Sample records for fusion materials study

  1. Towards a programme of testing and qualification for structural and plasma-facing materials in ‘fusion neutron’ environments

    NASA Astrophysics Data System (ADS)

    Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.

    2017-09-01

    Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.

  2. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less

  3. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    NASA Astrophysics Data System (ADS)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.

  4. Palaeontological evidence of membrane relationship in step-by-step membrane fusion

    PubMed Central

    WANG, XIN; LIU, WENZHE; DU, KAIHE

    2011-01-01

    Studies on membrane fusion in living cells indicate that initiation of membrane fusion is a transient and hard to capture process. Despite previous research, membrane behaviour at this point is still poorly understood. Recent palaeobotanical research has revealed snapshots of membrane fusion in a 15-million-year-old fossil pinaceous cone. To reveal the membrane behaviour during the fusion, we conducted more observations on the same fossil material. Several discernible steps of membrane fusion have been fixed naturally and observed in the fossil material. This observation provides transmission electron microscope (TEM) images of the transient intermediate stage and clearly shows the relationship between membranes. Observing such a transient phenomenon in fossil material implies that the fixing was most likely accomplished quickly by a natural process. The mechanism behind this phenomenon is clearly worthy of further enquiry. PMID:21190428

  5. Monte Carlo simulation of ion-material interactions in nuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.

    2017-06-01

    One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.

  6. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  7. On the radiation damage characterization of candidate first wall materials in a fusion reactor using various molten salts

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2006-12-01

    Evaluating radiation damage characteristics of structural materials considered to be used in fusion reactors is very crucial. In fusion reactors, the highest material damage occurs in the first wall because it will be exposed to the highest neutron, gamma ray and charged particle currents produced in the fusion chamber. This damage reduces the lifetime of the first wall material and leads to frequent replacement of this material during the reactor operation period. In order to decrease operational cost of a fusion reactor, lifetime of the first wall material should be extended to reactor's lifetime. Using a protective flowing liquid wall between the plasma and first wall can decrease the radiation damage on first wall and extend its lifetime to the reactor's lifetime. In this study, radiation damage characterization of various low activation materials used as first wall material in a magnetic fusion reactor blanket using a liquid wall was made. Various coolants (Flibe, Flibe + 4% mol ThF 4, Flibe + 8% mol ThF 4, Li 20Sn 80) were used to investigate their effect on the radiation damage of first wall materials. Calculations were carried out by using the code Scale4.3 to solve Boltzmann neutron transport equation. Numerical results brought out that the ferritic steel with Flibe based coolants showed the best performance with respect to radiation damage.

  8. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less

  9. Minimally Invasive Transforaminal Lumbar Interbody Fusion: Meta-analysis of the Fusion Rates. What is the Optimal Graft Material?

    PubMed

    Parajón, Avelino; Alimi, Marjan; Navarro-Ramirez, Rodrigo; Christos, Paul; Torres-Campa, Jose M; Moriguchi, Yu; Lang, Gernot; Härtl, Roger

    2017-12-01

    Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is an increasingly popular procedure with several potential advantages over traditional open TLIF. The current study aimed to compare fusion rates of different graft materials used in MIS-TLIF, via meta-analysis of the published literature. A Medline search was performed and a database was created including patient's type of graft, clinical outcome, fusion rate, fusion assessment modality, and duration of follow-up. Meta-analysis of the fusion rate was performed using StatsDirect software (StatsDirect Ltd, Cheshire, United Kingdom). A total of 1533 patients from 40 series were included. Fusion rates were high, ranging from 91.8% to 99%. The imaging modalities used to assess fusion were computed tomography scans (30%) and X-rays (70%). Comparison of all recombinant human bone morphogenetic protein (rhBMP) series with all non-rhBMP series showed fusion rates of 96.6% and 92.5%, respectively. The lowest fusion rate was seen with isolated use of autologous local bone (91.8%). The highest fusion rate was observed with combination of autologous local bone with bone extender and rhBMP (99.1%). The highest fusion rate without the use of BMP was seen with autologous local bone + bone extender (93.1%). The reported complication rate ranged from 0% to 35.71%. Clinical improvement was observed in all studies. Fusion rates are generally high with MIS-TLIF regardless of the graft material used. Given the potential complications of iliac bone harvesting and rhBMP, use of other bone graft options for MIS-TLIF is reasonable. The highest fusion rate without the use of rhBMP was seen with autologous local bone plus bone extender (93.1%). Published by Oxford University Press on behalf of Congress of Neurological Surgeons 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. A study of thermal hydraulic and kinetic phenomena in HYLIFE-2: An inertial confinement fusion reactor

    NASA Astrophysics Data System (ADS)

    Chen, Xiang Ming

    1993-01-01

    Researchers have studied the different aspects of commercial fusion energy for several decades. A variety of inertial confinement fusion (ICF) reactors have been proposed. Different from the magnetic confinement fusion concept, inertial confinement fusion does not need long-term confinement of the fusion fuel but achieves fusion reaction in a short microexplosion under a high density, high temperature condition. The HYLIFE-2 reactor design started in 1987 is based on the study of a previous concept called HYLIFE (High Yield Lithium Injection Fusion Energy). Similar to the old concept, the HYLIFE-2 design uses a vacuum chamber in which D-T fusion pellets are injected and ignited by high energy beams shot into the reactor through different ports. The reactor vessel is protected from explosion radiations by a liquid fall (blanket) that also breeds tritium through the (n, alpha) reaction of lithium and conveys the fusion energy to the power cycle. In addition to some geometric chances, the new design replaces liquid metal lithium with the molten salt Flibe (Li2BeF4) as the protective blanket material. The objective was to remove the possibility of fire hazard. The important thermal hydraulic issues in the design are (1) equation of state of Flibe; (2) liquid relaxation after isochoric (constant volume) heating; (3) ablation and gas dynamics; (4) interaction of the vapor and liquid; and (5) condensation of the vaporized material. The first four issues have to do with the internal relaxation after the fusion microexplosion in the chamber. Vaporized material, as well as liquid, may assert strong impulses on the chamber wall during the process of relaxing after absorbing the energy from the microexplosion. Item (5) is related to the rapid vacuum recovery between the ignitions. Some aspects of the first four issues are studied.

  11. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  12. Evaluation of Anterior Vertebral Interbody Fusion Using Osteogenic Mesenchymal Stem Cells Transplanted in Collagen Sponge.

    PubMed

    Yang, Wencheng; Dong, Youhai; Hong, Yang; Guang, Qian; Chen, Xujun

    2016-05-01

    The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups II and IV. These findings suggest that mesenchymal stem cells that have been cultured with osteogenic differentiation medium and loaded with collagen sponge could induce bone formation and anterior vertebral interbody fusion. And the rabbit model we developed will be useful in evaluating the effects of graft materials for anterior vertebral interbody fusion. Further study is needed to determine the most appropriate carrier for OMSCs and the feasibility in the clinical setting.

  13. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less

  14. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  15. Overview of the US Fusion Materials Sciences Program

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven

    2004-11-01

    The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.

  16. Application of Resorbable Poly(Lactide-co-Glycolide) with Entangled Hyaluronic Acid as an Autograft Extender for Posterolateral Intertransverse Lumbar Fusion in Rabbits

    PubMed Central

    Oliver, Rema A.; Gage, Gary; Yu, Yan; Bell, David; Bellemore, Jeremy; Adkisson, Huston Davis

    2011-01-01

    Facilitating fusion between bony segments in a reliable and reproducible manner using a synthetic bone graft material has a number of benefits for the surgeon as well as the patient. Although autograft remains the gold standard, associated comorbidities continue to drive the development of new biomaterials for use in spinal fusion. The ability of autograft alone and autograft combined with a radiolucent biomaterial composed of resorbable osteoconductive poly(lactide-co-glycolide) with entangled hyaluronic acid to facilitate fusion was examined in a single-level noninstrumented posterolateral intertransverse lumbar fusion model in New Zealand White rabbits. Progressive bone formation was demonstrated radiographically for the extender group (synthetic biomaterial plus autograft) between 3 and 6 months. Computed tomography revealed a new cortical shell in the fusion mass at 3 and 6 months for both study groups. Tensile testing at 6 months demonstrated that the quality of bone formed between the intertransverse space was equivalent for both study groups. Histologic evaluation of the fusion mass revealed new bone on and adjacent to the transverse processes with the synthetic biomaterial group that extended laterally, supporting the osteoconductive nature of the material. Histological evidence of endochondral bone growth in the intertransverse space was observed for the autograft plus synthetic biomaterial group. Bone remodeling, new marrow spaces, and peripheral cortices were observed for each study group at 3 months that matured by 6 months. These findings support the use of a radiolucent biosynthetic material comprising poly(lactide-co-glycolide) with integrated hyaluronic acid as an autograft extender for lumbar intertransverse fusion. PMID:20712417

  17. Preparation of calibration materials for microanalysis of Ti minerals by direct fusion of synthetic and natural materials: experience with LA-ICP-MS analysis of some important minor and trace elements in ilmenite and rutile.

    PubMed

    Odegård, M; Mansfeld, J; Dundas, S H

    2001-08-01

    Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.

  18. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular for materials selection which will have a large impact on waste disposal and recycling and in the real limits of radiation releases if indexed to the real impact on individuals and the environment given the differences in the types of radiation emitted by tritium when compared with the fission products. Round table sessions resulted in some common recommendations. The discussions also created the awareness of the need for a larger involvement of the IAEA in support of fusion safety standards development.

  19. Fusion materials semiannual progress report for the period ending December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less

  20. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 4.Technology and Material Research in Fusion Power Plant Development

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi

    Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.

  1. Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering.

    PubMed

    Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying

    2013-10-01

    Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.

  2. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  3. Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa

    2017-12-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.

  4. Progress in Mirror-Based Fusion Neutron Source Development.

    PubMed

    Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V

    2015-12-04

    The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

  5. International strategy for fusion materials development

    NASA Astrophysics Data System (ADS)

    Ehrlich, Karl; Bloom, E. E.; Kondo, T.

    2000-12-01

    In this paper, the results of an IEA-Workshop on Strategy and Planning of Fusion Materials Research and Development (R&D), held in October 1998 in Risø Denmark are summarised and further developed. Essential performance targets for materials to be used in first wall/breeding blanket components have been defined for the major materials groups under discussion: ferritic-martensitic steels, vanadium alloys and ceramic composites of the SiC/SiC-type. R&D strategies are proposed for their further development and qualification as reactor-relevant materials. The important role of existing irradiation facilities (mainly fission reactors) for materials testing within the next decade is described, and the limits for the transfer of results from such simulation experiments to fusion-relevant conditions are addressed. The importance of a fusion-relevant high-intensity neutron source for the development of structural as well as breeding and special purpose materials is elaborated and the reasons for the selection of an accelerator-driven D-Li-neutron source - the International Fusion Materials Irradiation Facility (IFMIF) - as an appropriate test bed are explained. Finally the necessity to execute the materials programme for fusion in close international collaboration, presently promoted by the International Energy Agency, IEA is emphasised.

  6. Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures - 6.

    DTIC Science & Technology

    1983-05-01

    structures for the superconducting magnets of magnetic fusion energy power plants and prototypes. The program was conceived and developed jointly by the...staffs of the National Bureau of Standards and the Office of Fusion Energy of the Department of Energy; it is managed by NBS and sponsored by DoE

  7. An Investigation for Ground State Features of Some Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Aytekin, H.; Tel, E.; Baldik, R.; Aydin, A.

    2011-02-01

    Environmental concerns associated with fossil fuels are creating increased interest in alternative non-fossil energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. When considered in all energy systems, the requirements for performance of structural materials in a fusion reactor first wall, blanket or diverter, are arguably more demanding or difficult than for other energy system. The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. In this paper, ground state properties for some structural fusion materials as 27Al, 51V, 52Cr, 55Mn, and 56Fe are investigated using Skyrme-Hartree-Fock method. The obtained results have been discussed and compared with the available experimental data.

  8. Activation Inventories after Exposure to DD/DT Neutrons in Safety Analysis of Nuclear Fusion Installations.

    PubMed

    Stankunas, Gediminas; Cufar, Aljaz; Tidikas, Andrius; Batistoni, Paola

    2017-11-23

    Irradiations with 14 MeV fusion neutrons are planned at Joint European Torus (JET) in DT operations with the objective to validate the calculation of the activation of structural materials in functional materials expected in ITER and fusion plants. This study describes the activation and dose rate calculations performed for materials irradiated throughout the DT plasma operation during which the samples of real fusion materials are exposed to 14 MeV neutrons inside the JET vacuum vessel. Preparatory activities are in progress during the current DD operations with dosimetry foils to measure the local neutron fluence and spectrum at the sample irradiation position. The materials included those used in the manufacturing of the main in-vessel components, such as ITER-grade W, Be, CuCrZr, 316 L(N) and the functional materials used in diagnostics and heating systems. The neutron-induced activities and dose rates at shutdown were calculated by the FISPACT code, using the neutron fluxes and spectra that were provided by the preceding MCNP neutron transport calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  10. Development of advanced high heat flux and plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.

  11. Synchronized fusion development considering physics, materials and heat transfer

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.

    2017-12-01

    Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q  =  10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.

  12. Double differential light charged particle emission cross sections for some structural fusion materials

    NASA Astrophysics Data System (ADS)

    Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup

    2017-09-01

    In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.

  13. [Fusion implants of carbon fiber reinforced plastic].

    PubMed

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  14. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses.

    PubMed

    McGilvray, Kirk C; Waldorff, Erik I; Easley, Jeremiah; Seim, Howard B; Zhang, Nianli; Linovitz, Raymond J; Ryaby, James T; Puttlitz, Christian M

    2017-12-01

    The most commonly used materials used for interbody cages are titanium metal and polymer polyetheretherketone (PEEK). Both of these materials have demonstrated good biocompatibility. A major disadvantage associated with solid titanium cages is their radiopacity, limiting the postoperative monitoring of spinal fusion via standard imaging modalities. However, PEEK is radiolucent, allowing for a temporal assessment of the fusion mass by clinicians. On the other hand, PEEK is hydrophobic, which can limit bony ingrowth. Although both PEEK and titanium have demonstrated clinical success in obtaining a solid spinal fusion, innovations are being developed to improve fusion rates and to create stronger constructs using hybrid additive manufacturing approaches by incorporating both materials into a single interbody device. The purpose of this study was to examine the interbody fusion characteristic of a PEEK Titanium Composite (PTC) cage for use in lumbar fusion. Thirty-four mature female sheep underwent two-level (L 2 -L 3 and L 4 -L 5 ) interbody fusion using either a PEEK or a PTC cage (one of each per animal). Animals were sacrificed at 0, 8, 12, and 18 weeks post surgery. Post sacrifice, each surgically treated functional spinal unit underwent non-destructive kinematic testing, microcomputed tomography scanning, and histomorphometric analyses. Relative to the standard PEEK cages, the PTC constructs demonstrated significant reductions in ranges of motion and a significant increase in stiffness. These biomechanical findings were reinforced by the presence of significantly more bone at the fusion site as well as ingrowth into the porous end plates. Overall, the results indicate that PTC interbody devices could potentially lead to a more robust intervertebral fusion relative to a standard PEEK device in a clinical setting. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. Petti; Brad J. Merrill; Phillip Sharpe

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In thismore » paper, recent accomplishments are reviewed and future directions outlined.« less

  16. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    DOE PAGES

    Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...

    2014-10-01

    An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less

  17. An Overview of INEL Fusion Safety R&D Facilities

    NASA Astrophysics Data System (ADS)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  18. Calculation of Excitation Function of Some Structural Fusion Material for (n, p) Reactions up to 25 MeV

    NASA Astrophysics Data System (ADS)

    Reshid, Tarik S.

    2013-04-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. In this study, (n, p) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn and 56Fe have been investigated. The new calculations on the excitation functions of 27 Al(n, p) 27 Mg, 51 V(n, p) 51 Ti, 52 Cr(n, p) 52 V, 55 Mn(n, p) 55 Cr and 56 Fe(n, p) 56 Mn reactions have been carried out up to 30 MeV incident neutron energy. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with available experimental data in the literature and with ENDF/B-VII, T = 300 K; JENDL-3.3, T = 300 K and JEFF-3.1, T = 300 K evaluated libraries.

  19. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z. X.; Huang, C. J.; Li, L. F.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical propertiesmore » of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.« less

  20. EDITORIAL: Plasma Surface Interactions for Fusion

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005). We are indebted to Lynda Saddiq and Fay Ownby, secretaries in the Physics Division of ORNL, whose special efforts, devotion, and expertise made possible both the Workshop and these Proceedings. J T Hogan, P S Krstic and F W Meyer Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372, USA

  1. ACDF Graft Selection by Surgeons: Survey of AOSpine Members.

    PubMed

    Yoon, S Tim; Konopka, Jeffrey A; Wang, Jeffrey C; Youssef, Jim A; Meisel, Hans Joerg; Brodke, Darrel S; Park, Jong-Beom

    2017-08-01

    Cross-sectional survey study. To determine what are the most commonly used graft materials in anterior cervical discectomy and fusion and whether the choice of graft is affected by surgeon's training, years in practice, geographic location, practice setting, or surgeon's perceived difficulty in achieving fusion. A 23-question survey was sent out to 5334 surgeons using the Global AO Spine database. Response data was then stratified into surgeon training, years of practice, practice type, and global region. Overall, surgeons believe that graft selection affects fusion rates (89.3% of surgeons) and affects time to fusion (86.0% of surgeons). The use of a cage is currently the most common structural graft component used worldwide at 64.1%. Of surgeons that use cages, the PEEK Cage makes up 84%. North American surgeons differ from this global trend and use composite allograft more commonly. The choice to add a nonstructural graft component was reported at 74%. This result was similar for performing multilevel fusions at 72.8%. The selection of nonstructural graft material depends on whether the type of surgery is considered simple or complex. Most surgeons are not satisfied with available literature comparing effectiveness of grafts but believed that there was sufficient evidence to support the use of their chosen graft. Almost all surgeons believe that fusion is important to anterior cervical discectomy and fusion surgery outcomes and that most surgeons believe graft choice affects fusion. However, this survey indicates that there is great variability in the type of graft material used by spine surgeons across the world.

  2. Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indah Rosidah, M., E-mail: indah.maymunah@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id; Yazid, Putranto Ilham

    The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With themore » tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature and high pressure condition for more than ten years.« less

  3. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE PAGES

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  4. System and method for producing metallic iron nodules

    DOEpatents

    Bleifuss, Rodney L [Grand Rapids, MN; Englund, David J [Bovey, MN; Iwasaki, Iwao [Grand Rapids, MN; Lindgren, Andrew J [Grand Rapids, MN; Kiesel, Richard F [Hibbing, MN

    2011-09-20

    A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

  5. Advanced low-activation materials. Fibre-reinforced ceramic composites

    NASA Astrophysics Data System (ADS)

    Fenici, P.; Scholz, H. W.

    1994-09-01

    A serious safety and environmental concern for thermonuclear fusion reactor development regards the induced radioactivity of the first wall and structural components. The use of low-activation materials (LAM) in a demonstration reactor would reduce considerably its potential risk and facilitate its maintenance. Moreover, decommissioning and waste management including disposal or even recycling of structural materials would be simplified. Ceramic fibre-reinforced SiC materials offer highly appreciable low activation characteristics in combination with good thermomechanical properties. This class of materials is now under experimental investigation for structural application in future fusion reactors. An overview on the recent results is given, covering coolant leak rates, thermophysical properties, compatibility with tritium breeder materials, irradiation effects, and LAM-consistent purity. SiC/SiC materials present characteristics likely to be optimised in order to meet the fusion application challenge. The scope is to put into practice the enormous potential of inherent safety with fusion energy.

  6. Biomechanical Evaluation of a Novel Apatite-Wollastonite Ceramic Cage Design for Lumbar Interbody Fusion: A Finite Element Model Study

    PubMed Central

    Şenköylü, Alpaslan; Aktaş, Erdem; Sarıkaya, Baran; Sipahioğlu, Serkan; Gürbüz, Rıza; Timuçin, Muharrem

    2018-01-01

    Objectives Cage design and material properties play a crucial role in the long-term results, since interbody fusions using intervertebral cages have become one of the basic procedures in spinal surgery. Our aim is to design a novel Apatite-Wollastonite interbody fusion cage and evaluate its biomechanical behavior in silico in a segmental spinal model. Materials and Methods Mechanical properties for the Apatite-Wollastonite bioceramic cages were obtained by fitting finite element results to the experimental compression behavior of a cage prototype. The prototype was made from hydroxyapatite, pseudowollastonite, and frit by sintering. The elastic modulus of the material was found to be 32 GPa. Three intact lumbar vertebral segments were modelled with the ANSYS 12.0.1 software and this model was modified to simulate a Posterior Lumbar Interbody Fusion. Four cage designs in different geometries were analyzed in silico under axial loading, flexion, extension, and lateral bending. Results The K2 design had the best overall biomechanical performance for the loads considered. Maximum cage stress recorded was 36.7 MPa in compression after a flexion load, which was within the biomechanical limits of the cage. Conclusion Biomechanical analyses suggest that K2 bioceramic cage is an optimal design and reveals essential material properties for a stable interbody fusion. PMID:29581974

  7. The challenge of developing structural materials for fusion power systems

    NASA Astrophysics Data System (ADS)

    Bloom, Everett E.

    1998-10-01

    Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts).

  8. SEAL Studies of Variant Blanket Concepts and Materials

    NASA Astrophysics Data System (ADS)

    Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.

    1997-09-01

    Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.

  9. The emissivities of liquid metals at their fusion temperatures.

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave , J. L.

    1972-01-01

    The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined in this laboratory. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperature. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point.

  10. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  11. Fusion materials semiannual progress report for the period ending June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Fusion power: a challenge for materials science.

    PubMed

    Duffy, D M

    2010-07-28

    The selection and design of materials that will withstand the extreme conditions of a fusion power plant has been described as one of the greatest materials science challenges in history. The high particle flux, high thermal load, thermal mechanical stress and the production of transmutation elements combine to produce a uniquely hostile environment. In this paper, the materials favoured for the diverse roles in a fusion power plant are discussed, along with the experimental and modelling techniques that are used to advance the understanding of radiation damage in materials. Areas where further research is necessary are highlighted.

  13. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately.« less

  14. Modelling structural and plasma facing materials for fusion power plants: Recent advances and outstanding issues in the EURATOM fusion materials programme

    NASA Astrophysics Data System (ADS)

    Boutard, Jean-Louis; Dudarev, Sergei; Rieth, Michael

    2011-10-01

    EFDA Fusion Materials Topical Group was established at the end of 2007 to coordinate the EU effort on the development of structural and protection materials able to withstand the very demanding operating conditions of a future DEMO power plant. Focusing on a selection of well identified materials issues, including the behaviour of Reduced Activation Ferritic-Martensitic steels, and W-alloys under the foreseen operation conditions in a future DEMO, this paper describes recent advances in physical modelling and experimental validation, contributing to the definition of chemical composition and microstructure of materials with improved in-service stability at high temperature, high neutron flux and intense ion bombardment.

  15. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    NASA Astrophysics Data System (ADS)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.

  16. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  17. Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions

    DOE PAGES

    Zylstra, Alex B.; Herrmann, Hans W.; Kim, Yong Ho; ...

    2017-05-23

    Measuring the thermonuclear burn history is an important way to diagnose inertial fusion implosions. Here, using the gas Cherenkov detectors at the OMEGA laser facility, we measure the HT fusion burn in a H 2+T 2 gas-fueled implosion for the first time. Then, using multiple detectors with varied Cherenkov thresholds, we demonstrate a technique for simultaneously measuring both the HT and DT burn histories from an implosion where the total reaction yields are comparable. This new technique will be used to study material mixing and kinetic phenomena in implosions.

  18. Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, Alex B.; Herrmann, Hans W.; Kim, Yong Ho

    Measuring the thermonuclear burn history is an important way to diagnose inertial fusion implosions. Here, using the gas Cherenkov detectors at the OMEGA laser facility, we measure the HT fusion burn in a H 2+T 2 gas-fueled implosion for the first time. Then, using multiple detectors with varied Cherenkov thresholds, we demonstrate a technique for simultaneously measuring both the HT and DT burn histories from an implosion where the total reaction yields are comparable. This new technique will be used to study material mixing and kinetic phenomena in implosions.

  19. Materials handbook for fusion energy systems

    NASA Astrophysics Data System (ADS)

    Davis, J. W.; Marchbanks, M. F.

    A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.

