Irradiation Performances; Damage Analysis and Fundamental Studies; Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  4. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    SciTech Connect

    Not Available

    1991-04-01

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  5. Fusion materials semiannual progress report for the period ending December 31, 1997

    SciTech Connect

    Burn, G.

    1998-03-01

    This is the twenty-third in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. A large fraction of this work, particularly in relation to fission reactor experiments, is carried out collaboratively with their partners in Japan, Russia, and the European Union. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Fusion reactor materials semiannual progress report for the period ending September 30, 1989

    SciTech Connect

    none,

    1989-01-01

    This is the seventh in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: alloy development for irradiation performance, damage analysis and fundamental studies, and special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  7. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  8. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    SciTech Connect

    none,

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide.

  9. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    SciTech Connect

    David A. Petti; Brad J. Merrill; Phillip Sharpe; L. C. Cadwallader; L. El-Guebaly; S. Reyes

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In this paper, recent accomplishments are reviewed and future directions outlined.

  10. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    SciTech Connect

    Not Available

    1993-08-04

    The Committee`s evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  11. Materials integration issues for high performance fusion power systems.

    SciTech Connect

    Smith, D. L.

    1998-01-14

    One of the primary requirements for the development of fusion as an energy source is the qualification of materials for the frost wall/blanket system that will provide high performance and exhibit favorable safety and environmental features. Both economic competitiveness and the environmental attractiveness of fusion will be strongly influenced by the materials constraints. A key aspect is the development of a compatible combination of materials for the various functions of structure, tritium breeding, coolant, neutron multiplication and other special requirements for a specific system. This paper presents an overview of key materials integration issues for high performance fusion power systems. Issues such as: chemical compatibility of structure and coolant, hydrogen/tritium interactions with the plasma facing/structure/breeder materials, thermomechanical constraints associated with coolant/structure, thermal-hydraulic requirements, and safety/environmental considerations from a systems viewpoint are presented. The major materials interactions for leading blanket concepts are discussed.

  12. Fusion programs in applied plasma physics

    SciTech Connect

    Not Available

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  13. Historical Perspective on the United States Fusion Program

    SciTech Connect

    Dean, Stephen O

    2005-04-15

    Progress and Policy is traced over the approximately 55 year history of the U. S. Fusion Program. The classified beginnings of the effort in the 1950s ended with declassification in 1958. The effort struggled during the 1960s, but ended on a positive note with the emergence of the tokamak and the promise of laser fusion. The decade of the 1970s was the 'Golden Age' of fusion, with large budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy Engineering Act of 1980, overwhelming approved by Congress and signed by President Carter. The Act called for a '$20 billion, 20 year' effort aimed at construction of a fusion Demonstration Power Plant around the end of the century. The U. S. Magnetic Fusion Energy program has been on a downhill slide since 1980, both in terms of budgets and the construction of new facilities. The Inertial Confinement Fusion program, funded by Department of Energy Defense Programs, has faired considerably better, with the construction of many new facilities, including the National Ignition Facility (NIF)

  14. Fusion safety program Annual report, Fiscal year 1995

    SciTech Connect

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

  15. Lithium ceramics as the solid breeder material in fusion reactors

    SciTech Connect

    Hollenberg, G. W.; Reuther, T. C.; Johnson, C. E.

    1982-03-01

    Fusion blanket designs have for almost a decade considered the use of a solid breeder relying on available data and assumed performance. The conclusion from these studies is that acceptable neutronic and thermal hydraulic performance can be achieved. In the future, it will be necessary to establish that a particular material can tolerate the thermal and irradiation environment of the fusion blanket while still providing the required functions of tritium recovery, power production and neutron shielding.

  16. Fusion reactor materials: Semiannual progress report for period ending September 30, 1986

    SciTech Connect

    none,

    1987-09-01

    These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The major areas of concern covered in this report are irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; radiation effects; development of structural alloys; solid breeding materials; ceramics and superconducting magnet materials. There are 61 reports cataloged separately. (LSP)

  17. Theory and modeling of radiation effects in materials for fusion energy systems

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The U.S./Japan Workshop on Theory and Modeling of Radiation Effects in Materials for Fusion Energy Systems, under Phase III of the DOE/Monbusho collaboration, convened on July 17-18, 1995, at Lawrence Livermore National Laboratory. A brief summary of the workshop is followed by the workshop program.

  18. The Heavy Ion Fusion Program in the USA

    SciTech Connect

    Bangerter, R.O.

    2000-03-17

    The U.S. Department of Energy has established a new, larger inertial fusion energy program. To manage program growth, we have developed a new inertial fusion energy research and we have established a Virtual National Laboratory for Heavy Ion Fusion. There has been significant technical progress. Improvements in target design have reduced the predicted energy requirements by approximately a factor of two. There have also been important experiments on chamber dynamics and other inertial fusion technologies. The accelerator program has completed a number of small-scale experiments. Experiments with driver-scale beams are being designed -- including experiments with driver-scale ion sources and injectors. Finally we are developing the technologies needed to build a major research facility known as the Integrated Research Experiment (IRE)

  19. Fusion safety program annual report fiscal year 1997

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  20. Thermal creep of granular breeder materials in fusion blankets

    NASA Astrophysics Data System (ADS)

    Bühler, L.; Reimann, J.

    2002-12-01

    Continuum models for granular materials in fusion blankets are efficient tools for modeling of the nonlinear elastic behavior of pebble beds, granular particle flow caused by shear, volume compaction and hardening. The present paper describes how the material models used in finite element analyses can be extended in order to account additionally for thermally activated creep. The derived material model gives results which are in reasonable accordance with experimental data for pebble beds.

  1. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  2. High power millimeter wave ECRH source needs for fusion program

    SciTech Connect

    Not Available

    1984-06-01

    This document stems from the four-day Gyrotron Symposium held at the US Department of Energy (DOE) Headquarters on June 13-16, 1983, and serves as a position paper for the Office of Fusion Energy, DOE, on high-power millimeter wave source development for Electron Cyclotron Heating (ECH) of plasmas. It describes the fusion program needs for gyrotron as ECH sources, their current status, and desirable development strategies.

  3. Materials research and development for fusion energy applications

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1998-11-01

    Some of the critical issues associated with materials selection for proposed magnetic fusion reactors are reviewed, with a brief overview of refractory alloys (vanadium, tantalum, molybdenum, tungsten) and primary emphasis on ceramic materials. SiC/SiC composites are under consideration for the first wall and blanket structure, and dielectric insulators will be used for the heating, control and diagnostic measurement of the fusion plasma. Key issues for SiC/SiC composites include radiation-induced degradation in the strength and thermal conductivity. Recent work has focused on the development of radiation-resistant fibers and fiber/matrix interfaces (porous SiC, SiC multilayers) which would also produce improved SiC/SiC performance for applications such as heat engines and aerospace components. The key physical parameters for dielectrics include electrical conductivity, dielectric loss tangent and thermal conductivity. Ionizing radiation can increase the electrical conductivity of insulators by many orders of magnitude, and surface leakage currents can compromise the performance of some fusion energy components. Irradiation can cause a pronounced degradation in the loss tangent and thermal conductivity. Fundamental physical parameter measurements on ceramics which are of interest for both fusion and non-fusion applications are discussed.

  4. The US ICF Ignition Program and the Inertial Fusion Program

    SciTech Connect

    Lindl, J D; Hammel, B A; Logan, B G; Meyerhofer, D D; Payne, S A; Stehian, J D

    2003-07-02

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets

  5. BEATRIX-II Program: ANNEX-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1992-12-01

    The BEATRIX-II experiment is an International Energy Agency (IEA) sponsored collaborative experiment between Japan, Canada, and the United States. This is an in situ tritium recovery experiment conducted to evaluate the performance of ceramic solid breeder materials in a fast neutron environment to high burnup levels. The experiment was carried out in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and was operated by Westinghouse Hanford Company (WHC). Pacific Northwest Laboratory, Richland (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) Research are conducting the experiment. The objective of the BEATRIX-II experiment is to design, conduct, and evaluate the in situ recovery of tritium from solid breeder materials during neutron irradiation in the FFTF. During the experiment, the performance of candidate solid breeder materials is continuously monitored with respect to temperature stability and tritium release. The phase I experiment was irradiated to lithium burnups of 5% while the goal for Phase II was to irradiate to burnups as high as 8%.

  6. A fusion power plant without plasma-material interactions

    SciTech Connect

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  7. BEATRIX-II Program, January 1989--December 1989: ANNEX-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1990-10-01

    BEATRIX-II is an International Energy Agency (IEA) sponsored collaborative experiment among Japan, Canada, and the United States. The purpose of the experiment is to evaluate the performance of ceramic solid breeder materials in a fast neutron environment. To do this, an in-situ tritium recovery experiment is being conducted in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and operated by Westinghouse Hanford Company (WHC). The Pacific Northwest Laboratory (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) are responsible for conducting the experiment.

  8. Fusion materials semiannual progress report for the period ending December 31, 1996

    SciTech Connect

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.

  9. Fusion Safety Program Annual Report, Fiscal Year 1996

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1996-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1996. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. The objective is to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, chemical reactions and activation product release, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Work done for ITER this year has focused on developing the needed information for the Non- Site- Specific Safety Report (NSSR-1). A final area of activity described is development of the new DOE Technical Standards for Safety of Magnetic Fusion Facilities.

  10. Performance limits of fusion first-wall structural materials.

    SciTech Connect

    Smith, D. L.; Majumdar, S.; Billone, M.; Mattas, R. F.

    1999-11-12

    Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, it is generally concluded that high performance fusion power systems will be required in order to be economically competitive with other energy options. As in most energy systems, structural materials operating limits pose a primary constraint to the performance of fusion power systems. It is also recognized that for the case of fusion power, the first-wall/blanket system will have a dominant impact on both the economic and safety/environmental attractiveness of fusion energy. The first-wall blanket structure is particularly critical since it must maintain high integrity at relatively high temperatures during exposure to high radiation levels, high surface heat fluxes, and significant primary stresses. The performance limits of the first-wall/blanket structure will be dependent on the structural material properties, the coolant/breeder system, and the specific design configuration. Key factors associated with high performance structural materials include (1) high temperature operation, (2) a large operating temperature window, and (3) a long operating lifetime. High temperature operation is necessary to provide for high power conversion efficiency. As discussed later, low-pressure coolant systems provide significant advantages. A large operating temperature window is necessary to accommodate high surface heating and high power density. The operating temperature range for the structure must include the temperature gradient through the first wall and the coolant system AT required for efficient energy conversion. This later requirement is dependent on the coolant/breeder operating temperature limits. A long operating lifetime of the structure is important to improve system availability and to minimize waste disposition.

  11. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004

    SciTech Connect

    PROJECT STAFF

    2004-12-01

    The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).

  12. Argonne's program in heavy-ion fusion

    SciTech Connect

    Martin, R.L.; Arnold, R.; Burke, R.; Watson, J.

    1980-01-01

    Argonne is constructing the initial part of a xenon accelerator which could serve as the driver for an Inertial Confinement Fusion power plant. The project consists of a Xe source, a 1.5 Mv Dynamitron preaccelerator, independently phased rf cavities as a low ..beta.. linac, and Wideroe linac at 12.5 and 25 MHz. The beam will be injected at 220 MeV into a circular ring to its space charge limit, transferred to a second ring for multiturn injection after an x-y rotation, extracted, compressed in time duration, transported and focused onto foil targets. The project thus will demonstrate nearly all of the beam manipulations involved in a full scale ICF driver. The feasibility of accelerating in the accumulator ring to 10 GeV to achieve adequate beam energy to permit energy deposition experiments in hot plasma is being studied. The status and future plans of this project are discussed.

  13. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  14. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Program

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2015-11-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. An overview of the concept and its diamagnetic, high beta magnetically encapsulated linear ring cusp confinement scheme will be given. The analytical model of the major loss mechanisms and predicted performance will be discussed, along with the major physics challenges. Key features of an operational CFR reactor will be highlighted. The proposed developmental path following the current experimental efforts will be presented. ©2015 Lockheed Martin Corporation. All Rights Reserved.

  15. Process Diagnostics: Materials, Combustion Fusion. Volume 117. Materials Research Society

    DTIC Science & Technology

    reference volume for professionals working in the area of materials process control as well as a graduate level textbook for a course in applied ... spectroscopy or process engineering that might be given as part of a chemistry, physics, chemical or materials engineering curriculum.

  16. Inertial Fusion Program. Progress report, July 1-December 31, 1979

    SciTech Connect

    Skoberne, F.

    1981-10-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements in the Los Alamos National Laboratory eight-beam Helios system are described. These improvements increased the reliability of the laser and permitted the firing of 290 shots, most of which delivered energies of approximately 8 kJ to the target. Modifications to Gemini are outlined, including the installation of a new target-insertion mechanism. The redirection of the Antares program is discussed in detail, which will achieve a total energy of approximatey 40 kJ with two beams. This redirection will bring Antares on-line almost two years earlier than was possible with the full six-beam system, although at a lower energy. Experiments with isentropically imploded Sirius-B targets are discussed, and x-ray radiation-loss data from gold microballoons are presented, which show that these results are essentially identical with those obtained at glass-laser wavelengths. Significant progress in characterizing laser fusion targets is reported. New processes for fabricating glass miroballoon x-ray diagnostic targets, the application of high-quality metallic coatings, and the deposition of thick plastic coatings are described. Results in the development of x-ray diagnostics are reported, and research in the Los Alamos heavy-ion fusion program is summarized. Results of investigations of phase-conjugation research of gaseous saturable absorbers and of the use of alkali-halide crystals in a new class of saturable absorbers are summarized. New containment-vessel concepts for Inertial Confinement Fusion reactors are discussed, and results of a scoping study of four fusion-fission hybrid concepts are presented.

  17. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  18. The need for a fusion technology information program

    SciTech Connect

    Correll, D.L. Jr.

    1987-06-16

    In providing an adequate energy technology for the future, which new programs should be considered by the Department of Energy national laboratories to ensure that the US remains in the forefront of international science and technology is an important question. This paper suggests that the urgency for energy independence demands an active communication program that would increase awareness of energy as a critical national issue and would present fusion, with its benefits and risks, as one of the long-term alternative energy sources.

  19. Inertial Fusion Program. Progress report, January-December 1980

    SciTech Connect

    Not Available

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  20. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    NASA Astrophysics Data System (ADS)

    Was, Gary S.

    2007-08-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems.

  1. Recology: Material Conservation Program Fieldbook.

    ERIC Educational Resources Information Center

    Stanwood, Bill

    Recology is the combination of teaching and learning through the interaction of conservation (waste management and recycling) and ecology. This fieldbook is designed to provide an overview of the development of a Recology environmental education program. The program facilitates infusion of material conservation education into existing curriculum.…

  2. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  3. Material considerations for the fusion engineering device (FED) pump limiter

    NASA Astrophysics Data System (ADS)

    Haines, J. R.; Cramer, B. A.; Davisson, J. P.; Mantz, H. C.

    A mechanical pump limiter is provided in the Fusion Engineering Device (FED) to establish the plasma edge, to exhaust plasma particles, to handle a significant fraction of the plasma heat load, and to protect the first wall from large particle and energy fluxes. Various protective surface materials were evaluated for applicability to the limiter. Bare metal and armor tile design concepts were considered. The protective surface concept selected for the baseline FED limiter consists of graphite tiles brazed to a water cooled copper substrate. Graphite and copper were selected because of their resistance to damage at high heat fluxes, the low atomic number of graphite and the potential for reliable brazing of copper and graphite.

  4. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  5. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  6. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    SciTech Connect

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; Kulcinski, Gerald L.; Santarius, John F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  7. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  8. Multiscale Modeling of Irradiation effects in Fusion Materials

    SciTech Connect

    Hussein Zbib

    2004-12-23

    The aim of this collaborative research work was to apply predictive, physically based multiscale modeling to improve understanding of the underlying mechanisms of material changes in the fusion environment, with the ultimate objective to aid development of advanced materials. The multiscale modeling methodology involved a hierarchical approach, integrating ab initio electronic structure calculations, molecular dynamics (MD) simulations, kinetic Monte Carlo (KMC), and three dimensional dislocation dynamics (DD) simulations, over the relevant length and time scales to model the fates of defects and solutes (including hydrogen and helium) and thus, predict microstructural evolution in ferritic/martensitic and vanadium based alloys. The main task at WSU was to investigate changes in mechanical properties as a result of the production of a varied population of nanostructural features and to be obtained from three dimensional dislocation dynamics simulation (DD). The initial dislocation structure and microstructure could be obtained from electron microscopy characterization and the appropriate nanostructural features produced during irradiation are introduced from predictions of the multiscale modeling. The dislocation structure was then allowed to evolve under an applied load, taking into account all possible forces and reactions between the dislocations with the radiation induced nanostructure as well as network dislocations. In this manner, quantitative predictions of irradiation hardening would result without the use of empirical constants within the framework of dispersed barrier hardening models.

  9. Conductive spacecraft materials development program

    NASA Technical Reports Server (NTRS)

    Lehn, W. L.

    1977-01-01

    The objectives of this program are to provide design criteria, techniques, materials, and test methods to ensure control of absolute and differential charging of spacecraft surfaces. The control of absolute and differential charging of spacecraft cannot be effected without the development of new and improved or modified materials or techniques that will provide electrical continuity over the surface of the spacecraft. The materials' photoemission, secondary emission, thermooptical, physical, and electrical properties in the space vacuum environment both in the presence and absence of electrical stress and ultraviolet, electron, and particulate radiation, are important to the achievement of charge control. The materials must be stable or have predictable response to exposure to the space environment for long periods of time. The materials of interest include conductive polymers, paints, transparent films and coatings as well as fabric coating interweaves.

  10. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016

    SciTech Connect

    Wiffen, Frederick W; Katoh, Yutai; Melton, Stephanie G.

    2016-12-01

    This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.

  11. Overview of Indian activities on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  12. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  13. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    SciTech Connect

    Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail; Katoh, Yutai; Stoller, Roger E

    2011-01-01

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extends its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.

  14. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  15. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  16. Measurement of long-lived isotopes and helium production in fusion materials

    SciTech Connect

    Greenwood, L.R.

    1989-01-01

    Results are summarized for measurements of the production rates for long-lived radioisotopes and helium in fusion reactor materials. Measurements have been performed at T(d,n) generators, near 14 MeV; at broad-spectrum Be(d,n) accelerator-based neutron fields; and in various fission reactors. These activation data are used to predict the production of these isotopes in fusion reactor materials for the simulation of fusion materials damage in fission reactor irradiations and as a stable product dosimeter. Nuclear data needs and future plans are discussed. 20 refs., 5 figs., 4 tabs.

  17. Spallation source materials test program

    SciTech Connect

    Maloy, S.A.; Sommer, W.F.

    1997-12-01

    A spallation source materials program has been developed to irradiate and test candidate materials (Inconel 718, 316L and 304L stainless steel, modified 9Cr-1Mo(T91), Al6061-T6, Al5052-O) for use in the Accelerator Production of Tritium (APT) target and blanket in prototypic proton and neutron fluxes at prototypic temperatures. The study uses the 800 MeV, 1mA proton accelerator at the Los Alamos Neutron Science Center (LANSCE) which produces a Gaussian beam with 2 sigma = 3 cm. The experimental set-up contains prototypic modules of the tungsten neutron source and the lead/aluminum blanket with mechanical testing specimens of candidate APT materials placed in specific locations in the irradiation area. These specimens have been irradiated for greater than 3,600 hours with a maximum proton fluence of 4--5 {times} 10{sup 21} p/cm{sup 2} in the center of the proton beam. Specimens will yield some of the first data on the effect of proton irradiation to high dose on the materials` properties from tensile tests, 3 pt. bend tests, fracture toughness tests, pressurized tubes, U-bend stress corrosion cracking specimens, corrosion measurements and microstructural characterization of transmission electron microscopy specimens.

  18. Electron Emission from Nano and Microstructured Materials for Fusion and Plasma Discharge Applications

    NASA Astrophysics Data System (ADS)

    Patino, Marlene; Raitses, Yevgeny; Wirz, Richard

    2016-10-01

    Secondary electron emission (SEE) from plasma-facing walls can lead to adverse effects (e.g. increased plasma heat flux to the wall) in plasma devices, including plasma processing, confinement fusion, and plasma thrusters. Experimental and computational efforts of engineered materials with nm to mm-sized structures (grooves, pores, fibers) have previously shown a decrease in SEE for primary electrons incident normal and oblique to the material. Here we present SEE measurements from one such engineered material, carbon velvet with μm fibers, and from a plasma-structured material, tungsten fuzz with nm fibers. Results show two trends: (a) significant reduction in SEE at normal incidence for carbon velvet (75% reduction) and tungsten fuzz (40-50% reduction) over smooth graphite and tungsten, respectively, and (b) SEE from tungsten fuzz is nearly independent of incident angle (i.e. not a cosine dependence on incident angle observed for smooth materials). Hence, the reduction in SEE from tungsten fuzz over smooth tungsten is more pronounced (up to 63%) at grazing angles. This is important for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR Grants FA9550-14-1-0053, FA9550-11-1-0282, AF9550-09-1-0695, and FA9550-14-10317; and DOE Office of Science Graduate Student Research Program.

  19. Hazardous Materials Management Program Report- 2005.

    SciTech Connect

    Brynildson, Mark E.

    2005-06-01

    The annual program report provides detailed information about all aspects of the SNL/CA Hazardous Materials Management Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  20. DEVELOPING PROGRAMMED INSTRUCTIONAL MATERIALS, A HANDBOOK FOR PROGRAM WRITERS.

    ERIC Educational Resources Information Center

    ESPICH, JAMES E.; WILLIAMS, BILL

    THEORIES BEHIND PROGRAMED INSTRUCTION, STEPS REQUIRED FOR PROGRAMING, AND THE MAJOR PROGRAMING TECHNIQUES OF EDITING, TESTING, AND ANALYSIS ARE DISCUSSED. TOPICS INCLUDE--HOW TO ANALYZE MATERIAL TO BE PROGRAMED, HOW TO DIAGRAM MATERIAL, AND HOW TO USE VARIOUS CONSTRUCTION TECHNIQUES--DISCRIMINATION, CONSTRUCTED RESPONSE, BRANCHING, BABOON…

  1. FFTF (Fast Flux Test Facility) as an irradiation test bed for fusion materials and components

    SciTech Connect

    Greenslade, D.L.; Puigh, R.J.; Hollenberg, G.W.; Grover, J.M.

    1986-03-01

    The relatively large irradiation volume, instrumentation capabilities, and fast neutron flux associated with the Fast Flux Test Facility (FFTF) make this reactor an ideal test bed for fusion materials and components irradiations. Significant fusion materials irradiations are presently being performed in the Materials Open Test Assembly (MOTA) in FFTF. The MOTA is providing a controlled temperature and high neutron flux environment for such materials as the low activation alloys, copper alloys, ceramic insulators, and high heat flux materials. Conceptual designs utilizing the versatile MOTA irradiation vehicle have been developed to investigate irradiation effects on the mechanical and tritium breeding behaviors of solid breeder materials. More aggressive conceptual designs have also been developed to irradiate solid breeder blanket submodules in the FFTF. These specific component test designs will be presented and their potential roles in the development of fusion technology discussed.

  2. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect

    Petti, D A; Reyes, S; Cadwallader, L C; Latkowski, J F

    2004-09-02

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  3. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  4. Fusion reactor materials semiannual progress report for the period ending September 30, 1988

    SciTech Connect

    none,

    1989-04-01

    This paper discusses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  5. Fusion materials semiannual progress report for period ending December 31, 1999

    SciTech Connect

    Burn, G.

    2000-03-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components.

  6. Stability of concentration-related self-interstitial atoms in fusion material tungsten

    NASA Astrophysics Data System (ADS)

    Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen

    2016-05-01

    Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the <110> and <111> formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, <110> SIAs are more likely to exist, <111> SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).

  7. Material Management Program Can Attract Local Industry

    ERIC Educational Resources Information Center

    Magad, Eugene L.

    1978-01-01

    Describes the material management certificate and the associate in applied science degree programs at William Rainey Harper College, Palatine, Illinois. Material management functions include purchasing, production control, inventory control, material handling, warehousing, packaging, computer applications, and transportation. (MF)

  8. Mast material test program (MAMATEP)

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The Mast Material Test Program (MAMATEP) at NASA Lewis is discussed. Objectives include verifying the need for, and evaluating the performance of, various protection techniques for the Solar Array Assembly mast of the Space Station Photovoltaic Power Module. Mast material samples were evaluated in terms of mass and bending modulus, measured before and after environmental exposure. Test environments included atomic oxygen exposure (RF plasma asher), thermal cycling, and mechanical flexing. Protective coatings included CV-1144 silicon, a Ni/Au/InSn eutectic, and an open weave, Al braid. Results indicate that unprotected samples degrade in an atomic oxygen environment at a steady rate. Open weave, Al braid offers little protection for the fiberglass-epoxy sample in an asher environment. Ni/Au/InSn eutectic offers excellent protection in an asher environment prior to thermal cycling and mechanical flexing. Long duration asher results from unprotected samples indicate that, even though the fiberglass-epoxy degrades, a protection technique may not be necessary to ensure structural integrity. However, a protection technique may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  9. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  10. Safety and environmental comparisons of stainless steel with alternative structural materials for fusion reactors

    SciTech Connect

    Kinzig, A.P.; Holdren, J.P.; Hibbard, P.J.

    1994-08-01

    Using the FuseDose II computer code, we calculated and compared several indices of safety and environmental (S&E) hazards for conceptual magnetic-fusion reactor designs based on a variety of structural materials-stainless steel, ferritic steel, vanadium-chromium-titanium alloy, and silicon-carbide-and, for comparison, the fuel of a liquid-metal fast breeder fission reactor. FuseDose II is a second-generation code derived from the Fuse-Dose code used in the U.S. Department of Energy`s Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) study in the late 1980s. The comparisons update and extend those of the ESECOM study by adding the stainless-steel case, some new indices, graphical representation of the results, and other refinements. The results of our analysis support earlier conclusions concerning the S&E liabilities of stainless steel: The use of stainless steel would significantly reduce the S&E advantages of fusion over fission that are implied by the indices we consider, compared with the advantages portrayed in the ESECOM results for lower-activation fusion materials. The dose potentials represented by the radioactive materials that conceivably could be mobilized in severe accidents are substantially higher for the stainless steel case than for the lower activation fusion designs analyzed by ESECOM, and the waste disposal burden imposed by a stainless steel fusion reactor, though significantly smaller than that associated with a fission reactor of the same output, is high enough to rule out the chance of qualification for shallow burial under current regulations (in contrast to some of the lower activation fusion cases). This work underscores the conclusion that research to demonstrate the viability of the low-activation materials is essential if fusion is to achieve its potential for large and easily demonstrated S&E advantages over fission. 37 refs., 17 figs., 8 tabs.

  11. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.

    2015-11-01

    An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  12. Catalog of Programmed Instructional Material, Supplement.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Personnel and Training Branch.

    A supplement to the NavPers 93826 Catalog of Programed Instructional Material provides a full description of instructional material programed within the Navy since April, 1967. Summaries are given of all courses, including information on the specific learners for whom the course's instruction is intended, the type of program, the projected time…

  13. Toward a space materials systems program

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1981-01-01

    A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.

  14. a Study of Behavior of Inert Gases in Some Candidate Materials for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Zhang, C. H.; Chen, K. Q.; Wang, Y. S.; Sun, J. G.; Hu, B. F.; Donnelly, S. E.

    2003-06-01

    This paper gives a review of our study of inert gases (helium, argon) in several materials candidate to future fusion reactors. The study is focused on the agglomeration of gas atoms and formation of nanoscale cavities in several materials including stainless steels and silicon carbide under irradiation with ions with energy ranging from 10 keV to 100 MeV.

  15. A U.S. high-flux neutron facility for fusion materials development

    SciTech Connect

    Rei, Donald J

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  16. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  17. Inertial fusion program. Progress report, July 1-December 31, 1978

    SciTech Connect

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  18. Inertial fusion program, January 1-June 30, 1979

    SciTech Connect

    Skoberne, F.

    1981-06-01

    Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

  19. Progress in the pulsed power Inertial Confinement Fusion program

    SciTech Connect

    Quintenz, J.P.; Matzen, M.K.; Mehlhorn, T.A.

    1996-12-01

    Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that {approx}10 MJ of driver energy must be deposited within the ICF target in order to deposit {approx}1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm{sup 3}), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will be described.

  20. Advanced Industrial Materials (AIM) fellowship program

    SciTech Connect

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  1. Continuous Progress Program Inservice Materials.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL.

    The Continuous Progress Program of the Board of Education for the City of Chicago focuses on the improvement of education for the individual child and the upgrading of educational practices and techniques. The philosophy of the program is based on the individualized rate of teaching and learning of the pupil. Its planning and organization is…

  2. Implementing agreement on a co-operative program on inertial fusion energy

    SciTech Connect

    Latkowski, J; Hogan, W; Meier, W

    2000-01-04

    The Programme to be carried out by the Contracting Parties within the framework of this Agreement shall consist of co-operative research, development, demonstrations and exchanges of information regarding inertial fusion energy (IFE). This shall include: (1) Nuclear Technology, (2) Fusion Materials, (3) Environment, Safety and Economics, (4) Laser Drivers, (5) Ion Beam Drivers and Beam/Plasma Interactions, (6) Target Production, Injection and Tracking, (7) Fusion Diagnostics, (8) Driver/Plasma Interactions, (9) Fast Ignition and (10) Power Plant Design Studies. Annexes to this agreement will describe specific tasks in each area.

  3. Data fusion-based assessment of raw materials in mammalian cell culture.

    PubMed

    Lee, Hae Woo; Christie, Andrew; Xu, Jin; Yoon, Seongkyu

    2012-11-01

    In mammalian cell culture producing therapeutic proteins, one of the important challenges is the use of several complex raw materials whose compositional variability is relatively high and their influences on cell culture is poorly understood. Under these circumstances, application of spectroscopic techniques combined with chemometrics can provide fast, simple, and non-destructive ways to evaluate raw material quality, leading to more consistent cell culture performance. In this study, a comprehensive data fusion strategy of combining multiple spectroscopic techniques is investigated for the prediction of raw material quality in mammalian cell culture. To achieve this purpose, four different spectroscopic techniques of near-infrared, Raman, 2D fluorescence, and X-ray fluorescence spectra were employed for comprehensive characterization of soy hydrolysates which are commonly used as supplements in culture media. First, the different spectra were compared separately in terms of their prediction capability. Then, ensemble partial least squares (EPLS) was further employed by combining all of these spectral datasets in order to produce a more accurate estimation of raw material properties, and compared with other data fusion techniques. The results showed that data fusion models based on EPLS always exhibit best prediction accuracy among all the models including individual spectroscopic methods, demonstrating the synergetic effects of data fusion in characterizing the raw material quality.

  4. Planning for U.S. Fusion Community Participation in the ITER Program

    SciTech Connect

    Baker, Charles; Berk, Herbert; Greenwald, Martin; Mauel, Michael E.; Najmabadi, Farrokh; Nevins, William M.; Stambaugh, Ronald; Synakowski, Edmund; Batchelor, Donald B.; Fonck, Raymond; Hawryluk, Richard J.; Meade, Dale M.; Neilson, George H.; Parker, Ronald; Strait, Ted

    2006-06-07

    A central step in the mission of the U.S. Fusion Energy Sciences program is the creation and study of a fusion-powered "star on earth", where the same energy source that drives the sun and other stars is reproduced and controlled for sustained periods in the laboratory. This “star” is formed by an ionized gas, or plasma, heated to fusion temperatures in a magnetic confinement device known as a tokamak, which is the most advanced magnetic fusion concept. The ITER tokamak is designed to be the premier scientific tool for exploring and testing expectations for plasma behavior in the fusion burning plasma regime, wherein the fusion process itself provides the dominant heat source to sustain the plasma temperature. It will provide the scientific basis and control tools needed to move toward the fusion energy goal. The ITER project confronts the grand challenge of creating and understanding a burning plasma for the first time. The distinguishing characteristic of a burning plasma is the tight coupling between the fusion heating, the resulting energetic particles, and the confinement and stability properties of the plasma. Achieving this strongly coupled burning state requires resolving complex physics issues and integrating challenging technologies. A clear and comprehensive scientific understanding of the burning plasma state is needed to confidently extrapolate plasma behavior and related technology beyond ITER to a fusion power plant. Developing this predictive understanding is the overarching goal of the U.S. Fusion Energy Sciences program. The burning plasma research program in the U.S. is being organized to maximize the scientific benefits of U.S. participation in the international ITER experiment. It is expected that much of the research pursued on ITER will be based on the scientific merit of proposed activities, and it will be necessary to maintain strong fusion research capabilities in the U.S. to successfully contribute to the success of ITER and optimize

  5. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  6. Alternate nozzle ablative materials program

    NASA Technical Reports Server (NTRS)

    Kimmel, N. A.

    1984-01-01

    Four subscale solid rocket motor tests were conducted successfully to evaluate alternate nozzle liner, insulation, and exit cone structural overwrap components for possible application to the Space Shuttle Solid Rocket Motor (SRM) nozzle asasembly. The 10,000 lb propellant motor tests were simulated, as close as practical, the configuration and operational environment of the full scale SRM. Fifteen PAN based and three pitch based materials had no filler in the phenolic resin, four PAN based materials had carbon microballoons in the resin, and the rest of the materials had carbon powder in the resin. Three nozzle insulation materials were evaluated; an aluminum oxide silicon oxide ceramic fiber mat phenolic material with no resin filler and two E-glass fiber mat phenolic materials with no resin filler. It was concluded by MTI/WD (the fabricator and evaluator of the test nozzles) and NASA-MSFC that it was possible to design an alternate material full scale SRM nozzle assembly, which could provide an estimated 360 lb increased payload capability for Space Shuttle launches over that obtainable with the current qualified SRM design.

  7. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  8. BEATRIX-II program: First annual progress report, January 1988--December 1988: Annex-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    SciTech Connect

    Hollenberg, G.W.

    1989-03-01

    The objective of the BEATRIX-II experiment is to design, conduct, and evaluate a Collaborative, in-situ tritium-recovery experiment in the Fast Flux Test Facility (FFTF). Continuous monitoring of candidate solid breeder material's performance with respect to thermal conductivity, temperature stability, and tritium release is to be accomplished up to extended lithium burnup levels under simulated blanket environments. 6 refs., 21 figs., 10 tabs.

  9. BEATRIX-II Program: ANNEX-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials. Fourth annual report, January 1991--December 1991

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1992-12-01

    The BEATRIX-II experiment is an International Energy Agency (IEA) sponsored collaborative experiment between Japan, Canada, and the United States. This is an in situ tritium recovery experiment conducted to evaluate the performance of ceramic solid breeder materials in a fast neutron environment to high burnup levels. The experiment was carried out in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and was operated by Westinghouse Hanford Company (WHC). Pacific Northwest Laboratory, Richland (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) Research are conducting the experiment. The objective of the BEATRIX-II experiment is to design, conduct, and evaluate the in situ recovery of tritium from solid breeder materials during neutron irradiation in the FFTF. During the experiment, the performance of candidate solid breeder materials is continuously monitored with respect to temperature stability and tritium release. The phase I experiment was irradiated to lithium burnups of 5% while the goal for Phase II was to irradiate to burnups as high as 8%.

  10. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G.

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  11. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  12. Development of tritium technology for the United States magnetic fusion energy program

    SciTech Connect

    Anderson, J.L.; Wilkes, W.R.

    1980-01-01

    Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos.

  13. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, D.L.; Greenwood, L.R.; Loomis, B.A.

    1988-05-20

    This paper discusses an apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  14. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-01-01

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  15. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-03-07

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  16. Inertial fusion program. Progress report, January 1-June 30, 1978

    SciTech Connect

    Skoberne, F.

    1980-05-01

    Studies and experiments aimed at investigating the possibility of restoring wavefront quality in optical systems through phase conjugation are summarized, and work that could lead to the development of highly damage-resistant isolators is discussed. The effects of various parameters on pulse-energy uniformity and of multipass extraction on laser efficiency are reported. Results of equation-of-state, shock propagation, multiburst simulation, and opacity measurements are discussed. Target designs are described that should provide a smooth transition from the exploding-pusher regime of experiments to that of isentropic compression. Progress in target fabrication techniques toward creating a 20-times-liquid-density target are outlined, and efforts that led to the extension of our neutron detection capability to levels of less than 10/sup 3/ n are summarized. The results of various studies of laser fusion application, e.g., for producing ultrahigh-temperature process heat or hydrogen from water decomposition are presented, as well as investigations of fusion-fission hybrids for the production of /sup 233/U from /sup 232/Th.

  17. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Galloway, Alexander; Wood, James; Robbie, Mikael Brian Olsson; Easton, David; Zhu, Wenzhong

    2014-11-01

    In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported.

  18. The Heavy Ion Fusion Program in the U.S.A.

    SciTech Connect

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.D.; Logan, B.G.; Meier, W.R.

    2000-10-03

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade.

  19. BEATRIX-2 Program third annual report, January 1990--December 1990. ANNEX-3 to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1991-10-01

    The BEATRIX-2 experiment is an International Energy Agency (IEA) sponsored collaborative experiment between Japan, Canada, and the United States. The purpose of the experiment is to evaluate the performance of ceramic solid breeder materials in a fast neutron environment. To do this, an in-situ tritium recovery experiment is being conducted in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and operated by Westinghouse Hanford Company (WHC). The Pacific Northwest Laboratory (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) are responsible for conducting the experiment. This work is divided into two phases: Phase 1 was irradiated from January 1990 until March 1991 in Cycle 11 of FFTF, while Phase 2 will be irradiated in Cycle 12, which began in June 1991 and is scheduled to continue until approximately October of 1991 for 300 effective full power days (EFPD).

  20. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    grain size have been fabricated using sol-gel processing. The process has also been used to produce composite fibers containing tetragonal zirconia ... tetragonal zirconia have also been produced. Microwave energy has been demonstrated as a viable method for ignition of self- propagating synthesis. A...have been produced on several Isubstrate materials. Yttria-stabilized tetragonal zirconia with dispersed alpha-alumina has been produced in short

  1. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  2. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.; Key, M.; MacKinnon, Andrew J.; Wei, Mingsheng

    2014-02-27

    give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

  3. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect

    Wu, Z. X.; Huang, C. J.; Li, L. F.; Li, J. W.; Tan, R.; Tu, Y. P.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  4. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  5. Lightweight materials for transportation: Program plan

    SciTech Connect

    Not Available

    1993-07-01

    This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

  6. Materials processing in space program support

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James M.

    1987-01-01

    Activities in support of NASA's Materials Processing in Space (MPS) program are reported. The overall task of the MPS project support contract was to provide the organization and administration of colloquiums, science reviews, workshops, technical meetings, bibliographic services, and visiting scientist programs. The research objectives and accomplishments of the University Space Research Association visiting scientist team are also summarized.

  7. Fossil Energy Materials Program conference proceedings

    SciTech Connect

    Judkins, R.R.

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  8. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    SciTech Connect

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  9. Curriculum Materials in the Hawaii English Program.

    ERIC Educational Resources Information Center

    Cooper, Nancy M.

    Contrary to the usual design of curriculum materials, those of the Hawaii English Program (H.E.P.) are not handbooks for teachers. The H.E.P. materials--literature, in this case--consist of booklets for students who thus bear the responsibility for setting their own pace according to their interests, needs, and abilities. The total classroom…

  10. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  11. Maryland controlled fusion research program. Progress report, November 1, 1992--October 31, 1993

    SciTech Connect

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.; Hassam, A.; Liu, C.S.; Ott, E.

    1993-05-01

    In recent years, members of the Maryland Plasma Theory Group have made significant contributions to the national fusion theory program, and, in many cases, these theoretical developments helped to interpret experimental results and to design new experimental programs. In this paper, we summarize the technical progress in four major areas of tokamak research: (a) L/H transition and edge turbulence and transport; (b) active control of micro-turbulence and transport; (c) major disruptions; and (d) the sawtooth crash.

  12. Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers.

    PubMed

    Soikkeli, Miika; Kurppa, Katri; Kainlauri, Markku; Arpiainen, Sanna; Paananen, Arja; Gunnarsson, David; Joensuu, Jussi J; Laaksonen, Päivi; Prunnila, Mika; Linder, Markus B; Ahopelto, Jouni

    2016-03-01

    We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface. The modules are produced separately in fungi or plants and purified before use. The modules form a dense and well-oriented monolayer on the graphene transistor channel and the receptor module monolayer can be removed, and a new module monolayer with a different selectivity can be assembled in situ. The receptor module monolayers survive drying, showing that the functionalized devices can be stored and have a reasonable shelf life. The sensor is tested with small charged peptides and large immunoglobulin molecules. The measured sensitivities are in the femtomolar range, and the response is relatively fast, of the order of one second.

  13. Materials compatibility considerations for a fusion-fission hybrid reactor design

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of /sup 233/U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490/sup 0/C) and the recycling time of breeding materials (<1 year).

  14. Geochemical engineering and materials program plan

    SciTech Connect

    1982-08-01

    The Department of Energy (DOE) was designated as lead agency in discharging the overall legislative mandate for federal R&D to assist the private sector in developing appropriate technology for exploiting geothermal energy resources. The Geochemical Engineering and Materials (GEM) Program was conceived, as part of DOE'S overall strategy, to address specific and plant-wide problems and uncertainties in the use of materials and in geochemical engineering. This program assists industry in the conduct of long-term,high-risk R&D needed to overcome the significant technical and economic GEM-related obstacles faced by developers and potential developers of this alternative energy source. The program focuses on: (1) Increasing the knowledge about the properties of materials and their performance under geothermal energy system conditions; (2) Developing and utilizing more reliable and/or cost-effective materials than previously available; and (3) Developing a greater understanding of and control over geochemical processes during fluid production and transport, energy conversion, and waste management. As a stand-alone program and as support to other DOE geothermal technology development programs, the GEM Program contributes to the feasibility of designing and operating efficient, reliable, and safe fluid handling and energy conversion systems.

  15. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  16. Evaluation of low activation vanadium alloys for structural material in a fusion reactor

    SciTech Connect

    Loomis, B.A.; Hull, A.B.; Smith, D.L.

    1989-10-23

    The V-7.2Cr-14.5Ti, V-9.2Cr-4.9Ti, V-9.9Cr-9.2Ti, V-13.5Cr-5.2Ti, V-4.1Cr-4.3Ti, Vanstar-7, V-4.6Ti, V-17.7Ti, and V-3.1Ti-(0.5-1.0)Si alloys were evaluated for use as structural material in a fusion reactor. The alloys were evaluated on the basis of their yield strength, swelling resistance, resistance to hydrogen and irradiation embrittlement, and compatibility with a lithium reactor coolant. On the basis of these evaluations, the V-7.2Cr-14.5Ti, V-9.2Cr-4.9Ti, V-9.9Cr-9.2Ti, V-13.5Cr-5.2Ti, Vanstar-7, and V-3.1Ti-(0.5-1.0)Si alloys are considered unacceptable for structural material in a fusion reactor, whereas the V-4.1Cr-4.3Ti, V-4.6Ti, and V-17.7Ti alloys are recommended for more intensive evaluation. The V-7Cr-5Ti alloy may have the optimum combination of strength, DBTT, swelling rate, and lithium dissolution rate for a structural material in a fusion reactor. 4 refs., 6 figs., 4 tabs.

  17. Long-Term Materials Test Program: materials exposure test plan

    SciTech Connect

    1981-12-01

    The Long Term Materials Test Program is designed to identify promising corrosion resistant materials for coal-fired gas turbine applications. Resistance of materials to long term accelerated corrosion will be determined through realistic PFB environmental exposure of candidate turbine materials for up to 14,000 hours. Selected materials also will be evaluated for their ability to withstand the combined erosive and corrosive aspects of the PFB effluent. A pressurized fluidized bed combustor facility has been constructed at the General Electric Coal Utilization Research Laboratory at Malta, New York. The 12-inch diameter combustor will burn high sulfur coal with moderate-to-high chlorine and alkali levels and utilize dolomite as the sulfur sorbent. Hot gas cleanup is achieved using three stages of cyclone separators. Downstream of the cylone separators, a low velocity test section (approx. 30 ft/s) capable of housing 180 pin specimens 1/4'' diameter has been installed to assess the corrosion resistance of the various materials at three different temperatures ranging from 1300 to 1600/sup 0/F. Following the low velocity test section is a high velocity test section consisting of four cascades of airfoil shaped specimens, six specimens per cascade. This high velocity test section is being used to evaluate the combined effects of erosion and corrosion on the degradation of gas turbine materials at gas velocities of 800 to 1400 ft/s. This report summarizes the materials selection and materials exposure test plan for the Long Term Materials Test.