  20. CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair.

    PubMed

    Sailer, A M; de Haan, M W; Peppelenbosch, A G; Jacobs, M J; Wildberger, J E; Schurink, G W H

    2014-04-01

    To evaluate the effect of intraoperative guidance by means of live fluoroscopy image fusion with computed tomography angiography (CTA) on iodinated contrast material volume, procedure time, and fluoroscopy time in endovascular thoraco-abdominal aortic repair. CTA with fluoroscopy image fusion road-mapping was prospectively evaluated in patients with complex aortic aneurysms who underwent fenestrated and/or branched endovascular repair (FEVAR/BEVAR). Total iodinated contrast material volume, overall procedure time, and fluoroscopy time were compared between the fusion group (n = 31) and case controls (n = 31). Reasons for potential fusion image inaccuracy were analyzed. Fusion imaging was feasible in all patients. Fusion image road-mapping was used for navigation and positioning of the devices and catheter guidance during access to target vessels. Iodinated contrast material volume and procedure time were significantly lower in the fusion group than in case controls (159 mL [95% CI 132-186 mL] vs. 199 mL [95% CI 170-229 mL], p = .037 and 5.2 hours [95% CI 4.5-5.9 hours] vs. 6.3 hours (95% CI 5.4-7.2 hours), p = .022). No significant differences in fluoroscopy time were observed (p = .38). Respiration-related vessel displacement, vessel elongation, and displacement by stiff devices as well as patient movement were identified as reasons for fusion image inaccuracy. Image fusion guidance provides added value in complex endovascular interventions. The technology significantly reduces iodinated contrast material dose and procedure time. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  1. European DEMO design strategy and consequences for materials

    NASA Astrophysics Data System (ADS)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  2. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, Frederick W; Katoh, Yutai; Melton, Stephanie G.

    2016-12-01

    This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.

  3. Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets

    NASA Astrophysics Data System (ADS)

    Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.

    2017-12-01

    The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ-ray irradiation is not obvious at 6.1 K.

  4. Myogenin, AP2β, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the soft tissue sarcoma committee of the children's oncology group.

    PubMed

    Rudzinski, Erin R; Anderson, James R; Lyden, Elizabeth R; Bridge, Julia A; Barr, Frederic G; Gastier-Foster, Julie M; Bachmeyer, Karen; Skapek, Stephen X; Hawkins, Douglas S; Teot, Lisa A; Parham, David M

    2014-05-01

    Pediatric rhabdomyosarcoma (RMS) is traditionally classified on the basis of the histologic appearance into alveolar (ARMS) and embryonal (ERMS) subtypes. The majority of ARMS contain a PAX3-FOXO1 or PAX7-FOXO1 gene fusion, but about 20% do not. Intergroup Rhabdomyosarcoma Study stage-matched and group-matched ARMS typically behaves more aggressively than ERMS, but recent studies have shown that it is, in fact, the fusion status that drives the outcome for RMS. Gene expression microarray data indicate that several genes discriminate between fusion-positive and fusion-negative RMS with high specificity. Using tissue microarrays containing a series of both ARMS and ERMS, we identified a panel of 4 immunohistochemical markers-myogenin, AP2β, NOS-1, and HMGA2-which can be used as surrogate markers of fusion status in RMS. These antibodies provide an alternative to molecular methods for identification of fusion-positive RMS, particularly in cases in which there is scant or poor-quality material. In addition, these antibodies may be useful in fusion-negative ARMS as an indicator that a variant gene fusion may be present.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of currentmore » scientific excellence and recommendations for future goals and balance within the Program was requested.« less

  6. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine.

    PubMed

    Pugely, Andrew J; Petersen, Emily B; DeVries-Watson, Nicole; Fredericks, Douglas C

    2017-01-01

    Spinal fusion surgery is an effective but costly treatment for select spinal pathology. Historically iliac crest bone graft (ICBG) has remained the gold standard for achieving successful arthrodesis. Given well-established morbidity autograft harvest, multiple bone graft replacements, void fillers, and extenders have been developed. The objective of this study was to evaluate the in vivo efficacy and safety of two mineralized collagen bone void filler materials similar in composition. Both bone void fillers were composed of hydroxyapatite (HA), tricalcium phosphate (TCP) and bovine collagen. The first test article (Bi-Ostetic bioactive glass foam or "45S5") also contained 45S5 bioactive glass particles while the second test article (Formagraft or "FG") did not. 45S5 and FG were combined with bone marrow aspirate and iliac crest autograft and compared to ICBG in an established posterolateral spine fusion rabbit model. Sixty-nine mature New Zealand White rabbits were divided into 3 test cohorts: ICBG, 45S5, and FG. A Posterolateral fusion model previous validated was utilized to assess fusion efficacy. The test groups were evaluated for spine fusion rate, new bone formation, graft resorption and inflammatory response using radiographic, μCT, biomechanical and histological endpoints at 4, 8 and 12 weeks following implantation. There were 4 clinical complications unrelated to the graft materials and were evenly split between groups (ICBG graft harvest complications; hind limb mobility, chronic pain) and were euthanized. These omissions did not affect the overall outcome of the study. Radiographic scoring of the fusion sites indicated a normal healing response in all test groups, with no adverse reactions and similar progressions of new bone formation observed over time. All groups demonstrated significantly less range of motion in both flexion/extension and lateral bending compared to normal not-fused controls, which supports fusion results observed in the other endpoints. Fusion occurred earlier in the 45S5 group: ICBG 0%, FG 0%, and 45S5 20% at 4 weeks; ICBG 43%, FG 38%, and 45S5 50% at 8 weeks; and ICBG 50%, FG 56%, and 45S5 56% at 12 weeks. Histopathology analysis of the fusion masses, from each test article and time point, indicated an expected normal response for resorbable calcium phosphate (HA/TCP) and collagen graft material. Mild inflammation with macrophage and multinucleated giant cell response to the graft material was evident in all test groups. This study has confirmed the biocompatibility, safety, efficacy and bone healing characteristics of the HA-TCP collagen (with or without 45S5 bioactive glass) composites. The results show that the 3 test groups had equivalent long-term fusion performance and outcome at 12 weeks. However, the presence of 45S5 bioactive glass seemed to accelerate the fusion process as evidenced by the higher fusion rates at 4 and 8 weeks for the HA-TCP-collagen composite containing bioactive glass particles. The results also demonstrate that the HA-TCP-45S5 bioactive glass-collagen composite used as an extender closely mirrors the healing characteristics (i.e. amount and quality of bone) of the 100% autograft group.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less

  8. TBM/MTM for HTS-FNSF: An innovative testing strategy to qualify/validate fusion technologies for U.S. DEMO

    DOE PAGES

    El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; ...

    2016-08-11

    The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less

  9. The emissivities of liquid metals at their fusion temperatures

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave, J. L.

    1972-01-01

    A survey of the literature through 1969 shows an almost total lack of experimental emissivity data for metals in the liquid state. The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperatures. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point. Better emissivities may be recalculated as better melting point data become available.

  10. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  11. Quantitative multi-modal NDT data analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heideklang, René; Shokouhi, Parisa

    2014-02-18

    A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less

  12. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  13. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  14. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  15. Energy and Technology Review, October 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.C.; de Vore, L.; Gleason, K.

    1990-10-01

    This report discuss the following topics: History of Cold Fusion Experiments; LLNL Experiments on Cold Fusion; Roundtable Discussion on Cold Fusion; and Using MeV Ions To Characterize and Modify Materials.

  16. Materials for DEMO and reactor applications—boundary conditions and new concepts

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Antusch, S.; Aumann, M.; Biel, W.; Du, J.; Engels, J.; Heuer, S.; Houben, A.; Hoeschen, T.; Jasper, B.; Koch, F.; Linke, J.; Litnovsky, A.; Mao, Y.; Neu, R.; Pintsuk, G.; Riesch, J.; Rasinski, M.; Reiser, J.; Rieth, M.; Terra, A.; Unterberg, B.; Weber, Th; Wegener, T.; You, J.-H.; Linsmeier, Ch

    2016-02-01

    DEMO is the name for the first stage prototype fusion reactor considered to be the next step after ITER towards realizing fusion. For the realization of fusion energy especially, materials questions pose a significant challenge already today. Heat, particle and neutron loads are a significant problem to material lifetime when extrapolating to DEMO. For many of the issues faced, advanced materials solutions are under discussion or already under development. In particular, components such as the first wall and the divertor of the reactor can benefit from introducing new approaches such as composites or new alloys into the discussion. Cracking, oxidation as well as fuel management are driving issues when deciding for new materials. Here {{{W}}}{{f}}/{{W}} composites as well as strengthened CuCrZr components together with oxidation resilient tungsten alloys allow the step towards a fusion reactor. In addition, neutron induced effects such as transmutation, embrittlement and after-heat and activation are essential. Therefore, when designing a component an approach taking into account all aspects is required.

  17. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Hui; Li Qin; Shen Lifeng

    2010-01-15

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solutionmore » as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.« less

  18. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration.

    PubMed

    Rao, Prashanth J; Pelletier, Matthew H; Walsh, William R; Mobbs, Ralph J

    2014-05-01

    The clinical outcome of lumbar spinal fusion is correlated with achievement of bony fusion. Improving interbody implant bone on-growth and in-growth may enhance fusion, limiting pseudoarthrosis, stress shielding, subsidence and implant failure. Polyetheretherketone (PEEK) and titanium (Ti) are commonly selected for interbody spacer construction. Although these materials have desirable biocompatibility and mechanical properties, they require further modification to support osseointegration. Reports of extensive research on this topic are available in biomaterial-centric published reports; however, there are few clinical studies concerning surface modification of interbody spinal implants. The current article focuses on surface modifications aimed at fostering osseointegration from a clinician's point of view. Surface modification of Ti by creating rougher surfaces, modifying its surface topography (macro and nano), physical and chemical treatment and creating a porous material with high interconnectivity can improve its osseointegrative potential and bioactivity. Coating the surface with osteoconductive materials like hydroxyapatite (HA) can improve osseointegration. Because PEEK spacers are relatively inert, creating a composite by adding Ti or osteoconductive materials like HA can improve osseointegration. In addition, PEEK may be coated with Ti, effectively bio-activating the coating. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  19. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  20. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  1. Autograft versus Allograft for Cervical Spinal Fusion

    PubMed Central

    Brodke, Darrel S.; Youssef, Jim A.; Meisel, Hans-Jörg; Dettori, Joseph R.; Park, Jong-Beom; Yoon, S. Tim; Wang, Jeffrey C.

    2017-01-01

    Study Design Systematic review. Objective To compare the effectiveness and safety between iliac crest bone graft (ICBG), non-ICBG autologous bone, and allograft in cervical spine fusion. To avoid problems at the donor site, various allograft materials have been used as a substitute for autograft. However, there are still questions as to the comparative effectiveness and safety of cadaver allograft compared with autologous ICBG. Methods A systematic search of multiple major medical reference databases was conducted to identify studies evaluating spinal fusion in patients with cervical degenerative disk disease using ICBG compared with non-ICBG autograft or allograft or non-ICBG autograft compared with allograft in the cervical spine. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. Adverse events were evaluated for safety. Results The search identified 13 comparative studies that met our inclusion criteria: 2 prospective cohort studies and 11 retrospective cohort studies. Twelve cohort studies compared allograft with ICBG autograft during anterior cervical fusion and demonstrated with a low evidence level of support that there are no differences in fusion percentages, pain scores, or functional results. There was insufficient evidence comparing patients receiving allograft with non-ICBG autograft for fusion, pain, revision, and functional and safety outcomes. No publications directly comparing non-ICBG autograft with ICBG were found. Conclusion Although the available literature suggests ICBG and allograft may have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes following anterior cervical fusion, there are too many limitations in the available literature to draw any significant conclusions. No individual study provided greater than class III evidence, and when evaluating the overall body of literature, no conclusion had better than low evidence support. A prospective randomized trial with adequate sample size to compare fusion rates, efficacy measures, costs, and safety is warranted. PMID:28451511

  2. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing reduced the strength of transition joints and the reduction was maximum for specimen welded with Inconel 82.

  3. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review.

    PubMed

    Buser, Zorica; Brodke, Darrel S; Youssef, Jim A; Meisel, Hans-Joerg; Myhre, Sue Lynn; Hashimoto, Robin; Park, Jong-Beom; Tim Yoon, S; Wang, Jeffrey C

    2016-10-01

    The purpose of this review was to compare the efficacy and safety of synthetic bone graft substitutes versus autograft or allograft for the treatment of lumbar and cervical spinal degenerative diseases. Multiple major medical reference databases were searched for studies that evaluated spinal fusion using synthetic bone graft substitutes (either alone or with an autograft or allograft) compared with autograft and allograft. Randomized controlled trials (RCT) and cohort studies with more than 10 patients were included. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. The search yielded 214 citations with 27 studies that met the inclusion criteria. For the patients with lumbar spinal degenerative disease, data from 19 comparative studies were included: 3 RCTs, 12 prospective, and 4 retrospective studies. Hydroxyapatite (HA), HA+collagen, β-tricalcium phosphate (β-TCP), calcium sulfate, or polymethylmethacrylate (PMMA) were used. Overall, there were no differences between the treatment groups in terms of fusion, functional outcomes, or complications, except in 1 study that found higher rates of HA graft absorption. For the patients with cervical degenerative conditions, data from 8 comparative studies were included: 4 RCTs and 4 cohort studies (1 prospective and 3 retrospective studies). Synthetic grafts included HA, β-TCP/HA, PMMA, and biocompatible osteoconductive polymer (BOP). The PMMA and BOP grafts led to lower fusion rates, and PMMA, HA, and BOP had greater risks of graft fragmentation, settling, and instrumentation problems compared with iliac crest bone graft. The overall quality of evidence evaluating the potential use and superiority of the synthetic biological materials for lumbar and cervical fusion in this systematic review was low or insufficient, largely due to the high potential for bias and small sample sizes. Thus, definitive conclusions or recommendations regarding the use of these synthetic materials should be made cautiously and within the context of the limitations of the evidence.

  4. Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: Direct visualization of multinucleated giant cell formation

    PubMed Central

    Faust, James J.; Christenson, Wayne; Doudrick, Kyle; Ros, Robert

    2017-01-01

    Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMβ2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. PMID:28340410

  5. Fusion Sciences Education Outreach in the Middle Schools, an Unplanned Case Study

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.

    1997-11-01

    Before bringing a class to General Atomics (GA) for the DIII--D educational tour, the teacher is provided with pre-tour materials which include a videotape, curriculum notebook and fusion poster. These materials are used in the classroom to familiarize students with fusion concepts before the tour. This presentation will focus on the results of projects of 7th grade students of Chula Vista Junior High School (a magnet school for performing arts with a majority of Hispanic students). The assignment given by Physics Teacher Caryn Hoffman to her students prior to the tour was to focus on one or two of the DIII--D tour guides, ask questions relating to their careers in science and then prepare a presentation based on their interviews and their tour experience. The completed projects were very diverse -- calendars, comic strips, newspapers, plays, and board games were some of the media the students used. Tour guides selected by the students ranged from physicists, designers and computer support personnel. Project results reflected a surprisingly good understanding of fusion science concepts. Subsequent classroom interviews with the students demonstrated an overall increase in science interest and a specific interest in plasma and fusion research.

  6. Autograft versus Allograft for Cervical Spinal Fusion: A Systematic Review.

    PubMed

    Tuchman, Alexander; Brodke, Darrel S; Youssef, Jim A; Meisel, Hans-Jörg; Dettori, Joseph R; Park, Jong-Beom; Yoon, S Tim; Wang, Jeffrey C

    2017-02-01

    Systematic review. To compare the effectiveness and safety between iliac crest bone graft (ICBG), non-ICBG autologous bone, and allograft in cervical spine fusion. To avoid problems at the donor site, various allograft materials have been used as a substitute for autograft. However, there are still questions as to the comparative effectiveness and safety of cadaver allograft compared with autologous ICBG. A systematic search of multiple major medical reference databases was conducted to identify studies evaluating spinal fusion in patients with cervical degenerative disk disease using ICBG compared with non-ICBG autograft or allograft or non-ICBG autograft compared with allograft in the cervical spine. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. Adverse events were evaluated for safety. The search identified 13 comparative studies that met our inclusion criteria: 2 prospective cohort studies and 11 retrospective cohort studies. Twelve cohort studies compared allograft with ICBG autograft during anterior cervical fusion and demonstrated with a low evidence level of support that there are no differences in fusion percentages, pain scores, or functional results. There was insufficient evidence comparing patients receiving allograft with non-ICBG autograft for fusion, pain, revision, and functional and safety outcomes. No publications directly comparing non-ICBG autograft with ICBG were found. Although the available literature suggests ICBG and allograft may have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes following anterior cervical fusion, there are too many limitations in the available literature to draw any significant conclusions. No individual study provided greater than class III evidence, and when evaluating the overall body of literature, no conclusion had better than low evidence support. A prospective randomized trial with adequate sample size to compare fusion rates, efficacy measures, costs, and safety is warranted.

  7. Materials-related issues in the safety and licensing of nuclear fusion facilities

    NASA Astrophysics Data System (ADS)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  8. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Daum, Eric

    2000-12-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the 6Li(n,t) 4He channel as it occurs in a DEMO breeding blanket.

  9. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10 14 ions/(cm 2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  10. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  11. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  12. Properties of radiation stable insulation composites for fusion magnet

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng

    2017-09-01

    High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  14. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of 5–20 MW/m 2 and ion fluxes up to 10 24 m -2s -1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated. Neutronics calculations to determine the dose rates of the samples were carried out for a large number of potential plasma-facing materials.« less

  15. Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nyamekye, Patricia; Piili, Heidi; Leino, Maija; Salminen, Antti

    Manufacturing of work pieces from stainless steel with laser additive manufacturing, known also as laser sintering or 3D printing may increase energy and material efficiency. The use of powder bed fusion offers advantages to make parts for dynamic applications of light weight and near-net-shape products. Due to these advantages among others, PBF may also reduce emissions and operational cost in various applications. However, there are only few life cycle assessment studies examining this subject despite its prospect to business opportunity. The application of Life Cycle Inventory (LCI) in Powder Bed Fusion (PBF) provides a distinct evaluation of material and energy consumption. LCI offers a possibility to improve knowledge of process efficiency. This study investigates effect of process sustainability in terms of raw material, energy and time consumption with PBF and CNC machining. The results of the experimental study indicated lower energy efficiency in the production process with PBF. This study revealed that specific energy consumption in PBF decreased when several components are built simultaneously than if they would be built individually. This is due to fact that energy consumption per part is lower. On the contrary, amount of energy needed to machine on part in case of CNC machining is lower when parts are done separately.

  16. Method of constructing a microwave antenna

    NASA Technical Reports Server (NTRS)

    Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Carl, James (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  17. Method of Constructing a Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  18. Method for selective thermal ablation

    NASA Technical Reports Server (NTRS)

    Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Raffoul, George W. (Inventor); Carl, James (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  19. Method for Selective Thermal Ablation

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  20. Transcatheter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  1. Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF).

    PubMed

    Andersson, Patrik U; Lönn, Benny; Holmlid, Leif

    2011-01-01

    A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10(12) W cm(-2) is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.

  2. Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials

    NASA Astrophysics Data System (ADS)

    de Rooij, E. D.

    2010-02-01

    In a thermonuclear reactor fusion between hydrogen isotopes takes place, producing helium and energy. The so-called divertor is the part of the fusion reactor vessel where the plasma is neutralized in order to exhaust the helium. The surface plates of the divertor are subjected to high heat loads and high fluxes of energetic hydrogen and helium. In the next generation fusion device - the tokamak ITER - the expected conditions at the plates are particle fluxes exceeding 1e24 per second and square metre, particle energies ranging from 1 to 100 eV and an average heat load of 10 MW per square metre. Two materials have been identified as candidates for the ITER divertor plates: carbon and tungsten. Since there are currently no fusion devices that can create these harsh conditions, it is unknown how the materials will behave in terms of erosion and hydrogen retention. To gain more insight in the physical processes under these conditions molecular dynamics simulations have been conducted. Since diamond has been proposed as possible plasma facing material, we have studied erosion and hydrogen retention in diamond and amorphous hydrogenated carbon (a-C:H). As in experiments, diamond shows a lower erosion yield than a-C:H, however the hydrogen retention in diamond is much larger than in a-C:H and also hardly depending on the substrate temperature. This implies that simple heating of the surface is not sufficient to retrieve the hydrogen from diamond material, whereas a-C:H readily releases the retained hydrogen. So, in spite of the higher erosion yield carbon material other than diamond seems more suitable. Experiments suggest that the erosion yield of carbon material decreases with increasing flux. This was studied in our simulations. The results show no flux dependency, suggesting that the observed reduction is not a material property but is caused by external factors as, for example, redeposition of the erosion products. Our study of the redeposition showed that the sticking probability of small hydrocarbons is highest on material previously subjected to the highest hydrogen flux. This result suggests that redeposition is more effective under high than under low hydrogen fluxes, partly explaining the experimentally observed reduction in the carbon erosion yield. Lastly, we studied amorphous tungsten carbide. Amorphous material with three different carbon percentages (15, 50 and 95%) was subjected to deuterium bombardment and the resulting erosion and deuterium retention was analysed. The 95% carbon sample behaves like doped carbon, the carbon erosion yield is reduced and no tungsten is eroded. Segregation of the materials was observed, resulting in an accumulation of tungsten at the surface. The hydrogen retention was similar to a-C:H. The 15% carbon sample showed no significant erosion or retention. The most interesting was the 50% sample. Here deuterium bubbles formed that burst open after sufficiently long bombardment, thereby removing both carbon and tungsten from the surface. In the context of ITER our MD simulations suggest that tungsten is the better suited material since both the erosion and the hydrogen retention are significantly lower than for carbon.

  3. Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime

    2018-02-01

    Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.

  4. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  5. Introduction to the special issue on the technical status of materials for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Stork, D.; Zinkle, S. J.

    2017-09-01

    Materials determine in a fundamental way the performance and environmental attractiveness of a fusion reactor: through the size (power fluxes to the divertor, neutron fluxes to the first wall); economics (replacement lifetime of critical in-vessel components, thermodynamic efficiency through operating temperature etc); plasma performance (erosion by plasma fluxes to the divertor surfaces); robustness against off-normal accidents (safety); and the effects of post-operation radioactivity on waste disposal and maintenance. The major philosophies and methodologies used to formulate programmes for the development of fusion materials are outlined, as the basis for other articles in this special issue, which deal with the fundamental understanding of the issues regarding these materials and their technical status and prospects for development.

  6. Hydrogen isotopes transport parameters in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Serra, E.; Benamati, G.; Ogorodnikova, O. V.

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.

  7. Current status and recent research achievements in SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  8. A testbed for architecture and fidelity trade studies in the Bayesian decision-level fusion of ATR products

    NASA Astrophysics Data System (ADS)

    Erickson, Kyle J.; Ross, Timothy D.

    2007-04-01

    Decision-level fusion is an appealing extension to automatic/assisted target recognition (ATR) as it is a low-bandwidth technique bolstered by a strong theoretical foundation that requires no modification of the source algorithms. Despite the relative simplicity of decision-level fusion, there are many options for fusion application and fusion algorithm specifications. This paper describes a tool that allows trade studies and optimizations across these many options, by feeding an actual fusion algorithm via models of the system environment. Models and fusion algorithms can be specified and then exercised many times, with accumulated results used to compute performance metrics such as probability of correct identification. Performance differences between the best of the contributing sources and the fused result constitute examples of "gain." The tool, constructed as part of the Fusion for Identifying Targets Experiment (FITE) within the Air Force Research Laboratory (AFRL) Sensors Directorate ATR Thrust, finds its main use in examining the relationships among conditions affecting the target, prior information, fusion algorithm complexity, and fusion gain. ATR as an unsolved problem provides the main challenges to fusion in its high cost and relative scarcity of training data, its variability in application, the inability to produce truly random samples, and its sensitivity to context. This paper summarizes the mathematics underlying decision-level fusion in the ATR domain and describes a MATLAB-based architecture for exploring the trade space thus defined. Specific dimensions within this trade space are delineated, providing the raw material necessary to define experiments suitable for multi-look and multi-sensor ATR systems.