  18. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    SciTech Connect

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods.

  19. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  20. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  1. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C. (Editor)

    1978-01-01

    A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.

  2. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    SciTech Connect

    Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayed significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.

  3. Environmental Education Programs and Materials. PREP-33.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; And Others

    Information concerning programs and materials for environmental education is provided. In the report, environmental education is defined as: ". . . the educational process dealing with man's relationship with his natural and manmade surroundings, and including the relation of population, pollution, resource allocation and depletion,…

  4. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  5. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Naumann, R. J. (Editor)

    1980-01-01

    The history, strategy, and overall goal of NASA's Office of Space and Terrestrial Applications program for materials processing in space are described as well as the organizational structures and personnel involved. An overview of each research task is presented and recent publications are listed.

  6. Library Sign Systems. Workshop Program Materials.

    ERIC Educational Resources Information Center

    Ridgeway, Patricia M.

    These program materials from the Library Sign Systems Workshop include a news story on the workshop; notes in outline form for a speech presented by Joe Sonderman, president of a graphic designs firm; and an annotated bibliography on signs and sign systems. The news release summarizes a presentation by Dorothy Pollet and Peter Haskell, editors of…

  7. Outgassing tests on materials used in the DIII-D magnetic fusion tokamak

    SciTech Connect

    Holtrop, K.L.; Hansink, M.; Kellman, A.G.

    1998-12-01

    In order to achieve high performance plasma discharges in the DIII-D magnetic fusion tokamak, impurity levels must be carefully controlled. Since first wall materials can desorb volatile impurities during these discharges, it is important to characterize and control the outgassing of these materials. An outgassing chamber was built to measure the outgassing properties of various materials used in the DIII-D vessel. The results of pump-down tests performed on ATJ graphite, thin Grafoil {reg_sign} gaskets, and MgO coaxial cables will be presented. In addition to pumpdown tests it was desired to study the behavior of the materials at temperatures up to 400 C, which is the maximum temperature to which the DIII-D vessel is baked. The station was modified to include independent heating control of the sample and a simple load-lock chamber.

  8. Response of materials to high heat fluxes during operation in fusion reactors

    SciTech Connect

    Hassanein, A.M.

    1988-07-01

    Very high energy deposition on first wall and other components of a fusion reactor is expected due to plasma instabilities during both normal and off-normal operating conditions. Off-normal operating conditions result from plasma disruptions where the plasma loses confinement and dumps its energy on the reactor components. High heat flux may also result from normal operating conditions due to fluctuations in plasma edge conditions. This high energy dump in a short time results in very high surface temperatures and may consequently cause melting and vaporization of these materials. The net erosion rates resulting from melting and vaporization are very important to estimate the lifetime of such components. The response of different candidate materials to this high heat fluxes is determined for different energy densities and deposition times. The analysis used a previously developed model to solve the heat conduction equation in two moving boundaries. One moving boundary is at the surface to account for surface recession due to vaporization and the second moving boundary is to account for the solid-liquid interface inside the material. The calculations are done parametrically for both the expected energy deposited and the deposition time. These ranges of energy and time are based on recent experimental observations in current fusion devices. The candidate materials analyzed are stainless steel, carbon, and tungsten. 8 refs., 9 figs.

  9. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    PubMed

    Norton, Nadine; Sun, Zhifu; Asmann, Yan W; Serie, Daniel J; Necela, Brian M; Bhagwate, Aditya; Jen, Jin; Eckloff, Bruce W; Kalari, Krishna R; Thompson, Kevin J; Carr, Jennifer M; Kachergus, Jennifer M; Geiger, Xochiquetzal J; Perez, Edith A; Thompson, E Aubrey

    2013-01-01

    Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16). Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed

  10. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  11. Need for and requirements for neutron irradiation facility for fusion materials testing

    SciTech Connect

    Ishino, S.; Schiller, P.; Rowcliffe, A.F.

    1989-01-01

    The construction and operation of an intense 14MeV neutron source is essential for the development and eventual qualification of structural materials for a fusion reactor demonstration plant (DEMO). Because of the time required for materials developed and the scale-up of materials to commercial production, a decision to build a neutron source should precede engineering design activities for a DEMO by at least 20 years. The characteristic features of 14MeV neutron damage are summarized including effects related to cascade structure, transmutation production, and dose rate. The importance of a 14MeV neutron source for addressing fundamental radiation damage issues, alloy development activities and the development of an engineering data bases is discussed. From these considerations the basic requirements and machine parameters are derived. 14 refs., 5 figs., 5 tabs.

  12. Navy Shipboard Hazardous Material Minimization Program

    SciTech Connect

    Bieberich, M.J.; Robinson, P.; Chastain, B.

    1994-12-31

    The use of hazardous (and potentially hazardous) materials in shipboard cleaning applications has proliferated as new systems and equipments have entered the fleet to reside alongside existing equipments. With the growing environmental awareness (and additional, more restrictive regulations) at all levels/echelon commands of the DoD, the Navy has initiated a proactive program to undertake the minimization/elimination of these hazardous materials in order to eliminate HMs at the source. This paper will focus on the current Shipboard Hazardous Materials Minimization Program initiatives including the identification of authorized HM currently used onboard, identification of potential substitute materials for HM replacement, identification of new cleaning technologies and processes/procedures, and identification of technical documents which will require revision to eliminate the procurement of HMs into the federal supply system. Also discussed will be the anticipated path required to implement the changes into the fleet and automated decision processes (substitution algorithm) currently employed. The paper will also present the most recent technologies identified for approval or additional testing and analysis including: supercritical CO{sub 2} cleaning, high pressure blasting (H{sub 2}O + baking soda), aqueous and semi-aqueous cleaning materials and processes, solvent replacements and dedicated parts washing systems with internal filtering capabilities, automated software for solvent/cleaning process substitute selection. Along with these technological advances, data availability (from on-line databases and CDROM Database libraries) will be identified and discussed.

  13. Fusion research at ORNL

    SciTech Connect

    Not Available

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress.

  14. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  15. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.

  16. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    SciTech Connect

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  17. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    SciTech Connect

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  18. Investigation of oxidation resistance of carbon based first-wall liner materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Moormann, R.; Hinssen, H. K.; Krüssenberg, A.-K.; Stauch, B.; Wu, C. H.

    1994-09-01

    One important aspect in selection of carbon based first-wall liner materials in fusion reactors is a sufficient oxidation resistance against steam and oxygen; this is because during accidents like loss of coolant into vacuum or loss of vacuum these oxidizing media can enter the vacuum vessel and may cause some corrosion of carbon followed by release of adsorbed tritium; in addition other consequences of oxidation like formation of burnable gases and their explosions have to be examined. Based on extensive experience on nuclear graphite oxidation in HTRs KFA has started in cooperation with NET some experimental investigations on oxidation of fusion reactor carbons. Results of first experiments on CFCs, Ti- and Si-doped carbons and graphites in steam (1273-1423 K) and oxygen (973 K) are reported. It was found that most materials have a similar reactivity as HTR nuclear graphites (which is much smaller than those of usual technical carbons); Si-doped CFCs however have a remarkably better oxidation resistance than those, which is probably due to the formation of a protecting layer of SiO 2. The measured kinetic data will be used in safety analyses for above mentioned accidents.

  19. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  20. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  1. A survey of the properties of copper alloys for use as fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Butterworth, G. J.; Forty, C. B. A.

    1992-08-01

    Pure copper and some selected dilute alloys are widely utilised in experimental plasma confinement devices and have also been proposed for various applications in fusion power reactors where a high thermal or electrical conductivity in the material is required. Available data on physical and mechanical properties of a number of commercial coppers and alloys at elevated temperatures are collated and reviewed as an aid to materials selection and component design. Properties examined include the thermal and electrical conductivities, thermal fatigue resistance, softening behaviour, and creep and fatigue strengths. The effects of neutron irradiation on copper alloys are briefly discussed in terms of radiation damage and its influence on conductivity and mechanical properties, the compositional changes occurring through transmutation and the induced activity and associated γ-dose rate and biological hazard potential. Data emerging from recent fission reactor irradiation programmes on void swelling and changes in electrical conductivity and mechanical properties are presented and discussed.

  2. Development of a small specimen test machine to evaluate irradiation embrittlement of fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Ohmi, M.; Saito, J.; Hoshiya, T.; Ooka, N.; Jitsukawa, S.; Eto, M.

    2000-12-01

    Small specimen test techniques (SSTT) are essential to use an accelerator-driven deuterium-lithium stripping reaction neutron source for the study of fusion reactor materials because of the limitation of the available irradiation volume. A remote-controlled small punch (SP) test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). This report describes the SP test method and machine for use in a hot cell, and test results on irradiated ferritic steels. The specimen was either a coupon 10×10×0.25 mm 3 or a TEM disk 3 mm in diameter by 0.25 mm in thickness. Tests can be performed at temperatures ranging from 93 to 1123 K in a vacuum or in an inert gas environment. The ductile to brittle transition temperature of the irradiated ferritic steel as determined by the SP test is also evaluated.

  3. Reaction-Based SiC Materials for Joining Silicon Carbide Composites for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Singh, M.; Serizawa, H.; Katoh, Y.; Kohyama, A.

    2000-09-01

    The fabrication of large or complex silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) components for fusion energy systems requires a method to assemble smaller components that are limited in size by manufacturing constraints. Previous analysis indicates that silicon carbide should be considered as candidate joint materials. Two methods to obtain SiC joints rely on a reaction between silicon and carbon to produce silicon carbide. This report summarizes preliminary mechanical properties of joints formed by these two methods. The methods appear to provide similar mechanical properties. Both the test methods and materials are preliminary in design and require further optimization. In an effort to determine how the mechanical test data is influenced by the test methodology and specimen size, plans for detailed finite element modeling (FEM) are presented.

  4. Preliminary evaluation of beta-spodumene as a fusion reactor structural material

    SciTech Connect

    Kelsey, P.V. Jr.; Schmunk, R.E.; Henslee, S.P.

    1981-01-01

    Beta-spodumene was investigated as a candidate material for use in fusion reactor environments. Properties which support the use of beta-spodumene include good thermal shock resistance, a very low coefficient of thermal expansion, a low-Z composition which would result in minimum impact on the plasma, and flexibility in fabrication processes. Specimens were irradiated in the Advanced Test Reactor (ATR) to a fluence of 5.3 x 10/sup 22/ n/m/sup 2/, E > 0.1 MeV, and 4.9 x 10/sup 23/ n/m/sup 2/ thermal fluence in order to obtain a preliminary evaluation of the impact of irradiation on the material. Preliminary data indicate that the mechanical properties of beta-spodumene are little affected by irradiation. Gas production and release have also been investigated.

  5. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  6. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  7. Hydrogeologic Data Fusion. Industry Programs/Characterization, Monitoring, and Sensor Technology Crosscut Program. OST Reference #2944

    SciTech Connect

    None, None

    1999-09-01

    Problem: The fate and transport of contaminants in the subsurface requires knowledge of the hydrogeologic system. Site characterization typically involves the collection of various data sets needed to create a conceptual model that represents what’s known about contaminant migration in the subsurface at a particular site. How Hydrogeologic Data Fusion Works Hydrogeologic Data Fusion is a mathematical tool that can be used to combine various types of geophysical, geologic, and hydrologic data from different types of sensors to estimate geologic and hydrogeologic properties. It can be especially useful at hazardous waste sites where the hydrology, geology, or contaminant distribution is significantly complex such that groundwater modeling is required to enable a reasonable and accurate prediction of subsurface conditions.

  8. High-speed surface temperature measurements on plasma facing materials for fusion applications

    SciTech Connect

    Araki, M.; Kobayashi, M.

    1996-01-01

    For the lifetime evaluation of plasma facing materials in fusion experimental machines, it is essential to investigate their surface behavior and their temperature responses during an off-normal event such as the plasma disruptions. An infrared thermometer with a sampling speed as fast as 1{times}10{sup {minus}6} s/data, namely, the high-speed infrared thermometer (HSIR), has been developed by the National Research Laboratory of Metrology in Japan. To evaluate an applicability of the newly developed HSIR on the surface temperature measurement of plasma facing materials, high heat flux beam irradiation experiments have been performed with three different materials under the surface heat fluxes up to 170 MW/m{sup 2} for 0.04 s in a hydrogen ion beam test facility at the Japan Atomic Energy Research Institute. As for the results, HSIR can be applicable for measuring the surface temperature responses of the armor tile materials with a little modification. It is also confirmed that surface temperatures measured with the HSIR thermometer show good agreement with the analytical results for stainless steel and carbon based materials at a temperature range of up to 2500{degree}C. However, for aluminum the HSIR could measure the temperature of the high dense vapor cloud which was produced during the heating due to lower melting temperature. Based on the result, a multichannel arrayed HSIR thermometer has been designed and fabricated. {copyright} {ital 1996 American Institute of Physics.}

  9. 78 FR 19637 - National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials for Organic Crop Production AGENCY: Agricultural... operations, material evaluation programs, and other organic industry stakeholders. The first set of...

  10. Advanced neutron source materials surveillance program

    SciTech Connect

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing.

  11. Material behavior and materials problems in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Dylla, H.F.; Ulrickson, M.A.; Owens, D.K.; Heifetz, D.B.; Mills, B.E.; Pontau, A.E.; Wampler, W.R.; Doyle, B.L.; Lee, S.R.; Watson, R.D.; Croessmann, C.D.

    1988-05-01

    This paper reviews the experience with first-wall materials over a 20-month period of operation spanning 1985--1987. Experience with the axisymmetric inner wall limiter, constructed of graphite tiles, will be described including the necessary conditioning procedures needed for impurity and particle control of high power ({le}20 MW) neutral injection experiments. The thermal effects in disruptions have been quantified and no significant damage to the bumper limiter has occurred as a result of disruptions. Carbon and metal impurity redeposition effects have been quantified through surface analysis of wall samples. Estimates of the tritium retention in the graphite limiter tiles and redeposited carbon films have been made based on analysis of deuterium retention in removed graphite tiles and wall samples. New limiter structures have been designed using a 2D carbon/carbon (C/C) composite material for RF antenna protection. Laboratory tests of the important thermal, mechanical and vacuum properties of C/C materials will be described. Finally, the last series of experiments in TFTR with in-situ Zr/Al surface pumps will be described. Problems with Ar/Al embrittlement have led to the removal of the getter material from the in-torus environment. 53 refs., 8 figs., 3 tabs.

  12. (International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study)

    SciTech Connect

    Thoms, K.R.; Wiffen, F.W.

    1991-02-14

    Both travelers were members of a nine-person US delegation that participated in an international workshop on accelerator-based 14 MeV neutron sources for fusion materials research hosted by the University of Tokyo. Presentations made at the workshop reviewed the technology developed by the FMIT Project, advances in accelerator technology, and proposed concepts for neutron sources. One traveler then participated in the initial meeting of the IEA Working Group on High Energy, High Flux Neutron Sources in which efforts were begun to evaluate and compare proposed neutron sources; the Fourth FFTF/MOTA Experimenters' Workshop which covered planning and coordination of the US-Japan collaboration using the FFTF reactor to irradiate fusion reactor materials; and held discussions with several JAERI personnel on the US-Japan collaboration on fusion reactor materials.

  13. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    SciTech Connect

    Johnson, R.; Luckhardt, R.; Terry, N.; Drake, D.; Gaines, J.

    1990-04-27

    This KMS Fusion Semi-Annual Technical Report covers the period October 1989 through March 1990. It contains a review of work performed by KMS Fusion, Inc. (KMSF), in support of the national program to achieve inertially confined fusion (ICF). A major section of the report is devoted to target technology, a field which is expected to play an increasingly important role in the overall KMSF fusion effort. Among the highlights of our efforts in this area covered in this report are: improvements and new developments in target fabrication techniques, including a discussion of techniques for introducing gaussian bumps and bands on target surfaces. Development of a single automated system for the interferometric characterization of transparent shells. Residual gas analysis of the blowing gases contained in glass shells made from xerogels. These usually include CO{sub 2}, O{sub 2} and N{sub 2}, and are objectionable because they dilute the fuel. Efforts to observe the ice layers formed in the {beta}-layering process in cryogenic targets, and to simulate the formation of these layers. In addition to our work on target technology, we conducted experiments with the Chroma laser and supported the ICF effort at other labs with theoretical and computational support as well as diagnostic development. Included in the work covered in this report are: experiments on Chroma to study interpenetration of and ionization balance in laser generated plasmas. Diagnostic development, including an optical probe for the Aurora laser at Los Alamos National Laboratory, and a high energy x-ray continuum spectrograph for Aurora. Investigation of the radiation cooling instability as a possible mechanism for the generation of relatively cold, dense jets observed in ICF experiments.

  14. Materials recycle and waste management in fusion power reactors. Progress report for 1982

    SciTech Connect

    Vogler, S.; Jung, J.; Steindler, M.J.; Maya, I.; Levine, H.E.; Peterman, D.D.; Strausburg, S.; Schultz, K.R.

    1983-01-01

    Several components of a STARFIRE fusion reactor have been studied. The breeding ratios were calculated as a function of lithium enrichment and neutron multiplier for systems containing either Li/sub 2/O or LiAlO/sub 2/. The lithium requirements for a fusion economy were also estimated for those cases and the current US resources were found to be adequate. However, competition with other lithium demands in the future emphasizes the need for recovering and reusing lithium. The radioactivities induced in the breeder and the impurities responsible for their formation were determined. The residual radioactivities of several low-activation structural materials were compared with the radioactivity from the prime candidate alloy (PCA) a titanium modified Type 316 stainless steel used in STARFIRE. The impurities responsible for the radioactivity levels were identified. From these radioactive impurity levels it was determined that V15Cr5Ti could meet the requirements for shallow land burial as specified by the Nuclear Regulatory Commission (10CFR61), whereas PCA would require a more restrictive disposal mode, i.e. in a geologic medium. The costs for each of these disposal modes were then estimated.

  15. Damage parameter comparison for candidate intense neutron test facilities for fusion materials

    SciTech Connect

    Doran, D.G.; Greenwood, L.R. ); Mann, F.M. )

    1990-07-31

    It is recognized worldwide that an intense source of fusion energy neutrons is needed to evaluate candidate fusion materials. At an International Energy Agency (IEA) workshop held in San Diego in February 1989, an Evaluation Panel recommended that three neutron source concepts be developed further. The panel also recommended that further comparisons were needed of their irradiation environments. In this paper, a comparison is made of damage parameters for beryllium, carbon, silicon, vanadium, iron, copper, molybdenum, and tungsten irradiated in spectra characteristic of di-Li, spallation, and beam-plasma (d-t) neutron sources and in a reference DEMO first wall spectrum. The treatment of neutron-induced displacement reactions is confined to the region below 20 MeV and transmutation reactions to below 50 MeV by the limited availability of calculational tools. The spallation spectrum is relatively soft; less than 2% of the neutrons are above 50 MeV. The transmutation results emphasize the need to define the neutron spectra at low, as well as high, energies; only the DEMO spectrum is adequate in this respect. Recommendations are given for further work to be performed under an international working group. 12 refs., 2 figs., 3 tabs.

  16. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  17. Repetitive tabletop plasma focus to produce a tunable damage factor on materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Pavez, Cristian; Inestrosa-Izurieta, Maria Jose; Moreno, Jose; Davis, Sergio; Bora, Biswajit; Avaria, Gonzalo; Jain, Jalaj; Altamirano, Luis; Panizo, Miguel; Gonzalez, Raquel; Rivera, Antonio

    2016-10-01

    Future thermonuclear reactors, both magnetic and inertial confinement approaches, need materials capable of withstanding the extreme radiation and heat loads expected from high repetition rate plasma. A damage factor (F = qτ1/2) in the order of 104 (W/cm2) s1/2 is expected. The axial plasma dynamics after the pinch in a tabletop plasma focus of hundred joules, PF-400J, was characterized by means of pulsed optical refractive diagnostics. The energy, interaction time and power flux of the plasma burst interacting with targets was obtained. Results show a high dependence of the damage factor with the distance from the anode top where the sample is located. A tunable damage factor in the range 10- 105(W/cm2) s1/2 can be obtained. At present the PF-400J operating at 0.077 Hz is being used to study the effects of fusion-relevant pulses on material target, including nanostructured materials. A new tabletop device to be operated up to 1Hz including tunable damage factor has been designed and is being constructed, thus thousand cumulative shots on materials could be obtained in few minutes. The scaling of the damage factor for plasma foci operating at different energies is discussed. Supported by CONICYT: PIA ACT-1115, PAI 79130026.

  18. Interbody Spacer Material Properties and Design Conformity for Reducing Subsidence During Lumbar Interbody Fusion.

    PubMed

    Chatham, Lillian S; Patel, Vikas V; Yakacki, Christopher M; Dana Carpenter, R

    2017-05-01

    There is a need to better understand the effects of intervertebral spacer material and design on the stress distribution in vertebral bodies and endplates to help reduce complications such as subsidence and improve outcomes following lumbar interbody fusion. The main objective of this study was to investigate the effects of spacer material on the stress and strain in the lumbar spine after interbody fusion with posterior instrumentation. A standard spacer was also compared with a custom-fit spacer, which conformed to the vertebral endplates, to determine if a custom fit would reduce stress on the endplates. A finite element (FE) model of the L4-L5 motion segment was developed from computed tomography (CT) images of a cadaveric lumbar spine. An interbody spacer, pedicle screws, and posterior rods were incorporated into the image-based model. The model was loaded in axial compression, and strain and stress were determined in the vertebra, spacer, and rods. Polyetheretherketone (PEEK), titanium, poly(para-phenylene) (PPP), and porous PPP (70% by volume) were used as the spacer material to quantify the effects on stress and strain in the system. Experimental testing of a cadaveric specimen was used to validate the model's results. There were no large differences in stress levels (<3%) at the bone-spacer interfaces and the rods when PEEK was used instead of titanium. Use of the porous PPP spacer produced an 8-15% decrease of stress at the bone-spacer interfaces and posterior rods. The custom-shaped spacer significantly decreased (>37%) the stress at the bone-spacer interfaces for all materials tested. A 28% decrease in stress was found in the posterior rods with the custom spacer. Of all the spacer materials tested with the custom spacer design, 70% porous PPP resulted in the lowest stress at the bone-spacer interfaces. The results show the potential for more compliant materials to reduce stress on the vertebral endplates postsurgery. The custom spacer provided a

  19. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    SciTech Connect

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; Sato, Mitsuhisa; Tang, William; Wang, Bei

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensional gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.

  20. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  1. Technical assessment of critical Plasma-Materials Interaction (PMI) and High Heat Flux (HHF) issues for alternative fusion concepts (AFCs)

    SciTech Connect

    Downing, J.N.

    1986-03-01

    A number of approaches to fusion energy are being pursued as alternative fusion concepts (AFCs). The goal of these systems is to provide a more desirable method of producing fusion energy than the mainline programs. Some of the AFCs have both a Low Power Density (LPD) option and a High Power Density (HPD) option. A summary of representative AFC programs and their associated PMI and HHF issues is followed by the technical assessment of the critical issues. These requirements are discussed relative to the mainline and/or HPD components. The HPD options are contrasted with a tabulation of the characteristics of components for the Reversed-Field Pinch (RFP), which is representative of the HPD concept.

  2. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    SciTech Connect

    Gobin, Raphael Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Okumura, Yoshikazu [IFMIF and others

    2016-02-15

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H{sup +} and D{sup +} 100 keV beams) are reported in a second article.

  3. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  4. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  5. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site.

    PubMed

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Ayala, Juan Marcos; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H(+) and D(+) 100 keV beams) are reported in a second article.

  6. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  7. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  8. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGES

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; ...

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  9. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  10. Catalog of Programmed Instructional Material. (Including Change I).

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    A catalog lists programed instruction material for military tasks that has been developed by the U.S. Navy. Part one of the catalog lists programed material alphabetically by subject area. Information provided for each program includes title, classification, identification code to be used when requesting copies of the program, population for whom…

  11. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Program application materials-research. 3406.17... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an...

  12. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Program application materials-research. 3406.17... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an...

  13. 7 CFR 3406.12 - Program application materials-teaching.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Program application materials-teaching. 3406.12... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Teaching Proposal § 3406.12 Program application materials—teaching. Program application materials in an...

  14. 7 CFR 3406.12 - Program application materials-teaching.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Program application materials-teaching. 3406.12... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Teaching Proposal § 3406.12 Program application materials—teaching. Program application materials in an...

  15. 7 CFR 3406.12 - Program application materials-teaching.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Program application materials-teaching. 3406.12... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Teaching Proposal § 3406.12 Program application materials—teaching. Program application materials in an...

  16. 7 CFR 3406.12 - Program application materials-teaching.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Program application materials-teaching. 3406.12... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Teaching Proposal § 3406.12 Program application materials—teaching. Program application materials in an...

  17. Sn-Li, a new coolant/breeding material for fusion applications.

    SciTech Connect

    Sze, D.-K.; Mattas, R.; Wang, Z.; Cheng, E. T.; Sawan, M.; Zinkle, S.; McCarthy, K. A.

    1999-10-11

    A new breeding material, Sn-Li has been proposed for the APEX and ALPS programs. The key reason for proposing this material is that it has very low vapor pressure. Since both APEX and ALPS are investigating free surface flow for the blanket and divertor, respectively, low vapor pressure is a big advantage. This paper summarizes the results from a preliminary investigation. The early conclusion is that Sn-Li can be used as the coolant/breeding material for the APEX and ALPS applications. It has several attractive features, such as low vapor pressure and high thermal conductivity, but it also has some potential issues, such as material compatibility and activation. Further investigation will be required to assess the potential advantages of this material compared to other breeding materials.

  18. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  19. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  20. Simulation of X-ray Irradiation on Optics and Chamber Wall Materials for Inertial Fusion Energy

    SciTech Connect

    Reyes, S; Latkowski, J F; Abbott, R P; Stein, W

    2003-09-10

    We have used the ABLATOR code to analyze the effect of the x-ray emission from direct drive targets on the optics and the first wall of a conceptual laser Inertial Fusion Energy (IFE) power plant. For this purpose, the ABLATOR code has been modified to incorporate the predicted x-ray spectrum from a generic direct drive target. We have also introduced elongation calculations in ABLATOR to predict the thermal stresses in the optic and first wall materials. These results have been validated with thermal diffusion calculations, using the LLNL heat transfer and dynamic structural finite element codes Topaz3d and Dyna3d. One of the most relevant upgrades performed in the ABLATOR code consists of the possibility to accommodate multi-material simulations. This new feature allows for a more realistic modeling of typical IFE optics and first wall materials, which may have a number of different layers. Finally, we have used the XAPPER facility, at LLNL, to develop our predictive capability and validate the results. The ABLATOR code will be further modified, as necessary, to predict the effects of x-ray irradiation in both the IFE real case and our experiments on the XAPPER facility.

  1. Perspectives for the high field approach in fusion research and advances within the Ignitor Program

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.

    2015-05-01

    The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.

  2. 7 CFR 3406.12 - Program application materials-teaching.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-teaching. 3406.12... GRANTS PROGRAM Preparation of a Teaching Proposal § 3406.12 Program application materials—teaching... program, and the forms needed to prepare and submit teaching grant applications under the program....

  3. Tensile and fatigue properties of two titanium alloys as candidate materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Leguey, T.; Belianov, I.; Victoria, M.

    2000-12-01

    Titanium alloys have been identified as candidate structural materials for the first wall, the blanket and the magnetic coil structures of fusion reactors. Titanium alloys are interesting materials because of their high specific strength and low elastic modulus, their low swelling tendency and their fast induced radioactivity decay. Other attractive properties are an excellent resistance to corrosion and good weldability, even in thick sections. Furthermore titanium alloys are suitable for components exposed to heat loads since they have a low thermal stress parameter. Titanium alloys with an α structure are believed to have a good resistance against radiation embrittlement and α+β alloys should possess the best tolerance to hydrogen embrittlement. Two classical industrially available alloys in the two families, the Ti5Al2.4Sn and the Ti6Al4V alloys have been used in this study. The tensile properties between room temperature and 450°C are reported. A low cycle fatigue analysis has been performed under strain control at total strain ranges between 0.8% and 2% and at a temperature of 350°C. The microstructure of both alloys was investigated before and after both types of deformation. Both alloys exhibit excellent mechanical properties comparable to or better than those of ferritic martensitic steels.

  4. SELF-SIMILAR SKELETAL STRUCTURES IN FUSION AND MATERIAL TEST DEVICES: NUMERICAL MODELING AND NEW OBSERVATIONAL DATA

    SciTech Connect

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2009-07-26

    The hypotheses for self-assembling of a fractal condensed matter in electric discharges and the probable role of a skeletal matter in the long-lived filamentary structures in fusion devices is studied in two directions. First, we append previous collection of respective data with recent evidences for skeletal structuring in peripheral plasmas and dust deposits in fusion and material test devices. Second, we demonstrate, via numerical modelling, the possibility of coaxial tubular structuring formation in a system of electric current filaments composed of magnetized, electrically conducting thin rods (nanodust), with an accent on self-reduction of spatial dimensionality of structuring and on the role of magnetic in such systems.

  5. Self-Similar Skeletal Structures in Fusion and Material Test Devices: Numerical Modeling and New Observational Data

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2009-07-01

    The hypotheses for self-assembling of a fractal condensed matter in electric discharges and the probable role of a skeletal matter in the long-lived filamentary structures in fusion devices is studied in two directions. First, we append previous collection of respective data with recent evidences for skeletal structuring in peripheral plasmas and dust deposits in fusion and material test devices. Second, we demonstrate, via numerical modelling, the possibility of coaxial tubular structuring formation in a system of electric current filaments composed of magnetized, electrically conducting thin rods (nanodust), with an accent on self-reduction of spatial dimensionality of structuring and on the role of magnetic in such systems.

  6. US blanket technology programs. [Directory of current research

    SciTech Connect

    Nygren, R.E.

    1985-01-01

    Experimental research in US programs related to blanket technology is described through brief summaries of the objectives, facilities, recent experimental results and principal investigators for the Blanket Technology Program, TRIO-1 Experiment, TSTA, Fusion Hybrid Program and selected activities in the Fusion Materials and Fusion Safety Programs in neutronics research.

  7. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  8. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect

    Rennich, M.J.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  9. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect

    Stooksbury, F.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  10. Chemical Fingerprinting Program for RSRM Critical Materials

    NASA Technical Reports Server (NTRS)

    McClennen, William H.; Fife, Dennis J.; Killpack, Michael O.; Golde, Rick P.; Cash, Steve (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the chemical fingerprinting of RSRM (Reusable Sold Rocket Motor) components. A chemical fingerprint can be used to identify a material, to differentiate it from similar looking materials, or lead to its source. It can also identify unexpected changes to a vendor or supplier's material, and monitor aging.

  11. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    PubMed

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  12. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    . The solid angle subtended by the fiber is ∼2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ∼1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in μW/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ∼ 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 μm thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.≈490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast

  13. Materials Compatibility and Lubricants Research (MCLR) Program

    SciTech Connect

    Szymurski, S.R.

    1994-12-01

    Objective is to accelerate phaseout of CFC refrigerants. Since its start in 1991, the MCLR program has initiated twenty-five research projects and the ARTI Refrigerant Database. The MCLR program is now entering its final phase. This phase will include over a dozen new research projects which will be completed in the next two years. This presentation highlights accomplishments of the MCLR program and outlines new projects to be conducted in the final phase.

  14. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  15. Chemical thermodynamics of fusion reactor breeding materials and their interaction with tritium

    NASA Astrophysics Data System (ADS)

    Ihle, H. R.; Wu, C. H.

    1985-02-01

    Liquid lithium, lithium alloys (solid and liquid) and ceramic lithium compounds are candidate breeding materials for (D,T) fusion reactors. Besides their tritium breeding capability, which results from neutron capture, their thermochemical properties and their interaction with tritium are of particular interest. A good knowledge of the physical and chemical properties of liquid lithium exists; and the systems Li-LiH, Li-LiD and Li-LiT have been studied in great detail. For dilute solutions of D 2 in liquid lithium, Sieverts' law was found to be valid down to an atom fraction of x D = 10 -6; in the vapor, lithium polymers up to Li 4 and lithium deuterides are found. In the system liquid Li-Pb, the solubility of D 2 was measured as a function of temperature and alloy composition, and correlated with the activities of the constituent metals. The solubility of D 2 was found to obey Sieverts' law at low concentrations, and is many orders of magnitude smaller than that in liquid lithium. This holds also for solid "Li 7 Pb 2". Vaporization studies yielded data on the thermal stability of the oxides: Li 20, γ-LiAlO 2, β-Li sAlO 4, LiAl 5O 8, Li 2ZrO 3, Li 4ZrO 4, Li 8ZrO 6, Li 2SiO 3 and Li 4SiO 4. Tritium diffusivity was studied in Li 2O, γ-LiAlO 2, β-Li 5AlO 4 and Li 4SiO 4. A large number of gaseous lithides were detected during these studies.

  16. National voluntary laboratory accreditation program: Thermal insulation materials. Handbook

    SciTech Connect

    Knab, L.I.

    1995-05-01

    NIST Handbook 150-15 presents the technical requirements of the National Voluntary Laboratory Accreditation Program (NVLAP) for Thermal Insulation Materials. It is intended for information and use by staff of accredited laboratories, those laboratories seeking accreditation, other laboratory accreditation systems, users of laboratory services, and others needing information on the requirements for accreditation under the Thermal Insulation Materials program.

  17. Programming in C at NMFECC (National Magnetic Fusion Energy Computing Center): A practical guide

    SciTech Connect

    Haney, S.W.; Crotinger, J.A.

    1989-07-26

    Despite its popularity elsewhere, C has not been extensively used for scientific programming on supercomputers. There are a number of reasons for this but perhaps the most compelling has been the lack of C compilers. However, this situation has recently begun to change at the National Magnetic Fusion Energy Computing Center (NMFECC) where two C development platforms --- the Hybrid C Compiler (HCC) written at the Livermore Computer Center and the Portable C Compiler (CC version 4.1) distributed by Cray Research, Inc. (CRI) --- have become available for use. These compilers produce object code for all of the Cray models at NMFECC and, in addition, possess good scalar optimization capabilities along with rudimentary vectorization capabilities. With the advent of the Cray C compilers, it is possible to consider physics code development in C at NMFECC. However, when one actually attempts to pursue this goal, one is quickly faced with a number of practical problems. For instance, How do I compile, link, and debug C codes What special features of C are useful to me as a scientific programmer Are there things I currently can't do in C programs How do I interface my C program to existing Fortran code Can I make use of the Basis code development system from C Over the last three years we have incorporated C into numerous physics codes written at NMFECC and, in the course of this work, we have had to develop solutions to all of the above problems. This turned out to be a surprisingly frustrating and time-consuming venture requiring some rather subtle techniques and hacks. This guide is an attempt to document these techniques.

  18. Graphics and composite material computer program enhancements for SPAR

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  19. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-research. 3406.17... RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application...

  20. Hazardous materials response project: program plan

    SciTech Connect

    Not Available

    1981-11-01

    The overall purpose of this Program described is to provide timely and effective deployment of scientific resources during an emergency oil or hazardous substance release to minimize environmental and socioeconomic impact.

  1. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our

  2. Fusion Energy Division annual progress report, period ending December 31, 1988

    SciTech Connect

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  3. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  4. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  5. Materials Processing in Space (MPS) program description

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Insight is provided into the scientific rotationale for materials processing in space (MPS), and a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS is described. The programmatic and management functions apply to all projects and activities implemented under MPS. It is intended that specific project plans, providing project unique details, will be appended to this document for endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.

  6. Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991

    SciTech Connect

    Not Available

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  7. Speech recognition using Kohonen neural networks, dynamic programming, and multi-feature fusion

    NASA Astrophysics Data System (ADS)

    Stowe, Francis S.

    1990-12-01

    The purpose of this thesis was to develop and evaluate the performance of a three-feature speech recognition system. The three features used were LPC spectrum, formants (F1/F2), and cepstrum. The system uses Kohonen neural networks, dynamic programming, and a rule-based, feature-fusion process which integrates the three input features into one output result. The first half of this research involved evaluating the system in a speaker-dependent atmosphere. For this, the 70 word F-16 cockpit command vocabulary was used and both isolated and connected speech was tested. Results obtained are compared to a two-feature system with the same system configuration. Isolated-speech testing yielded 98.7 percent accuracy. Connected-speech testing yielded 75/0 percent accuracy. The three-feature system performed an average of 1.7 percent better than the two-feature system for isolated-speech. The second half of this research was concerned with the speaker-independent performance of the system. First, cross-speaker testing was performed using an updated 86 word library. In general, this testing yielded less than 50 percent accuracy. Then, testing was performed using averaged templates. This testing yielded an overall average in-template recognition rate of approximately 90 percent and an out-of-template recognition rate of approximately 75 percent.

  8. INSTRUCTIONAL PROGRAMMING PROCEDURES, A PROGRAMED COURSE IN THE BASIC METHODS AND TECHNIQUES OF PREPARING PROGRAMED INSTRUCTIONAL MATERIALS.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.

    A PROGRAMED COURSE IN METHODS AND TECHNIQUES OF PREPARING PROGRAMED INSTRUCTIONAL MATERIALS WAS PRESENTED IN THIS DOCUMENT. AN ATTEMPT WAS MADE TO TEACH BASIC PROCEDURES WELL ENOUGH TO PRODUCE AN EMBRYO PROGRAMER AND TO PROVIDE HIM WITH REFERENCES HE WOULD NEED IN ORDER TO PRODUCE PROGRAMS. INCLUDED WERE PROGRAMED INSTRUCTIONS ON PREPARATORY…

  9. SRM propellant and polymer materials structural test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The SRM propellant and polymer materials structural test program has potentially wide application to the testing and structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. The test program will provide a basis for characterization of the dynamic failure criteria for Solid Rocket Motor (SRM) propellant, insulation, inhibitor and liners. This experimental investigation will also endeavor to obtain a consistent complete set of materials test data. This test will be used to improve and revise the presently used theoretical math models for SRM propellant, insulators, inhibitor, liners, and O-ring seals.

  10. Mechanisms of Plastic and Fracture Instabilities for Alloy Development of Fusion Materials. Final Project Report for period July 15, 1998 - July 14, 2003

    SciTech Connect

    Ghoniem, N. M.

    2003-07-14

    The main objective of this research was to develop new computational tools for the simulation and analysis of plasticity and fracture mechanisms of fusion materials, and to assist in planning and assessment of corresponding radiation experiments.

  11. Hazardous materials transportation and emergency response programs

    SciTech Connect

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

  12. Propellant material compatibility program and results

    NASA Technical Reports Server (NTRS)

    Toth, L. R.; Cannon, W. A.; Coulbert, C. D.; Long, H. R.

    1976-01-01

    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned.

  13. Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion

    PubMed Central

    2014-01-01

    Background The visceral musculature of Drosophila larvae comprises circular visceral muscles tightly interwoven with longitudinal visceral muscles. During myogenesis, the circular muscles arise by one-to-one fusion of a circular visceral founder cell (FC) with a visceral fusion-competent myoblast (FCM) from the trunk visceral mesoderm, and longitudinal muscles arise from FCs of the caudal visceral mesoderm. Longitudinal FCs migrate anteriorly under guidance of fibroblast growth factors during embryogenesis; it is proposed that they fuse with FCMs from the trunk visceral mesoderm to give rise to syncytia containing up to six nuclei. Results Using fluorescence in situ hybridization and immunochemical analyses, we investigated whether these fusion events during migration use the same molecular repertoire and cellular components as fusion-restricted myogenic adhesive structure (FuRMAS), the adhesive signaling center that mediates myoblast fusion in the somatic mesoderm. Longitudinal muscles were formed by the fusion of one FC with Sns-positive FCMs, and defects in FCM specification led to defects in longitudinal muscle formation. At the fusion sites, Duf/Kirre and the adaptor protein Rols7 accumulated in longitudinal FCs, and Blow and F-actin accumulated in FCMs. The accumulation of these four proteins at the fusion sites argues for FuRMAS-like adhesion and signaling centers. Longitudinal fusion was disturbed in rols and blow single, and scar wip double mutants. Mutants of wasp or its interaction partner wip had no defects in longitudinal fusion. Conclusions Our results indicated that all embryonic fusion events depend on the same cell-adhesion molecules, but that the need for Rols7 and regulators of F-actin distinctly differs. Rols7 was required for longitudinal visceral and somatic myoblast fusion but not for circular visceral fusion. Importantly, longitudinal fusion depended on Kette and SCAR/Wave but was independent of WASp-dependent Arp2/3 activation. Thus, the

  14. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  15. Impact of Individualized Instructional Materials on Technology Education Programs.

    ERIC Educational Resources Information Center

    Welty, Kenneth; Tsai, Wei-Kun

    1995-01-01

    A survey of technology instructors in junior and senior high schools determined the impact of adopting modular programs using individualized instructional materials (IIMs) on their teaching styles: teacher-directed methods decreased; use of student-oriented materials increased, while use of teacher-oriented materials decreased; frequency of…

  16. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  17. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  18. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  19. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGES

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; ...

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  20. Aviation Career Awareness Program [and Related Materials].

    ERIC Educational Resources Information Center

    Petrie, Edwin T.

    The learning packet focuses on general aviation and is to be used in career awareness programs at the elementary level. It includes a document which presents a group of units on general aviation and its related careers. The units include the following: (1) aircraft manufacturing, (2) instruments and controls, (3) how airplanes fly, (4) flight…

  1. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect

    D. Ray Johnson; Sidney Diamond

    2000-06-19

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  2. Laser glass: a key material in the search for fusion energy

    SciTech Connect

    Campbell, J H

    1999-06-02

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation.

  3. Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Stropki, M.; Cleyrat, D.; Stucke, B.; Phillips, S.; Reed, B.

    2001-01-01

    In this viewgraph presentation, IMWG (IHPRPT Materials Working Group) government and industry members, together with the IHPRPT (Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan) National Component Leads, have developed a materials plan to address the critical needs of the IHPRPT community: (1) liquids boost and orbit transfer; (2) solids boost and orbit transfer; (3) tactical propulsion; and (4) spacecraft propulsion. Criticality of materials' role in achieving IHPRPT goals is evidenced by the significant investment over the next five years.

  4. High Precision Isotopic Reference Material Program

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.

    2007-12-01

    Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.

  5. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  6. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  7. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  8. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  9. An Overview of the Los Alamos Inertial Confinement Fusion and High-Energy-Density Physics Research Programs

    SciTech Connect

    Batha, Steven H.

    2016-07-15

    The Los Alamos Inertial Confinement Fusion and Science Programs engage in a vigorous array of experiments, theory, and modeling. We use the three major High Energy Density facilities, NIF, Omega, and Z to perform experiments. These include opacity, radiation transport, hydrodynamics, ignition science, and burn experiments to aid the ICF and Science campaigns in reaching their stewardship goals. The ICF program operates two nuclear diagnostics at NIF, the neutron imaging system and the gamma reaction history instruments. Both systems are being expanded with significant capability enhancements.

  10. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  11. Enabling Data Fusion via a Common Data Model and Programming Interface

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Wilson, A.