  9. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our knowledge is still limited, especially in relation to the behaviour of these metals in environments containing multiple species. There are many appealing issues related to material mixing and fuel retention that call for robust and comprehensive studies. In this sense, the aim of the workshop is not only to discuss hot topics, but also to identify the most important research areas and those that need urgent solutions. Another topic of foremost relevance to ITER is the development of plasma-facing components that are able to withstand extreme power fluxes, in particular, those during transient phases. Materials and production methods for high-heat-flux components have to be further developed and industrialized. A key requirement in this field is the development of non-destructive testing methods for the qualification of methods and quality assessment during production. Invited talks and contributed presentations therefore dealt with aspects of fundamental processes, experimental findings, advanced modelling and the technology of fusion reactor components. Several areas were selected as the major topics of PFMC-12: materials for the ITER-divertor (erosion, redeposition, fuel retention) carbon-based materials tungsten and tungsten coatings beryllium mixed materials (intentional and non-intentional) the ITER-Like Wall Project materials under high-heat-flux loads including transients (ELMs, disruptions) technology and testing of plasma-facing components neutron effects in plasma-facing materials. 26 invited lectures and oral contributions, and 131 posters were presented by participants from research laboratories and industrial companies. 210 researchers from 24 countries from all over the world participated in a lively and intense exchange of knowledge and ideas. The workshop was hosted by Forschungszentrum Jülich (FZJ), a centre where the integration of science and technology for fusion reactor materials has been a focus for decades. This is reflected by the operation of several devices vital for progress in fusion research. TEXTOR (Toroidal EXperiment for Technology Oriented Research) is a mission-oriented tokamak for the study of plasma-wall interactions and testing of materials in fusion environments. JUDITH-1 (JÜlich DIvertor Test facility in Hot-cell) and the recently started JUDITH-2 are the most powerful test beds for studies of material performance under steady-state or pulsed power loads. The results of testing in JUDITH establish the background for material qualification. The expertize of FZJ in fusion engineering is vital for the construction of the Wendelstein-7X stellarator in Greifswald and the diagnostics for the ITER plasma. Finally, there is a group of eminent theoreticians and modellers at work in FZJ. As a consequence, FZJ is the home of the supercomputer, High Performance Computing-For Fusion (HPC-FF). During the workshop, special guided laboratory tours were organized to get the participants acquainted with the experimental facilities at FZJ: TEXTOR, JUDITH and HPC-FF. The quality of the talks, posters and discussions, and the comfortable conference facilities were of great importance but activities outside fusion science also formed part of the workshop. A guided tour in the Old Town of Aachen was very much appreciated by all participants; a stroll in this beautiful place was not only a relaxing moment but also put participants in touch with a great deal of European history. Big and long-term projects always attract young, ambitious people. The recruitment of talented scientists is a conditio sine qua non for the future success and progress of fusion science and engineering. The enthusiasm of students is very important but not sufficient; it is the responsibility of older colleagues to get students acquainted with the major issues and challenges. For this reason, the workshop was preceded by a series of tutorials on plasma-wall interactions and properties, and testing of relevant materials. The lectures were met with a great response: not only did over thirty young colleagues register but also senior scientists registered for the course and were very active in discussions. The workshop was supported financially by Forschungszentrum Jülich and the ExtreMat Integrated Project, a programme for the development and study of new materials for extreme environments. We are very grateful to the staff of Forschungszentrum who helped with the organization. Our most cordial thanks and gratitude go to Yasmin Fattah, Angelika Hallmanns, Gabriele Knauf and Gerd Boeling for all their kindness and efficiency, which helped all of us to enjoy the meeting. We thank most sincerely our colleagues Gerald Pintsuk, Takeshi Hirai and Andrey Litnovsky for their most professional work in the construction and operation of the conference webpage, the preparation of the sessions and for all other elements that were vital for the smooth running of the meeting. We thank very much Marliese Felden and Ralf-Uwe Limbach who very kindly and professionally took care of the photographic documentation of the workshop. The proceedings of this workshop contains 67 peer-reviewed articles covering the contents of most of the invited presentations and a number of poster contributions which were pre-selected by the programme committee. The papers reflect the development and actual status of the field. We thank all participants for their contributions and the referees for their smooth and efficient peer-review. Thank you all for your hard work and co-operation. We are looking forward to seeing you at the next meeting; we invite you to come, though we are not yet able to say 'when' and 'where' we will meet next time. It is a special feature of this conference series that a new meeting is announced only when the community feels that there is substantial new material to be presented and discussed.

  10. Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: Direct visualization of multinucleated giant cell formation.

    PubMed

    Faust, James J; Christenson, Wayne; Doudrick, Kyle; Ros, Robert; Ugarova, Tatiana P

    2017-06-01

    Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, α M β 2 ) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  12. Evaluation of surface, microstructure and phase modifications on various tungsten grades induced by pulsed plasma loading

    NASA Astrophysics Data System (ADS)

    Vilémová, M.; Pala, Z.; Jäger, A.; Matějíček, J.; Chernyshova, M.; Kowalska-Strzęciwilk, E.; Tonarová, D.; Gribkov, V. A.

    2016-03-01

    Progress in the field of nuclear fusion requires the development of a new generation of tungsten materials that are expected to meet specific property, lifetime and safety requirements. Pursuing this goal, the new materials must be properly tested in a wide range of conditions including cases where material is brought to the molten stage, such as with large fusion plasma instabilities. In this study, two prospective candidates from the family of dispersion strengthened (DS) tungsten materials, i.e., W-1%Y2O3 and W-2.5%TiC, were subjected to extreme heat loading exerted by the deuterium plasma generator PF6. The study focuses on the interaction of the tungsten matrix with the dispersed particles during material melting. The materials underwent significant changes in microstructure and phase content. Among the most serious was the loss of TiC particles and void formation in W-2.5%TiC and phase change of polymorphic Y2O3 particles in W-1% Y2O3.

  13. Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Sinclair, G.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2018-02-01

    The strong thermal and mechanical properties of tungsten (W) are well suited for the harsh fusion environment. However, increasing interest in using tungsten as plasma-facing components (PFCs) has revealed several key issues. These potential roadblocks necessitate more investigation of W and other alternative W based materials exposed to realistic fusion conditions. In this work, W and tungsten-tantalum (W-Ta) alloys were exposed to single (He+) and dual (He+  +  D+) ion irradiations with simultaneous pulsed heat loading to elucidate PFCs response under more realistic conditions. Laser only exposer revealed significantly more damage in W-Ta samples as compared to pure W samples. This was due to the difference in the mechanical properties of the two different materials. Further erosion studies were conducted to evaluate the material degradation due to transient heat loading in both the presence and absence of He+ and/or D+ ions. We concluded that erosion of PFC materials was significantly enhanced due to the presence of ion irradiation. This is important as it demonstrates that there are key synergistic effects resulting from more realistic fusion loading conditions that need to be considered when evaluating the response of plasma facing materials.

  14. Target Fabrication Technology and New Functional Materials for Laser Fusion and Laser-Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu

    Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.

  15. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J.; Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  16. Waste management for different fusion reactor designs

    NASA Astrophysics Data System (ADS)

    Rocco, Paolo; Zucchetti, Massimo

    2000-12-01

    Safety and Environmental Assessment of Fusion Power (SEAFP) waste management studies performed up to 1998 concerned three power tokamak designs. In-vessel structural materials consist of V-alloys or low activation martensitic (LAM) steel; tritium-producing materials are Li 2O, Pb-17Li, Li 4SiO 4 with a Be-multiplier; coolants are helium or water. The strategy chosen reduces permanent radwaste by recycling the in-vessel materials and by clearance of the other structures. Limits of the contact dose rate and specific activity of the waste allowing such options are defined accordingly. SEAFP activities for 1999 enlarge the analysis to three additional reactors with in-vessel structures made with SiC/SiC composites. These materials cannot be recycled due to their form and, according to national regulations of E.C. countries, long-lived activation products hinder near-surface burial (NSB).

  17. Plasma-wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials

    NASA Astrophysics Data System (ADS)

    Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.

    2012-12-01

    Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

  18. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  19. Oxidation/volatilization rates in air for candidate fusion reactor blanket materials, PCA and HT-9

    NASA Astrophysics Data System (ADS)

    Piet, S. J.; Kraus, H. G.; Neilson, R. M.; Jones, J. L.

    1986-11-01

    Large uncertainties exist in the quantity of neutron-induced activation products that can be mobilized in potential fusion accidents. The accidental combination of high temperatures and oxidizing conditions might lead to mobilization of a significant amount of activation products from structural materials. Here, the volatilization of constituents of PCA and HT-9 resulting form oxidation in air was investigated. Tests were conducted in flowing air at temperatures from 600 to 1300°C for 1, 5, or 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy. Molybdenum and manganese were the radiologically significant primary constituents most volatilized, suggesting that molybdenum and manganese should be minimized in fusion steel compositions. Higher chromium content appears beneficial in reducing hazards from mobile activation products. Scanning electron microscopy and energy dispersive spectroscopy were used to study the oxide layer on samples.

  20. Chondroitin sulphate-mediated fusion of brain neural folds in rat embryos.

    PubMed

    Alonso, M I; Moro, J A; Martín, C; de la Mano, A; Carnicero, E; Martínez-Alvarez, C; Navarro, N; Cordero, J; Gato, A

    2009-01-01

    Previous studies have demonstrated that during neural fold fusion in different species, an apical extracellular material rich in glycoconjugates is involved. However, the composition and the biological role of this material remain undetermined. In this paper, we show that this extracellular matrix in rat increases notably prior to contact between the neural folds, suggesting the dynamic behaviour of the secretory process. Immunostaining has allowed us to demonstrate that this extracellular matrix contains chondroitin sulphate proteoglycan (CSPG), with a spatio-temporal distribution pattern, suggesting a direct relationship with the process of adhesion. The degree of CSPG involvement in cephalic neural fold fusion in rat embryos was determined by treatment with specific glycosidases.In vitro rat embryo culture and microinjection techniques were employed to carry out selective digestion, with chondroitinase AC, of the CSPG on the apical surface of the neural folds; this was done immediately prior to the bonding of the cephalic neural folds. In all the treated embryos, cephalic defects of neural fold fusion could be detected. These results show that CSPG plays an important role in the fusion of the cephalic neural folds in rat embryos, which implies that this proteoglycan could be involved in cellular recognition and adhesion. (c) 2008 S. Karger AG, Basel.

  1. Ultrafast-electron-diffraction studies of predamaged tungsten excited by femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Mo, M.; Chen, Z.; Li, R.; Wang, Y.; Shen, X.; Dunning, M.; Weathersby, S.; Makasyuk, I.; Coffee, R.; Zhen, Q.; Kim, J.; Reid, A.; Jobe, K.; Hast, C.; Tsui, Y.; Wang, X.; Glenzer, S.

    2016-10-01

    Tungsten is considered as the main candidate material for use in the divertor of magnetic confinement fusion reactors. However, radiation damage is expected to occur because of its direct exposure to the high flux of hot plasma and energetic neutrons in fusion environment. Hence, understanding the material behaviors of W under these adverse conditions is central to the design of magnetic fusion reactors. To do that, we have recently developed an MeV ultrafast electron diffraction probe to resolve the structural evolution of optically excited tungsten. To simulate the radiation damage effect, the tungsten samples were bombarded with 500 keV Cu ions. The pre-damaged and pristine W's were excited by 130fs, 400nm laser pulses, and the subsequent heated system was probed with 3.2MeV electrons. The pump probe measurement shows that the ion bombardment to the W leads to larger decay in Bragg peak intensities as compared to pristine W, which may be due to a phonon softening effect. The measurement also shows that pre-damaged W transitions into complete liquid phase for conditions where pristine W stays solid. Our new capability is able to test the theories of structural dynamics of W under conditions relevant to fusion reactor environment. The research was funded by DOE Fusion Energy Science under FWP #100182.

  2. Progress in magnet design activities for the material plasma exposure experiment

    DOE PAGES

    Duckworth, Robert; Lumsdaine, Arnold; Rapp, Juergen; ...

    2017-07-01

    One of the critical challenges for the development of next generation fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or DEMO, is the understanding of plasma material interactions (PMI). Making progress in PMI research will require integrated facilities that can provide the types of conditions that will be seen in the first wall and divertor regions of future fusion facilities. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX), is proposed. In order to generate high ion fluence to simulate fusion divertor conditions, a steady-state plasma will be generated andmore » confined with superconducting magnets. Finally, the on-axis fields will range from 1 to 2.5 T in order to meet the requirements of the various plasma source and heating systems. Details on the pre-conceptual design of the magnets and cryogenic system are presented.« less

  3. Effect of fluorides from various restorative materials on remineralization of adjacent tooth: an in vitro study.

    PubMed

    Baliga, M S; Bhat, S S

    2010-01-01

    The aim of the study was to evaluate the extent of surface zone remineralization and the effect of fluoride at the inter-proximal adjacent tooth surface, using restorative materials FusionAlloy, Ketac-Fil and Heliomolar. Ninety extracted molar teeth were used of which 45 were placed in artificial caries for 10 weeks. The remaining 45 teeth were filled with the respective restorative materials, mounted with the artificial carious teeth in proximal contact with plaster and placed in artificial saliva for a period of 28 days. Finally, sectioning of artificially carious teeth was done mesio-distally and observed under the optical microscope and scanning electron microscope. Comparison among the groups was done by one-way analysis of variance [ANOVA] and Fischer's F test. Intercomparison between the groups was done by using Dunnett's t-test. Results obtained from transmitted electron microscopic and scanning electron microscopic observations were almost similar with the Ketac-Fil and Heliomolar showing better results in surface zone remineralization compared to FusionAlloy. Also, Ketac-Fil is a good material in releasing fluoride to remineralize enamel when compared to Heliomolar and FusionAlloy. Thus, it can be used mainly in class II cavity restorations of primary and permanent dentitions due to the potential ability of fluoride containing glass ionomer cements and composite resins to remineralize incipient carious lesions on adjacent teeth.

  4. Report on the Installation and Preparedness of a Protochips Fusion in-situ Heating Holder for TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Philip D.

    2017-03-01

    This brief report documents the procurement and installation of a Protochips Fusion (formerly Aduro) high-temperature, high stability transmission electron microscopy (TEM) specimen holder that allows for the high spatial resolution characterization of material specimens at high temperature in situ of an electron microscope. This specimen holder was specifically procured for use with The FEI Talos F200X Scanning/Transmission Electron Microscope (STEM) in Oak Ridge National Laboratory’s (ORNL’s) Low Activation Materials Development and Analysis (LAMDA) Laboratory. The Protochips Fusion holder will enable high-resolution structural and chemical analysis of irradiated materials at high temperature, becoming a unique capability worldwide, and would encourage high-qualitymore » in situ experiments to be conducted on irradiated materials.« less

  5. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.

  6. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  7. Checkpoints for vesicular traffic?

    PubMed

    Fiset, A; Faure, R

    2001-01-01

    During interphase the transport of material between different intracellular organelles requires accurate regulation of fusiogenic domains. Recent studies on hepatic endosomes indicated that compartmentalized Cdk2-cyclin E complexes act by braking fusion events. These Cdk2 complexes integrate tyrosine phosphorylation and dephosphorylation inputs, resulting in the control of the number of rounds of fusion at discrete domains. This leads to changes in the intracellular location of internalized receptors and ultimately their biological response.

  8. Fusion materials high energy-neutron studies. A status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made inmore » a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.« less

  9. STATs and macrophage fusion.

    PubMed

    Miyamoto, Takeshi

    2013-07-01

    Macrophages play a pivotal role in host defense against multiple foreign materials such as bacteria, parasites and artificial devices. Some macrophage lineage cells, namely osteoclasts and foreign body giant cells (FBGCs), form multi-nuclear giant cells by the cell-cell fusion of mono-nuclear cells. Osteoclasts are bone-resorbing cells, and are formed in the presence of RANKL on the surface of bones, while FBGCs are formed in the presence of IL-4 or IL-13 on foreign materials such as artificial joints, catheters and parasites. Recently, fusiogenic mechanisms and the molecules required for the cell-cell fusion of these macrophage lineage cells were, at least in part, clarified. Dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP), both of which comprise seven transmembrane domains, are required for both osteoclast and FBGC cell-cell fusion. STAT6 was demonstrated to be required for the cell-cell fusion of FBGCs but not osteoclasts. In this review, advances in macrophage cell-cell fusion are discussed.

  10. Void migration in fusion materials

    NASA Astrophysics Data System (ADS)

    Cottrell, G. A.

    2002-04-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.

  11. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-01-01

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  12. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, D.L.; Greenwood, L.R.; Loomis, B.A.

    1988-05-20

    This paper discusses an apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  13. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-03-07

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  14. PMMA versus titanium cage after anterior cervical discectomy - a prospective randomized trial.

    PubMed

    Schröder, J; Grosse-Dresselhaus, F; Schul, C; Wassmann, H

    2007-02-01

    Nonautologous interbody fusion materials are utilised in increasing numbers after anterior cervical disc surgery to overcome the problem of donor site morbidity of autologous bone grafts. This study investigates the performance of two nonautologous materials, the bone cement Polymethylmethacrylate (PMMA) and titanium cages. This prospective randomised trial, with assessment of the results by an independent observer, evaluates whether a Polymethylmethacrylate (PMMA) spacer or a titanium cage provides a better fusion rate around the implant and a better clinical outcome. Between 2000 and 2002, 115 patients with monoradicular cervical nerve root compression syndrome caused by soft cervical disc herniation were eligible for this study. Myelopathy, excessive osteophyte formation, and adjacent level degeneration were exclusion criteria. A block-restricted randomisation was applied. The 2-year clinical outcome served as the primary endpoint of the study. Clinical outcome was assessed according to the Odom scale by an independent observer at the follow-up examination. Preoperative, postoperative, and follow-up radiographs were taken. The study was completed by 107 patients (53 with PMMA and 54 with titanium cage). No significant difference between the two groups could be established with respect to the clinical outcome. In each group, 26 patients scored excellent. Good results were found in 19 PMMA patients and 16 titanium cage patients; satisfactory results were found in 8 PMMA patients and 9 titanium cage patients; bad results were found in 3 titanium cage patients. In 47 titanium cage cases (87%), fusion occurred radiologically as bony bridging around the implant. The fusion rate was significantly lower (p=0.011) in the PMMA group, with 35 cases (66%) united at follow-up. The radiological result of the titanium cage is superior to that of PMMA with respect to the fusion rate. Although the titanium cage achieves a better fusion rate, there is no difference between titanium cages and PMMA with respect to the clinical outcome.

  15. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  16. Modified release matrix prepared by compaction of spheres containing waxy material.

    PubMed

    Bado, L; Ghaly, E S

    1995-09-01

    In this study, chlorpheniramine maleate spheres were prepared by the extruder/marumerizer. A new waxy material, Gelucire 50/02 at three levels (10%, 30% and 50%) was added and Avicel PH-101 was used as spheronizing material. The drug was incorporated into the waxy material by two methods. The first was the direct method, in which the drug (10%), wax and Avicel PH-101 were mixed together. The second was the fusion method, in which the drug was dispersed in the melted wax and the solidified mass was milled and mixed with Avicel PH-101. The data obtained indicated that simple addition of waxy material into chlorpheniramine maleate-Avicel PH-101 spheres interrupted matrix formation and increased drug release. Also in this study, a multiparticulate delivery system was prepared successfully by compaction of spheres into tablets. Tablets compacted from spheres prepared by fusion method gave less drug release than those compacted from spheres of the same composition but prepared with direct method. As the level of wax was increased in tablet formulation, drug release was decreased.

  17. Experimental study on beryllium-7 production via sequential reactions in lithium-containing compounds irradiated by 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Maekawa, F.; Verzilov, Y. M.; Smith, D. L.; Ikeda, Y.

    2000-12-01

    Except for 3H and 14C, no radioactive nuclide is produced by neutron-induced reactions with lithium in lithium-containing materials such as Li 2O and Li 2CO 3. However, when the lithium-containing materials are irradiated by 14 MeV neutrons, radioactive 7Be is produced by sequential charged particle reactions (SCPR). In this study, we measured effective 7Be production cross-sections in several lithium-containing samples at 14 MeV: the cross-sections are in the order of μb. Estimation of the effective cross-sections is attempted, and the estimated values agreed well with the experimental data. It was shown that the 7Be activity in a unit volume of lithium-containing materials in D-T fusion reactors can exceed total activity of the same unit volume of the SiC structural material in a certain cooling time. Consequently, a careful consideration of the 7Be production by SCPR is required to assess radioactive inventories in lithium-containing D-T fusion blanket materials.

  18. [Mechanical studies of lumbar interbody fusion implants].

    PubMed

    Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R

    2002-05-01

    In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.

  19. Recombinant spider silk genetically functionalized with affinity domains.

    PubMed

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  20. Clinical Application of Ceramics in Anterior Cervical Discectomy and Fusion: A Review and Update.

    PubMed

    Zadegan, Shayan Abdollah; Abedi, Aidin; Jazayeri, Seyed Behnam; Bonaki, Hirbod Nasiri; Vaccaro, Alexander R; Rahimi-Movaghar, Vafa

    2017-06-01

    Narrative review. Anterior cervical discectomy and fusion (ACDF) is a reliable procedure, commonly used for cervical degenerative disc disease. For interbody fusions, autograft was the gold standard for decades; however, limited availability and donor site morbidities have led to a constant search for new materials. Clinically, it has been shown that calcium phosphate ceramics, including hydroxyapatite (HA) and tricalcium phosphate (TCP), are effective as osteoconductive materials and bone grafts. In this review, we present the current findings regarding the use of ceramics in ACDF. A review of the relevant literature examining the clinical use of ceramics in anterior cervical discectomy and fusion procedures was conducted using PubMed, OVID and Cochrane. HA, coralline HA, sandwiched HA, TCP, and biphasic calcium phosphate ceramics were used in combination with osteoinductive materials such as bone marrow aspirate and various cages composed of poly-ether-ether-ketone (PEEK), fiber carbon, and titanium. Stand-alone ceramic spacers have been associated with fracture and cracks. Metallic cages such as titanium endure the risk of subsidence and migration. PEEK cages in combination with ceramics were shown to be a suitable substitute for autograft. None of the discussed options has demonstrated clear superiority over others, although direct comparisons are often difficult due to discrepancies in data collection and study methodologies. Future randomized clinical trials are warranted before definitive conclusions can be drawn.

  1. The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.

    PubMed

    Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy

    2016-01-01

    Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.

  2. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rule, K.; Scott, J.; Larson, S.

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methodsmore » for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.« less

  3. LIFE Materials: Thermomechanical Effects Volume 5 - Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, M; DeMange, P; Marian, J

    2009-05-07

    Improved fuel performance is a key issue in the current Laser Inertial-Confinement Fusion-Fission Energy (LIFE) engine design. LIFE is a fusion-fission engine composed of a {approx}40-tons fuel blanket surrounding a pulsed fusion neutron source. Fusion neutrons get multiplied and moderated in a Beryllium blanket before penetrating the subcritical fission blanket. The fuel in the blanket is composed of millions of fuel pebbles, and can in principle be burned to over 99% FIMA without refueling or reprocessing. This report contains the following chapters: Chapter A: LIFE Requirements for Materials -- LIFE Fuel; Chapter B: Summary of Existing Knowledge; Chapter C: Identificationmore » of Gaps in Knowledge & Vulnerabilities; and Chapter D: Strategy and Future Work.« less

  4. Fusion Power—A Chemical Engineering View of the Integrated Enterprise

    NASA Astrophysics Data System (ADS)

    Manganaro, James L.

    2003-03-01

    The purpose of this article was to achieve the beginning of an understanding of the integrated fusion enterprise from raw materials through power generation to decommissioning and waste disposal. The particular view point is that of a technically trained person who is only casually acquainted with the field. Emphasis is given to the chemical engineering aspects of controlled fusion power. It is concluded that there are indeed many areas in which the discipline of chemical engineering may contribute to the fusion effort. These areas include separation technology by physical and chemical means, heat and mass transfer in a packed bed blanket, tritium removal from molten coolants, distillation technology for isotope separation, and preparation of deuterium and lithium feed materials.

  5. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  6. ITER activities and fusion technology

    NASA Astrophysics Data System (ADS)

    Seki, M.

    2007-10-01

    At the 21st IAEA Fusion Energy Conference, 68 and 67 papers were presented in the categories of ITER activities and fusion technology, respectively. ITER performance prediction, results of technology R&D and the construction preparation provide good confidence in ITER realization. The superconducting tokamak EAST achieved the first plasma just before the conference. The construction of other new experimental machines has also shown steady progress. Future reactor studies stress the importance of down sizing and a steady-state approach. Reactor technology in the field of blanket including the ITER TBM programme and materials for the demonstration power plant showed sound progress in both R&D and design activities.

  7. Effects of Local Administration of Boric Acid on Posterolateral Spinal Fusion with Autogenous Bone Grafting in a Rodent Model.

    PubMed

    Kömürcü, Erkam; Özyalvaçlı, Gülzade; Kaymaz, Burak; Gölge, Umut Hatay; Göksel, Ferdi; Cevizci, Sibel; Adam, Gürhan; Ozden, Raif

    2015-09-01

    Spinal fusion is among the most frequently applied spinal surgical procedures. The goal of the present study was to evaluate whether the local administration of boric acid (BA) improves spinal fusion in an experimental spinal fusion model in rats. Currently, there is no published data that evaluates the possible positive effects if the local administration of BA on posterolateral spinal fusion. Thirty-two rats were randomly divided into four independent groups: no material was added at the fusion area for group 1; an autogenous morselized corticocancellous bone graft was used for group 2; an autogenous morselized corticocancellous bone graft with boric acid (8.7 mg/kg) for group 3; and only boric acid was placed into the fusion area for group 4. The L4-L6 spinal segments were collected at week 6, and the assessments included radiography, manual palpation, and histomorphometry. A statistically significant difference was determined between the groups with regard to the mean histopathological scores (p = 0.002), and a paired comparison was made with the Mann-Whitney U test to detect the group/groups from which the difference originated. It was determined that only the graft + BA practice increased the histopathological score significantly with regard to the control group (p = 0.002). Whereas, there was no statistically significant difference between the groups in terms of the manual assessment of fusion and radiographic analysis (respectively p = 0.328 and p = 0.196). This preliminary study suggests that BA may clearly be useful as a therapeutic agent in spinal fusion. However, further research is required to show the most effective dosage of BA on spinal fusion, and should indicate whether BA effects spinal fusion in the human body.