    2011-12-01

    Much progress has been made in scientific data interoperability, especially in the areas of metadata and discovery. However, while a data user may have improved techniques for finding data, there is often a large chasm to span when it comes to acquiring the desired subsets of various datasets and integrating them into a data processing environment. Some tools such as OPeNDAP servers and the Unidata Common Data Model (CDM) have introduced improved abstractions for accessing data via a common interface, but they alone do not go far enough to enable fusion of data from multidisciplinary sources. Although data from various scientific disciplines may represent semantically similar concepts (e.g. time series), the user may face widely varying structural representations of the data (e.g. row versus column oriented), not to mention radically different storage formats. It is not enough to convert data to a common format. The key to fusing scientific data is to represent each dataset with consistent sampling. This can best be done by using a data model that expresses the functional relationship that each dataset represents. The domain of those functions determines how the data can be combined. The Visualization for Algorithm Development (VisAD) Java API has provided a sophisticated data model for representing the functional nature of scientific datasets for well over a decade. Because VisAD is largely designed for its visualization capabilities, the data model can be cumbersome to use for numerical computation, especially for those not comfortable with Java. Although both VisAD and the implementation of the CDM are written in Java, neither defines a pure Java interface that others could implement and program to, further limiting potential for interoperability. In this talk, we will present a solution for data integration based on a simple discipline-agnostic scientific data model and programming interface that enables a dataset to be defined in terms of three variable types

  12. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  13. Radiation facilities for fusion-reactor first-wall and blanket structural-materials development

    SciTech Connect

    Klueh, R.L.; Bloom, E.E.

    1981-12-01

    Present and future irradiation facilities for the study of fusion reactor irradiation damage are reviewed. Present studies are centered on irradiation in accelerator-based neutron sources, fast- and mixed-spectrum fission reactors, and ion accelerators. The accelerator-based neutron sources are used to demonstrate damage equivalence between high-energy neutrons and fission reactor neutrons. Once equivalence is demonstrated, the large volume of test space available in fission reactors can be used to study displacement damage, and in some instances, the effects of high-helium concentrations and the interaction of displacement damage and helium on properties. Ion bombardment can be used to study the mechanisms of damage evolution and the interaction of displacement damage and helium. These techniques are reviewed, and typical results obtained from such studies are examined. Finally, future techniques and facilities for developing damage levels that more closely approach those expected in an operating fusion reactor are discussed.

  14. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  15. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  16. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  17. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  18. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  19. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  20. 7 CFR 3405.10 - Program application materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Program application materials. 3405.10 Section 3405.10 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Preparation of a Proposal § 3405.10...

  1. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  2. Outlook for the fusion hybrid and tritium-breeding fusion reactors

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Cohen, R.; Simpson, J. W.

    The study examines the outlook for fusion hybrid reactors. The study evaluates the status of fusion hybrid technology in the United States and analyzes the circumstances under which such reactors might be deployed. The study also examines a related concept, the tritium-breeding fusion reactor. The study examined two potential applications for fusion hybrid technology: (1) the production of fissile material to fuel light-water reactors, and (2) the direct production of baseload electricity. For both applications, markets were sufficiently problematical or remote (mid-century or later) to warrant only modest current research and development emphasis on technology specific to the fusion hybrid reactor. For the tritium-breeding fusion reactor, a need for tritium for use in nuclear weapons might arise well before the middle of the next century, so that a program of design studies, experimentation, and evaluation should be undertaken.

  3. Interactions of shock waves with material interfaces in lithotripsy and inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Iloreta, Jonathan Ian

    This dissertation focuses on the interaction of shock wave with material interfaces in shock wave lithotrispsy (SWL) and inertial confinement fusion (ICF). In the area of SWL, a method to characterize shock wave lithotripters by examining the potential for cavitation associated with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an ellipsoidal reflector with an insert. The results show that the use of an insert reduced the ---6 dB volume (with respect to peak positive pressure) from 1.6 cm3 to 0.4 cm3, the -6 dB volume (with respect to peak negative pressure) from 14.5 cm3 to 8.3 cm3, and reduced the volume characterized by high cavitation potential (i.e. regions characterized by bubbles with radii larger than 429 microm) from 103 cm3 to 26 cm3. Thus, the insert is an effective way to localize the potentially damaging effects of shock wave lithotripsy, and suggests an approach to optimize the shape of the reflector. Also in the area of SWL, the dynamics of bubbles near a kidney stone subjected to a lithotripter shock wave are considered to address the effect of kidney stone geometry and composition on the cavitation potential near the stone in a shock wave lithotripter. Results of the reflection of the LSW from cylindrical kidney stones with proximal surfaces of varying geometry show that the presence of the stone enhances bubble growth near the stone and decreases growth further away, due to constructive and destructive interference, respectively. These effects hold true regardless of the shape and curvature of the face, and are strongest for stones with concave faces and higher reflection coefficients. An interesting consequence of

  4. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  5. THE TEACHER, PROGRAMED MATERIALS, AND INSTRUCTIONAL INTERACTION, SUPPLEMENTAL MANUAL.

    ERIC Educational Resources Information Center

    ARCHER, N. SIDNEY; AND OTHERS

    THIS IS A SOURCE MANUAL TO ASSIST TEACHERS OF PROGRAMED ALGEBRA IN PROVIDING FOR INDIVIDUAL DIFFERENCES AMONG STUDENTS. THE MATERIAL WAS INTENDED FOR ASSIGNMENT TO SELECTED STUDENTS WHO REQUIRE ADDITIONAL MATERIALS TO SATISFY VARIOUS ABILITIES AND TALENTS. IN ADDITION TO REFERENCE LISTS ON FILMS AND FILMSTRIPS, PRINTED BIBLIOGRAPHIES WERE PREPARED…

  6. THE TEACHER, PROGRAMED MATERIALS, AND INSTRUCTIONAL INTERACTION, SUPPLEMENTAL MANUAL.

    ERIC Educational Resources Information Center

    ARCHER, N. SIDNEY; AND OTHERS

    A DESCRIPTION OF MATHEMATICS DRILL PROBLEMS AND ENRICHMENT ACTIVITIES HAS RESULTED IN A SOURCE MANUAL TO ASSIST TEACHERS OF PROGRAMED ALGEBRA IN PROVIDING FOR INDIVIDUAL DIFFERENCES AMONG STUDENTS. THE MATERIAL WAS INTENDED FOR ASSIGNMENT TO SELECTED STUDENTS WHO REQUIRE ADDITIONAL MATERIALS TO SATISFY VARIOUS ABILITIES AND TALENTS. IN ADDITION TO…

  7. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  8. PIREX II — A new irradiation facility for testing fusion first wall materials

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Daum, M.; Gavillet, D.; Green, S.; Green, W. V.; Hegedus, F.; Proennecke, S.; Rohrer, U.; Stiefel, U.; Victoria, M.

    1990-03-01

    A new irradiation facility, PIREX II (Proton Irradiation Experiment), became operational in March 1987. It is located on a dedicated beam line split from the main beam of the 590 MeV proton accelerator at the Paul Scherrer Institute (PSI). Irradiation with protons of this energy introduces simultaneously displacement damage, helium and other impurities. Because of the penetration range of 590 MeV protons, both damage and impurities are homogeneously distributed in the target material. The installation has its own beam line optics that can support a proton current of up to 50 μA. At a typical beam density of 4 {μA}/{mm 2}, the damage rate in steel is 0.7 × 10 -5{dpa}/{s} (dpa: displacements per atom), and the helium production rat He/dpa. Both flat tensile specimens of up to 0.4 mm thickness and tubular fatigue samples of 3 mm diameter can be irradiated. Cooling of the sample is performed by flowing pressurized helium gas over the sample. Irradiation temperatures can be controlled between 100 ° C and 800 ° C. Installation of an in situ low cycle fatigue device is foreseen. Beams of up to 20 μA have been obtained, the beam having an approximately Gaussian distribution of elliptical cross section with 4σ xbetween 0.8 and 8 nun by 4σ y of up to 10 mm. Irradiations for a dosimetry program have been completed on samples of Al, Cu, Fe, Ni, Au, W, and 1.4914 ferritic steel. The evaluation of results allows the correct choice of reactions to be used for determining total dose, from the standpoint of half life and gamma energy. A program of irradiations on candidate materials for the Next European Torus (NET) design (Cu and Cu alloys, 1.4914 ferritic martensitic steel, W and W-Re alloys and Mo and Mo alloys), where the above mentioned characteristics of this type of irradiation can be used advantageously, is now under way.

  9. Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Meinhold, Anne

    2013-01-01

    The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

  10. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.

    2016-12-01

    Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.

  11. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  12. A Measurement Control Program for Nuclear Material Accounting

    SciTech Connect

    Brouns, R. J.; Roberts, F. P.; Merrill, J. A.; Brown, W. B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurements of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities. equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality.

  13. A short analysis of new nuclear data evaluations and their impact on nuclear responses in fusion structural materials

    SciTech Connect

    Gomes, I.C.; Smith, D.L.; Cheng, E.T.

    1998-08-01

    Current emphasis in the design of fusion reactor systems entails meeting the objective of having radiation resistant materials with low-activation characteristics. Therefore, the reactors will have a long usable lifetime and, once they are decommissioned, these facilities will not present serious waste-disposal problems due to the presence of long-lived radioactive byproducts generated in the high-neutron-intensity environments encountered during their operation. A reliable estimation of the performance of a fusion reactor in this context requires accurate knowledge of half lives and neutron-reaction cross sections. A large number of materials, reactions, and radioactive byproducts must be considered. For the most part, the half lives of the radioactive species involved are reasonably well known. Therefore, the main emphasis in improving of the data base needs to be in the area of cross sections. This paper focuses on only two nuclear data issues concerning recent evaluations of cross sections: hydrogen production in vanadium from the {sup 51}V(n,p){sup 51}Ti and {sup 51}V(n,np+d){sup 50}Ti reactions and the production of 7.4 e + 05 y {sup 26}Al (a major waste-disposal concern). Al-26 can be generated mainly by the {sup 27}Al(n,2n){sup 26}Al, and {sup 28}Si(n,np+d){sup 27}Al(n,2n){sup 26}Al reaction processes. The current status and quality of the evaluated cross sections related to these nuclear-reaction processes is examined and the impact on generation of hydrogen gas and {sup 26}Al radioactive in fusion reactors is assessed in the present study.

  14. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. [Process Water System

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125[degrees]C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  15. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  16. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  17. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Molvik, A W; Simonen, T C

    2009-07-17

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  18. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    SciTech Connect

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  19. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  20. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    SciTech Connect

    Jones, W.

    1995-12-31

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work with a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.

  1. Accelerated commercialization program for materials and components. Solar sheet glass: an example of materials commercialization

    SciTech Connect

    Livingston, R.; Butler, B.

    1980-03-01

    The SERI Accelerated Commercialization Program for Materials and Components is designed to serve as a catalyst in promoting technological change through the introduction of new materials into solar technologies. This report focuses on technological diffusion of advances in materials technology from the developer to the manufacturers of solar equipment. It provides an overview and understanding of the problems encountered in the private sector in trying to advance technological change and discusses a program designed to facilitate this change. Using as example of solar sheet glass, this report describes the process by which sample quantities of new materials are sent to solar equipment manufacturers for appliations testing. It also describes other materials that might undergo testing in a similar way. The entire program is an example of how government and industry can work together to accomplish common goals.

  2. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  3. Fusion Reactor Materials semiannual progress report for period ending September 30, 1991

    SciTech Connect

    none,

    1992-04-01

    This report contains papers on topic in the following areas of thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials and beryllium; and ceramics. These paper have been index separately elsewhere. (LSP).

  4. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1988

    SciTech Connect

    none,

    1988-08-01

    This report contains papers on thermonuclear reactor materials. The general categories of these papers are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; development of structural alloys; solid breeding materials; ceramics; and radiation effects. Selected papers have been processed for inclusion in the energy database. (LSP)

  5. Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980

    SciTech Connect

    Truhan, J.J.; Gordon, K.M.

    1980-08-01

    Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

  6. Dynamic response of materials on sub-nanosecond time scales, and beryllium properties for inertial confinement fusion

    SciTech Connect

    Swift, D C; Tierney, T E; Luo, S N; Paisley, D L; Kyrala, G A; Hauer, A; Greenfield, S R; Koskelo, A C; McClellan, K J; Lorenzana, H E; Knudson, M D; Peralta, P P; Loomis, E

    2004-12-09

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. these relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser ablation can be particularly convenient. The TRIDENT laser has been used to impart shocks and isentropic compression waves from {approx}1 to 200GPa in a range of elements and alloys, with diagnostics including surface velocimetry (line-imaging VISAR), surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically-driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1TPa.

  7. The NSF Condensed Matter and Materials Theory Program

    NASA Astrophysics Data System (ADS)

    Hess, Daryl

    The Condensed Matter and Materials Theory (CMMT) Program in the Division of Materials Research is the home of condensed matter theory at the National Science Foundation. CMMT awards reflect a vibrant community with expanding scientific horizons and opportunities. I will present an overview of the CMMT program. Opportunities for theory and computation to open new directions and stimulate emerging frontiers will be discussed. Engaging research across disciplinary boundaries maintains the vitality of the field, leads to an agile next generation of theoretical and computational condensed matter physicists, and advances understanding of the world on the scale of life.

  8. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    DTIC Science & Technology

    2014-04-01

    were exposed to a spray of polar solvent or polar solvent/ water absorbing polymer . When compared to the control, the doped yarns doubled in... Polymer Nanocomposite Synthesis ................................25 4.6.2 Polymeric Nanocomposite Battery Materials...merged into the ERA bridge program: in-house polymer synthesis and processing projects of graded preceramic polymeric hybrid materials, a laser

  9. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

    SciTech Connect

    Okumura, Y. E-mail: rjgobin@cea.fr; Knaster, J.; Ayala, J.-M.; Marqueta, A.; Perez, M.; Pruneri, G.; Scantamburlo, F.; Ichimiya, R.; Ihara, A.; and others

    2016-02-15

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10{sup 9} n/s has been observed in the deuterium operation.

  10. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector.

    PubMed

    Okumura, Y; Gobin, R; Knaster, J; Heidinger, R; Ayala, J-M; Bolzon, B; Cara, P; Chauvin, N; Chel, S; Gex, D; Harrault, F; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kikuchi, T; Kitano, T; Komata, M; Kondo, K; Maebara, S; Marqueta, A; O'Hira, S; Perez, M; Phillips, G; Pruneri, G; Sakamoto, K; Scantamburlo, F; Senée, F; Shinto, K; Sugimoto, M; Takahashi, H; Usami, H; Valette, M

    2016-02-01

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10(9) n/s has been observed in the deuterium operation.

  11. Tritium permeation characterization of materials for fusion and generation IV very high temperature reactors

    SciTech Connect

    Thomson, S.; Pilatzke, K.; McCrimmon, K.; Castillo, I.; Suppiah, S.

    2015-03-15

    The objective of this work is to establish the tritium-permeation properties of structural alloys considered for Fusion systems and very high temperature reactors (VHTR). A description of the work performed to set up an apparatus to measure permeation rates of hydrogen and tritium in 304L stainless steel is presented. Following successful commissioning with hydrogen, the test apparatus was commissioned with tritium. Commissioning tests with tritium suggest the need for a reduction step that is capable of removing the oxide layer from the test sample surfaces before accurate tritium-permeation data can be obtained. Work is also on-going to clearly establish the temperature profile of the sample to correctly estimate the tritium-permeability data.

  12. Alloy development for first wall materials used in water-cooling type fusion reactors

    NASA Astrophysics Data System (ADS)

    Kiuchi, K.; Ishiyama, T.; Hishinuma, A.

    1991-03-01

    Austenitic stainless steels with high resistance to IASCC were developed for the first wall used in a water cooling type fusion reactor. New alloys with ultra low carbon content were designed to improve all-round properties relevant to the reliability below 450°C, by enhancing the austenite phase stability and purifying the austenite matrix. For this purpose, these were manufactured by means of controlling minor elements, adjusting principal elements and applying SAR thermomechanical treatment. The major characteristics of these alloys were compared with that of Type 316 and JPCA. These alloys showed a good swelling resistance to electron irradiation and high cracking resistance to high heat fluxes of hydrogen beam. The ductility loss and decrease of tensile strength at the objective temperature were also minimized.

  13. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  14. Rayleigh-Taylor Experiments in Materials and Conditions Relevant to Ignition in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Hager, Jonathan David

    In direct-drive inertial confinement fusion (ICF), a spherical target is imploded by overlapping laser beams to compress and heat DT fuel to conditions necessary for efficient thermonuclear burn. The Rayleigh-Taylor instability (RTI) is of primary concern in ICF, as it can cause initial areal-density (rhoR) perturbations to grow, leading to shell degradation and quenching of the hot spot necessary to achieve ignition of thermonuclear fusion. This work addresses two RTI concerns relevant to achieving ignition in ICF; measurement of RTI growth in cryogenic D2 targets and the effect of ablators of different atomic numbers (Z) on RTI growth rates using plastic (CH) and glass (SiO 2) targets. In these experiments, the temporal evolution of 2-D areal density (rhoR) modulations is measured using face-on X-ray radiography. Measured RT growth rates in D2 showed reasonable agreement with 2-D hydrodynamic simulations indicating reduced growth in D2 compared to CH, as predicted by theory. This result is crucial to ignition target designs using cryogenic DT ablators. The effect of thin ablators with different Z's on CH and SiO2 targets at varying drive intensities showed inconsistencies between the measured modulation growth and the 2-D hydrodynamic simulations at peak intensities of 1015 W/cm2 for targets with CH ablators due to hot electron preheat. Understanding preheat for ablators of different Z's is critical to achieving ignition in ICF; this work explores the impact of hot electron generation on the RTI at conditions relevant to ignition.

  15. Bioinspired materials that self-shape through programmed microstructures.

    PubMed

    Studart, André R; Erb, Randall M

    2014-03-07

    Nature displays numerous examples of materials that can autonomously change their shape in response to external stimuli. Remarkably, shape changes in biological systems can be programmed within the material's microstructure to enable self-shaping capabilities even in the absence of cellular control. Here, we revisit recent attempts to replicate in synthetic materials the shape-changing behavior of selected natural materials displaying deliberately tuned fibrous architectures. Simple processing methods like drawing, spinning or casting under magnetic fields are shown to be effective in mimicking the orientation and spatial distribution of reinforcing fibers of natural materials, thus enabling unique shape-changing features in synthetic systems. The bioinspired design and creation of self-shaping microstructures represent a new pathway to program shape changes in synthetic materials. In contrast to shape-memory polymers and metallic alloys, the self-shaping capabilities in these bioinspired materials originate at the microstructural level rather than the molecular scale. This enables the creation of programmable shape changes using building blocks that would otherwise not display the intrinsic molecular/atomic phase transitions required in conventional shape-memory materials.

  16. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  17. Update of ZTH physics and design issues and physics goals of ZTH and role in the Fusion Program

    SciTech Connect

    DiMarco, J.N.

    1990-01-01

    The ZTH construction program is scheduled for completion in December of 1992. Some design features are still amenable to changes directed by new physics or computational information. Numerical results for the ZTH tapered poloidal field gap show that a relatively simple linear taper results in substantial reduction in field error. This design is simpler to manufacture compared with the compound curve predicted by analytical calculations. Also, ongoing analysis of ZT-40M data indicates that the fluctuation levels of magnetic fields and x-rays at high {theta} (1.7), can be reduced to the fluctuation levels at standard'' operational {theta} (1.4) by changing the winding configuration of the toroidal field (TF) coils. The effect is thought to depend on the shell-like action of the TF coils when they consist of many turns in parallel. Magnetic-field effects, such as field errors, at the unshielded toroidal-field butt-joint gap in the shell can be reduced by this effective external shell. Design implications for installing a second low-current TF coil on ZTH are presented. ZTH has the capability of operating at 4 MA with the addition of power supplies. The projected parameters of ZTH are discussed in the context of various conceptual design. The sensitivity of the conceptual design to the physics results from machines like RFX and ZTH is reviewed. It is shown that the 4 MA ZTH physics results will make a significant advance for the RFP program toward the programmatic RFP fusion goals. Finally, the influence of RFP and tokamak physics on the conceptual design of high mass-power-density (MPD) fusion reactors is investigated through the TITAN and ARIES studies. The confinement characteristics required of these conceptual designs are compared; physics issues are identified that are required to bring the MPD and fusion-power-core of the tokamak designs into coincidence with the RFP designs.

  18. Fusion materials semiannual progress report for the period ending June 30, 1996

    SciTech Connect

    1996-10-01

    This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. It is divided into the following chapters: vanadium alloys; silicon carbide components; ferritic-martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; radiation effects, mechanistic studies, and experimental methods; dosimetry, damage parameters, and activation calculations; and irradiation facilities, test matrices, and experimental methods. There were no papers for the chapters on solid breeding materials and materials engineering and design requirement. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    SciTech Connect

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  20. 7 CFR 3405.10 - Program application materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials. 3405.10 Section 3405.10 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS...

  1. Engineering Materials and Machine Design Courses in ET Programs.

    ERIC Educational Resources Information Center

    Brodsky, Stanley M.

    1987-01-01

    Reports on a study designed to determine the current status of courses in engineering materials and their relationship to machine design and design project courses in mechanical engineering technology programs. Includes discussions of two recommendations of the study that were endorsed by a national conference. (TW)

  2. A GUIDE TO PREPARING INTRINSICALLY PROGRAMED INSTRUCTIONAL MATERIAL.

    ERIC Educational Resources Information Center

    CROWDER, N.; WALTHER, R.E.

    TO AID THOSE RESPONSIBLE FOR THE PREPARATION OF INTRINSICALLY PROGRAMED INSTRUCTIONAL MATERIALS, THE PROCEDURES AND TECHNIQUES DEVELOPED BY THE EDUCATIONAL SCIENCE DIVISION OF U.S. INDUSTRIES, INC., HAVE HERE BEEN ORGANIZED INTO A PRACTICAL WORKING GUIDE. THE ORGANIZATION OF THIS REPORT CLOSELY FOLLOWS THE SEQUENCE OF STEPS REQUIRED TO PRODUCE AN…

  3. ATTITUDES OF ADULT ILLITERATES TOWARD READING MATERIALS AND EDUCATIONAL PROGRAMS.

    ERIC Educational Resources Information Center

    BROWN, DON; NEWMAN, ANNABEL

    ADULT ILLITERATES OF WESTERN NEW YORK WERE STUDIED TO DETERMINE THEIR ATTITUDES TOWARD READING MATERIALS AND EDUCATIONAL PROGRAMS. THE EXPERIENCE INVENTORY WAS USED TO INVESTIGATE EACH SUBJECT'S IDENTIFICATION AND BACKGROUND, THE EXTENT OF HIS FUNCTIONAL AND GENERAL KNOWLEDGE, AND HIS READING-ASSOCIATED INTERESTS. EIGHTEEN HIGH ACHIEVERS AND 22…

  4. Developing Promotional Materials for Adult Literacy Programs. Practitioner Perspective

    ERIC Educational Resources Information Center

    Jae, Haeran

    2014-01-01

    This article reports on a specific case of the READ Center--a community-based literacy organization (CBLO) in Richmond, Virginia--and its attempt to develop promotional materials that will encourage low-literate adults to enroll in literacy programs. The article also offers insight on how literacy organizations may utilize the practical experience…

  5. Cooperative Programs in Residential Outdoor Environmental Education: Teacher's Materials Packet.

    ERIC Educational Resources Information Center

    Marin County Superintendent of Schools, Corte Madera, CA.