  8. The Effects of Ketorolac Injected via Patient Controlled Analgesia Postoperatively on Spinal Fusion

    PubMed Central

    Park, Si-Young; Moon, Seong-Hwan; Park, Moon-Soo; Oh, Kyung-Soo

    2005-01-01

    Lumbar spinal fusions have been performed for spinal stability, pain relief and improved function in spinal stenosis, scoliosis, spinal fractures, infectious conditions and other lumbar spinal problems. The success of lumbar spinal fusion depends on multifactors, such as types of bone graft materials, levels and numbers of fusion, spinal instrumentation, electrical stimulation, smoking and some drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs). From January 2000 to December 2001, 88 consecutive patients, who were diagnosed with spinal stenosis or spondylolisthesis, were retrospectively enrolled in this study. One surgeon performed all 88 posterolateral spinal fusions with instrumentation and autoiliac bone graft. The patients were divided into two groups. The first group (n=30) was infused with ketorolac and fentanyl intravenously via patient controlled analgesia (PCA) postoperatively and the second group (n=58) was infused only with fentanyl. The spinal fusion rates and clinical outcomes of the two groups were compared. The incidence of incomplete union or nonunion was much higher in the ketorolac group, and the relative risk was approximately 6 times higher than control group (odds ratio: 5.64). The clinical outcomes, which were checked at least 1 year after surgery, showed strong correlations with the spinal fusion status. The control group (93.1%) showed significantly better clinical results than the ketorolac group (77.6%). Smoking had no effect on the spinal fusion outcome in this study. Even though the use of ketorolac after spinal fusion can reduce the need for morphine, thereby decreasing morphine related complications, ketorolac used via PCA at the immediate postoperative state inhibits spinal fusion resulting in a poorer clinical outcome. Therefore, NSAIDs such as ketorolac, should be avoided after posterolateral spinal fusion. PMID:15861498

  9. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S&E potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behaviour of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state-of-the-art S&E computer codes and risk tools for safety assessment, and evaluating and improving fusion facility design in terms of accident safety, worker safety, and waste disposal. There are three papers considering safety issues of the test blanket modules (TBM) producing tritium to be installed in ITER. These modules represent different concepts of demonstration fusion power facilities (DEMO). L. Boccaccini et al (Germany) analyses the possibility of jeopardizing the ITER safety under specific accidents in the European helium-cooled pebble-bed TBM, e.g. pressurization of the vacuum vessel (VV), hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and VV causing air ingress. Safety analysis is also presented for Chinese TBM with a helium-cooled solid breeder to be tested in ITER by Z. Chen et al (China). Radiological inventories, afterheat, waste disposal ratings, electromagnetic characteristics, LOCA and tritium safety management are considered. An overview of a preliminary safety analysis performed for a US proposed TBM is presented by B. Merrill et al (USA). This DEMO relevant dual coolant liquid lead-lithium TBM has been explored both in the USA and EU. T. Pinna et al (Italy) summarize the six-year development of a failure rate database for fusion specific components on the basis of data coming from operating experience gained in various fusion laboratories. The activity began in 2001 with the study of the Joint European Torus vacuum and active gas handling systems. Two years later the neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  10. Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model?

    PubMed

    Walsh, William R; Pelletier, Matthew H; Bertollo, Nicky; Christou, Chris; Tan, Chris

    2016-11-01

    Polyetheretherketone (PEEK) has a wide range of clinical applications but does not directly bond to bone. Bulk incorporation of osteoconductive materials including hydroxyapatite (HA) into the PEEK matrix is a potential solution to address the formation of a fibrous tissue layer between PEEK and bone and has not been tested. Using in vivo ovine animal models, we asked: (1) Does PEEK-HA improve cortical and cancellous bone ongrowth compared with PEEK? (2) Does PEEK-HA improve bone ongrowth and fusion outcome in a more challenging functional ovine cervical fusion model? The in vivo responses of PEEK-HA Enhanced and PEEK-OPTIMA ® Natural were evaluated for bone ongrowth in the form of dowels implanted in the cancellous and cortical bone of adult sheep and examined at 4 and 12 weeks as well as interbody cervical fusion at 6, 12, and 26 weeks. The bone-implant interface was evaluated with radiographic and histologic endpoints for a qualitative assessment of direct bone contact of an intervening fibrous tissue later. Gamma-irradiated cortical allograft cages were evaluated as well. Incorporating HA into the PEEK matrix resulted in more direct bone apposition as opposed to the fibrous tissue interface with PEEK alone in the bone ongrowth as well as interbody cervical fusions. No adverse reactions were found at the implant-bone interface for either material. Radiography and histology revealed resorption and fracture of the allograft devices in vivo. Incorporating HA into PEEK provides a more favorable environment than PEEK alone for bone ongrowth. Cervical fusion was improved with PEEK-HA compared with PEEK alone as well as allograft bone interbody devices. Improving the bone-implant interface with a PEEK device by incorporating HA may improve interbody fusion results and requires further clinical studies.

  11. Targeted resequencing reveals ALK fusions in non-small cell lung carcinomas detected by FISH, immunohistochemistry, and real-time RT-PCR: a comparison of four methods.

    PubMed

    Tuononen, Katja; Sarhadi, Virinder Kaur; Wirtanen, Aino; Rönty, Mikko; Salmenkivi, Kaisa; Knuuttila, Aija; Remes, Satu; Telaranta-Keerie, Aino I; Bloor, Stuart; Ellonen, Pekka; Knuutila, Sakari

    2013-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements occur in a subgroup of non-small cell lung carcinomas (NSCLCs). The identification of these rearrangements is important for guiding treatment decisions. The aim of our study was to screen ALK gene fusions in NSCLCs and to compare the results detected by targeted resequencing with results detected by commonly used methods, including fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and real-time reverse transcription-PCR (RT-PCR). Furthermore, we aimed to ascertain the potential of targeted resequencing in detection of ALK-rearranged lung carcinomas. We assessed ALK fusion status for 95 formalin-fixed paraffin-embedded tumor tissue specimens from 87 patients with NSCLC by FISH and real-time RT-PCR, for 57 specimens from 56 patients by targeted resequencing, and for 14 specimens from 14 patients by IHC. All methods were performed successfully on formalin-fixed paraffin-embedded tumor tissue material. We detected ALK fusion in 5.7% (5 out of 87) of patients examined. The results obtained from resequencing correlated significantly with those from FISH, real-time RT-PCR, and IHC. Targeted resequencing proved to be a promising method for ALK gene fusion detection in NSCLC. Means to reduce the material and turnaround time required for analysis are, however, needed.

  12. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  13. GEM detector development for tokamak plasma radiation diagnostics: SXR poloidal tomography

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Malinowski, Karol; Ziółkowski, Adam; Kowalska-Strzeciwilk, Ewa; Czarski, Tomasz; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Kolasiński, Piotr; Krawczyk, Rafał D.

    2015-09-01

    An increased attention to tungsten material is related to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. The proposed work refers to the studies of W influence on the plasma performances by developing new detectors based on Gas Electron Multiplier GEM) technology for tomographic studies of tungsten transport in ITER-oriented tokamaks, e.g. WEST project. It presents current stage of design and developing of cylindrically bent SXR GEM detector construction for horizontal port implementation. Concept to overcome an influence of constraints on vertical port has been also presented. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing creation of sustainable nuclear fusion reactors a step closer.

  14. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    DOE PAGES

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; ...

    2017-06-09

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniquesmore » to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. In conclusion, material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.« less

  15. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniquesmore » to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. In conclusion, material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.« less

  16. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  17. Computation of Electron Impact Ionization Cross sections of Iron Hydrogen Clusters - Relevance in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Patel, Umang; Joshipura, K. N.

    2017-04-01

    Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.

  18. Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios

    NASA Astrophysics Data System (ADS)

    Garoz, D.; Páramo, A. R.; Rivera, A.; Perlado, J. M.; González-Arrabal, R.

    2016-12-01

    The behaviour of a tungsten first wall is studied under the irradiation conditions predicted for the different operational scenarios of the European laser fusion project HiPER, which is based on direct drive targets and an evacuated dry wall chamber. The scenarios correspond to different stages in the development of a nuclear fusion reactor, from proof of principle (bunch mode facility) to economic feasibility (pre-commercial power plant). This work constitutes a quantitative study to evaluate first wall performance under realistic irradiation conditions in the different scenarios. We calculated the radiation fluxes assuming the geometrical configurations reported so far for HiPER. Then, we calculated the irradiation-induced evolution of first wall temperature and the thermomechanical response of the material. The results indicate that the first wall will plastically deform up to a few microns underneath the surface. Continuous operation in a power plant leads to fatigue failure with crack generation and growth. Finally, crack propagation and the minimum tungsten thickness required to fulfil the first wall protection role is studied. The response of tungsten as a first wall material as well as its main limitations will be discussed for the HiPER scenarios.

  19. Will fusion be ready to meet the energy challenge for the 21st century?

    NASA Astrophysics Data System (ADS)

    Bréchet, Yves; Massard, Thierry

    2016-05-01

    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.

  20. Laser erosion diagnostics of plasma facing materials with displacement sensors and their application to safeguard monitors to protect nuclear fusion chambers

    NASA Astrophysics Data System (ADS)

    Kasuya, Koichi; Motokoshi, Shinji; Taniguchi, Seiji; Nakai, Mitsuo; Tokunaga, Kazutoshi; Mroz, Waldemar; Budner, Boguslaw; Korczyc, Barbara

    2015-02-01

    Tungsten and SiC are candidates for the structural materials of the nuclear fusion reactor walls, while CVD poly-crystal diamond is candidate for the window material under the hazardous fusion stresses. We measured the surface endurance strength of such materials with commercial displacement sensors and our recent evaluation method. The pulsed high thermal input was put into the material surfaces by UV lasers, and the surface erosions were diagnosed. With the increase of the total number of the laser shots per position, the crater depth increased gradually. The 3D and 2D pictures of the craters were gathered and compared under various experimental conditions. For example, the maximum crater depths were plotted as a function of shot accumulated numbers, from which we evaluated the threshold thermal input for the surface erosions to be induced. The simple comparison-result showed that tungsten was stronger roughly two times than SiC. Then we proposed how to monitor the surface conditions of combined samples with such diamonds coated with thin tungsten layers, when we use such samples as parts of divertor inner walls, fusion chamber first walls, and various diagnostic windows. We investigated how we might be able to measure the inner surface erosions with the same kinds of displacement sensors. We found out the measurable maximum thickness of such diamond which is useful to monitor the erosion. Additionally we showed a new scheme of fusion reactor systems with injectors for anisotropic pellets and heating lasers under the probable use of W and/or SiC.

  1. Radioactivity measurements of ITER materials using the TFTR D-T neutron field

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Abdou, M. A.; Barnes, C. W.; Kugel, H. W.

    1994-06-01

    The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials, for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR involve potential ITER materials including stainless steel 316, vanadium, titanium, chromium, silicon, iron, cobalt, nickel, molybdenum, aluminum, copper, zinc, zirconium, niobium, and tungsten. Small samples of these materials were irradiated close to the plasma and just outside the vacuum vessel wall of TFTR, locations of different neutron energy spectra. Saturation activities for both threshold and capture reactions were measured. Data from dosimetric reactions have been used to obtain preliminary neutron energy spectra. Spectra from the first wall were compared to calculations from ITER and to measurements from accelerator-based tests.

  2. Manufacturing Systems Demonstration: Bimetallic Friction STIR Joining of AA6061 and High Hardness Steel

    DTIC Science & Technology

    2013-05-31

    fusion welding and virtually eliminates the material porosity inherent with liquid alloy processes. Also because less heat is input to the material...Fe intermetallic present. Mechanical load testing determined that the bimetallic FSP joint was stronger than similar AA6061-to-AA6061 fusion- welded and...5 b) Weld Coupon Fixture ........................................................................................ 5 2. Friction Stir Tools

  3. PubMed Central

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M.; Fasching, Peter A.; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W.; Emons, Julius

    2017-01-01

    Aim The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Materials and Methods Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. Results The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. Conclusion In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound – the second important imaging modality in complementary breast diagnostics – without increasing examination time or requiring additional staff. PMID:28713173

  4. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  5. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  6. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  7. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  8. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  9. Plasma wall interaction, a key issue on the way to a steady state burning fusion device

    NASA Astrophysics Data System (ADS)

    Philipps, V.

    2006-04-01

    The International Tokamak Experimental Reactor (ITER), the first burning fusion plasma experiment based on the tokamak principle, is ready for construction. It is based on many years of fusion research resulting in a robust design in most of the areas. Present day fusion research concentrates on the remaining critical issues which are, to a large extent, connected with processes of plasma wall interaction. This is mainly due to extended duty cycle and the increase of the plasma stored energy in comparison with present-day machines. Critical topics are the lifetime of the plasma facing components (PFC) and the long-term tritium retention. These processes are controlled mainly by material erosion, both during steady state operation and transient power losses (disruptions and edge localized modes (ELMs)) and short- and long-range material migration and re-deposition. The extrapolation from present-day 'full carbon wall' devices suggests that the long-term tritium retention in a burning fusion device would be unacceptably high under these conditions allowing for only an unacceptable limited number of pulses in a D T mixture. As a consequence of this, research activities have been strengthened to understand in more detail the underlying processes of material erosion and re-deposition, to develop methods to remove retained tritium from the PFCs and remote areas of a fusion device and to explore these processes and the plasma performance in more detail with metallic PFC, such as beryllium (Be) and tungsten (W), which are foreseen for the ITER experiment. This paper outlines the main physical mechanisms leading to material erosion, migration and re-deposition and the associated fuel retention. It addresses the experimental database in these areas and describes the further research strategies that will be needed to tackle critical issues.

  10. Magnet Design Considerations for Fusion Nuclear Science Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Kessel, C.; El-Guebaly, L.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  11. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  12. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    PubMed

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  13. Inertial Fusion Power Plant Concept of Operations and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anklam, T.; Knutson, B.; Dunne, A. M.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less

  14. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  15. Minimally Invasive Unilateral vs. Bilateral Pedicle Screw Fixation and Lumbar Interbody Fusion in Treatment of Multi-Segment Lumbar Degenerative Disorders.

    PubMed

    Liu, Xiaoyang; Li, Guangrun; Wang, Jiefeng; Zhang, Heqing

    2015-11-25

    BACKGROUND The choice for instrumentation with minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in treatment of degenerative lumbar disorders (DLD) remains controversial. The goal of this study was to investigate clinical outcomes in consecutive patients with multi-segment DLD treated with unilateral pedicle screw (UPS) vs. bilateral pedicle screw (BPS) instrumented TLIF. MATERIAL AND METHODS Eighty-four consecutive patients who had multi-level MIS-TLIF were retrospectively reviewed. All data were collected to compare the clinical outcomes between the 2 groups. RESULTS Both groups showed similar clinical function scores in VAS and ODI. The two groups differed significantly in operative time (P<0.001), blood loss (P<0.001), and fusion rate (P=0.043), respectively. CONCLUSIONS This study demonstrated similar clinical outcomes between UPS fixation and BPS procedure after MIS-TLIF for multi-level DLD. Moreover, UPS technique was superior in operative time and blood loss, but represented lower fusion rate than the BPS construct did.

  16. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    PubMed

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  17. Fission-suppressed fusion breeder on the thorium cycle and nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moir, R. W.

    2012-06-19

    Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroymore » fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.« less

  18. System and method for producing metallic iron

    DOEpatents

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  19. Graphene's Viability for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Navarro, Marcos; Hall, Karla; Rojas, Richard; Santarius, John; Kulcinski, Gerald

    2015-11-01

    Graphene is a source of interest for multiple applications due to its unusual electronic and physical properties. As a coating material, it has reduced oxidation of the main substrate, though no effort has been reported of testing it under fusion conditions. A number of experimental studies have established that defect-free graphene is an excellent barrier material for gases. We explore its viability to maintain a significant pressure difference under ion irradiation. Deuterium is used as a projectile on graphene coated silicon over a range of 10-50 keV energies and various fluences. The vacancy yield (amount of damage) and natural resonance for graphene are found at around 1350 cm-1 and 1550 cm-1, respectively. Damage of each sample is quantified via Raman spectroscopy (RS) using the ratio of the intensities at these wavenumbers. Graphene is also tested here as a coating for some fusion components. Though tungsten is a very promising divertor and first wall candidate, after intense irradiation, it is prone to developing fuzz or grass structures, leading to a diminished lifetime. Graphene grown on tungsten is tested under reactor conditions with 30 keV He ions at several fluences, and the sputtering of both materials is studied via RS and Scanning Electron Microscopy. This work was supported by the Graduate Engineering Research Scholars and the TEAM-Science program at the University of Wisconsin-Madison.

  20. Clinicopathological Characteristics of Patients with Non-Small-Cell Lung Cancer Who Harbor EML4-ALK Fusion Gene: A Meta-Analysis

    PubMed Central

    Zhao, Fengzhi; Xu, Meng; Lei, Honcho; Zhou, Ziqi; Wang, Liang; Li, Ping; Zhao, Jianfu; Hu, Penghui

    2015-01-01

    Background A novel fusion gene of echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) has been recently identified in non-small-cell lung cancers (NSCLCs). Patients with the EML4-ALK fusion gene demonstrate unique clinicopathological and physiological characteristics. Here we present a meta-analysis of large-scale studies to evaluate the clinicopathological characteristics of NSCLC patients harboring the EML4-ALK fusion gene. Methods Both English and Chinese databases were systematically used to search the materials of the clinicopathological characteristics of patients with NSCLC harboring the EML4-ALK fusion gene. Pooled relative risk (RR) estimates and the 95% confidence intervals (95% CI) were calculated with the fixed or random effect model. Publication bias and chi-square test were also calculated. Results 27 retrospective studies were included in our meta-analysis. These studies included a total of 6950 patients. The incidence rate of EML4-ALK fusion in NSCLC patients was found to be 6.8% (472/6950). The correlation of the EML4-ALK fusion gene and clinicopathological characteristics of NSCLC patients demonstrated a significant difference in smoking status, histological types, stage, and ethnic characteristics. The positive rate of the EML4-ALK fusion gene expression in females were slightly higher than that in males, but not significantly (P = 0.52). In addition, the EML4-ALK fusion gene was mutually exclusive of the EGFR and KRAS mutation genes (P = 0.00). Conclusion Our pooled analysis revealed that the EML4-ALK fusion gene was observed predominantly in adenocarcinoma, non-smoking and NSCLC patients, especially those diagnosed in the advanced clinical stage of NSCLC. Additionally, the EML4-ALK fusion gene was exclusive of the EGFR and KRAS mutation genes. We surmise that IHC assay is a valuable tool for the prescreening of patients with ALK fusion gene in clinical practice, and FISH assay can be performed as a confirmation method. These insights might be helpful in guiding the appropriate molecular target therapy for NSCLC. PMID:25706305

  1. Clinicopathological characteristics of patients with non-small-cell lung cancer who harbor EML4-ALK fusion gene: a meta-analysis.

    PubMed

    Zhao, Fengzhi; Xu, Meng; Lei, Honcho; Zhou, Ziqi; Wang, Liang; Li, Ping; Zhao, Jianfu; Hu, Penghui

    2015-01-01

    A novel fusion gene of echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) has been recently identified in non-small-cell lung cancers (NSCLCs). Patients with the EML4-ALK fusion gene demonstrate unique clinicopathological and physiological characteristics. Here we present a meta-analysis of large-scale studies to evaluate the clinicopathological characteristics of NSCLC patients harboring the EML4-ALK fusion gene. Both English and Chinese databases were systematically used to search the materials of the clinicopathological characteristics of patients with NSCLC harboring the EML4-ALK fusion gene. Pooled relative risk (RR) estimates and the 95% confidence intervals (95% CI) were calculated with the fixed or random effect model. Publication bias and chi-square test were also calculated. 27 retrospective studies were included in our meta-analysis. These studies included a total of 6950 patients. The incidence rate of EML4-ALK fusion in NSCLC patients was found to be 6.8% (472/6950). The correlation of the EML4-ALK fusion gene and clinicopathological characteristics of NSCLC patients demonstrated a significant difference in smoking status, histological types, stage, and ethnic characteristics. The positive rate of the EML4-ALK fusion gene expression in females were slightly higher than that in males, but not significantly (P = 0.52). In addition, the EML4-ALK fusion gene was mutually exclusive of the EGFR and KRAS mutation genes (P = 0.00). Our pooled analysis revealed that the EML4-ALK fusion gene was observed predominantly in adenocarcinoma, non-smoking and NSCLC patients, especially those diagnosed in the advanced clinical stage of NSCLC. Additionally, the EML4-ALK fusion gene was exclusive of the EGFR and KRAS mutation genes. We surmise that IHC assay is a valuable tool for the prescreening of patients with ALK fusion gene in clinical practice, and FISH assay can be performed as a confirmation method. These insights might be helpful in guiding the appropriate molecular target therapy for NSCLC.

  2. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  3. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  4. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  5. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  6. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  7. Nuclear design of a very-low-activation fusion reactor

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.; Hopkins, G. R.

    1983-06-01

    The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.

  8. Current Trends of Blanket Research and Deveopment in Japan 4.Blanket Technology Development Using ITER for Demonstration and Commercial Fusion Power Plant

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo

    This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.

  9. SNARE-mediated membrane fusion in autophagy

    PubMed Central

    Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie

    2016-01-01

    Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. PMID:27422330

  10. Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging.

    PubMed

    Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P

    2004-11-01

    Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.

  11. Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion

    PubMed Central

    Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.

    2016-01-01

    ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus. PMID:27226364

  12. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  13. Plasma source development for fusion-relevant material testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  14. Interactive Plasma Physics Education Using Data from Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Calderon, Brisa; Davis, Bill; Zwicker, Andrew

    2010-11-01

    The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.

  15. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  16. Decision-Level Fusion of Spatially Scattered Multi-Modal Data for Nondestructive Inspection of Surface Defects

    PubMed Central

    Heideklang, René; Shokouhi, Parisa

    2016-01-01

    This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200

  17. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  18. Hybrid Biosynthetic Autograft Extender for Use in Posterior Lumbar Interbody Fusion: Safety and Clinical Effectiveness.

    PubMed

    Chedid, Mokbel K; Tundo, Kelly M; Block, Jon E; Muir, Jeffrey M

    2015-01-01

    Autologous iliac crest bone graft is the preferred option for spinal fusion, but the morbidity associated with bone harvest and the need for graft augmentation in more demanding cases necessitates combining local bone with bone substitutes. The purpose of this study was to document the clinical effectiveness and safety of a novel hybrid biosynthetic scaffold material consisting of poly(D,L-lactide-co-glycolide) (PLGA, 75:25) combined by lyophilization with unmodified high molecular weight hyaluronic acid (10-12% wt:wt) as an extender for a broad range of spinal fusion procedures. We retrospectively evaluated all patients undergoing single- and multi-level posterior lumbar interbody fusion at an academic medical center over a 3-year period. A total of 108 patients underwent 109 procedures (245 individual vertebral levels). Patient-related outcomes included pain measured on a Visual Analog Scale. Radiographic outcomes were assessed at 6 weeks, 3-6 months, and 1 year postoperatively. Radiographic fusion or progression of fusion was documented in 221 of 236 index levels (93.6%) at a mean (±SD) time to fusion of 10.2+4.1 months. Single and multi-level fusions were not associated with significantly different success rates. Mean pain scores (+SD) for all patients improved from 6.8+2.5 at baseline to 3.6+2.9 at approximately 12 months. Improvements in VAS were greatest in patients undergoing one- or two-level fusion, with patients undergoing multi-level fusion demonstrating lesser but still statistically significant improvements. Overall, stable fusion was observed in 64.8% of vertebral levels; partial fusion was demonstrated in 28.8% of vertebral levels. Only 15 of 236 levels (6.4%) were non-fused at final follow-up.

  19. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    DOE PAGES

    Orth, Charles D.

    2016-02-23

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields — not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulationsmore » and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.« less

  20. A comparison of commercially available demineralized bone matrices with and without human mesenchymal stem cells in a rodent spinal fusion model.

    PubMed

    Hayashi, Tetsuo; Lord, Elizabeth L; Suzuki, Akinobu; Takahashi, Shinji; Scott, Trevor P; Phan, Kevin; Tian, Haijun; Daubs, Michael D; Shiba, Keiichiro; Wang, Jeffrey C

    2016-07-01

    OBJECTIVE The efficacy of some demineralized bone matrix (DBM) substances has been demonstrated in the spinal fusion of rats; however, no previous comparative study has reported the efficacy of DBM with human mesenchymal stem cells (hMSCs). There is an added cost to the products with stem cells, which should be justified by improved osteogenic potential. The purpose of this study is to prospectively compare the fusion rates of 3 different commercially available DBM substances, both with and without hMSCs. METHODS Posterolateral fusion was performed in 32 mature athymic nude rats. Three groups of 8 rats were implanted with 1 of 3 DBMs: Trinity Evolution (DBM with stem cells), Grafton (DBM without stem cells), or DBX (DBM without stem cells). A fourth group with no implanted material was used as a control group. Radiographs were obtained at 2, 4, and 8 weeks. The rats were euthanized at 8 weeks. Overall fusion was determined by manual palpation and micro-CT. RESULTS The fusion rates at 8 weeks on the radiographs for Trinity Evolution, Grafton, and DBX were 8 of 8 rats, 3 of 8 rats, and 5 of 8 rats, respectively. A significant difference was found between Trinity Evolution and Grafton (p = 0.01). The overall fusion rates as determined by micro-CT and manual palpation for Trinity Evolution, Grafton, and DBX were 4 of 8 rats, 3 of 8 rats, and 3 of 8 rats, respectively. The Trinity Evolution substance had the highest overall fusion rate, however no significant difference was found between groups. CONCLUSIONS The efficacies of these DBM substances are demonstrated; however, the advantage of DBM with hMSCs could not be found in terms of posterolateral fusion. When evaluating spinal fusion using DBM substances, CT analysis is necessary in order to not overestimate fusion.