    Serving as teacher orientation materials for the cooperative programs in residential outdoor education located in Marin County, California, this guide includes the following: (1) "This I Believe" (a philosophical statement on outdoor environmental education); (2) "Outdoor Science and Conservation Education Report" (a brief…

  6. Fusion reactor materials semiannual progress report for the period ending March 31, 1990

    SciTech Connect

    Not Available

    1990-08-01

    This report mainly discusses topics on the physical effects of radiation on thermonuclear reactor materials. The areas discussed are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; fundamental mechanical behavior; radiation effects; mechanistic studies, theory and modeling; development of structural alloys; solid breeding materials; and ceramics. (FI)

  7. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  8. Materials studies for magnetic fusion energy applications at low temperatures, 7

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Simon, N. J.

    1984-05-01

    Work leading toward development of strong, tough structural alloys for use in superconducting magnets of magnetic fusion power plants is reported. Low temperature studies were conducted to assess the quantitative dependence of the yield strength, density, and elastic constants of AISI 304 stainless steels upon carbon and nitrogen concentration. Tensile property measurements of developmental austenitic steels confirmed the dependence of yield strength upon temperature. Evidence is presented to show that the flow strength and austenite stability of stainless steels are not significantly affected by 8-T fields at 4 K. Instrumentation developed for low temperature testing included a computer assisted apparatus used to measure threshold fatigue. Low temperature welding research involved an investigation of the weld reinforcement effect on the weld joint strength and measurements of the 4 K fracture toughness of magnesium-chromium steel weldments and electroodes. In the area of non-metallics, a standardized test specimen was devised to aid in screening radiation-resistant composites for magnet insulation. Mechanical properties of concrete mortar and polyurethane foam at 4 K are reported.

  9. X-ray ablation rates in inertial confinement fusion capsule materials

    SciTech Connect

    Olson, R. E.; Rochau, G. A.; Leeper, R. J.; Landen, O. L.

    2011-03-15

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm{sup 2}/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm{sup 2}/ns; and for HDC, the rates range from 2 to 9 mg/cm{sup 2}/ns. The ablation rates follow an approximate T{sup 3} dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T{sup 3.5}. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  10. Multiyear Program Plan for the High Temperature Materials Laboratory

    SciTech Connect

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  11. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  12. Effect of Heat Treatment on Silicon Carbide Based Joining Materials for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Nozawa, T.; Kotani, M.; Kishimoto, H.; Katoh, Y.; Kohyama, A.

    2001-10-01

    Two general approaches to obtaining silicon carbide-based joint materials were used. The first method relies on reactions between silicon and carbon to form silicon carbide, or to bond silicon carbide powders together. The second method consists of pyrolysing a polycarbosilane polymer to yield an amorphous, covalently bonded material. In order to assess the long-term durability of the joint materials, various heat treatments were performed and the effects on the mechanical properties of the joints were measured. Although the joints derived from the polycarbosilane polymer were not the strongest, the value of strength measured was not affected by heat treatment. On the other hand, the value of the strength of the reaction-based joints was affected by heat treatment, indicating the presence of residual stresses or unreacted material subsequent to processing. Further investigation of reaction-based joining should consist of detailed microscopic studies; however, continued study of joints derived from polymers is also warranted.

  13. Design and testing of the 2 MV heavy ion injector for the Fusion Energy Research Program

    SciTech Connect

    Abraham, W.; Benjegerdes, R.; Reginato, L.; Stoker, J.; Hipple, R.; Peters, C.; Pruyn, J.; Vanecek, D.; Yu, S.

    1995-04-01

    The Fusion Energy Research Group at the Lawrence Berkeley Laboratory has constructed and tested a pulsed 2 MV injector that produces a driver size beam of potassium ions. This paper describes the engineering aspects of this development which were generated in a closely coupled effort with the physics staff. Details of the ion source and beam transport physics are covered in another paper at this conference. This paper discusses the design details of the pulse generator, the ion source, the extractor, the diode column, and the electrostatic quadrupole column. Included will be the test results and operating experience of the complete injector.

  14. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-06-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  15. Developing a Blueprint for Successful Private Partnership Programs in Small Fusion Centers: Key Program Components and Smart Practices

    DTIC Science & Technology

    2013-03-01

    determine if the host agency has the expertise to manage the program, assess the agency’s culture to identify it’s willingness to interact with the...Programs, Law Enforcement Agency Culture , Law Enforcement Communication Methods, Establishing a Law Enforcement Program, Best practices, Smart...the host agency has the expertise to manage the program, assess the agency’s culture to identify it’s willingness to interact with the business

  16. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  17. Performance of boron/carbon first wall materials under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.; Bolt, H.; Doerner, R.; Grübmeier, H.; Hirooka, Y.; Hoven, H.; Mingam, C.; Schulze, H.; Seki, M.; Wallura, E.; Weber, T.; Winter, J.

    1990-12-01

    The conditioning of the plasma facing wall in thermonuclear confinement experiments has been performed very successfully by the application of amorphous boron containing hydrogenated carbon films. Boronization leads to tokamak discharges with significantly reduced oxygen and carbon contaminations. For high heat flux components (especially in future quasi-stationary confinement experiments) new boron/carbon materials have to be developed: monolithic tiles of boronated graphites which can be brazed to watercooled substrates or thick B 4C-coatings on graphite or high-Z coolant tubes. A variety of bulk materials (boronated graphites with boron contents in the range from 3 to 30%, so-called coat mix material on the basis of B 4C) and coatings (amorphous B/C films, thick B 4C layers applied by LPPS or CVD methods) were characterized systematically. In addition the behaviour of these materials was investigated under thermal loads; erosion and disruption simulation experiments were performed in electron and ion beam high heat flux test facilities. Physical and chemical sputtering of the coat-mix-material was studied in the PISCES-B facility in dependence on the hydrogen ions fluence.

  18. Laser Programs Highlights 1998

    SciTech Connect

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  19. Preparation of calibration materials for microanalysis of Ti minerals by direct fusion of synthetic and natural materials: experience with LA-ICP-MS analysis of some important minor and trace elements in ilmenite and rutile.

    PubMed

    Odegård, M; Mansfeld, J; Dundas, S H

    2001-08-01

    Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.

  20. Fire-resistant aircraft materials development and evaluation program

    NASA Technical Reports Server (NTRS)

    Bricker, R. W.; Stuckey, R. N.

    1974-01-01

    The overall objectives of this program are to provide a more fire-resistant commercial aircraft interior and to improve the fuselage insulation barrier between the cabin interior and an exterior fuel fire. Significant secondary objectives are to reduce the smoke and toxic gas production of the materials and to meet the end item use requirements pertaining to wearability, color fastness, and aesthetic appeal. It is shown that the fuselage insulation materials must meet stringent requirements pertaining to acoustic attenuation, low density, and water repellency.

  1. Licensing web-based nursing programs, courses, and course materials.

    PubMed

    Billings, Diane M; Hoke, Mary M; Waldhuetter, Kurt

    2005-01-01

    With the advent of the digital information age, schools of nursing are developing and using web-based programs, courses, and course materials to meet students' needs for access and high-quality learning experiences. In an attempt to maximize scant resources, including faculty, many schools are seeking grant funding, joining consortia, or forming partnerships that require sharing of web-based course materials. Entering such collaborative arrangements usually requires licensing agreements to transfer intellectual capital. This article explains licensing and the related concepts of intellectual property, copyright, and technology transfer. It also identifies the advantages and disadvantages of licensing and describes a licensing process.

  2. Structural materials for fusion power reactors—the RF R&D activities

    NASA Astrophysics Data System (ADS)

    Chernov, V. M.; Leonteva-Smirnova, M. V.; Potapenko, M. M.; Budylkin, N. I.; Devyatko, Yu. N.; Ioltoukhovskiy, A. G.; Mironova, E. G.; Shikov, A. K.; Sivak, A. B.; Yermolaev, G. N.; Kalashnikov, A. N.; Kuteev, B. V.; Blokhin, A. I.; Loginov, N. I.; Romanov, V. A.; Belyakov, V. A.; Kirillov, I. R.; Bulanova, T. M.; Golovanov, V. N.; Shamardin, V. K.; Strebkov, Yu. S.; Tyumentsev, A. N.; Kardashev, B. K.; Mishin, O. V.; Vasiliev, B. A.

    2007-08-01

    Recent progress in the RF low activation structural materials R&D road map towards DEMO via the FBR tests (BOR-60, BN-600, BN-800) and the TBM tests in ITER is overviewed. The properties of the RAFMS RUSFER-EK-181 (Fe-12Cr-2W-Ta-V-B-C) and the V-4Ti-4Cr alloys are presented. The next important steps include further studies on the influence of high dose and high-temperature irradiation on the properties of base structural materials and joints. Activation, transmutation and radiation damage of the materials in BN-600 and DEMO-RF (Kurchatov Institute project) neutron spectra are calculated. The results of the application of the internal friction (ultrasonic) non-destructive method to research the DBTT are in good agreement with the results of the destructive impact method. The important influence of boron on the heat resistance of materials and the He concentration level under irradiation are calculated. The new special regimes of the heat treatments of the alloys are suggested to widen the temperature windows of the applications. The results of the BOR-60 examinations of RUSFER-EK-181 (irradiation temperature 320-340 °C and doses up to 15 dpa) are presented. The BN-600 projects for the high dose and high-temperature irradiation tests of manufactured alloys are presented.

  3. Spatial and Temporal characterization of plasma properties via emission spectroscopy in fusion materials testing device Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Morean, Casey; Biewer, Theodore; Shaw, Guinevere; Beers, Josh; Ray, Holly

    2016-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma source, and is intended to study plasma-material interactions (PMI) in conditions similar to those found in future fusion reactors. A high-resolution McPherson Czerny-Turner visible range spectrometer has been utilized to study the behavior of ions in the plasma. Analysis of the spectral lines, D_beta, D_gamma, and D_delta yields valuable information regarding the temperature and density of plasma ions at various locations along Proto-MPEX. Spectroscopic temperature and density measurements are compared to double Langmuir probe measurements to determine plasma behavior as a function of radius. Temporal and spatial measurements along the length of Proto-MPEX are constructed and compared to a photomultiplier tube based diagnostic manufactured at ORNL to determine the plasma's axial behavior along Proto-MPEX. Relative emission of beta, gamma, and delta lines are used to assess recycling effects in the device. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  4. A simulation-based and analytic analysis of the off-Hugoniot response of alternative inertial confinement fusion ablator materials

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.

    2016-09-01

    The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer.

  5. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  6. Inertial Confinement Fusion Program at Lawrence Livermore National Laboratory:. The National Ignition Facility, Inertial Fusion Energy, 100-1000 TW Lasers, and the Fast Igniter Concept

    NASA Astrophysics Data System (ADS)

    Howard Lowdermilk, W.

    The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility (NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL) for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35 μm laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. France and the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents key aspects of the laser design, and descriptions of principal laser and optical components. Follow-on development of lasers to meet the demands of an inertial fusion energy (IFE) power plant is reviewed. In parallel with the NIF Project and IFE developments, work is proceeding on ultrashort pulse lasers with peak power in the range of 100-1000 TW. A beamline on the Nova laser at LLNL recently delivered nearly 600 J of 1 μm light in a 0.5 ps duration pulse, for a peak power in excess of a petawatt (1015 W). This beamline, with advanced adaptive optics, will be capable of focused intensities in excess of 1021 W/cm2. Its primary purpose will be to test technological and scientific aspects of an alternate ignition concept, called the "Fast Igniter", that has the potential to produce higher fusion gain than conventional ICF.

  7. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  8. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  9. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  10. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy 1983 review

    SciTech Connect

    Haight, R.C.; Larson, D.C.

    1983-11-01

    This review was prepared during a coordination meeting held at Oak Ridge National Laboratory on September 28-29, 1983. Participants included research scientists working for this program, a representative from the OFE's Coordination of Magnetic Fusion Energy (MFE) Nuclear Data Needs Activities, and invited specialists.

  11. Mathematics: Promising and Exemplary Programs and Materials in Elementary and Secondary Schools. [Mathematics Education Information Report.

    ERIC Educational Resources Information Center

    Mizer, Robert; And Others

    This document contains 29 programs and/or material listings that were nominated by at least three persons and for which there was evidence of the quality of the program or materials. Reviewers looked for positive evaluation data on the impact of the materials on students, or other information that assessed the quality of the program or materials,…

  12. Science: Promising and Exemplary Programs and Materials in Elementary and Secondary Schools. [Science Education Information Report.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; And Others

    This document contains 36 programs and/or material listings that were nominated by at least three persons and for which there was evidence of the quality of the program or materials. Reviewers looked for positive evaluation data on the impact of the materials on students, or other information that assessed the quality of the program or materials,…

  13. An analysis of activation and the impact of tritium breeding media and structural materials for a commercial tokamak fusion reactor design

    SciTech Connect

    Jung, J.

    1983-11-01

    Activation analysis has been conducted for several primary fusion blanket materials based on a model of a commercial tokamak fusion reactor design, STARFIRE. The blanket materials studied include two solid tritium breeders, viz., Li/sub 2/O and ..cap alpha..-LiAlO/sub 2/, and four candidate structural materials, viz., PCA stainless steel, V15Cr5Ti, Ti6Al4V, and Al-6063 alloys. The importance of breeder material activation is identified in terms of its impurity contents such as potassium, iron, nickel, molybdenum, and zirconium trace elements. The breeder activation is also discussed with regard to its potential for recycling and its impact on the lithium resource requirements. The structural material activation is analyzed based on two measures, volumetric radioactivity concentration and contact biological dose due to decay gamma emission. Using the radioactivity concentration measure, it is revealed that a substantial advantage exists from a viewpoint of radwaste management, which is inherent in fusion reactor designs based on potential low-activation alloys such as V15Cr5Ti, Ti6Al4V, and Al-6063. On the other hand, from the dose standpoint, the V15Cr5Ti alloy is found to be the only alloy for which one could realize a significant dose reduction (below 2.5 mrem/h) within about100 yr after shutdown, possibly by some extrapolation on alloy purification techniques.

  14. BigFoot, a program to reduce risk for indirect drive laser fusion

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2016-10-01

    The conventional approach to inertial confinement fusion (ICF) is to maximize compressibility, or, total areal density. To achieve high convergence (40), the laser pulse is shaped to launch a weak first shock, which is followed in turn by 2-3 stronger shocks. Importantly, this has an outsized effect on integrated target physics, as the time it takes the shocks to transit the shell is related to hohlraum wall motion and filling, and can contribute to difficulties achieving an implosion that is fast, tunable, and/or predictable. At its outset, this approach attempts to predict the tradeoff in capsule and hohlraum physics in a case that is challenging, and assumes the hotspot can still reach the temperature and density necessary to self-heat (4-5 keV and 0.1-0.2 g/cm2, respectively). Here, we consider an alternate route to fusion ignition, for which the benefits of predictability, control, and coupling could exceed the benefits of convergence. In this approach we avoid uncertainty, and instead, seek a target that is predictable. To simplify hohlraum physics and limit wall motion we keep the implosion time short (6-7 ns), and design the target to avoid laser-plasma instabilities. Whereas the previous focus was on density, it is now on making a 1D hotspot at low convergence (20) that is robust with respect to alpha heating (5-6 keV, and 0.2-0.3 g/cm2) . At present, we estimate the tradeoff between convergence and control is relatively flat, and advantages in coupling enable high velocity (450-500 um/ns) and high yield (1E17). Were the approach successful, we believe it could reduce barriers to progress, as further improvements could be made with small, incremental increases in areal density. Details regarding the ``BigFoot'' platform and pulse are reported, as well as initial experiments. Work that could enable additional improvements in laser power, laser control, and capsule stability will also be discussed. This work was performed under the auspices of the U

  15. The Mechanical and material properties of 316LN austenitic stainless steel for the fusion application in cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sas, J.; Weiss, K.-P.; Jung, A.

    2015-12-01

    Due to the constant increase of claims for all materials used in superconducting magnets in "magnetic fusion reactors", the article deals with the possibilities of increasing the mechanical properties of austenitic stainless steel tested at cryogenic conditions that ensure the transport of Helium to magnets. The aim of the experimental plan was to increase the mechanical properties of the steel grade 316LN tested at 4.2K from the original value Steel A: YS = 1045 MPa, UTS = 1528 MPa, A = 33% to the value of YS = 1204 MPa,UTS = 1642 MPa, A = 34% and Steel B: YS = 1173 MPa, UTS = 1541 MPa, A = 28% to the value of YS = 1351 MPa, UTS = 1645 MPa, A = 17%. The increase in mechanical properties of the steel grade under examination has been made by means of heat processing in the conditions of annealing: Th1 = 625 ° C / th1 = 696 h. The mechanical properties of steel were evaluated using static tension tests at 4,2 K. The samples were placed in a cryostat filled with liquid helium. Except for the mechanical properties, there were also evaluated structural changes depending on the conditions of heat processing by light optical microscopy and EBSD (Electron Backscatter Diffraction). The increase of steel properties used in low temperatures was achieved by heat processing.

  16. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    NASA Astrophysics Data System (ADS)

    Pecover, J. D.; Chittenden, J. P.

    2015-10-01

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an "electro-choric" instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.

  17. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    SciTech Connect

    Pecover, J. D.; Chittenden, J. P.

    2015-10-15

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.

  18. TRANS_MU computer code for computation of transmutant formation kinetics in advanced structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Markina, Natalya V.; Shimansky, Gregory A.

    A method of controlling a systematic error in transmutation computations is described for a class of problems, in which strictly a one-parental and one-residual nucleus are considered in each nuclear transformation channel. A discrete-logical algorithm is stated for the differential equations system matrix to reduce it to a block-triangular type. A computing procedure is developed determining a strict estimation of a computing error for each value of the computation results for the above named class of transmutation computation problems with some additional restrictions on the complexity of the nuclei transformations scheme. The computer code for this computing procedure - TRANS_MU - compared with an analogue approach has a number of advantages. Besides the mentioned quantitative control of a systematic and computing errors as an important feature of the code TRANS_MU, it is necessary to indicate the calculation of the contribution of each considered reaction to the transmutant accumulation and gas production. The application of the TRANS_MU computer code is shown using copper alloys as an example when the planning of irradiation experiments with fusion reactor material specimens in fission reactors, and processing the experimental results.

  19. Materials Issues for Micromachines Development - ASCI Program Plan

    SciTech Connect

    FANG,HUEI ELIOT; BATTAILE,CORBETT C.; BENAVIDES,GILBERT L.; ENSZ,MARK T.; BUCHHEIT,THOMAS E.; LAVAN,DAVID A.; CHEN,ER-PING; CHRISTENSON,TODD R.; DE BOER,MAARTEN P.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; PRASAD,SOMURI V.; REEDY JR.,EARL DAVID; THOMPSON,AIDAN P.; WONG,CHUNGNIN C.; YANG,PIN

    2000-05-01

    This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

  20. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  1. Potential applications of fusion neutral beam facilities for advanced material processing

    SciTech Connect

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m{sup 2}. Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces.

  2. Fusion technology development annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    1997-03-01

    In FY96, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Design Studies (Section 2), Plasma Interactive Materials (Section 3), SiC/SiC Composite Material Development (Section 4), Magnetic Diagnostic Probes (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, the authors carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry.

  3. Heavy ion fusion program. Semi-annual progress report, October 1, 1979-March 30, 1980

    SciTech Connect

    Not Available

    1980-01-01

    HIF activity at ANL during FY 1980 has been primarily concentrated on conceptual design work, and on initial tests of the independently-phased rf acceleration cavities. Calculations for near-term foil-heating experiments were carried out, and a specific cost-effective synchrotron (Beam Development Facility) plan was developed. Program logics were further refined, and some conceptual reactor issues were addressed.

  4. Sandia non-fusion R&D supported by FES.

    SciTech Connect

    Nygren, Richard E.

    2015-06-03

    Until 2012, Sandia participated regularly in non-fusion R&D that was supported primarily through our collaborations with companies in the DOE program for Small Business Innovative Research but also in some work-for-others contracts. In this work, funds were recovered from collaborating institutions for the staff time and materials used, but FES had supported the facility itself and in doing so enabled the contributions to the non-fusion R&D below.

  5. 75 FR 5258 - Hazardous Materials Transportation; Registration and Fee Assessment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... Transportation; Registration and Fee Assessment Program AGENCY: Pipeline and Hazardous Materials Safety... for transportation, certain categories and quantities of hazardous materials. PHMSA's proposal would... of the registration program are to gather information about the transportation of hazardous...

  6. Berkeley research program on ion-induction linacs for inertial fusion

    SciTech Connect

    Keefe, D.; Rosenblum, S.S.

    1982-03-01

    The following areas of research are described: (1) driver studies, (2) induction linac technology, (3) core materials, (4) insulators, (5) modulator-switches and pulse forming network, (6) induction linac accelerators and prototype modules, and (7) a high-temperature experiment. (MOW)

  7. 22 CFR 502.3 - Availability of program materials on public Web sites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BROADCASTING BOARD OF GOVERNORS PROGRAM MATERIALS § 502.3 Availability of program materials on public Web sites... information Web sites designed for foreign audiences. To access currently-available Agency program materials, please visit www.voanews.com and www.martinoticias.com. The homepages of these Web sites display...

  8. Particle beam fusion program. Publications and related reports: a bibliography, January 1971-July 1979

    SciTech Connect

    Yonas, G.

    1980-03-01

    This bibliography documents the evolution of this program and consolidates its 207 entries into a handy source book. The entries represent documents published by Sandia between January 1, 1971 and July 31, 1979. In order to assist the reader, the reports have been categorized into the general topics of Reviews, Beams and Plasmas, Deposition Physics and Targets, Pulsed Power Technology, and Reactors and Repetitive Pulsed Technology, and arranged in chronological order, with the most recent report in each area presented first. The reports are also cross-indexed by author and by publication number (SLA, SAND, etc.).

  9. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  10. Graphite for fusion energy applications

    SciTech Connect

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  11. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  12. Environmental and safety issues of the fusion fuel cycle

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    This paper discusses the environmental and safety concerns inherent in the development of fusion energy, and the current Department of Energy programs seeking to: (1) develop safe and reliable techniques for tritium control; (2) reduce the quantity of activation products produced; and (3) provide designs to limit the potential for accidents that could result in release of radioactive materials. Because of the inherent safety features of fusion and the early start that has been made in safety problem recognition and solution, fusion should be among the lower risk technologies for generation of commercial power.

  13. The Accelerator Production of Tritium Materials Test Program

    SciTech Connect

    Maloy, Stuart A.; Sommer, Walter F.; James, Michael R.; Romero, Tobias J.; Lopez, Manuel R.; Zimmermann, Eugene; Ledbetter, James M.

    2000-10-15

    A materials qualification program has been developed to irradiate and test candidate materials (alloy 718, Type 316L, and Type 304L stainless steel, modified Fe9Cr-1Mo(T91), Al-6061-T6, and Al-5052-O) for use in the Accelerator Production of Tritium (APT) target and blanket. The irradiations were performed in prototypic proton and neutron spectra at prototypic temperatures (50 to 160 deg. C). The study used the 800-MeV, 1.0-mA proton accelerator at the Los Alamos Neutron Science Center, which produces a Gaussian beam with 2 sigma = 3 cm. The experiment geometry is arranged to contain near-prototypic modules of the tungsten neutron source and the lead and aluminum blanket as well as mechanical test specimens of candidate APT materials. The particle spectrum varies throughout the irradiation volume; specimens are exposed to protons and a variety of mixed proton and neutron spectra, depending on the specimen's position relative to the beam center. These specimens have been irradiated for >3600 h to a maximum proton fluence of 4 x 10{sup 21} p/cm{sup 2} in the center of the proton beam. Specimens will yield data on the effect of proton irradiation, to high dose, on material properties from tensile tests, three-point bend tests, fracture toughness tests, pressurized tubes, U-bend stress corrosion cracking specimens, corrosion measurements, and microstructural characterization using transmission electron microscopy specimens. Results from these studies are applicable to all spallation neutron sources now in operation and under consideration, including the Spallation Neutron Source, the European Spallation Source, and The Accelerator Transmutation of Waste project.

  14. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  15. Ablation-erosion analyses of various fusion material surfaces and developments of surface erosion monitors for notification of fusion chamber maintenance times, as an example: Visible light transparent SiC and up-conversion phosphors applied to plasma facing surface structures, useful for versatile purposes to protect and diagnose fusion chambers and so on

    NASA Astrophysics Data System (ADS)

    Kasuya, K.; Motokoshi, S.; Taniguchi, S.; Nakai, M.; Tokunaga, K.; Kolacek, K.; Schmidt, J.; Frolov, O.; Straus, J.; Matejicek, J.; Choukourov, A.

    2017-01-01

    Two kinds of pulsed lasers in Japan and Czech Republic were used to irradiate various sample materials to investigate the surface erosion thresholds under very hazardous environments including nuclear fusion chambers. The first was ArF laser in ILT and the second was XUV laser in IPP. These data were in-cooperated with our former data to build up our material strength data for our succeeding applications of various materials to a variety of fields. As an example, we proposed surface erosion monitors to notice the fusion chamber maintenance times with which the facilities can be protected from the collapses under very severe operation conditions. These kinds of monitors are expected to be useful for future different kinds of mechanical structures not only for the fusion chambers but also various chambers for many purposes. Special upconversion phosphors are also newly proposed to be used as the candidate materials to measure the thermal inputs onto the front surfaces of the armor structures. Optical transparent SiC was also newly tested to enrich our data base for our future diagnostic and protection possibilities.

  16. Magnetic fusion reactor economics

    SciTech Connect

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  17. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect

    Not Available

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  18. Overview of the RFX-mod contribution to the international Fusion Science Program

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Dal Bello, S.; Marrelli, L.; Martin, P.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F.; Barbisan, M.; Barbui, T.; Baruzzo, M.; Battistella, M.; Belli, F.; Bettini, P.; Bigi, M.; Bilel, R.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cester, D.; Chacon, L.; Chapman, B. E.; Chitarin, G.; Ciaccio, G.; Cooper, W. A.; Dalla Palma, M.; Deambrosis, S.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J. Q.; Escande, D. F.; Esposito, B.; Fassina, A.; Fellin, F.; Ferro, A.; Finotti, C.; Franz, P.; Frassinetti, L.; Furno Palumbo, M.; Gaio, E.; Ghezzi, F.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Gonzales, W. A.; Grando, L.; Guo, S. C.; Hanson, J. D.; Hirshman, S. P.; Innocente, P.; Jackson, J. L.; Kiyama, S.; Komm, M.; Laguardia, L.; Li, C.; Liu, S. F.; Liu, Y. Q.; Lorenzini, R.; Luce, T. C.; Luchetta, A.; Maistrello, A.; Manduchi, G.; Mansfield, D. K.; Marchiori, G.; Marconato, N.; Marocco, D.; Marcuzzi, D.; Martines, E.; Martini, S.; Matsunaga, G.; Mazzitelli, G.; Miorin, E.; Momo, B.; Moresco, M.; Okabayashi, M.; Olofsson, E.; Paccagnella, R.; Patel, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pigatto, L.; Piovan, R.; Piovesan, P.; Piron, C.; Piron, L.; Predebon, I.; Rea, C.; Recchia, M.; Rigato, V.; Rizzolo, A.; Roquemore, A. L.; Rostagni, G.; Ruset, C.; Ruzzon, A.; Sajò-Bohus, L.; Sakakita, H.; Sanchez, R.; Sarff, J. S.; Sartori, E.; Sattin, F.; Scaggion, A.; Scarin, P.; Schmitz, O.; Sonato, P.; Spada, E.; Spagnolo, S.; Spolaore, M.; Spong, D. A.; Spizzo, G.; Stevanato, L.; Takechi, M.; Taliercio, C.; Terranova, D.; Trevisan, G. L.; Urso, G.; Valente, M.; Valisa, M.; Veranda, M.; Vianello, N.; Viesti, G.; Villone, F.; Vincenzi, P.; Visona', N.; Wang, Z. R.; White, R. B.; Xanthopoulos, P.; Xu, X. Y.; Yanovskiy, V.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zuin, M.

    2015-10-01

    The RFX-mod device is operated both as a reversed field pinch (RFP), where advanced regimes featuring helical shape develop, and as a tokamak. Due to its flexibility, RFX-mod is contributing to the solution of key issues in the roadmap to ITER and DEMO, including MHD instability control, internal transport barriers, edge transport and turbulence, isotopic effect, high density limit and three-dimensional (3D) non-linear MHD modelling. This paper reports recent advancements in the understanding of the self-organized helical states, featuring a strong electron transport barrier, in the RFP configuration; the physical mechanism driving the residual transport at the barrier has been investigated. Following the first experiments with deuterium as the filling gas, new results concerning the isotope effect in the RFP are discussed. Studies on the high density limit show that in the RFP it is related to a toroidal particle accumulation due to the onset of a convective cell. In the tokamak configuration, q(a) regimes down to q(a) = 1.2 have been pioneered, with (2,1) tearing mode (TM) mitigated and (2,1) resistive wall mode (RWM) stabilized: the control of such modes can be obtained both by poloidal and radial sensors. Progress has been made in the avoidance of disruptions due to the (2,1) TM by applying q(a) control, and on the general issue of error field control. The effect of externally applied 3D fields on plasma flow and edge turbulence, sawtooth control and runaway electron decorrelation has been analysed. The experimental program is supported by substantial theoretical activity: 3D non-linear visco-resistive MHD and non-local transport modelling have been advanced; RWMs have been studied by a toroidal MHD kinetic hybrid stability code.

  19. Incidence, Predictors, and Postoperative Complications of Blood Transfusion in Thoracic and Lumbar Fusion Surgery: An Analysis of 13,695 Patients from the American College of Surgeons National Surgical Quality Improvement Program Database.

    PubMed

    Aoude, Ahmed; Nooh, Anas; Fortin, Maryse; Aldebeyan, Sultan; Jarzem, Peter; Ouellet, Jean; Weber, Michael H

    2016-12-01

    Study Design Retrospective cohort study. Objective To identify predictive factors for blood transfusion and associated complications in lumbar and thoracic fusion surgeries. Methods The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients who underwent lumbar or thoracic fusion from 2010 to 2013. Multivariate analysis was used to determine predictive factors and postoperative complications associated with transfusion. Results Out of 13,695 patients, 13,170 had lumbar fusion and 525 had thoracic fusion. The prevalence of transfusion was 31.8% for thoracic and 17.0% for lumbar fusion. The multivariate analysis showed that age between 50 and 60, age between 61 and 70, age > 70, dyspnea, American Society of Anesthesiologists class 3, bleeding disease, multilevel surgery, extended surgical time, return to operation room, and higher preoperative blood urea nitrogen (BUN) were predictors of blood transfusion for lumbar fusion. Multilevel surgery, preoperative BUN, and extended surgical time were predictors of transfusion for thoracic fusion. Patients receiving transfusions who underwent lumbar fusion were more likely to develop wound infection, venous thromboembolism, pulmonary embolism, and myocardial infarction and had longer hospital stay. Patients receiving transfusions who underwent thoracic fusion were more likely to have extended hospital stay. Conclusion This study characterizes incidence, predictors, and postoperative complications associated with blood transfusion in thoracic and lumbar fusion. Pre- and postoperative planning for patients deemed to be at high risk of requiring blood transfusion might reduce postoperative complications in this population.

  20. Particle beam fusion

    SciTech Connect

    1980-12-31

    Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

  1. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect

    Not Available

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  2. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels

  4. NRL Research in Support of the DOE Charged-Particle Inertial-Confinement-Fusion Program for FY 77-78.

    DTIC Science & Technology

    1980-06-27

    Heavy Ions for Inertial Fusion, Berkeley, CA, July 1976. Lawrence Berkeley Lab. Rep. LBL-5543, 1976. 1. "Current Neutralization of Converging Ion...Analysis of a leavy Ion Beam-Plasma System," P.F. Ottinger and 1). Mosher, Ibid. K. "Ion-Stopping Power of Ionized Media," b: 1). Mosher, Proc. ERDA...Summer Study of licavy Ions for Inertial Fusion, Berkeley, CA, July 1976. Lawrence Berkeley Lab. Rep. LBL-5543, 1976. 65 I

  5. 48 CFR 2823.404-70 - Affirmative procurement program for recycled materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... program for recycled materials. 2823.404-70 Section 2823.404-70 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE SOCIOECONOMIC PROGRAMS ENVIRONMENT, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of the Recovered Materials 2823.404-70 Affirmative procurement program for recycled...

  6. 48 CFR 2823.404-70 - Affirmative procurement program for recycled materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... program for recycled materials. 2823.404-70 Section 2823.404-70 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE SOCIOECONOMIC PROGRAMS ENVIRONMENT, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of the Recovered Materials 2823.404-70 Affirmative procurement program for recycled...

  7. 48 CFR 2823.404-70 - Affirmative procurement program for recycled materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... program for recycled materials. 2823.404-70 Section 2823.404-70 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE SOCIOECONOMIC PROGRAMS ENVIRONMENT, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of the Recovered Materials 2823.404-70 Affirmative procurement program for recycled...

  8. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. Task number: 89-023-1

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125{degrees}C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  9. Implementation of solar-reflective surfaces: Materials and utility programs

    SciTech Connect

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  10. 75 FR 15613 - Hazardous Materials Transportation; Registration and Fee Assessment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... Transportation; Registration and Fee Assessment Program AGENCY: Pipeline and Hazardous Materials Safety... registration program are to gather information about the transportation of hazardous materials, and to fund the... transportation system each day. It is impossible to predict when and where a hazardous materials incident......

  11. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  12. The Nuclear Fuel Services, Inc. program to support disposition of enriched uranium-bearing materials

    SciTech Connect

    Schutt, Stephen M.; Jacob, Norman P.

    2007-07-01

    The disposition of surplus nuclear materials has become one of the most pressing issues of our time. Numerous agencies have invoked programs with the purpose of removing such materials from various international venues and disposing these materials in a manner that achieves non-proliferability. This paper describes the Nuclear Fuel Services, Inc (NFS) Nuclear Material Disposition Program, which to date has focused on a variety of Special Nuclear Material (SNM), in particular uranium of various enrichments. The major components of this program are discussed, with emphasis on recycle and return of material to the nuclear fuel cycle. (authors)

  13. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  14. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  15. Fusion technology development. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    1996-08-01

    In FY95, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), DiMES (Section 3), SiC Composite Studies (Section 4), Magnetic Probe (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry.

  16. Surgical Outcomes of Anterior Cervical Fusion Using Deminaralized Bone Matrix as Stand-Alone Graft Material: Single Arm, Pilot Study

    PubMed Central

    Chung, Ho-Jung; Ryu, Kyeong-Sik; Kim, Jin-Sung; Seong, Ji-Hoon

    2016-01-01

    Objective To investigate the safety and efficacy of demineralized bone matrix (DBM) as a bone graft substitute for anterior cervical discectomy and fusion (ACDF) surgery. Methods Twenty consecutive patients treated with ACDF using stand-alone polyestheretherketone (PEEK) cages (Zero-P) with DBM(CGDBM100) were prospectively evaluated with a minimum of 6 months of follow-up. Radiologic efficacy was evaluated with a 6-point scoring method for osseous fusion using plain radiograph and computed tomogrpahy scans. Clinical efficacy was evaluated using the visual analogue scale (VAS), Owestry disability index (ODI), and short-form health questionnaire-36. The safety of the bone graft substitute was assessed with vital sign monitoring and a survey measuring complications at each follow-up visit. Results There were significant improvements in VAS and ODI scores at a mean 6-month follow-up. Six months after surgery, solid fusion was achieved in all patients. Mean score on the 6-point scoring system was 5.1, and bony formation was found to score at least 4 points in all patients. There was no case with implant-related complications such as cage failure or migration, and no complications associated with the use of CGDBM100. Conclusion ACDF using CGDBM100 demonstrated good clinical and radiologic outcomes. The fusion rate was comparable with the published results of traditional ACDF. Therefore, the results of this study suggest that the use of a PEEK cage packed with DBM for ACDF is a safe and effective alternative to the gold standard of autologous iliac bone graft. PMID:27799989

  17. Materials and Area of Study for Advanced Placement Program in American History.

    ERIC Educational Resources Information Center

    Santos, Peter A.

    This paper describes and evaluates benefits of advanced placement programs and identifies materials which can help high school history classroom teachers develop effective advanced placement programs. An advanced placement program is defined as a program which requires a student to do extensive research and writing throughout the school year.…

  18. ENVIRONMENTAL, ECONOMIC AND ENERGY IMPACTS OF MATERIAL RECOVERY FACILITIES - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFS) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. he MITE Program is sponsored by the U.S. Environmental Protecti...

  19. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S

  20. RECOMMENDATIONS FOR REPORTING THE EFFECTIVENESS OF PROGRAMMED INSTRUCTION MATERIALS.

    ERIC Educational Resources Information Center

    American Educational Research Association, Washington, DC.

    BASIC PREMISE OF THIS REPORT IS THAT INSTRUCTIONAL EFFECTIVENESS MUST BE JUDGED FOR EACH PROGRAM ACCORDING TO ITS DEMONSTRATED MERITS. GENERAL AND SPECIFIC RECOMMENDATIONS ARE LISTED FOR POTENTIAL PROGRAM USERS AND PUBLISHERS. SUPPLEMENTS CONTAIN INFORMATION ON PROGRAM MANUALS AND TECHNICAL DOCUMENTATION. THIS REPORT WAS PREPARED BY THE JOINT…

  1. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    NASA Astrophysics Data System (ADS)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  2. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  3. Radioscapholunate Fusions

    PubMed Central

    McGuire, Duncan Thomas; Bain, Gregory Ian

    2012-01-01

    Radiocarpal fusions are performed for a variety of indications, most commonly for debilitating painful arthritis. The goal of a wrist fusion is to fuse the painful, diseased joints and to preserve motion through the healthy joints. Depending on the extent of the disease process, radiocarpal fusions may take the form of radiolunate, radioscapholunate, or total wrist fusions. Surgical techniques and instrumentation have advanced over the last few decades, and consequently the functional outcomes have improved and complications decreased. Techniques for partial carpal fusions have improved and now include distal scaphoid and triquetrum excision, which improves range of motion and fusion rates. In this article we discuss the various surgical techniques and fixation methods available and review the corresponding evidence in the literature. The authors' preferred surgical technique of radioscapholunate fusion with distal scaphoid and triquetrum excision is outlined. New implants and new concepts are also discussed. PMID:24179717

  4. The path to fusion power.

    PubMed

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power.

  5. Materials for programmed, functional transformation in transient electronic systems.

    PubMed

    Hwang, Suk-Won; Kang, Seung-Kyun; Huang, Xian; Brenckle, Mark A; Omenetto, Fiorenzo G; Rogers, John A

    2015-01-07

    Materials and device designs are presented for electronic systems that undergo functional transformation by a controlled time sequence in the dissolution of active materials and/or encapsulation layers. Demonstration examples include various biocompatible, multifunctional systems with autonomous behavior defined by materials selection and layout.

  6. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  7. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    SciTech Connect

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  8. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the

  9. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Access to instructional material used in a research or experimentation program. 98.3 Section 98.3 Education Office of the Secretary, Department of Education STUDENT RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.3 Access to instructional material used in...

  10. Final Report on the Evaluation of the National Science Foundation's Instructional Materials Development Program.

    ERIC Educational Resources Information Center

    Tushnet, Naida C.; Millsap, Mary Ann; Abdullah-Welsh, Noraini; Brigham, Nancy; Cooley, Elizabeth; Elliott, Jeanne; Johnston, Karen; Martinez, Alina; Nierenberg, Marla; Rosenblum, Sheila

    This document presents the final report on the evaluation of the Instructional Materials Development (IMD) program of the National Science Foundation (NSF) and focuses on issues related to the development, dissemination, adoption, implementation, and impact of new instructional materials. The IMD program evaluates products at each step, from…

  11. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    SciTech Connect

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects.

  12. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  13. Abstracts: Eighth Annual Conference on Fossil Energy Materials. Fossil Energy Program

    SciTech Connect

    Not Available

    1994-07-01

    Abstracts are presented for about 40 papers. The Fossil Energy Advanced Research and Technology Development Materials program is an integrated materials research activity of the fossil energy coal program, whose objective is to conduct R and D for all advanced coal conversion and utilization technologies. The program is aimed at understanding materials behavior in coal system environments and the development of new materials for improving plant operations and reliability. A generic approach is used for addressing multiple coal technologies; for example, the hot-gas particulate filter development is applicable to pressurized fluidized bed combustion, integrated coal gasification combined-cycle, coal combustion, and indirectly fired combined-cycle systems.

  14. Instructional Materials Development Program: Winter and Spring Quarters, 1976. OASIS Evaluation Report No. 8.

    ERIC Educational Resources Information Center

    Hedges, Larry V.; Majer, Kenneth

    The Office of Academic Support and Instructional Services (OASIS) at the University of California, San Diego administers an Instructional Materials Development Program. An overview of the program is presented along with a description of the product development/evaluation cycle. Program evaluation is generic to this process, since several formative…

  15. Overview of NASA's advanced high temperature engine materials technology program

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Gray, Hugh R.

    1992-01-01

    NASA's 'HITEMP' program has been charged with development of propulsion systems technologies for next-generation civil and military aircraft, stressing high-temperature/low-density composites. These encompass polymer-matrix composites for fans, ducts, and compressor cases, and intermetallic and metallic alloy matrix composites for applications in turbine disks, blades, and vanes, and ceramic matrix composites for combustors and turbines. An overview is presented of program concerns and achievements to date.

  16. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    SciTech Connect

    McHargue, C.J.

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  17. Cell-based composite materials with programmed structures and functions

    DOEpatents

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  18. Duct Remediation Program: Material characterization and removal/handling

    SciTech Connect

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Remediation efforts were successfully performed at Rocky Flats to locate, characterize, and remove plutonium holdup from process exhaust ducts. Non-Destructive Assay (NDA) techniques were used to determine holdup locations and quantities. Visual characterization using video probes helped determine the physical properties of the material, which were used for remediation planning. Assorted equipment types, such as vacuum systems, scoops, brushes, and a rotating removal system, were developed to remove specific material types. Personnel safety and material handling requirements were addressed throughout the project.

  19. Program to develop sprayed, plastically deformable compressor shroud seal materials

    NASA Technical Reports Server (NTRS)

    Schwab, R. C.

    1979-01-01

    A study of fundamental rub behavior for ten dense sprayed materials and eight current compressor clearance materials has been conducted. A literature survey of a wide variety of metallurgical and thermophysical properties was conducted and correlated to rub behavior. Based on these results, the most promising dense rub material was Cu-9Al. Additional studies on the effects of porosity, incursion rate, blade solidity and ambient temperature were carried out on aluminum bronze (Cu-9Al-1Fe) with and without a 515B Feltmetal underlayer.

  20. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    NASA Astrophysics Data System (ADS)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper

  1. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  2. EPA's Program for Asbestos Containing Materials in School Buildings.

    ERIC Educational Resources Information Center

    Johnson, Kirk A.

    1979-01-01

    Comments from the Environmental Protection Agency (EPA) concerning three recommendations (in an article in a previous issue of this journal about inspecting schools for asbestos-containing materials) that are in direct conflict with those offered by EPA. (MLF)

  3. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  4. Program to develop sprayed, plastically deformable compressor shroud seal materials

    NASA Technical Reports Server (NTRS)

    Schell, J. D.; Schell, J. D.