  1. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    NASA Astrophysics Data System (ADS)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  2. Analysis of Muon Induced Neutrons in Detecting High Z Nuclear Materials

    DTIC Science & Technology

    2015-03-01

    mass distributions, delayed fission probabilities, and prompt to delayed fission ratios [16]. 10 2.3 Muon Catalyzed Fusion Fusion occurs when two light ...proton number; A is the atomic mass; ⇢ is the material density; = v/c where v is the velocity of the particle and c is the speed of light ; is the...8217) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 81 % Combine all neutron events time stamps into one vector %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% timeindex of

  3. Technology Base Seminar Wargame 2 (TBSWG 2). Volume 1. Summary Report

    DTIC Science & Technology

    1990-11-16

    nuclear, biological and chemical (NBC) and ballistic protection without reducing soldier mobility . Training and rehearsal systems will allow the...7 KNOW WHERE THE ENEMY IS ALL THE TIME SENSOR FIDEUTY INFORMATION FUSION 3 RANGE OF COMMO 4 RANGE OF FIRES S PRECISION MUNITIONS 6 RAPID MOBILITY 7...and .nfo Precision Problems and TECNOLOGIES Fusion) Fires Mobility Advanced Materials/ Material Processing 0) Advanced Propulsion Advanced Signal

  4. rhBMP-2 (ACS and CRM formulations) overcomes pseudarthrosis in a New Zealand white rabbit posterolateral fusion model.

    PubMed

    Lawrence, James P; Waked, Walid; Gillon, Thomas J; White, Andrew P; Spock, Christopher R; Biswas, Debdut; Rosenberger, Patricia; Troiano, Nancy; Albert, Todd J; Grauer, Jonathan N

    2007-05-15

    The study design consisted of a New Zealand white rabbit model of pseudarthrosis repair. Study groups consisting of no graft, autograft, or recombinant human bone morphogenetic protein-2 (rhBMP-2) with absorbable collagen sponge (ACS) or compression resistant matrix (CRM) were evaluated. To evaluate the relative efficacy of bone graft materials (autograft, ACS, and CRM). rhBMP-2 has been shown to have a 100% fusion rate in a primary rabbit fusion model, even in the presence of nicotine, which is known to inhibit fusion. Seventy-two New Zealand white rabbits underwent posterolateral lumbar fusion with iliac crest autograft. To establish pseudarthroses, nicotine was administered to all animals. At 5 weeks, the spines were explored and all pseudarthroses were redecorticated and implanted with no graft, autograft, rhBMP-2/ACS, or rhBMP-2/CRM. At 10 weeks, fusions were assessed by manual palpation and histology. Eight rabbits (11%) were lost to complications. At 5 weeks, 66 (97%) had pseudarthroses. At 10 weeks, attempted pseudarthrosis repairs were fused in 1 of 16 of no graft rabbits (6%), 5 of 17 autograft rabbits (29%), and 31 of 31 rhBMP-2 rabbits (with ACS or CRM) (100%). Histologic analysis demonstrated more mature bone formation in the rhBMP-2 groups. The 2 rhBMP-2 formulations led to significantly higher fusion rates and histologic bone formation than no graft and autograft controls in this pseudarthrosis repair model.

  5. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

    2011-10-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  6. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  7. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  8. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less

  9. SNARE-mediated membrane fusion in autophagy.

    PubMed

    Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie

    2016-12-01

    Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Radiation effect of neutrons produced by D-D side reactions on a D-3He fusion reactor

    NASA Astrophysics Data System (ADS)

    Bahmani, J.

    2017-04-01

    One of the most important characteristics in D-3He fusion reactors is neutron production via D-D side reactions. The neutrons can activate structural material, degrading them and ultimately converting them into high-level radioactive waste, while it is really costly and difficult to remove them. The neutrons from a fusion reactor could also be used to make weapons-grade nuclear material, rendering such types of fusion reactors a serious proliferation hazard. A related problem is the presence of radioactive elements such as tritium in D-3He plasma, either as fuel for or as products of the nuclear reactions; substantial quantities of radioactive elements would not only pose a general health risk, but tritium in particular would also be another proliferation hazard. The problems of neutron radiation and radioactive element production are especially interconnected because both would result from the D-D side reaction. Therefore, the presentation approach for reducing neutrons via D-D nuclear side reactions in a D-3He fusion reactor is very important. For doing this research, energy losses and neutron power fraction in D-3He fusion reactors are investigated. Calculations show neutrons produced by the D-D nuclear side reaction could be reduced by changing to a more 3He-rich fuel mixture, but then the bremsstrahlung power loss fraction would increase in the D-3He fusion reactor.

  11. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. The efficacy of routine use of recombinant human bone morphogenetic protein-2 in occipitocervical and atlantoaxial fusions of the pediatric spine: a minimum of 12 months' follow-up with computed tomography.

    PubMed

    Sayama, Christina; Hadley, Caroline; Monaco, Gina N; Sen, Anish; Brayton, Alison; Briceño, Valentina; Tran, Brandon H; Ryan, Sheila L; Luerssen, Thomas G; Fulkerson, Daniel; Jea, Andrew

    2015-07-01

    OBJECT The purpose of this study focusing on fusion rate was to determine the efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) use in posterior instrumented fusions of the craniocervical junction in the pediatric population. The authors previously reported the short-term (mean follow-up 11 months) safety and efficacy of rhBMP-2 use in the pediatric age group. The present study reports on their long-term results (minimum of 12 months' follow-up) and focuses on efficacy. METHODS The authors performed a retrospective review of 83 consecutive pediatric patients who had undergone posterior occipitocervical or atlantoaxial spine fusion at Texas Children's Hospital or Riley Children's Hospital during the period from October 2007 to October 2012. Forty-nine patients were excluded from further analysis because of death, loss to follow-up, or lack of CT evaluation of fusion at 12 or more months after surgery. Fusion was determined by postoperative CT scan at a minimum of 12 months after surgery. The fusion was graded and classified by a board-certified fellowship-trained pediatric neuroradiologist. Other factors, such as patient age, diagnosis, number of vertebral levels fused, use of allograft or autograft, dosage of bone morphogenetic protein (BMP), and use of postoperative orthosis, were recorded. RESULTS Thirty-four patients had a CT scan at least 12 months after surgery. The average age of the patients at surgery was 8 years, 1 month (range 10 months-17 years). The mean follow-up was 27.7 months (range 12-81 months). There were 37 fusion procedures in 34 patients. Solid fusion (CT Grade 4 or 4-) was achieved in 89.2% of attempts (33 of 37), while incomplete fusion or failure of fusion was seen in 10.8%. Based on logistic regression analysis, there was no significant association between solid fusion and age, sex, BMP dose, type of graft material, use of postoperative orthosis, or number of levels fused. Three of 34 patients (8.8%) required revision surgery. CONCLUSIONS Despite the large number of adult studies reporting positive effects of BMP on bone fusion, our long-term outcomes using rhBMP-2 in the pediatric population suggest that rates of fusion failure are higher than observed in contemporary adult and pediatric reports of occipitocervical and atlantoaxial spine fusions.

  13. Repetition rates in heavy ion beam driven fusion reactors

    NASA Astrophysics Data System (ADS)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  14. Baseline high heat flux and plasma facing materials for fusion

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.

    2017-09-01

    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  15. Developing DIII-D To Prepare For ITER And The Path To Fusion Energy

    NASA Astrophysics Data System (ADS)

    Buttery, Richard; Hill, David; Solomon, Wayne; Guo, Houyang; DIII-D Team

    2017-10-01

    DIII-D pursues the advancement of fusion energy through scientific understanding and discovery of solutions. Research targets two key goals. First, to prepare for ITER we must resolve how to use its flexible control tools to rapidly reach Q =10, and develop the scientific basis to interpret results from ITER for fusion projection. Second, we must determine how to sustain a high performance fusion core in steady state conditions, with minimal actuators and a plasma exhaust solution. DIII-D will target these missions with: (i) increased electron heating and balanced torque neutral beams to simulate burning plasma conditions (ii) new 3D coil arrays to resolve control of transients (iii) off axis current drive to study physics in steady state regimes (iv) divertors configurations to promote detachment with low upstream density (v) a reactor relevant wall to qualify materials and resolve physics in reactor-like conditions. With new diagnostics and leading edge simulation, this will position the US for success in ITER and a unique knowledge to accelerate the approach to fusion energy. Supported by the US DOE under DE-FC02-04ER54698.

  16. Tungsten as a plasma-facing material in fusion devices: impact of helium high-temperature irradiation on hydrogen retention and damages in the material

    NASA Astrophysics Data System (ADS)

    Bernard, E.; Sakamoto, R.; Kreter, A.; Barthe, M. F.; Autissier, E.; Desgardin, P.; Yamada, H.; Garcia-Argote, S.; Pieters, G.; Chêne, J.; Rousseau, B.; Grisolia, C.

    2017-12-01

    Plasma-facing materials for next generation fusion devices, like ITER and DEMO, have to withstand intense fluxes of light elements (notably helium and hydrogen isotopes). For tungsten (W), helium (He) irradiation leads to major changes in the material morphology, rising concerns about properties such as material structure conservation and hydrogen (H) retention. The impact of preceeding He irradiation conditions (temperature, flux and fluence) on H trapping were investigated on a set of W samples exposed to the linear plasma device PSI-2. Positron annihilation spectroscopy (PAS) was carried out to probe the free volume of defects created by the He exposure in the W structure at the atomic scale. In parallel, tritium (T) inventory after exposure was evaluated through T gas loading and desorption at the Saclay Tritium Lab. First, we observed that the material preparation prior to He irradiation was crucial, with a major reduction of the T trapping when W was annealed at 1773 K for 2 h compared to the as-received material. PAS study confirms the presence of He in the bubbles created in the material surface layer, whose dimensions were previously characterized by transmission electron microscopy and grazing-incidence small-angle x-ray scattering, and demonstrates that even below the minimal energy for displacement of He in W, defects are created in almost all He irradiation conditions. The T loading study highlights that increasing the He fluence leads to higher T inventory. Also, for a given fluence, increasing the He flux reduces the T trapping. The very first steps of a parametric study were set to understand the mechanisms at stake in those observed material modifications, confirming the need to pursue the study with a more complete set of surface and irradiation conditions.

  17. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less

  18. Gallium arsenide-gallium nitride wafer fusion and the n-aluminum gallium arsenide/p-gallium arsenide/n-gallium nitride double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Estrada, Sarah M.

    This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta ˜ 3.5, at VCE = 20V and IB = 10mA) were obtained with an HBT formed via fusion at 600°C for 1 hour, with an optimized base-collector design. This was quite an improvement, as compared to an HBT with a simpler base-collector structure, also fused at 600°C for 1 hour (IC ˜ 0.83 kA/cm2 and beta ˜ 0.89, at VCE = 20V and IB = 10mA). Fused AlGaAs-GaAs-GaAs HBTs were compared to fused AlGaAs-GaAs-GaN HBTs, demonstrating that the use of a wider bandgap collector (Eg,GaN > Eg,GaAs) did indeed improve HBT performance at high applied voltages, as desired for high-power applications.

  19. Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.

  20. Fusion Advanced Design Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Guebaly, Laila; Henderson, Douglass; Wilson, Paul

    2017-03-24

    During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.

  1. Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate.

    PubMed

    Carter, Jason D; Swearingen, Alan B; Chaput, Christopher D; Rahm, Mark D

    2009-06-01

    Studies have suggested that the use of bone marrow aspirate (BMA) with HEALOS (DePuy Spine, Raynham, MA), a collagen-hydroxyapatite sponge (CHS), is an effective substitute for autologous iliac crest bone graft when used in fusion procedures of the lumbar spine. To assess clinical and radiographic outcomes after implantation of BMA/CHS in patients undergoing transforaminal lumbar interbody fusion (TLIF) with posterolateral fusion (PLF). Case series radiographic outcome study. Twenty patients. Radiographs/computed tomography (CT) scans. From September 2003 to October 2004, 20 patients (22 interbody levels) were implanted with BMA/CHS via TLIF/PLF with interbody cages and posterior pedicle screws. All patients were retrospectively identified and invited for a 2-year prospective follow-up. Plain radiographs with dynamic films and CT scans were taken, and fusion was assessed in a blinded manner. Follow-up averaged 27 months (range: 24-29). Primary diagnosis included spondylolisthesis (17 patients), scoliosis with asymmetric collapse (2 patients), and postdiscectomy foraminal stenosis (1 patient). The overall fusion rate was 95% (21/22 levels, 19/20 patients). Anteriorly bridging bone was observed in 91% of the anteriorly fused levels (20/22), of which 65% (13/20) occurred through and around the cage and 35% (7/20) around the cage only. Unilateral or bilateral bridging of the posterior fusion masses was observed in 91% (20/22), with 55% occurring bilaterally (12/22). In 4 (18%) cases, bridging only occurred either posteriorly (2 cases) or anteriorly (2 cases). Complications included one deep wound infection. At the 2-year follow-up, BMA/CHS showed acceptable fusion rates in patients undergoing TLIF/PLF, and can be considered as an alternative source of graft material.

  2. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less

  3. Rayleigh-Taylor instability experiments in cryogenic deuterium

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; Smalyuk, V. A.

    2005-10-01

    We report on experiments under way at the Omega laser, using cryogenic deuterium to study Rayleigh-Taylor instabilities in laser targets. These instabilities are important in astrophysical situations (e.g., mixing of the different shells during a supernova explosion) and in inertial fusion (during the compression stage of a fusion target). They can be studied in small (˜1 mm) shock tubes filled with one heavy and one light material, with an interface between the two materials that is machined to seed the instability. A high-energy laser (˜5 kJ) drives a shock from the heavy to the light material. The evolution of the interface is studied using gated x-ray cameras, where x-ray illumination is obtained from additional laser beams focused on metal backlighter foils. Traditionally the heavy material is CH (1 g/cm^3) doped with I or Br for improved contrast, while the light material is a low-density (˜0.1 g/cm^3) C foam. The goal of the current experiments is to determine if contrast can be improved even further by replacing the foam with cryogenic deuterium, which has a density similar to the foam, but a lower x-ray opacity allowing clearer images, including images taken at late times in the evolution. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  4. Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

    NASA Astrophysics Data System (ADS)

    Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.

    2017-12-01

    Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

  5. Thermal and range fusion for a planetary rover

    NASA Technical Reports Server (NTRS)

    Caillas, Claude

    1992-01-01

    This paper describes how fusion between thermal and range imaging allows us to discriminate different types of materials in outdoor scenes. First, we analyze how pure vision segmentation algorithms applied to thermal images allow discriminating materials such as rock and sand. Second, we show how combining thermal and range information allows us to better discriminate rocks from sand. Third, as an application, we examine how an autonomous legged robot can use these techniques to explore other planets.

  6. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H

    2013-08-01

    The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.

  7. Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis.

    PubMed

    Leitner, Lukas; Malaj, Isabella; Sadoghi, Patrick; Amerstorfer, Florian; Glehr, Mathias; Vander, Klaus; Leithner, Andreas; Radl, Roman

    2018-04-13

    Spinal fusion is used for treatment of spinal deformities, degeneration, infection, malignancy, and trauma. Reduction of motion enables osseous fusion and permanent stabilization of segments, compromised by loosening of the pedicle screws (PS). Deep implant infection, biomechanical, and chemical mechanisms are suspected reasons for loosening of PS. Study objective was to investigate the frequency and impact of deep implant infection on PS loosening. Intraoperative infection screening from wound and explanted material sonication was performed during revision surgeries following dorsal stabilization. Case history events and factors, which might promote implant infections, were included in this retrospective survey. 110 cases of spinal metal explantation were included. In 29.1% of revision cases, infection screening identified a germ, most commonly Staphylococcus (53.1%) and Propionibacterium (40.6%) genus. Patients screened positive had a significant higher number of previous spinal operations and radiologic loosening of screws. Patients revised for adjacent segment failure had a significantly lower rate of positive infection screening than patients revised for directly implant associated reasons. Removal of implants that revealed positive screening effected significant pain relief. Chronic implant infection seems to play a role in PS loosening and ongoing pain, causing revision surgery after spinal fusion. Screw loosening and multiple prior spinal operations should be suspicious for implant infection after spinal fusion when it comes to revision surgery. These slides can be retrieved under Electronic Supplementary Material.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beavin, P. Jr.

    A previously published method for determining zirconium in antiperspirant aerosols was collaboratively studied by 7 laboratories. The method consists of 2 procedures: a rapid dilution procedure for soluble zirconium compounds or a lengthier fusion procedure for total zirconium followed by colorimetric determination. The collaborators were asked to perform the following: Spiking materials representing 4 levels of soluble zirconium were added to weighed portions of a zirconium-free cream base concentrate and the portions were assayed by the dilution procedure. Spiking materials representing 4 levels of zirconium in either the soluble or the insoluble form (or as a mixture) were also addedmore » to portions of the same concentrate and these portions were assayed by the fusion procedure. They were also asked to concentrate and assay, by both procedures, 2 cans each of 2 commercial aerosol antiperspirants containing zirconyl hydroxychloride. The average percent recoveries and standard deviations for spiked samples were 99.8-100.2 and 1.69-2.71, respectively, for soluble compounds determined by the dilution procedure, and 93.8-97.4 and 3.09-4.78, respectively, for soluble and/or insoluble compounds determined by the fusion procedure. The average perent zirconium found by the dilution procedure in the 2 commercial aerosol products was 0.751 and 0.792. Insufficient collaborative results were received for the fusion procedure for statistical evaluation. The dilution procedure has been adopted as official first action.« less

  9. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    PubMed

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  10. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming

    PubMed Central

    Mitani, Yasuyuki; Vagnozzi, Ronald J.; Millay, Douglas P.

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non–muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle–specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.—Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. PMID:27825107

  11. Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties

    NASA Astrophysics Data System (ADS)

    Quyen, Dinh Thi Ngoc; Loc, Luu Cam; Ha, Huynh Ky Phuong; Nga, Dang Thi Hang; Tri, Nguyen; Van, Nguyen Thi Thuy

    2017-09-01

    There are many researches in the modification of red mud as adsorbent for treatment of wastewater or waste gases. Yet, most of them have to face up with a thorny problem caused by remaining alkali in red mud. In this study, the material with zeolite structure was synthesized by fusion method using red mud with the remaining alkali and rice husk ash as raw materials. It comprised alkaline fusion followed by hydrothermal treatment with step - change of synthesis temperature. The synthesized materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), BET and CO2 adsorption capacity. The influences on the quality of these materialswere investigated under various calcination temperatures, calcination times and the ratios of raw materials (based on SiO2/Al2O3 ratio). The optimum reaction parameters were determined. The results depicted that the sample treated at 600 °C for 2 hours with the ratio of SiO2/Al2O3 of 1.8 had the best adsorption capacity and total specific surface area compared with the others.

  12. Energy spectrum of 208Pb(n,x) reactions

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.

    2018-02-01

    Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.

  13. A possible approach to 14MeV neutron moderation: A preliminary study case.

    PubMed

    Flammini, D; Pilotti, R; Pietropaolo, A

    2017-07-01

    Deuterium-Tritium (D-T) interactions produce almost monochromatic neutrons with about 14MeV energy. These neutrons are used in benchmark experiments as well as for neutron cross sections assessment in fusion reactors technology. The possibility to moderate 14MeV neutrons for purposes beyond fusion is worth to be studied in relation to projects of intense D-T sources. In this preliminary study, carried out using the MCNP Monte Carlo code, the moderation of 14MeV neutrons is approached foreseeing the use of combination of metallic materials as pre-moderator and reflectors coupled to standard water moderators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Z-Pinch Pulsed Plasma Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason; hide

    2010-01-01

    Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4. Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.

  15. Hydrogen in tungsten as plasma-facing material

    NASA Astrophysics Data System (ADS)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in future fusion reactors.

  16. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.

  17. A Primer for Education/Outreach to the Classroom and Community

    NASA Astrophysics Data System (ADS)

    Zaleskiewicz, Ted

    2002-11-01

    As one example of successful cooperation among major plasma/fusion research laboratories in the United States and Europe, we discuss the development of the well-known classroom teaching chart, "Fusion - Physics of a Fundamental Energy Source", and associated materials produced by the Contemporary Physics Education Project(CPEP). CPEP is a not-for-profit organization of physicists and teachers incorporated to develop teaching materials on contemporary physics topics suitable for use in the introductory (high school and college) classroom. The Fusion Chart is currently available in 7 languages: English, Flemish, French, German, Italian, Portuguese, and Spanish. The series of supporting materials include a Teacher's Guide, 7 hands-on classroom activities, and a Web supplement at http://FusEdWeb.pppl.gov/CPEP/chart.html. All materials are being used successfully in high school teacher training workshops across North America under the auspices of APS/DPP, AAPT, and PTRA (Physics Teaching Resource Agents) programs. Though the materials were developed primarily for use by classroom teachers, they are also valuable resources for individual experts who have the opportunity to make presentations to educational or civic groups. This talk will illustrate various teaching strategies which increase the effectiveness of the materials, including demonstrations of two of the classroom activities, with audience participation invited.

  18. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGES

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; ...

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m 2 over areas of 9×12 and 1×10 cm 2, respectively. This paper will present the overallmore » design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  19. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket.

    PubMed

    Lo Frano, Rosa; Puccini, Monica; Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano

    2018-05-02

    An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li₄SiO₄) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1⁻1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  20. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.

  1. Electron microscopy and microanalysis of the fiber-matrix interface in monolithic silicone carbide-based ceramic composite material for use in a fusion reactor application.

    PubMed

    Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka

    2008-01-01

    A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.

  2. Rheological of chocolate-flavored, reduced-calories coating as a function of conching process.

    PubMed

    Medina-Torres, Luis; Sanchez-Olivares, Guadalupe; Nuñez-Ramirez, Diola Marina; Moreno, Leonardo; Calderas, Fausto

    2014-07-01

    Continuous flow and linear viscoelasticity rheology of chocolate coating is studied in this work using fat substitute gums (xanthan, GX). An alternative conching process, using a Rotor-Estator (RE) type impeller, is proposed. The objective is to obtain a chocolate coating material with improved flow properties. Characterization of the final material through particle size distribution (PSD), differential scanning calorimetry (DSC) and proximal analysis is reported. Particle size distribution of the final material showed less polydispersity and therefore, greater homogeneity; fusion points were also generated at around 20 °C assuming crystal type I (β'2) and II (α). Moreover, the final material exhibited crossover points (higher structure material), whereas the commercial brand chocolate used for comparison did not. The best conditions to produce the coating were maturing of 36 h and 35 °C, showing crossover points around 76 Pa and a 0.505 solids particle dispersion (average particle diameter of 0.364 μm), and a fusion point at 20.04 °C with a ΔHf of 1.40 (J/g). The results indicate that xanthan gum is a good substitute for cocoa butter and provides stability to the final product.

  3. An effective delivery vehicle of demineralized bone matrix incorporated with engineered collagen-binding human bone morphogenetic protein-2 to accelerate spinal fusion at low dose.

    PubMed

    Zhu, Weiguo; Qiu, Yong; Sheng, Fei; Yuan, Xinxin; Xu, Leilei; Bao, Hongda; Dai, Jianwu; Zhu, Zezhang

    2017-12-01

    The aim of this study was to investigate the feasibility and efficacy of a new delivery matrix using demineralized bone matrix (DBM) incorporated with collagen-binding bone morphogenetic protein-2 (CBD-BMP-2) in the rat inter-transverse spinal fusion model. Sixty rats undergoing posterolateral (inter-transverse) spinal fusion were divided into 3 groups according to the fusion materials containing different components (n = 20 per group). Group A were implanted with DBM, Group B with combination of DBM and BMP-2 and Group C with combination of DBM and CBD-BMP-2. After surgery, the spinal fusion of all the rats was assessed by plain radiography, CT + 3D reconstruction, manual palpation and histological evaluation. Significant difference was found in terms of solid fusion rate among the three groups, with 95% in Group C, 65% in Group B and 0% in Group A (P < 0.001). Compared with Groups B and A, new bone formation was observed earlier and was obvious larger, trabecular bone microarchitecture assessment was better and bone mineral density was statistically larger in Group C. In addition, more newly woven bone and osteocytes were shown by histological evaluation in Group C at 4 weeks post-operation. The present study showed CBD domain could help BMP-2 to improve the efficiency of posterolateral spinal fusion. DBM scaffold activated by collagen-binding BMP-2 was a feasible and promising bone repair vehicle. The present study showed better results in terms of plain radiography, CT + 3D reconstruction, manual palpation and histological evaluation in the rat inter-transverse spinal fusion model using DBM+CBD-BMP-2, compared with DBM+BMP-2 and DBM alone, indicating DBM scaffold activated by collagen-binding BMP-2 was a feasible and promising bone repair vehicle.