    1980-01-01

    A study of fundamental rub behavior for 10 dense, sprayed materials and eight current compressor clearance materials was conducted. A literature survey of a wide variety of metallurgical and thermophysical properties was conducted and correlated to rub behavior. Based on the results, the most promising dense rub material was Cu-9A1. Additional studies on the effects of porosity, incursion rate, blade solidity, and ambient temperature were carried out on aluminum bronze (Cu-9Al-1Fe) with and without a 515B Feltmetal underlayer. A further development effort was conducted to assess the property requirements of a porous, aluminum bronze, seal material. Strength, thermal cycle capabilities, erosion and oxidation resistance, machinability, and abradability at several porosity levels were examined.

  5. Selected Related Class Materials for Special Needs Students in Cooperative Vocational Education Programs. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Wanat, John A., Comp.

    This annotated bibliography lists and describes materials that can be of use to teachers of special needs students in cooperative vocational education programs. The bibliography is organized in 10 sections that cover the following materials: comprehensive related class student materials; occupational information; jobs; money management; insurance,…

  6. Environmental test program for superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1991-01-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.

  7. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  8. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  9. Materials processing in space program tasks-supplement

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1983-01-01

    An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.

  10. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  11. Accelerators for heavy ion inertial fusion: Progress and plans

    SciTech Connect

    Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

    1994-08-01

    The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy.

  12. Fossil energy materials program plan for fiscal years 1982 through 1986

    NASA Astrophysics Data System (ADS)

    Bradley, R. A.; Judkins, R. R.

    1982-12-01

    A program plan for the Department of Energy Advanced Research and Technology Development Fossil Energy Materials Program reviews the background, technical issues, and research and development needs for materials of construction for fossil energy systems. The status and plans for research and development activities in the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program are then discussed for various materials disciplines. Detailed information about these plans is provided for FY 1982 through FY 1984, and descriptions of long-range plans are given for FY 1985 and FY 1986. In addition to descriptions of planned research activities, this plan provides levels of effort required for the various activities. Thus, the emphasis of the program on long-range basic research to address perceived materials problems in the development of fossil energy technologies is indicated.

  13. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1993-07-01

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Metallurgical aspects of possibility of 9?12% chromium steel application as a structural material for first wall and blanket of fusion reactors

    NASA Astrophysics Data System (ADS)

    Ioltukhovsky, A. G.; Kondrat'ev, V. P.; Leont'eva-Smirnova, M. V.; Votinov, S. N.; Shamardin, V. K.; Povstyanko, A. V.; Bulanova, T. M.

    1996-10-01

    Steels containing 9-12% Cr are considered to be candidate structural materials for the first wall and blanket of a fusion reactor at the operation temperature up to 650°C. The optimal structure, phase composition and the specific chemical composition of the steels ensure their high heat resistance, yield strength and ductility as well as adequate thermophysical properties. The susceptibility of chromium steels for low temperature irradiation embrittlement can be influenced by changing their structural state via alloying, heat treatment and method of melting. Steels having a uniform martensite structure are less susceptible to irradiation conditions and have more stable tensile properties as compared to steels having δ-ferrite in their structures.

  15. Design of a target and moderator at the Los Alamos Spallation Radiation Effects Facility (LASREF) as a neutron source for fusion reactor materials development

    SciTech Connect

    Ferguson, P.D.; Mueller, G.E.; Sommer, W.F.; Farnum, E.H.

    1993-10-01

    The LASREF facility is located in the beam stop area at LAMPF. The neutron spectrum is fission-like with the addition of a 3% to 5% component with E > 20 MeV. The present study evaluates the limits on geometry and material selection that will maximize the neutron flux. MCNP and LAHET were used to predict the neutron flux and energy spectrum for a variety of geometries. The problem considers 760 MeV protons incident on tungsten. The resulting neutrons are multiplied in uranium through (n,xn) reactions. Calculations show that a neutron flux greater than 10{sup 19} n/m{sup 2}/s is achievable. The helium to dpa ratio and the transmutation product generation are calculated. These results are compared to expectations for the proposed DEMO fusion reactor and to FFTF.

  16. Measurement of ion species in high current ECR H{sup +}/D{sup +} ion source for IFMIF (International Fusion Materials Irradiation Facility)

    SciTech Connect

    Shinto, K. Ichimiya, R.; Ihara, A.; Ikeda, Y.; Kasugai, A.; Kitano, T.; Kondo, K.; Takahashi, H.; Senée, F.; Bolzon, B.; Chauvin, N.; Gobin, R.; Valette, M.

    2016-02-15

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H{sup +}) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D{sup +}) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H{sup +} ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H{sup +}/D{sup +} ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  17. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Inestrosa-Izurieta, María José; Veloso, Felipe; Gutiérrez, Gonzalo; Vergara, Julio; Clausse, Alejandro; Bruzzone, Horacio; Castillo, Fermín; and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  18. THE EFFECTIVENESS OF FOUR VARIATIONS OF PROGRAMED SCIENCE MATERIALS.

    ERIC Educational Resources Information Center

    GORDON, JOHN M.

    INVESTIGATED WERE CHANGES IN THE PERFORMANCE OF SEVENTH GRADE STUDENTS AS A RESULT OF EXPOSURE TO A SYMBOLIC SCIENCE PROGRAM IN ELECTRICITY MODIFIED BY THE ADDITION OF SEVERAL TYPES OF CONCRETE EXPERIENCES. POSSIBLE RELATIONSHIPS BETWEEN THE DIFFERENT TYPES OF EXPERIENCES AND CHANGES IN HIGHER LEVELS OF COGNITIVE FUNCTIONING AND LINGUISTIC AND…

  19. Programmed Material As A Training Tool For Older Persons

    ERIC Educational Resources Information Center

    Siemen, James R.

    1976-01-01

    A research study analyzed the nature of one teaching modality, programmed instruction, as it relates to the teaching and training of older people, concluding that it is a viable mode for the transmission of information to older as well as younger learners. (ABM)

  20. Experimental and Analytical Studies for a Computational Materials Program

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1999-01-01

    The studies supported by Grant NAG1-1780 were directed at providing physical data on polymer behavior that would form the basis for computationally modeling these types of materials. Because of ongoing work in polymer characterization this grant supported part of a larger picture in this regard. Efforts went into two combined areas of their time dependent mechanical response characteristics: Creep properties on the one hand, subject to different volumetric changes (nonlinearly viscoelastic behavior) and time or frequency dependence of dilatational material behavior. The details of these endeavors are outlined sufficiently in the two appended publications, so that no further description of the effort is necessary.

  1. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  2. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  3. Inertial Confinement Fusion quarterly report, January--March 1995. Volume 5, No. 2

    SciTech Connect

    1995-09-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included this quarter include: the role of the National Ignition Facility in the development of Inertial Confinement Fusion, laser-plasma interactions in large gas-filled hohlraums, evolution of solid-state induction modulators for a heavy-ion recirculator, the National Ignition Facility project, and terminal-level relaxation in Nd-doped laser material.

  4. Programs, '63: A Guide to Programed Instructional Materials Available to Educators by September 1963. Bulletin, 1964, No. 3. OE-34015-63. [Part II

    ERIC Educational Resources Information Center

    Hanson, Lincoln F.

    1963-01-01

    This bulletin lists materials available in the fall of 1963 to assist educators in their selections of programmed instruction materials, and updates the inaugural issue, "Programs '62." Since the 1962 edition provided a number of first analyses of programmed material available, some of the present statistical data have been related to last year's…

  5. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  6. Numerical-experimental analyses by Hot-Wire method of an alumina cylinder for future studies on thermal conductivity of the fusion breeder materials

    NASA Astrophysics Data System (ADS)

    Lo Frano, R.; Moscardini, M.; Aquaro, D.

    2014-11-01

    The determination of the thermal conductivity of breeder materials is one of the main goal in order to find the best candidate material for the fusion reactor technology. Experimental tests have been and will be carried out with a dedicated experimental devices, built at the Department of Civil and Industrial Engineering of the University of Pisa. The methodological approach used in doing that is characterized by two main phases strictly interrelated each other: the first one focused on the experimental evaluation of thermal conductivity of a ceramic material, by means of hot wire method, to be subsequently used in the second phase, based on the test rig method, to determine the thermal conductivity of pebble bed material. To the purpose, two different experimental devices have been designed and built. This paper deals with the first phase of the methodology. In this framework, the equipment set up and built to perform Hot wire tests, the ceramic material (a cylinder of alumina), the experimental procedure and the measured results obtained varying the temperature, are presented and discussed. The experimental campaign has been lead from 50°C up to 400°C. The thermal conductivity of the ceramic material at different bulk temperatures has been obtained in stationary conditions (detected on the basis of the temperature values measured during the experiment). Numerical analyses have been also performed by means of FEM code Ansys©. The numerical results were in quite good agreement with the experimental one, confirming also the reliability of code in reproducing heat transfer phenomena.

  7. Oregon Custodial Training Program. Housekeeping Methods and Materials. (Revised 1978).

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    Designed as an instructional aid in teaching about custodian housekeeping methods and materials, this booklet contains information on the school custodian's responsibilities and methods for maintaining the building inside and outside, including the cleaning and sanitation of classrooms, restrooms, showerrooms, lunchrooms, corridors, and special…

  8. New material, process spins off from Volvo LCP 2000 program

    NASA Astrophysics Data System (ADS)

    1984-06-01

    Wet extrusion is not entirely new as a method, but Jotun and Volvo have improved the reinforced plastic to an extremely high surface finish. Material and method studies for production of prototype cars; further development of the SMC (sheetmolding compound) techniques for large scale series production; and development of a new technique for series production of flat body details were discussed.

  9. Curriculum Materials for Bilingual Programs: Supplement, Pre-K-Adult.

    ERIC Educational Resources Information Center

    De Hoogh, Guillermo, Ed.; Swanson, Maria Medina, Ed.

    This supplement classifies approximately 675 titles including only new acquisitions from August 1973 to August 1974. It is suggested that it be used in conjunction with the 1973 original edition. All material is classified according to various divisions as follows: language arts, social studies, mathematics, science, literature, dictionaries,…

  10. Preparation of Programmed Chinese Language Materials. Final Report.

    ERIC Educational Resources Information Center

    MacDonald, William L.

    A project to convert part of a Chinese language course ("Standard Chinese: A Modular Approach") to the PLATO computerized teaching system is reported. The project involved: (1) transcribing all the first sequence audiotapes for the first six instructional modules (these tapes present the material of each lesson); (2) rewriting the lesson…

  11. Textbooks and Learning Materials Program: Zambia. Final Report

    ERIC Educational Resources Information Center

    US Agency for International Development, 2009

    2009-01-01

    The Mississippi Consortium for International Development's (MCID's) intervention involved the development, publication and distribution of an Integrated Foundations of Learning Kit, focused on numeracy. This intervention was aligned with Zambia's priorities and strategies and matched the requirements of the Textbooks and Learning Materials Program…

  12. Core IV Materials for Metropolitan Agriculture/Horticulture Programs.

    ERIC Educational Resources Information Center

    Hemp, Paul; And Others

    This core curriculum guide consists of materials for use in presenting a 13-unit vocational agriculture course geared toward high school students living in metropolitan areas. Addressed in the individual units of the course are the following topics: employment in agricultural occupations, supervised occupational experience, leadership in…

  13. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  14. Fusion Policy Advisory Committee (FPAC)

    SciTech Connect

    Not Available

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

  15. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    SciTech Connect

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  16. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  17. Laboratory for Laser Energetics annual report, 1 October 1991--30 September 1992. Inertial Fusion Program and National Laser Users Facility Program

    SciTech Connect

    Not Available

    1993-01-01

    This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described.

  18. Environmental test program for superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1992-01-01

    A systematic approach to obtaining real time, superconducting YBa2Cu30(7-x) materials is presented. The work was carried out under the overall direction of Clemson University with tasks being performed at both Clemson and Westinghouse (Aiken, SC). Clemson prepared the tapecast superconducting 123 material and fabricated in into substrate-supported, environmentally-protected conducting links. Following this, all of the elements were individually tested for resistance vs. temperature and Tc; and then a portion of them were kept at Clemson for further testing while a randomly selected group was delivered to Westinghouse for specialized testing and evaluation in their low temperature/high vacuum and radiation facilities. In addition, a number of control samples (12 ea.) were put on the shelf at Clemson for further reference at the end of the testing period. The specific tests conducted at Clemson and Westinghouse/SRC are presented with a summary of the results.

  19. ARPA Solid State Laser and Nonlinear Materials Program.

    DTIC Science & Technology

    1994-06-01

    decay times for the different Er levels. Measurements of Er:GGG and Er:YSGG formed the basis for a Judd - Ofelt analysis, discussed in Appendix A, that...include absorption, emission, and lifetime measure- ments, are made for each material in Chapter 2. The Judd - Ofelt Theory is applied to the integrated...room-temperature absorption spectra of ground-state transitions in the visible and near-infrared. The three Judd - Ofelt Parameters are determined and

  20. Integrating electron microscopy into nanoscience and materials engineering programs

    NASA Astrophysics Data System (ADS)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  1. Materials with engineered mesoporosity for programmed mass transport

    NASA Astrophysics Data System (ADS)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  2. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    SciTech Connect

    Pasto, Arvid

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  3. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  4. Materials/manufacturing support element for the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Hoffman, E.E.; Parks, W.P.

    1994-12-31

    In 1993, DOE initiated a program to develop advanced gas turbines for power generation in utility and industrial applications. A materials/manufacturing plan was developed in several stages with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. This plan was developed by a small advanced materials and turbine technology team over a 6-month period. The technology plan calls for initiation of several high priority projects in FY 1995. The technical program for the materials/manufacturing element focuses on generic materials issues, components, and manufacturing processes. Categories include coatings and process development, turbine airfoil development, ceramics adaptation, directional solidification and single crystal airfoils manufactoring technology, materials characterization, catalytic combustor materials, and technology information exchange.

  5. The role of the National Ignition Facility in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1996-06-01

    The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-{mu}m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design...; (2) to provide an above-ground simulation capability for nuclear weapon effects...; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

  6. Nuclear data requirements for fusion reactor nucleonics

    SciTech Connect

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.

  7. 76 FR 72005 - NUREG-1556, Volume 2, Revision 1, “Consolidated Guidance About Materials Licenses Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... COMMISSION NUREG-1556, Volume 2, Revision 1, ``Consolidated Guidance About Materials Licenses Program... Guidance About Materials Licenses: Program- Specific Guidance About Industrial Radiography Licenses, Draft Report for Comment.'' The document has been updated to include safety culture, security of...

  8. Breast Self-Examination: Programs and Materials Available for Teaching and Research

    PubMed Central

    Greco, Linda Del; Desmeules, Louise

    1985-01-01

    There is an abundance of information of breast self-examination (BSE) as a method of detecting breast cancer. This article describes the various teaching programs and sources of information available to physician, nurse and patient. Materials featuring old, young, black or white women are available; many can be obtained in English, French, Spanish and Braille. These materials range from annotated bibliographies, pamphlets and research reports to programs of continuing education for physicians, nurses and patients. PMID:21274089

  9. Fissile material disposition program final immobilization form assessment and recommendation

    SciTech Connect

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-10-03

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

  10. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  11. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  12. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  13. Nuclear-Fuel-Cycle Research Program: availability of geotoxic material

    SciTech Connect

    Wachter, B.G.; Kresan, P.L.

    1982-09-01

    This report represents an analog approach to the characterization of the environmental behavior of geotoxic waste materials (toxic material emplaced in the earth's crust) as drawn from literature on the Oklo natural fission reactors and uranium ore deposits relative to radioactive wastes, and hydrothermal metal ore deposits relative to stable toxic wastes. The natural analog data were examined in terms of mobility and immobility of selected radioactive or stable waste elements and are presented in matrix relationship with their prime geochemical variables. A numerical system of ranking those relationships for purposes of hazard-indexing is proposed. Geochemical parameters (especially oxidation/reduction potential) are apparently more potent mobilizers/immobilizers than geological or hydrological conditions in many, if not most, geologic environments for most radioactive waste elements. Heavy metal wastes, by analogy to hydrothermal ore systems and geothermal systems, are less clear in their behavior but similar geochemical patterns do apply. Depth relationships between geochemical variables and waste element behavior show some surprises. It is significantly indicated that for waste isolation, deeper is not necessarily better geochemically. Relatively shallow isolation in host rocks such as shale could offer maximum immobility. This paper provides a geochemical outline for examining analog models as well as a departure point for improved quantification of geological and geochemical indexing of toxic waste hazards.

  14. NASA's Advanced Space Transportation Program: A Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1999-01-01

    The realization of low-cost assess to space is one of NASA's three principal goals or "pillars" under the Office of Aero-Space Technology. In accordance with the goals of this pillar, NASA's primary space transportation technology role is to develop and demonstrate next-generation technologies to enable the commercial launch industry to develop full-scale, low cost, highly reliable space launchers. The approach involves both ground-based technology demonstrations and flight demonstrators, including the X-33, X-34, Bantam, Reusable Launch Vehicle (RLV), and future experimental vehicles. Next generation space transportation vehicles and propulsion systems will require the development and implementation of advanced materials and processes. This presentation will provide an overview of advanced materials efforts which are focused on the needs of next generation space transportation systems. Applications described will include ceramic matrix composite (CMC) integrally bladed turbine disk (blisk); actively cooled CMC nozzle ramp for the aerospike engine; ablative thrust chamber/nozzle; and metal matrix composite turbomachinery housings.

  15. Tritium accountancy in fusion systems

    SciTech Connect

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  16. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  17. In-space production of large space systems from extraterrestrial materials: A program implementation model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1977-01-01

    A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.

  18. Nuclear Technology Series. Nuclear Materials Processing Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear materials processing technician program is designed for use with courses 23-25 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  19. Programs for English Language Learners: Resource Materials for Planning and Self-Assessments.

    ERIC Educational Resources Information Center

    Office for Civil Rights (ED), Washington, DC.

    These resource materials were developed in response to requests from school districts for a reference tool to assist them through the process of developing a comprehensive English language learners (ELL) program. The districts desired a program that would be in compliance with Title VI of the Civil Rights Act of 1964. Title VI was passed in the…

  20. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  1. Health Education Programs Developed in Suffolk Schools. A Survey of Locally Developed Health Education Materials.

    ERIC Educational Resources Information Center

    Keough, John J.; And Others

    This report is a summary of the results of a questionnaire survey of locally developed health education materials. This guide has been prepared to assist school districts in the planning and initiation or expansion of local health programs. It reports on the current status of locally developed programs in the county. Hopefully, this information…

  2. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  3. LOW ACTIVATION JOINING OF SIC/SIC COMPOSITES FOR FUSION APPLICATIONS: MODELING DUAL-PHASE MICROSTRUCTURES AND DISSIMILAR MATERIAL JOINTS

    SciTech Connect

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, M.; Katoh, Y.

    2016-03-31

    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  4. Innovation and Impact: The Comprehensive Program FY 2004. Program Information and Application Materials.

    ERIC Educational Resources Information Center

    Fund for the Improvement of Postsecondary Education (ED), Washington, DC.

    The Comprehensive Program is the primary grant component of the U.S. Department of Education's Fund for the Improvement of Postsecondary Education (FIPSE). The Comprehensive Program supports innovative educational improvement projects that respond to problems of national significance. Proposals may be submitted by a variety of institutions and…

  5. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  6. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-12-31

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  7. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors

    NASA Astrophysics Data System (ADS)

    Ioltukhovskiy, A. G.; Leonteva-Smirnova, M. V.; Solonin, M. I.; Chernov, V. M.; Golovanov, V. N.; Shamardin, V. K.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.

    2002-12-01

    Heat resistant 12% Cr steels of the 16Cr12W2VTaB type (12Cr-2W-V-Ta-B-0.16C) provide a reduced activation material that can be used as a structural material for fusion and fast breeder reactors. The composition under study meets scientific and engineering requirements and has an optimal base element composition to provide a δ-ferrite content of no more than 20%. It also has a minimum quantity of low melting impurity elements and non-metallic inclusions. Short-term tensile properties for the steel tested to 700 °C are provided after the standard heat treatment (normalization, temper). Rupture strength and creep properties for the steel depending on the initial heat treatment conditions are also given. The microstructural stability of the 16Cr12W2VTaB type steel at temperatures up to 650 °C is predicted to be good, and the properties of the steel after irradiation in BOR-60 are demonstrated.

  8. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designed to explore or develop new or unproven teaching methods or techniques. (c) For the purpose of the... 34 Education 1 2010-07-01 2010-07-01 false Access to instructional material used in a research or... RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.3 Access to instructional material used in...

  9. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  10. Industry to Education Technology Transfer Program. Composite Materials--Personnel Development. Final Report.

    ERIC Educational Resources Information Center

    Tomezsko, Edward S. J.

    A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…

  11. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  12. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and tests performed on comparable vessels, making appropriate allowances for all uncertainties in the... requirements for number of materials to be irradiated, specimen types, or number of specimens per reactor is... 10 Energy 1 2012-01-01 2012-01-01 false Reactor Vessel Material Surveillance Program...

  13. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  14. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  15. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  16. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  17. Fabrication and evaluation of SiC/Cu functionally graded material used for plasma facing components in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Ling, Yun-Han; Li, Jiang-Tao; Ge, Chang-Chun; Bai, Xin-De

    2002-06-01

    A new SiC/Cu functionally graded material that contains a spectrum of 0-100% compositional distributions of SiC used for plasma facing component was proposed and fabricated by a novel process termed graded sintering under ultra-high pressure, by which a near dense graded composite has been successfully obtained. Tests on plasma relevant performances showed that in SiC/Cu graded composite the CD 4 production due to chemical sputtering is 85% lower than that of SMF800 nuclear graphite, while its thermal desorption is about 10% of that graphite; fatigue cracks and chemical decomposition were found on the surface of SiC/Cu FGM after 300 cyclic impacts of laser pulse with power density of 398 MW/m 2; slight damage was also observed on the material surface after in situ plasma irradiation in a Tokamak facility.

  18. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  19. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    SciTech Connect

    Gray, L.W.

    1996-01-08

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

  20. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect

    1998-05-01

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.