  4. High temperature surface effects of He + implantation in ICF fusion first wall materials

    NASA Astrophysics Data System (ADS)

    Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.

    2009-06-01

    The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.

  5. Development of a small specimen test machine to evaluate irradiation embrittlement of fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Ohmi, M.; Saito, J.; Hoshiya, T.; Ooka, N.; Jitsukawa, S.; Eto, M.

    2000-12-01

    Small specimen test techniques (SSTT) are essential to use an accelerator-driven deuterium-lithium stripping reaction neutron source for the study of fusion reactor materials because of the limitation of the available irradiation volume. A remote-controlled small punch (SP) test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). This report describes the SP test method and machine for use in a hot cell, and test results on irradiated ferritic steels. The specimen was either a coupon 10×10×0.25 mm 3 or a TEM disk 3 mm in diameter by 0.25 mm in thickness. Tests can be performed at temperatures ranging from 93 to 1123 K in a vacuum or in an inert gas environment. The ductile to brittle transition temperature of the irradiated ferritic steel as determined by the SP test is also evaluated.

  6. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  7. Performance analysis of fusion nuclear-data benchmark experiments for light to heavy materials in MeV energy region with a neutron spectrum shifter

    NASA Astrophysics Data System (ADS)

    Murata, Isao; Ohta, Masayuki; Miyamaru, Hiroyuki; Kondo, Keitaro; Yoshida, Shigeo; Iida, Toshiyuki; Ochiai, Kentaro; Konno, Chikara

    2011-10-01

    Nuclear data are indispensable for development of fusion reactor candidate materials. However, benchmarking of the nuclear data in MeV energy region is not yet adequate. In the present study, benchmark performance in the MeV energy region was investigated theoretically for experiments by using a 14 MeV neutron source. We carried out a systematical analysis for light to heavy materials. As a result, the benchmark performance for the neutron spectrum was confirmed to be acceptable, while for gamma-rays it was not sufficiently accurate. Consequently, a spectrum shifter has to be applied. Beryllium had the best performance as a shifter. Moreover, a preliminary examination of whether it is really acceptable that only the spectrum before the last collision is considered in the benchmark performance analysis. It was pointed out that not only the last collision but also earlier collisions should be considered equally in the benchmark performance analysis.

  8. Current Status and Recent Research Achievements in SiC/SiC Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Snead, Lance L.; Henager, Charles H.

    2014-12-01

    The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system inmore » the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.« less

  9. User's guide to the Residual Gas Analyzer (RGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artman, S.A.

    1988-08-04

    The Residual Gas Analyzer (RGA), a Model 100C UTI quadrupole mass spectrometer, measures the concentrations of selected masses in the Fusion Energy Division's (FED) Advanced Toroidal Facility (ATF). The RGA software is a VAX FORTRAN computer program which controls the experimental apparatus, records the raw data, performs data reduction, and plots the data. The RGA program allows data to be collected from an RGA on ATF or from either of two RGAs in the laboratory. In the laboratory, the RGA diagnostic plays an important role in outgassing studied on various candidate materials for fusion experiments. One such material, graphite, ismore » being used more often in fusion experiments due to its ability to withstand high power loads. One of the functions of the RGA diagnostic is aid in the determination of the best grade of graphite to be used in these experiments and to study the procedures used to condition it. A procedure of particular interest involves baking the graphite sample in order to remove impurities that may be present in it. These impurities can be studied while in the ATF plasma or while being baked and outgassed in the laboratory. The Residual Gas Analyzer is a quadrupole mass spectrometer capable of scanning masses ranging in size from 1 atomic mass unit (amu) to 300 amu while under computer control. The procedure for collecting data for a particular mass is outlined.« less

  10. Spatial heterogeneity of tungsten transmutation in a fusion device

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  11. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  12. A comparison of commercially available demineralized bone matrix for spinal fusion.

    PubMed

    Wang, Jeffrey C; Alanay, A; Mark, Davies; Kanim, Linda E A; Campbell, Pat A; Dawson, Edgar G; Lieberman, Jay R

    2007-08-01

    In an effort to augment the available grafting material as well as to increase spinal fusion rates, the utilization of a demineralized bone matrix (DBM) as a graft extender or replacement is common. There are several commercially available DBM substances available for use in spinal surgery, each with different amounts of DBM containing osteoinductive proteins. Each product may have different osteoinductivity potential due to different methods of preparation, storage, and donor specifications. The purpose of this study is to prospectively compare the osteoinductive potential of three different commercially available DBM substances in an athymic rodent spinal fusion model and to discuss the reasons of the variability in osteoinductivity. A posterolateral fusion was performed in 72 mature athymic nude female rats. Three groups of 18 rats were implanted with 1 of 3 DBMs (Osteofil, Grafton, and Dynagraft). A fourth group was implanted with rodent autogenous iliac crest bone graft. The rats were sacrificed at 2, 4, 6, and 8 weeks. A dose of 0.3 cm(3) per side (0.6 cm(3)per animal) was used for each substance. Radiographs were taken at 2 weeks intervals until sacrifice. Fusion was determined by radiographs, manual palpation, and histological analysis. The Osteofil substance had the highest overall fusion rate (14/18), and the highest early 4 weeks fusion rate of (4/5). Grafton produced slightly lower fusion rates of (11/17) overall, and lower early 4 weeks fusion rate of (2/5). There was no statistically significant difference between the rate of fusion after implantation of Osteofil and Grafton. None of the sites implanted with Dynagraft fused at any time point (0/17), and there was a significantly lower fusion rate between the Dynagraft and the other two substances at the six-week-time point and for final fusion rate (P = 0.0001, Fischer's exact test). None of the autogenous iliac crest animals fused at any time point. Non-decalcified histology confirmed the presence of a pseudarthrosis or the presence of a solid fusion, and the results were highly correlated with the manual testing. Although all products claim to have significant osteoinductive capabilities, this study demonstrates that there are significant differences between some of the tested products.

  13. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    NASA Astrophysics Data System (ADS)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  14. Lipid tail protrusions initiate spontaneous insertion of charged, amphiphilic nanoparticles into lipid bilayers

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Ricci, Maria; Carney, Randy; Voitchovsky, Kislon; Stellacci, Francesco; Alexander-Katz, Alfredo

    2014-03-01

    Vesicle fusion is a primary mechanism used to mediate the uptake and trafficking of materials both into and between cells. The pathway of vesicle fusion involves the formation of a lipid stalk in which the hydrophobic core regions of two closely associated bilayers merge. The transition state for stalk formation requires the transient protrusion of hydrophobic lipid tails into solvent; favorable contact between these hydrophobic tails then drives stalk creation. In this work, we use unbiased atomistic molecular dynamics simulations to show that lipid tail protrusions can also induce the insertion of charged, amphiphilic nanoparticles (NPs) into lipid bilayers. As in the case of vesicle fusion, the rate-limiting step for NP-bilayer fusion is the stochastic protrusion of aliphatic lipid tails into solvent and into contact with hydrophobic material in the amphiphilic NP monolayer. We confirm our predictions with experiments on supported lipid bilayers. The strong agreement between simulation and experiments indicates that the pre-stalk transition associated with vesicle fusion may be a general mechanism for the insertion of amphiphilic nano-objects that could be prominent in biological systems given the widespread use of NPs in applications ranging from drug delivery to biosensing.

  15. Comparative study of the mechanical properties of different tungsten materials for fusion applications

    NASA Astrophysics Data System (ADS)

    Krimpalis, S.; Mergia, K.; Messoloras, S.; Dubinko, A.; Terentyev, D.; Triantou, K.; Reiser, J.; Pintsuk, G.

    2017-12-01

    The mechanical properties of tungsten produced in different forms before and after neutron irradiation are of considerable interest for their application in fusion devices such as ITER. In this work the mechanical properties and the microstructure of two tungsten (W) products with different microstructures are investigated using depth sensing nano/micro-indentation and transmission electron microscopy, respectively. Neutron irradiation of these materials for different doses, in the temperature range 600 °C-1200 °C, is underway within the EUROfusion project in order to progress our basic understanding of neutron irradiation effects on W. The hardness and elastic modulus are determined as a function of the penetration depth, loading/unloading rate, holding time at maximum load and the final surface treatment. The results are correlated with the microstructure as investigated by SEM and TEM measurements.

  16. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGES

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; ...

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  17. Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.

    PubMed

    Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D

    2018-05-23

    Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.

  18. Fast degradable citrate-based bone scaffold promotes spinal fusion.

    PubMed

    Tang, Jiajun; Guo, Jinshan; Li, Zhen; Yang, Cheng; Xie, Denghui; Chen, Jian; Li, Shengfa; Li, Shaolin; Kim, Gloria B; Bai, Xiaochun; Zhang, Zhongmin; Yang, Jian

    2015-07-21

    It is well known that high rates of fusion failure and pseudoarthrosis development (5~35%) are concomitant in spinal fusion surgery, which was ascribed to the shortage of suitable materials for bone regeneration. Citrate was recently recognized to play an indispensable role in enhancing osteconductivity and osteoinductivity, and promoting bone formation. To address the material challenges in spinal fusion surgery, we have synthesized mechanically robust and fast degrading citrate-based polymers by incorporating N-methyldiethanolamine (MDEA) into clickable poly(1, 8-octanediol citrates) (POC-click), referred to as POC-M-click. The obtained POC-M-click were fabricated into POC-M-click-HA matchstick scaffolds by compositing with hydroxyapatite (HA) for interbody spinal fusion in a rabbit model. Spinal fusion was analyzed by radiography, manual palpation, biomechanical testing, and histological evaluation. At 4 and 8 weeks post surgery, POC-M-click-HA scaffolds presented optimal degradation rates that facilitated faster new bone formation and higher spinal fusion rates (11.2±3.7, 80±4.5 at week 4 and 8, respectively) than the poly(L-lactic acid)-HA (PLLA-HA) control group (9.3±2.4 and 71.1±4.4) (p<0.05). The POC-M-click-HA scaffold-fused vertebrates possessed a maximum load and stiffness of 880.8±14.5 N and 843.2±22.4 N/mm, respectively, which were also much higher than those of the PLLA-HA group (maximum: 712.0±37.5 N, stiffness: 622.5±28.4 N/mm, p<0.05). Overall, the results suggest that POC-M-click-HA scaffolds could potentially serve as promising bone grafts for spinal fusion applications.

  19. Fast degradable citrate-based bone scaffold promotes spinal fusion

    PubMed Central

    Tang, Jiajun; Guo, Jinshan; Li, Zhen; Yang, Cheng; Xie, Denghui; Chen, Jian; Li, Shengfa; Li, Shaolin; Kim, Gloria B.; Bai, Xiaochun; Zhang, Zhongmin; Yang, Jian

    2015-01-01

    It is well known that high rates of fusion failure and pseudoarthrosis development (5~35%) are concomitant in spinal fusion surgery, which was ascribed to the shortage of suitable materials for bone regeneration. Citrate was recently recognized to play an indispensable role in enhancing osteconductivity and osteoinductivity, and promoting bone formation. To address the material challenges in spinal fusion surgery, we have synthesized mechanically robust and fast degrading citrate-based polymers by incorporating N-methyldiethanolamine (MDEA) into clickable poly(1, 8-octanediol citrates) (POC-click), referred to as POC-M-click. The obtained POC-M-click were fabricated into POC-M-click-HA matchstick scaffolds by compositing with hydroxyapatite (HA) for interbody spinal fusion in a rabbit model. Spinal fusion was analyzed by radiography, manual palpation, biomechanical testing, and histological evaluation. At 4 and 8 weeks post surgery, POC-M-click-HA scaffolds presented optimal degradation rates that facilitated faster new bone formation and higher spinal fusion rates (11.2±3.7, 80±4.5 at week 4 and 8, respectively) than the poly(L-lactic acid)-HA (PLLA-HA) control group (9.3±2.4 and 71.1±4.4) (p<0.05). The POC-M-click-HA scaffold-fused vertebrates possessed a maximum load and stiffness of 880.8±14.5 N and 843.2±22.4 N/mm, respectively, which were also much higher than those of the PLLA-HA group (maximum: 712.0±37.5 N, stiffness: 622.5±28.4 N/mm, p<0.05). Overall, the results suggest that POC-M-click-HA scaffolds could potentially serve as promising bone grafts for spinal fusion applications. PMID:26213625

  20. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test formore » determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.« less

  1. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    PubMed Central

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    Background: In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle. PMID:29387672

  2. Final Progress Report The U.S. Department of Energy Research Grant No. DE-SC0008660 Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier through Leadership Class Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasheninnikov, Sergei; Smirnov, Roman; Guterl, Jerome

    The choice of material for the plasma facing components (PFC), in particular, for divertor targets, is one of the main issues for future tokamak reactors. There are two major requirements for the PFC’s material: acceptable level of tritium retention and durability in a harsh environment of fusion grade plasma. Based on these criteria, some years ago it was decided that tungsten is an acceptable material for divertor targets in ITER. However, further experimental studies reveal that the irradiation of tungsten even with low energetic (well below sputtering threshold!) He containing plasma causes significant modification of surface morphology, formation of themore » layer of He nano-bubbles (in the temperature range T<1000 K), “fuzz” (for 1000 K2000 K) (e.g. see Fig. 1). Recall that He, being an ash of D-T fusion reactions, is an inherent impurity in fusion plasma. The goals of the UCSD Applied Plasma Theory Group was: i) investigate the mechanisms of the formation of He nano-bubble layer and fuzz growth under He irradiation, as well as the physics of transport of hydrogen species in tungsten lattice, and ii) develop physics understanding of the models suitable for the incorporation into the Xolotl-PSI code based on the reaction-diffusion approach, which is the flagship of the whole SciDAC project [8], which can guide both numerical simulations and experimental studies. Here we just highlight our major accomplishments.« less

  3. The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting

    PubMed Central

    Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.

    2006-01-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200

  4. Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat

    2013-08-01

    Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.

  5. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph Collin

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrademore » structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H + and T +) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion products in the process. Alternatively, imposed currents and other high-temperature cathodic protection systems are envisioned for protection of the structural materials. This novel concept could prove to be enabling technology for such high-temperature molten-salt reactors. The use of UF 4 as a liquid-phase homogenous fuel is also complicated by redox control. For example, the oxidation of tetravalent uranium to hexavalent uranium could result in the formation of volatile UF 6. This too could be controlled through electrochemically manipulated oxidation and reduction reactions. In situ studies of pertinent electrochemical reactions in the molten salts are proposed, and are relevant to both the corrosive attack of structural materials, as well as the volatilization of fuel. Some consideration is given to the potential advantages of gravity fed falling-film blankets. Such systems may be easier to control than vortex systems, but would require that cylindrical reaction vessels be oriented with the centerline normal to the gravitational field.« less

  6. Added Value of Contrast-Enhanced Ultrasound on Biopsies of Focal Hepatic Lesions Invisible on Fusion Imaging Guidance

    PubMed Central

    Kang, Tae Wook; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun

    2017-01-01

    Objective To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. Materials and Methods The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Results Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). Conclusion The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making. PMID:28096725

  7. A Numerical Study of the Non-Ideal Behavior, Parameters, and Novel Applications of an Electrothermal Plasma Source

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh

    Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An ablation-free capillary discharge computer code has been developed to model plasma flow and acceleration of pellets for fusion fueling in magnetic fusion reactors. Two case studies with and without ablation, including different source configurations have been studied here. Velocities necessary for fusion fueling have been achieved. New additions made to the code model incorporate radial heat and energy transfer and move ETFLOW towards being a 2-D model of the plasma flow. This semi 2-D approach gives a view of the behavior of the plasma inside the capillary as it is affected by important physical parameters such as radial thermal heat conduction and their effect on wall ablation.

  8. Analysis of C-shaped root canal configuration in maxillary molars in a Korean population using cone-beam computed tomography

    PubMed Central

    Jo, Hyoung-Hoon; Min, Jeong-Bum

    2016-01-01

    Objectives The purpose of this study was to investigate the incidence of root fusion and C-shaped root canals in maxillary molars, and to classify the types of C-shaped canal by analyzing cone-beam computed tomography (CBCT) in a Korean population. Materials and Methods Digitized CBCT images from 911 subjects were obtained in Chosun University Dental Hospital between February 2010 and July 2012 for orthodontic treatment. Among them, a total of selected 3,553 data of maxillary molars were analyzed retrospectively. Tomography sections in the axial, coronal, and sagittal planes were displayed by PiViewstar and Rapidia MPR software (Infinitt Co.). The incidence and types of root fusion and C-shaped root canals were evaluated and the incidence between the first and the second molar was compared using Chi-square test. Results Root fusion was present in 3.2% of the first molars and 19.5% of the second molars, and fusion of mesiobuccal and palatal root was dominant. C-shaped root canals were present in 0.8% of the first molars and 2.7% of the second molars. The frequency of root fusion and C-shaped canal was significantly higher in the second molar than the first molar (p < 0.001). Conclusions In a Korean population, maxillary molars showed total 11.3% of root fusion and 1.8% of C-shaped root canals. Furthermore, root fusion and C-shaped root canals were seen more frequently in the maxillary second molars. PMID:26877991

  9. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less

  10. Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi

    1997-09-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.

  11. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  12. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  13. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  14. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  15. Arthrodesis in septic knees using a long intramedullary nail: 17 consecutive cases.

    PubMed

    Leroux, B; Aparicio, G; Fontanin, N; Ohl, X; Madi, K; Dehoux, E; Diallo, S

    2013-06-01

    Intramedullary nailing using long or modular nails is the most reliable mean of achieving femorotibial fusion. Here, we report the operative, clinical, functional, and radiological outcomes of 17 long intramedullary nail arthodeses in patients with infection. Clinical and functional outcomes after long intramedullary nailing are at least as good as those obtained using other implants. We retrospectively reevaluated 17 patients after unilateral two-stage knee arthrodesis with a long titanium intramedullary nail and autologous bone grafting. We evaluated satisfaction, leg length discrepancy, and function (Lequesne and WOMAC indices). Radiographs were obtained to assess fusion, time to fusion, and femorotibial angles. No cases of material failure were recorded. One or more complications occurred in seven patients. Mean limb shortening was 27.6mm. Of the 17 patients, 15 were satisfied with the procedure. The mean Lequesne index was 10.5/24 and the mean overall WOMAC score was 26/88. Fusion was achieved in 16 patients, with a mean time to fusion of 5 months. Mean femorotibial angles were 178.6° of varus and 1.9° of flexion. This simple and rapid surgical technique provides functional outcomes similar to those obtained using modular nails. The fusion rate is high. Nail extraction is simple and causes minimal damage, in contrast to modular nails. Increased attention to misalignment is needed. Level IV, retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Silica Fiber Lasers and Amplifiers as Pump Sources for Frequency Conversion

    DTIC Science & Technology

    2010-09-01

    compared to non-pedestal LMA designs • NAs of 0.1 have been achieved • Disadvantages: • Additional glass material in the fiber • Fusion splicing issues...Disadvantages: • Additional glass material in the fiber • Fusion splicing issues (4 glasses in a PM fiber ) • NA cannot be reduced indefinitely • Limits...converted in a nonlinear crystal • Typically ZGP, PPLN, OPGaAs • How can we use fiber with Mid-IR light • We can use it to transport Mid-IR light over

  17. Clinical Application of Prognostic Gene Expression Signature in Fusion Gene-Negative Rhabdomyosarcoma: A Report from the Children's Oncology Group.

    PubMed

    Hingorani, Pooja; Missiaglia, Edoardo; Shipley, Janet; Anderson, James R; Triche, Timothy J; Delorenzi, Mauro; Gastier-Foster, Julie; Wing, Michele; Hawkins, Douglas S; Skapek, Stephen X

    2015-10-15

    Pediatric rhabdomyosarcoma (RMS) has two common histologic subtypes: embryonal (ERMS) and alveolar (ARMS). PAX-FOXO1 fusion gene status is a more reliable prognostic marker than alveolar histology, whereas fusion gene-negative (FN) ARMS patients are clinically similar to ERMS patients. A five-gene expression signature (MG5) previously identified two diverse risk groups within the fusion gene-negative RMS (FN-RMS) patients, but this has not been independently validated. The goal of this study was to test whether expression of the MG5 metagene, measured using a technical platform that can be applied to routine pathology material, would correlate with outcome in a new cohort of patients with FN-RMS. Cases were taken from the Children's Oncology Group (COG) D9803 study of children with intermediate-risk RMS, and gene expression profiling for the MG5 genes was performed using the nCounter assay. The MG5 score was correlated with clinical and pathologic characteristics as well as overall and event-free survival. MG5 standardized score showed no significant association with any of the available clinicopathologic variables. The MG5 signature score showed a significant correlation with overall (N = 57; HR, 7.3; 95% CI, 1.9-27.0; P = 0.003) and failure-free survival (N = 57; HR, 6.1; 95% CI, 1.9-19.7; P = 0.002). This represents the first, validated molecular prognostic signature for children with FN-RMS who otherwise have intermediate-risk disease. The capacity to measure the expression of a small number of genes in routine pathology material and apply a simple mathematical formula to calculate the MG5 metagene score provides a clear path toward better risk stratification in future prospective clinical trials. ©2015 American Association for Cancer Research.

  18. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  19. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo

    NASA Astrophysics Data System (ADS)

    Brodbeck, William G.; Patel, Jasmine; Voskerician, Gabriela; Christenson, Elizabeth; Shive, Matthew S.; Nakayama, Yasuhide; Matsuda, Takehisa; Ziats, Nicholas P.; Anderson, James M.

    2002-08-01

    An in vivo rat cage implant system was used to identify potential surface chemistries that prevent failure of implanted biomedical devices and prostheses by limiting monocyte adhesion and macrophage fusion into foreign-body giant cells while inducing adherent-macrophage apoptosis. Hydrophobic, hydrophilic, anionic, and cationic surfaces were used for implantation. Analysis of the exudate surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis was increased significantly on anionic and hydrophilic surfaces (46 ± 3.7 and 57 ± 5.0%, respectively) when compared with the polyethylene terephthalate base surface. Additionally, hydrophilic and anionic substrates provided decreased rates of monocyte/macrophage adhesion and fusion. These studies demonstrate that biomaterial-adherent cells undergo material-dependent apoptosis in vivo, rendering potentially harmful macrophages nonfunctional while the surrounding environment of the implant remains unaffected.

  20. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{supmore » 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.« less

  1. Plasma-surface interaction in the context of ITER.

    PubMed

    Kleyn, A W; Lopes Cardozo, N J; Samm, U

    2006-04-21

    The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.

  2. Allogeneic mesenchymal precursor cells (MPCs) combined with an osteoconductive scaffold to promote lumbar interbody spine fusion in an ovine model.

    PubMed

    Wheeler, Donna L; Fredericks, Douglas C; Dryer, Randall F; Bae, Hyun W

    2016-03-01

    Advances in immunomagnetic cell sorting have enabled isolation and purification of pleuripotent stem cells from marrow aspirates and have expanded stem cell therapies to include allogeneic sources. This study aimed to determine the safety and efficacy of allogeneic mesenchymal precursor cells (MPCs) combined with an osteoconductive scaffold in lumbar interbody spinal fusion using an ovine model. Thirty-two skeletally mature ewes underwent a single-level interbody fusion procedure using a Polyetheretherketone fusion cage supplemented with either iliac crest autograft (AG) or an osteconductive scaffold (Mastergraft Matrix, Medtronic, Memphis, TN, USA) with 2.5×10(6) MPCs, 6.25×10(6) MPCs, or 12.5×10(6) MPCs. Plain radiographs and computed tomography scans were scored for bridging bone at multiple points during healing and at necropsy. The biomechanical competency of fusion was scored by manual palpation and quantified using functional radiographs at necropsy. Postnecropsy histopathology and histomorphometric analysis assessed the local response to MPC treatment and quantified the volume and connectivity of newly formed bridging bone. Safety was assessed by serum biochemistry, hematology, and organ histopathology. Mesenchymal precursor cell treatment caused no adverse systemic or local tissue responses. All analyses indicated MPCs combined with an osteoconductive scaffold achieved similar or better fusion success as AG treatment after 16 weeks, and increasing the MPC dose did not enhance fusion. Manual palpation of the fusion site indicated more than 75% of MPC-treated and 65% of AG-treated animals achieved rigid fusion, which was corroborated with functional radiography. Computed tomography fusion scores indicated all animals in the MPC- and AG-treatment groups were fused at 16 weeks, yet X-ray scores indicated only 67% of the AG-treated animals were fused. Histomorphometry analyses showed equivalent outcomes for fusion connectivity and bony fusion area for MPC- and AG-treated groups. Approximately 6% residual graft material remained in the MPC-treated fusion sites at 16 weeks. Adult allogeneic MPCs delivered using an osteoconductive scaffold were both safe and efficacious in this ovine spine interbody fusion model. These results support the use ofallogeneic MPCs as an alternative to AG for lumbar interbody spinal fusion procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Metafusion: A breakthrough in metallurgy

    NASA Technical Reports Server (NTRS)

    Joseph, Adrian A.

    1994-01-01

    The Metafuse Process is a patented development in the field of thin film coatings utilizing cold fusion which results in a true inter-dispersion of dissimilar materials along a gradual transition gradient through a boundary of several hundred atomic layers. The process is performed at ambient temperatures and pressures requiring relatively little energy and creating little or no heat. The process permits a remarkable range of material combinations and joining of materials which are normally incompatible. Initial applications include titanium carbide into and onto the copper resistance welding electrodes and tungsten carbide onto the cutting edges of tool steel blades. The process is achieved through application of an RF signal of low power and is based on the theory of vacancy fusion.

  4. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  5. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  6. Physical aspects of dexibuprofen and racemic ibuprofen.

    PubMed

    Leising, G; Resel, R; Stelzer, F; Tasch, S; Lanziner, A; Hantich, G

    1996-12-01

    This article presents a comparative study of ibuprofen materials in their solid state. Ibuprofen crystallizes into two different structures for the S(+) enantiomer (dexibuprofen) and racemic ibuprofen. The crystal structure of ibuprofen, its optical absorption and photoluminescence, and the thermodynamic results (melting point and heat of fusion) are discussed. From these physicochemical properties, the authors conclude that dexibuprofen, which is the most active species pharmaceutically, and racemic ibuprofen are inherently different solid-state materials.

  7. Development of indigenous insulation material for superconducting magnets and study of its characteristics under influence of intense neutron irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Tanna, V. L.; Rao, C. V. S.; Abhangi, Mitul; Vala, Sudhirsinh; Sundaravel; Varatharajan, S.; Sivakumar, S.; Sasi, K.; Pradhan, S.

    2017-02-01

    Epoxy based glass fiber reinforced composites are the main insulation system for the superconducting magnets of fusion machines. 14MeV neutrons are generated during the DT fusion process, however the energy spectra and flux gets modified to a great extent when they reach the superconducting magnets. Mechanical properties of the GFRP insulation material is reported to degrade up to 30%. As a part of R & D activity, a joint collaboration with IGCAR, Kalpakkam has been established. The indigenous insulation material is subjected to fast neutron fluence of 1014 - 1019 n/m2 (E>0.1 MeV) in FBTR and KAMINI Reactor, India. TRIM software has been used to simulate similar kind of damage produced by neutrons by ion irradiation with 5 MeV Al ions and 3 MeV protons. Fluence of the ions was adjusted to get the same dpa. We present the test experiment of neutron irradiation of the composite material (E-glass, S-glass fiber boron free and DGEBA epoxy). The test results of tensile, inter laminar shear and electrical breakdown strength as per ASTM standards, assessment of micro-structure surface degradation before and after irradiation will be presented. MCNP simulations are carried out for neutron flux, dose and damages produced in the insulation material.

  8. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel

    DOE PAGES

    Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.; ...

    2017-09-22

    Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less

  9. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.

    Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less

  10. Editorial note

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Lee, Bill; Oversby, Virginia; van Walle, Eric

    2009-03-01

    The 3rd Symposium N on Nuclear Materials of the European Material Research Society (EMRS) held at the EMRS 08 Spring meeting; Strasbourg - May 26-30, 2008, involved 125 experts from 19 countries dealing with specific nuclear topics in the following sessions: Materials for advanced fusion systems.

  11. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    PubMed Central

    Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano

    2018-01-01

    An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders. PMID:29724071

  12. Heat flux estimates of power balance on Proto-MPEX with IR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showers, M., E-mail: mshower1@vols.utk.edu; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Biewer, T. M.

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.

  13. Feasibility study of a magnetic fusion production reactor

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.

  14. Electromechanical properties of superconductors for DOE fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekin, J.W.; Moreland, J.; Brauch, J.C.

    1986-03-01

    This is an interim report presenting data on superconductor performance under mechanical load, which are needed for the selection of superconductors and the mechanical design of superconducting magnets for DOE fusion energy systems. A further aim of the reported research is to measure and understand the electromechanical properties of promising new superconductor materials with strong application potential at high magnetic fields. Results include the following. The first strain vs. critical-current studies were made on a Chevrel-phase superconductor, PbMo/sub 6/S/sub 8/. Chevrel-phase superconductors were found to have a large strain effect, comparable in magnitude to A-15 superconductors like Nb/sub 3/Sn. Electromechanical-propertymore » measurements of an experimental liquid-tin-infiltrated Nb/sub 3/Sn conductor showed it to have an irreversible strain limit twice as large as bronze-process supercondutors and a significantly higher overall critical-current denstiy; the liquid-infiltration process thus has the potential for development of a practical Nb/sub 3/Sn conductors with both superior critical-current density and extremely good mechanical properties. Electromechanical parameters were obtained on several Nb/sub 3/Sn conductors that are candidate materials for superconducting fusion magnets, icluding conductors fabricated by the bronze, internal-tin, and jelly-roll processes. Thermal contraction data are reported on several new structural materials for superconductor sheathing and reinforcement, and a new diagnostic tool for probing the energy gap of practical superconductors has been developed using electron tunneling.« less

  15. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  16. Differences in 3D vs. 2D analysis in lumbar spinal fusion simulations.

    PubMed

    Hsu, Hung-Wei; Bashkuev, Maxim; Pumberger, Matthias; Schmidt, Hendrik

    2018-04-27

    Lumbar interbody fusion is currently the gold standard in treating patients with disc degeneration or segmental instability. Despite it having been used for several decades, the non-union rate remains high. A failed fusion is frequently attributed to an inadequate mechanical environment after instrumentation. Finite element (FE) models can provide insights into the mechanics of the fusion process. Previous fusion simulations using FE models showed that the geometries and material of the cage can greatly influence the fusion outcome. However, these studies used axisymmetric models which lacked realistic spinal geometries. Therefore, different modeling approaches were evaluated to understand the bone-formation process. Three FE models of the lumbar motion segment (L4-L5) were developed: 2D, Sym-3D and Nonsym-3D. The fusion process based on existing mechano-regulation algorithms using the FE simulations to evaluate the mechanical environment was then integrated into these models. In addition, the influence of different lordotic angles (5, 10 and 15°) was investigated. The volume of newly formed bone, the axial stiffness of the whole segment and bone distribution inside and surrounding the cage were evaluated. In contrast to the Nonsym-3D, the 2D and Sym-3D models predicted excessive bone formation prior to bridging (peak values with 36 and 9% higher than in equilibrium, respectively). The 3D models predicted a more uniform bone distribution compared to the 2D model. The current results demonstrate the crucial role of the realistic 3D geometry of the lumbar motion segment in predicting bone formation after lumbar spinal fusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  18. Biomagnetic effects: a consideration in fusion reactor development.

    PubMed Central

    Mahlum, D D

    1977-01-01

    Fusion reactors will utilize powerful magnetic fields for the confinement and heating of plasma and for the diversion of impurities. Large dipole fields generated by the plasma current and the divertor and transformer coils will radiate outward for several hundred meters, resulting in magnetic fields up to 450 gauss in working areas. Since occupational personnel could be exposed to substantial magnetic fields in a fusion power plant, an attempt has been made to assess the possible biological and health consequences of such exposure, using the existing literature. The available data indicate that magnetic fields can interact with biological material to produce effects, although the reported effects are usually small in magnitude and often unconfirmed. The existing data base is judged to be totally inadequate for assessment of potential health and environmental consequences of magnetic fields and for the establishment of appropriate standards. Requisite studies to provide an adequate data base are outlined. PMID:598345

  19. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE PAGES

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  20. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  1. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    PubMed Central

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  2. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  3. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue.

    PubMed

    Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram

    2003-01-01

    Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we strongly suggest that the final interpretation of the results from this assay be viewed in light of the other features of the case, including clinical history, histology, and immunohistochemistry, by the diagnostic pathologist. Additional studies such as FISH may be useful in clarifying the nature of equivocal or unexpected results.

  4. Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions.

    PubMed

    Malho, Jani-Markus; Ouellet-Plamondon, Claudiane; Rüggeberg, Markus; Laaksonen, Päivi; Ikkala, Olli; Burgert, Ingo; Linder, Markus B

    2015-01-12

    Biological composites are typically based on an adhesive matrix that interlocks rigid reinforcing elements in fiber composite or brick-and-mortar assemblies. In nature, the adhesive matrix is often made up of proteins, which are also interesting model systems, as they are unique among polymers in that we know how to engineer their structures with atomic detail and to select protein elements for specific interactions with other components. Here we studied how fusion proteins that consist of cellulose binding proteins linked to proteins that show a natural tendency to form multimer complexes act as an adhesive matrix in combination with nanofibrillated cellulose. We found that the fusion proteins are retained with the cellulose and that the proteins mainly affect the plastic yield behavior of the cellulose material as a function of water content. Interestingly, the proteins increased the moisture absorption of the composite, but the well-known plastifying effect of water was clearly decreased. The work helps to understand the functional basis of nanocellulose composites as materials and aims toward building model systems for molecular biomimetic materials.

  5. Reverse transcriptase polymerase chain reaction on fine needle aspirates for rapid detection of translocations in synovial sarcoma.

    PubMed

    Nilsson, G; Wang, M; Wejde, J; Kanter, L; Karlén, J; Tani, E; Kreicbergs, A; Larsson, O

    1998-01-01

    To evaluate the utilization of fine needle aspiration (FNA) biopsy to obtain material for reverse-transcriptase polymerase chain reaction (RT-PCR) in the detection of the t(X;18)(p11.2;q11.2) translocation in synovial sarcomas. We applied RT-PCR to detection of synovial sarcoma fusion gene transcripts on fine needle aspirates. Five clinical samples were first analyzed: one was a tumor previously diagnosed as malignant hemangiopericytoma, one was a poorly defined tumor, and three were suspected synovial sarcomas. FNA material was transferred directly to the RT-PCR reaction tube without RNA extraction. The t(X;18) translocation could be detected on the limited amount of material that FNA provides. In each of the cases studied the representivity of the tumor samples was confirmed microscopically. Our protocol permits analysis directly on representative samples without extraction of RNA. The results imply that RT-PCR offers reliable detection of sarcoma fusion gene transcripts on fine needle aspirates. The procedure, apart from being applicable to outpatients, is rapid and sensitive.

  6. DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.

    2017-05-01

    Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less

  7. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  8. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  9. Method for producing small hollow spheres

    DOEpatents

    Hendricks, C.D.

    1979-01-09

    Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

  10. Method and apparatus for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D.

    1979-01-01

    Method and apparatus for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T.gtoreq.600.degree. C.). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  11. Method for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1979-01-09

    Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  12. Prospects for Attractive Fusion Power

    NASA Astrophysics Data System (ADS)

    Najmabadi, Farrokh

    2006-10-01

    During the past ten years, the ARIES Team, a national team involving universities, national laboratories, and industry, has studied a variety of magnetic fusion power plants (tokamaks, stellarators, ST, and RFP). In this paper, we present the top-level requirements and goals for commercial fusion power plants developed with consultation with US utilities and industry. We will review several ARIES designs and discuss the candidate options for physics operation regime as well engineering design of various components (e.g., choice of structural material, coolant, breeder). For each option, we will discuss (1) the potential to satisfy the requirements and goals, and (2) the critical R&D needs. In particular, we will discuss fusion R&D issues which are similar to those of advanced fission systems. For tokamaks, our results indicate that dramatic improvement over first-stability operation can be obtained through either utilization of high-field magnets (e.g., high-temperature superconductors) or operation in advanced-tokamak modes (e.g., reversed-shear). In particular, if full benefits of reversed-shear operation are realized, as is assumed in ARIES-AT, tokamak power plants will have a cost of electricity competitive with other sources of electricity. Emerging technologies such as advanced Baryon cycle, high-temperature superconductor, and advanced manufacturing techniques can improve the cost and attractiveness of fusion plants.

  13. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolantmore » channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.« less

  14. Multiplier, moderator, and reflector materials for advanced lithium?vanadium fusion blankets

    NASA Astrophysics Data System (ADS)

    Gohar, Y.; Smith, D. L.

    2000-12-01

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at average loading conditions of 2 MW/m 2 surface heat flux and 10 MW/m 2 neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  15. Lumbar spinal fusion. Outcome in relation to surgical methods, choice of implant and postoperative rehabilitation.

    PubMed

    Christensen, Finn Bjarke

    2004-10-01

    Chronic low back pain (CLBP) has become one of the most common causes of disability in adults under 45 years of age and is consequently one of the most common reasons for early retirement in industrialised societies. Accordingly, CLBP represents an expensive drain on society's resources and is a very challenging area for which a consensus for rational therapy is yet to be established. The spinal fusion procedure was introduced as a treatment option for CLBP more than 70 years ago. However, few areas of spinal surgery have caused so much controversy as spinal fusion. The literature reveals divergent opinions about when fusion is indicated and how it should be performed. Furthermore, the significance of the role of postoperative rehabilitation following spinal fusion may be underestimated. There exists no consensus on the design of a program specific for rehabilitation. Ideally, for any given surgical procedure, it should be possible to identify not only possible complications relative to a surgical procedure, but also what symptoms may be expected, and what pain behaviour may be expected of a particular patient. The overall aims of the current studies were: 1) to introduce patient-based functional outcome evaluation into spinal fusion treatment; 2) to evaluate radiological assessment of different spinal fusion procedures; 3) to investigate the effect of titanium versus stainless steel pedicle screws on mechanical fixation and bone ingrowth in lumbar spinal fusion; 4) to analyse the clinical and radiological outcome of different lumbar spinal fusion techniques; 5) to evaluate complications and re-operation rates following different surgical procedures; and 6) to analyse the effect of different rehabilitation strategies for lumbar spinal fusion patients. The present thesis comprises 9 studies: 2 clinical retrospective studies, 1 clinical prospective case/reference study, 5 clinical randomised prospective studies and 1 animal study (Mini-pigs). In total, 594 patients were included in the investigation from 1979 to 1999. Each had prior to inclusion at least 2 years of CLBP and had therefore been subjected to most of the conservative treatment leg pain, due to localized isthmic spondylolisthesis grades I-II or primary or secondary degeneration. PATIENT-BASED FUNCTIONAL OUTCOME: Patients' self-reported parameters should include the impact of CLBP on daily activity, work and leisure time activities, anxiety/depression, social interests and intensity of back and leg pain. Between 1993 and 2003 approximately 1400 lumbar spinal fusion patients completed the Dallas Pain Questionnaire under prospective design studies. In 1996, the Low Back Pain Rating scale was added to the standard questionnaire packet distributed among spinal fusion patients. In our experience, these tools are valid instruments for clinical assessment of candidates for spinal fusion procedures. It is extremely difficult to interpret radiographs of both lumbar posterolateral fusion and anterior interbody fusion. Plain radiographs are clearly not the perfect media for analysis of spinal fusion, but until new and better diagnostic methods are available for clinical use, radiographs will remain the golden standard. Therefore, the development of a detailed reliable radiographic classification system is highly desirable. The classification used in the present thesis for the evaluation of posteroalteral spinal fusion, both with and without instrumentation, demonstrated good interobserver and intraobserver agreement. The classification showed acceptable reliability and may be one way to improve interstudy and intrastudy correlation of radiologic outcomes after posterolateral spinal fusion. Radiology-based evaluation of anterior lumbar interbody fusion is further complicated when cages are employed. The use of different cage designs and materials makes it almost impossible to establish a standard radiological classification system for anterior fusions. BONE-SCREW INTERFACE: Mechanical binding at the bone-screw interface was significantly greater for titanium pedicle screws than it was for stainless steel. This could be explained by the fact that the titanium screws had superior bone on-growth. There was no correlation between screw removal torques and pull-out strength. Clinically, the use of titanium and titanium-alloy pedicle screws may be preferable for osteoporotic patients and those with decreased osteogenesis. The present series of studies observed significant long-term functional improvement for approximately 70% of patients who had undergone lumbar spinal fusion procedure. Solid fusion as determined from radiographs ranged from 52% to 92% depending on the choice of surgical procedure. The choice of surgical procedure should relate to the diagnosis, as patients with isthmic spondylolisthesis (Grades I and II) are best served with posterolateral fusion without instrumentation, and patients with disc degeneration seem to gain most from instrumented posterolateral fusion or circumferential fusion. The number of perioperative complications increased with the use of pedicle screw systems to support posterolateral fusions and increased further with the use of circumferential fusions. There was no significant association between outcome result and perioperative complications. The risk of reoperation within 2 years after the spinal fusion procedure was, however, significantly lower for those who had received circumferential fusion in comparison to posterolateral fusion with instrumentation. Furthermore, the risk of non-union was found to be significantly lower for patients who had received circumferential fusion as compared to posterolateral fusion with and without instrumentation. The complications of sexual dysfunction and fusion at non-intended levels were found to be significant but without influence on the overall outcome. The patients in the Back-café group performed a succession of many daily tasks significantly better and moreover had less pain compared with both the Video and Training groups 2 years after lumbar spinal fusion. The Video group had significantly greater treatment demands outside the hospital system. This study demonstrates the importance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chicklis, E.P.; Folweiler, R.C.; Pollak, T.M.

    This is a combined study of resonant pumped solid state lasers as fusion drivers, and the development of crystalline optical materials suitable for propagation of the high peak powers associated with laser fusion research. During this period of study the concept of rare gas halide lasers was first demonstrated by the lasing of Tm:YLF at 453 nm pumped by the 353 nm energy of XeF. Excited stata densities of 5 x 10/sup 18/ cm/sup -3/ have been attained and spectroscopic measurements show that up to 60% of the pump energy can be converted into useful stored energy. Alternative lasers andmore » pumping schemes are also discussed. In all cases the potential RGH/SS systems are evaluated in respect to internal efficiency and heat loading.« less

  17. Experiment and Theory for Nuclear Reactions in Nano-Materials Show e14 - e16 Solid-State Fusion Reactions

    NASA Astrophysics Data System (ADS)

    George, Russ

    2005-03-01

    Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.

  18. Research on mechanical properties of carbon fiber /polyamide reinforced PP composites

    NASA Astrophysics Data System (ADS)

    Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli

    2017-10-01

    The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.

  19. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  20. Interaction of plasmas with lithium and tungsten fusion plasma facing components

    NASA Astrophysics Data System (ADS)

    Fiflis, Peter Robert

    One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.

  1. Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2007-11-01

    Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.

  2. The national ignition facility and atomic data

    NASA Astrophysics Data System (ADS)

    Crandall, David H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  3. Simulations of carbon sputtering in fusion reactor divertor plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marian, J; Zepeda-Ruiz, L A; Gilmer, G H

    2005-10-03

    The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less

  4. System and method for making metallic iron with reduced CO.sub.2 emissions

    DOEpatents

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  5. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.; Zylstra, A. B.; Rosenberg, M. J.; Glebov, V. Yu.

    2016-11-01

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  6. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility.

    PubMed

    Sutcliffe, G D; Milanese, L M; Orozco, D; Lahmann, B; Gatu Johnson, M; Séguin, F H; Sio, H; Frenje, J A; Li, C K; Petrasso, R D; Park, H-S; Rygg, J R; Casey, D T; Bionta, R; Turnbull, D P; Huntington, C M; Ross, J S; Zylstra, A B; Rosenberg, M J; Glebov, V Yu

    2016-11-01

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  7. PREFACE: Light element atom, molecule and radical behaviour in the divertor and edge plasma regions

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kung

    2015-01-01

    This volume of Journal of Physics: Conference Series contains contributions by participants in an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on "Light element atom, molecule and radical behaviour in the divertor and edge plasma regions" (in magnetic fusion devices). Light elements are the dominant impurity species in fusion experiments and in the near-wall plasma they occur as atoms or ions and also as hydrides and other molecules and molecular ions. Hydrogen (H or D, and T in a reactor) is the dominant species in fusion experiments, but all light elements He - O and Ne are of interest for various reasons. Helium is a product of the D+T fusion reaction and is introduced in experiments for transport studies. Lithium is used for wall coating and also as a beam diagnostic material. Beryllium is foreseen as a wall material for the ITER experiment and is used on the Joint European Torus (JET) experiment. Boron may be used as a coating material for the vessel walls. Carbon (graphite or carbon-fiber composite) is often used as the target material for wall regions subject to high heat load. Nitrogen may be used as a buffer gas for edge plasma cooling. Oxygen is a common impurity in experiments due to residual water vapor. Finally, neon is another choice as a buffer gas. Data for collisional and radiative processes involving these species are important for plasma modelling and for diagnostics. The participants in the CRP met 3 times over the years 2009-2013 for a research coordination meeting. Reports and presentation materials for these meetings are available through the web page on coordinated research projects of the (IAEA) Atomic and Molecular Data Unit [1]. Some of the numerical data generated in the course of the CRP is available through the ALADDIN database [2]. The IAEA takes the opportunity to thank the participants in the CRP for their dedicated efforts in the course of the CRP and for their contributions to this volume. The IAEA scientific officers for this project were Mr Bastiaan J. Braams and Ms Hyun-Kyung Chung. [1] See: https://www-amdis.iaea.org/CRP/ [2] See: https://www-amdis.iaea.org/ALADDIN/

  8. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  9. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  10. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  11. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  12. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability

    PubMed Central

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-01-01

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726–35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. PMID:28213515

  13. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-04-07

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A post-market surveillance analysis of the safety of hydroxyapatite-derived products as bone graft extenders or substitutes for spine fusion.

    PubMed

    Barbanti Brodano, G; Griffoni, C; Zanotti, B; Gasbarrini, A; Bandiera, S; Ghermandi, R; Boriani, S

    2015-10-01

    Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion, because of its known osteoinductive and osteoconductive properties. Considering its autogenous origin, the use of ICBG has not been associated to an increase of intraoperative or postoperative complications directly related to the surgery. However, complications related to the harvesting procedure and to the donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. The family of ceramic-based bone grafts has been widely used and studied during the last years for spine surgical procedures in order to reduce the need for iliac crest bone grafting and the consequent morbidity associated to the harvesting procedures. We report here the results of a post-market surveillance analysis performed on four independent cohorts of patients (115 patients) to evaluate the safety of three different formulations of hydroxyapatite-derived products used as bone graft extenders/substitutes for lumbar arthrodesis. No intraoperative or post-operative complications related to the use of hydroxyapatite-derived products were detected, during medium and long follow up period (minimum 12 months-maximum 5 years). This post-market surveillance analysis evidenced the safety of ceramic products as bone graft extenders or substitutes for spine fusion. Moreover, the evidence of the safety of hydroxyapatite-derived products allows to perform clinical studies aimed at evaluating the fusion rates and the clinical outcomes of these materials as bone graft extenders/substitutes, in order to support their use as an alternative to ICBG for spine fusion.

  15. Present status of liquid metal research for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  16. The dry-heat loss effect of melt-spun phase change material fibres.

    PubMed

    Tjønnås, Maria Suong; Færevik, Hilde; Sandsund, Mariann; Reinertsen, Randi E

    2015-01-01

    Phase change materials (PCM) have the ability to store latent heat when they change phases, a property that gives clothing that incorporates PCM its cooling effect. This study investigated the effect of dry-heat loss (cooling) of a novel melt-spun PCM fibre on the basis of the area covered, mass, the latent heat of fusion and melting temperature, compared to a known PCM clothing product. PCM fibres with melting temperatures of 28.4 and 32.0°C and PCM packs with melting temperatures of 28.0 and 32.0°C were studied. The results showed that the PCM fibres had a larger initial peak cooling effect than that of the PCM packs. The duration of the cooling effect of PCM fibres was primarily dependent on the PCM mass and the latent heat of fusion capacity, and secondly on the covered area and melting temperature of the PCM. This study investigates the cooling effect of PCM fibres on a thermal manikin. The PCM fibres had a high but short-lasting cooling effect. This study contributes to the knowledge of how the body's temperature regulation may be affected by the cooling properties of clothing that incorporates PCM.

  17. Scientific and technical challenges on the road towards fusion electricity

    NASA Astrophysics Data System (ADS)

    Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.

    2017-10-01

    The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.

  18. System and method for producing metallic iron

    DOEpatents

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  19. Proposal for a possible use of fusion power for hydrogen production within this century

    NASA Astrophysics Data System (ADS)

    Seifritz, W.

    Consideration is given to the possibility of building a commercial fusion power reactor before the turn of the century. The main element incorporated by the proposed system is the PACER project powerplant, which employs the explosive deuterium-deuterium (D-D) fusion process. Because all required technology already exists, PACER is believed to represent the quickest way to harness fusion on a large scale. It is argued that such reactors, scattered throughout the world on a series of 'energy parks', will meet a 30 TW global energy demand after the depletion of fossil fuel resources. Consideration is also given to both the breeding of fissile materials and the electrolytic production of hydrogen; a by-product of which would be deuterium fuel.

  20. Fusion energy division annual progress report, period ending December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less

  1. Pre-terrestrial origin of rust in the Nakhla meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1990-01-01

    The authors present quantative elemental compositions and summarize textural evidence for the pre-terrestrial origin of rust on the Nakhla meteorite. The material in question is called 'rust' because its phase composition remains unknown. Compelling evidence for the pre-terrestrial origin of the rust is found in rust veins truncated by fusion crust and preserved as faults in sutured igneous crystals. Rust veins that approach the meteorite's fusion crust become discontinuous and exhibit vugs that suggest partial decrepitation; no veins that penetrate the fusion crust have been found. Because the rust probably contains volatile compounds, it is reasonable to expect that heating near the ablation surface (formed during atmospheric entry to Earth) would encourage devolatilization of the rust. Hence, the absence of rust veins in fusion crust and vugs in rust veins near fusion crust clearly imply that the rust existed in the meteorite before atmospheric entry.

  2. Overview of the present progress and activities on the CFETR

    NASA Astrophysics Data System (ADS)

    Wan, Yuanxi; Li, Jiangang; Liu, Yong; Wang, Xiaolin; Chan, Vincent; Chen, Changan; Duan, Xuru; Fu, Peng; Gao, Xiang; Feng, Kaiming; Liu, Songlin; Song, Yuntao; Weng, Peide; Wan, Baonian; Wan, Farong; Wang, Heyi; Wu, Songtao; Ye, Minyou; Yang, Qingwei; Zheng, Guoyao; Zhuang, Ge; Li, Qiang; CFETR Team

    2017-10-01

    The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.

  3. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses

    PubMed Central

    Clough, Bret H.; McNeill, Eoin P.; Palmer, Daniel; Krause, Ulf; Bartosh, Thomas J.; Chaput, Christopher D.; Gregory, Carl A.

    2016-01-01

    BACKGROUND CONTEXT Spine pain and the disability associated with it are epidemic in the United States. According to the National Center for Health Statistics, more than 650,000 spinal fusion surgeries are performed annually in the United States, and yet there is a failure rate of 15%–40% when standard methods employing current commercial bone substitutes are used. Autologous bone graft is the gold standard in terms of fusion success, but the morbidity associated with the procedure and the limitations in the availability of sufficient material have limited its use in the majority of cases. A freely available and immunologically compatible bone mimetic with the properties of live tissue is likely to substantially improve the outcome of spine fusion procedures without the disadvantages of autologous bone graft. PURPOSE This study aimed to compare a live human bone tissue analog with autologous bone grafting in an immunocompromised rat model of posterolateral fusion. DESIGN/SETTING This is an in vitro and in vivo preclinical study of a novel human stem cell–derived construct for efficacy in posterolateral lumbar spine fusion. METHODS Osteogenically enhanced human mesenchymal stem cells (OEhMSCs) were generated by exposure to conditions that activate the early stages of osteogenesis. Immunologic characteristics of OEhMSCs were evaluated in vitro. The secreted extracellular matrix from OEhMSCs was deposited on a clinical-grade gelatin sponge, resulting in bioconditioned gelatin sponge (BGS). Bioconditioned gelatin sponge was used alone, with live OEhMSCs (BGS+OEhMSCs), or with whole human bone marrow (BGS+hBM). Efficacy for spine fusion was determined by an institutionally approved animal model using 53 nude rats. RESULTS Bioconditioned gelatin sponge with live OEhMSCs did not cause cytotoxicity when incubated with immunologically mismatched lymphocytes, and OEhMSCs inhibited lymphocyte expansion in mixed lymphocyte assays. Bioconditioned gelatin sponge with live OEhMSC and BGS+hBM constructs induced profound bone growth at fusion sites in vivo, with a comparable rate of fusion with syngeneic bone graft (negative [0 of 10], BGS alone [0 of 10], bone graft [7 of 10], BGS+OEhMSC [10 of 15], and BGS+hBM [8 of 8]). CONCLUSIONS Collectively, these studies demonstrate that BGS+OEhMSC constructs possess low immunogenicity and drive vertebral fusion with efficiency matching syngeneic bone graft in rodents. We also demonstrate that BGS serves as a promising scaffold for spine fusion when combined with hBM. PMID:27765715

  4. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses.

    PubMed

    Clough, Bret H; McNeill, Eoin P; Palmer, Daniel; Krause, Ulf; Bartosh, Thomas J; Chaput, Christopher D; Gregory, Carl A

    2017-03-01

    Spine pain and the disability associated with it are epidemic in the United States. According to the National Center for Health Statistics, more than 650,000 spinal fusion surgeries are performed annually in the United States, and yet there is a failure rate of 15%-40% when standard methods employing current commercial bone substitutes are used. Autologous bone graft is the gold standard in terms of fusion success, but the morbidity associated with the procedure and the limitations in the availability of sufficient material have limited its use in the majority of cases. A freely available and immunologically compatible bone mimetic with the properties of live tissue is likely to substantially improve the outcome of spine fusion procedures without the disadvantages of autologous bone graft. This study aimed to compare a live human bone tissue analog with autologous bone grafting in an immunocompromised rat model of posterolateral fusion. This is an in vitro and in vivo preclinical study of a novel human stem cell-derived construct for efficacy in posterolateral lumbar spine fusion. Osteogenically enhanced human mesenchymal stem cells (OEhMSCs) were generated by exposure to conditions that activate the early stages of osteogenesis. Immunologic characteristics of OEhMSCs were evaluated in vitro. The secreted extracellular matrix from OEhMSCs was deposited on a clinical-grade gelatin sponge, resulting in bioconditioned gelatin sponge (BGS). Bioconditioned gelatin sponge was used alone, with live OEhMSCs (BGS+OEhMSCs), or with whole human bone marrow (BGS+hBM). Efficacy for spine fusion was determined by an institutionally approved animal model using 53 nude rats. Bioconditioned gelatin sponge with live OEhMSCs did not cause cytotoxicity when incubated with immunologically mismatched lymphocytes, and OEhMSCs inhibited lymphocyte expansion in mixed lymphocyte assays. Bioconditioned gelatin sponge with live OEhMSC and BGS+hBM constructs induced profound bone growth at fusion sites in vivo, with a comparable rate of fusion with syngeneic bone graft (negative [0 of 10], BGS alone [0 of 10], bone graft [7 of 10], BGS+OEhMSC [10 of 15], and BGS+hBM [8 of 8]). Collectively, these studies demonstrate that BGS+OEhMSC constructs possess low immunogenicity and drive vertebral fusion with efficiency matching syngeneic bone graft in rodents. We also demonstrate that BGS serves as a promising scaffold for spine fusion when combined with hBM. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dynamic Compressibility of High-Porosity Dampers of Thermal and Shock Loadings:. Modeling and Experiment

    NASA Astrophysics Data System (ADS)

    Bragov, Anatoly; Konstantinov, Alexander; Lomunov, Andrey; Sadyrin, Anatoly; Sergeichev, Ivan; Kruszka, Leopold

    High-porosity materials, such as chamotte and mullite, possess a heat of fusion. Owing to their properties, these materials can be used with success as damping materials in containers for airplane, automobile, etc. transportation of radioactive or highly toxic materials. Experimental studies of the dynamic properties have been executed with using some original modifications of the Kolsky method. These modified experiments have allowed studying the dynamic compressibility of high-porosity chamotte at deformations up to 80% and amplitudes up to 50 MPa. The equations of the mathematical model describing shock compacting of chamotte as a highly porous, fragile, collapsing material are presented. Deformation of high-porous materials at non-stationary loadings is usually accompanied by fragile destruction of interpore partitions as observed in other porous ceramic materials. Comparison of numerical and experimental results has shown their good conformity.

  6. Biomechanics of Artificial Disc Replacements Adjacent to a 2-Level Fusion in 4-Level Hybrid Constructs: An In Vitro Investigation

    PubMed Central

    Liao, Zhenhua; Fogel, Guy R.; Wei, Na; Gu, Hongsheng; Liu, Weiqiang

    2015-01-01

    Background The ideal procedure for multilevel cervical degenerative disc diseases remains controversial. Recent studies on hybrid surgery combining anterior cervical discectomy and fusion (ACDF) and artificial cervical disc replacement (ACDR) for 2-level and 3-level constructs have been reported in the literature. The purpose of this study was to estimate the biomechanics of 3 kinds of 4-level hybrid constructs, which are more likely to be used clinically compared to 4-level arthrodesis. Material/Methods Eighteen human cadaveric spines (C2–T1) were evaluated in different testing conditions: intact, with 3 kinds of 4-level hybrid constructs (hybrid C3–4 ACDR+C4–6 ACDF+C6–7ACDR; hybrid C3–5ACDF+C5–6ACDR+C6–7ACDR; hybrid C3–4ACDR+C4–5ACDR+C5–7ACDF); and 4-level fusion. Results Four-level fusion resulted in significant decrease in the C3–C7 ROM compared with the intact spine. The 3 different 4-level hybrid treatment groups caused only slight change at the instrumented levels compared to intact except for flexion. At the adjacent levels, 4-level fusion resulted in significant increase of contribution of both upper and lower adjacent levels. However, for the 3 hybrid constructs, significant changes of motion increase far lower than 4P at adjacent levels were only noted in partial loading conditions. No destabilizing effect or hypermobility were observed in any 4-level hybrid construct. Conclusions Four-level fusion significantly eliminated motion within the construct and increased motion at the adjacent segments. For all 3 different 4-level hybrid constructs, ACDR normalized motion of the index segment and adjacent segments with no significant hypermobility. Compared with the 4-level ACDF condition, the artificial discs in 4-level hybrid constructs had biomechanical advantages compared to fusion in normalizing adjacent level motion. PMID:26694835

  7. Biomechanics of Artificial Disc Replacements Adjacent to a 2-Level Fusion in 4-Level Hybrid Constructs: An In Vitro Investigation.

    PubMed

    Liao, Zhenhua; Fogel, Guy R; Wei, Na; Gu, Hongsheng; Liu, Weiqiang

    2015-12-23

    BACKGROUND The ideal procedure for multilevel cervical degenerative disc diseases remains controversial. Recent studies on hybrid surgery combining anterior cervical discectomy and fusion (ACDF) and artificial cervical disc replacement (ACDR) for 2-level and 3-level constructs have been reported in the literature. The purpose of this study was to estimate the biomechanics of 3 kinds of 4-level hybrid constructs, which are more likely to be used clinically compared to 4-level arthrodesis. MATERIAL AND METHODS Eighteen human cadaveric spines (C2-T1) were evaluated in different testing conditions: intact, with 3 kinds of 4-level hybrid constructs (hybrid C3-4 ACDR+C4-6 ACDF+C6-7ACDR; hybrid C3-5ACDF+C5-6ACDR+C6-7ACDR; hybrid C3-4ACDR+C4-5ACDR+C5-7ACDF); and 4-level fusion. RESULTS Four-level fusion resulted in significant decrease in the C3-C7 ROM compared with the intact spine. The 3 different 4-level hybrid treatment groups caused only slight change at the instrumented levels compared to intact except for flexion. At the adjacent levels, 4-level fusion resulted in significant increase of contribution of both upper and lower adjacent levels. However, for the 3 hybrid constructs, significant changes of motion increase far lower than 4P at adjacent levels were only noted in partial loading conditions. No destabilizing effect or hypermobility were observed in any 4-level hybrid construct. CONCLUSIONS Four-level fusion significantly eliminated motion within the construct and increased motion at the adjacent segments. For all 3 different 4-level hybrid constructs, ACDR normalized motion of the index segment and adjacent segments with no significant hypermobility. Compared with the 4-level ACDF condition, the artificial discs in 4-level hybrid constructs had biomechanical advantages compared to fusion in normalizing adjacent level motion.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Michael K; Parish, Chad M

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-correctedmore » scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.« less

  9. First wall for polarized fusion reactors

    DOEpatents

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  10. Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation

    PubMed Central

    Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.

    2011-01-01

    Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with conventional image guidance. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101985/-/DC1 PMID:21734159

  11. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental data taken from the ET plasma facilities. Upon validation of the boundary layer models, computational experiments were conducted with the purpose of evaluation the PFCs' erosion during plasma disruption in Tokamak fusion reactors. Erosion of a set of selected low-Z and high-Z materials were analyzed and discussed. For metallic plasma facing materials under the impact of hard and long time-scale disruption events, melting and melt-layer splashing become dominate erosion mechanisms during plasma-material interaction. In order to realistically assess the erosion of the metallic fusion reactor components, the fourth paper accounts for the various mechanisms by which material evolved from PFCs due to melting and vaporization, with a developed melting and splattering/splashing model incorporated in the ET plasma code. Also, the shielding effect associated with melt-layer and vapor-layer is investigated. The quantitative results of material erosion with the boundary layer effects including a vapor layer, melt layer and splashing effects is a new model and an important step towards achieving a better understanding of plasma-material interactions under exposure to such high heat flux conditions.

  12. Development of Measurement Methods for Detection of Special Nuclear Materials using D-D Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki

    2015-10-01

    For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.

  13. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  14. Advanced manufacturing—A transformative enabling capability for fusion

    DOE PAGES

    Nygren, Richard E.; Dehoff, Ryan R.; Youchison, Dennis L.; ...

    2018-05-24

    Additive Manufacturing (AM) can create novel and complex engineered material structures. Features such as controlled porosity, micro-fibers and/or nano-particles, transitions in materials and integral robust coatings can be important in developing solutions for fusion subcomponents. A realistic understanding of this capability would be particularly valuable in identifying development paths. Major concerns for using AM processes with lasers or electron beams that melt powder to make refractory parts are the power required and residual stresses arising in fabrication. A related issue is the required combination of lasers or e-beams to continue heating of deposited material (to reduce stresses) and to depositmore » new material at a reasonable built rate while providing adequate surface finish and resolution for meso-scale features. In conclusion, Some Direct Write processes that can make suitable preforms and be cured to an acceptable density may offer another approach for PFCs.« less

  15. Advanced manufacturing—A transformative enabling capability for fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygren, Richard E.; Dehoff, Ryan R.; Youchison, Dennis L.

    Additive Manufacturing (AM) can create novel and complex engineered material structures. Features such as controlled porosity, micro-fibers and/or nano-particles, transitions in materials and integral robust coatings can be important in developing solutions for fusion subcomponents. A realistic understanding of this capability would be particularly valuable in identifying development paths. Major concerns for using AM processes with lasers or electron beams that melt powder to make refractory parts are the power required and residual stresses arising in fabrication. A related issue is the required combination of lasers or e-beams to continue heating of deposited material (to reduce stresses) and to depositmore » new material at a reasonable built rate while providing adequate surface finish and resolution for meso-scale features. In conclusion, Some Direct Write processes that can make suitable preforms and be cured to an acceptable density may offer another approach for PFCs.« less

  16. Health physics measurement of Princeton Tokamaks, 1977-1987.

    PubMed

    Stencel, J R; Gilbert, J D; Couch, J G; Griesbach, O A; Fennimore, J J; Greco, J M

    1989-06-01

    The Princeton Plasma Physics Laboratory (PPPL) began fusion experiments in 1951. In the early years, the major health physics concerns were associated with x radiation produced by energetic electrons in the plasma. Within the past year, neutron and 3H production from 2H-2H (represented hereafter as D-D) reactions has increased significantly on the larger fusion devices. Tritium retention noted in graphite tiles underscores the significance of material selection in present and future 3H-fueled fusion devices. This paper reports on operational health physics radiation measurements made on various PPPL machines over the past 10 y.

  17. Users' guide on socket heat fusion joining of polyethylene gas pipes. Volume 1. Topical report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setups for conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  18. Technical reference on socket heat fusion joining of polyethylene gas pipes. Volume 2. Topical Report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setup conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and, physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  19. Improving nondestructive characterization of dual phase steels using data fusion

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Haghighi, Mehdi Salkhordeh; Akhlaghi, Iman Ahadi

    2018-07-01

    The aim of this paper is to introduce a novel methodology for nondestructive determination of microstructural and mechanical properties (due to the various heat treatments), as well as thickness variations (as a result of corrosion effect) of dual phase steels. The characterizations are based on the variations in the electromagnetic properties extracted from magnetic hysteresis loop and eddy current methods which are coupled with a data fusion system. This study was conducted on six groups of samples (with different thicknesses, from 1 mm to 4 mm) subjected to the various intercritical annealing processes to produce different fractions of martensite/ferrite phases and consequently, changes in hardness, yield strength and ultra tensile strength (UTS). This study proposes a novel soft computing technique to increase accuracy of nondestructive measurements and resolving overlapped NDE outputs related to the various samples. The empirical results indicate that applying the proposed data fusion technique on the two electromagnetic NDE data sets nondestructively, causes an increase in the accuracy and reliability of determining material features including ferrite fraction, hardness, yield strength, UTS, as well as thickness variations.

  20. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  1. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  2. Development of tungsten armor and bonding to copper for plasma-interactive components

    NASA Astrophysics Data System (ADS)

    Smid, I.; Akiba, M.; Vieider, G.; Plöchl, L.

    1998-10-01

    For the highest sputtering threshold of all possible candidates, tungsten will be the most likely armor material in highly loaded plasma-interactive components of commercially relevant fusion reactors. The development of new materials, as well as joining and coating techniques are needed to find the best balance in plasma compatibility, lifetime, reliability, neutron irradiation resistance, and safety. Further important issues for selection are availability, costs of machining and production, etc. Tungsten doped with lanthanum oxide is a commercially available W grade for electrodes, designed for low electron work function, higher recrystallization temperature, reduced secondary grain growth, and machinability at relatively low costs. W-Re and related tungsten base alloys are preferred for application at high temperatures, when high strength, high thermal shock and recrystallization resistance are required. Due to the high costs and limited global availability of Re, however, the amount of such alloys in a commercial reactor should be kept low. Newly measured material properties up to high temperatures are presented for lanthanated and W-Re alloys, and the impact on fusion application is discussed. Recently developed coatings of chemical vapor deposited tungsten (CVD-W) on copper substrates have proven to be resistant to repeated thermal and shock loading. Layers of more than 5 mm, as required for the International Thermonuclear Experimental Reactor (ITER), became available. Vacuum plasma sprayed tungsten (VPS-W) in particular is attractive for its lower costs, and the potential of in situ repair. However, the advantage of sacrificial plasma-interactive tungsten coatings in long-term fusion devices has yet to be demonstrated. A durable and reliable joining of bulk tungsten to copper is needed to achieve an acceptable component lifetime in a fusion environment. The material properties of the copper alloys proposed for ITER, and their impact on the quality of bonding to tungsten is discussed. Future materials R&D should concern issues such as plasma compatibility, and above all neutron irradiation damage of promising tungsten-copper joints.

  3. High heat flux composites for plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Ting, J.-M.; Lake, M. L.

    1994-09-01

    Vapor grown carbon fiber (VGCF) has been shown to have the highest thermal conductivity of all carbon fiber currently available. This property holds potential of increasing the thickness and longevity of fusion reactor plasma-facing materials. The use of VGCF as a reinforcement in carbon/carbon composites has been explored, as well as methods of joining these plasma-facing materials to copper alloy heat pipes. In extensive study of VGCF/carbon matrix composites, the influence of fiber volume fraction, density, densification method, and heat treatment on composite properties were investigated. Joining of VGCF/carbon composites to copper and beryllium to copper using a novel alloying method was studied. The joint interface was examined by RBS analysis and thermal conductance.

  4. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  5. Inertial Fusion and High-Energy-Density Science in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarter, C B

    2001-09-06

    Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less

  6. Microstructure characterisation of Ti-6Al-4V from different additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Neikter, M.; Åkerfeldt, P.; Pederson, R.; Antti, M.-L.

    2017-10-01

    The focus of this work has been microstructure characterisation of Ti-6Al-4V manufactured by five different additive manufacturing (AM) processes. The microstructure features being characterised are the prior β size, grain boundary α and α lath thickness. It was found that material manufactured with powder bed fusion processes has smaller prior β grains than the material from directed energy deposition processes. The AM processes with fast cooling rate render in thinner α laths and also thinner, and in some cases discontinuous, grain boundary α. Furthermore, it has been observed that material manufactured with the directed energy deposition processes has parallel bands, except for one condition when the parameters were changed, while the powder bed fusion processes do not have any parallel bands.

  7. Development of High-Z Materials with Improved Toughness for High Heat Flux Components

    NASA Astrophysics Data System (ADS)

    Kurishita, Hiroaki; Kitsunai, Yuji; Kuwabara, Tetsuya; Hasegawa, Masayuki; Hiraoka, Yutaka; Takida, Tomohiro; Igarashi, Tadashi

    Tungsten is superior to other materials in physical and mechanical properties for use as high heat flux components in future fusion reactors. The key issue of the metal is to improve the low temperature embrittlement, the recrystallization embrittlement and the irradiation embrittlement. An alloy design and microstructure control for achieving simultaneous and significant improvements in those embrittlements are described and are applied to tungsten and molybdenum which has quite similar properties as tungsten. The result of the application is presented for each of the embrittlement, with considerable success. Emphasis is placed on the occurrence of RIDU (Radiation Induced Ductilization) because RIDU is expected to provide the scenario to overcome severe irradiation embrittlement that is the most crucial problem for structure materials exposed in fusion environment.

  8. Progress in FMIT test assembly development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opperman, E.K.; Vogel, M.A.; Shen, E.J.

    Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10/sup 15/ n/cm/sup 2/-s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments calledmore » Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations.« less

  9. Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate

    NASA Astrophysics Data System (ADS)

    Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.

    2017-09-01

    Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.

  10. Irradiation embrittlement characterization of the EUROFER 97 material

    NASA Astrophysics Data System (ADS)

    Kytka, M.; Brumovsky, M.; Falcnik, M.

    2011-02-01

    The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV. Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation. Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm 3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the "Master curve" approach. Moreover, J- R dependencies were determined and analyzed. The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given. Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.

  11. Progress in extrapolating divertor heat fluxes towards large fusion devices

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.

  12. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    NASA Astrophysics Data System (ADS)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  13. 1.5 MW RF Load for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Marsden, David; Collins, George

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less

  14. Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel

    DOE PAGES

    Schaller, Rebecca; Taylor, Jason; Rodelas, Jeffrey; ...

    2017-02-20

    The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. Lastly, a micro-electrochemical cell was employed to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥ 50 µm.

  15. Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaller, Rebecca; Taylor, Jason; Rodelas, Jeffrey

    The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. Lastly, a micro-electrochemical cell was employed to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥ 50 µm.

  16. The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions

    DOE PAGES

    Rapp, J.

    2017-07-12

    Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less

  17. The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, J.

    Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less

  18. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less

  19. HIDRA-MAT: A Material Analysis Tool for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Andruczyk, Daniel; Rizkallah, Rabel; Bedoya, Felipe; Kapat, Aveek; Schamis, Hanna; Allain, Jean Paul

    2017-10-01

    The former WEGA stellarator which is now operating as HIDRA at the University of Illinois will be almost exclusively used to study the intimate relationship between the plasma interacting with surfaces of different materials. A Material Analysis Tool (HIDRA-MAT) is being designed and will be built based on the successful Material Analysis and Particle Probe (MAPP) which is currently used on NSTX-U at PPPL. This will be an in-situ material diagnostic probe, meaning that all analysis can be done without breaking vacuum. This allows surface changes to be studied in real-time. HIDRA-MAT will consist of several in-situ diagnostics including Langmuir probes (LP), Thermal Desorption Spectroscopy (TDS), X-ray Photo Spectroscopy (XPS) and Ion Scattering Spectroscopy (ISS). This presentation will outline the HIDRA-MAT diagnostic and initial design, as well as its integration into the HIDRA system.

  20. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    NASA Astrophysics Data System (ADS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential candidate FW armor materials.

  1. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  2. 46 CFR 56.60-1 - Acceptable materials and specifications (replaces 123 and Table 126.1 in ASME B31.1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Low temperature steel pipe Sec. VIII of the ASME Boiler and Pressure Vessel Code (5). Pipe, welded: A... only, fusion welded steel pipe ASME B31.1 (8). A 358 Electric fusion welded pipe, high temperature... Seamless and welded (no added filler metal) carbon and low alloy tubing for low temperature UCS23, Sec...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P.J.

    Lasers and laser-based sources are now routinely used to control and manipulate nuclear processes, e.g. fusion, fission and resonant nuclear excitation. Two such “nuclear photonics” activities with the potential for profound societal impact will be reviewed in this presentation: the pursuit of laser-driven inertial confinement fusion at the National Ignition Facility and the development of laser-based, mono-energetic gamma-rays for isotope-specific detection, assay and imaging of materials.

  4. Effect of equation of state on laser imprinting by comparing diamond and polystyrene foils

    NASA Astrophysics Data System (ADS)

    Kato, H.; Shigemori, K.; Nagatomo, H.; Nakai, M.; Sakaiya, T.; Ueda, T.; Terasaki, H.; Hironaka, Y.; Shimizu, K.; Azechi, H.

    2018-03-01

    We present herein a comprehensive study of how the equation of state affects laser imprinting by nonuniform laser irradiation of an inertial fusion target. It has been suggested that a stiffer and denser material would reduce laser imprinting based on the equation of motion with pressure perturbation. We examine the detailed temporal evolution of the imprint amplitude by using the two-dimensional radiation hydrodynamic simulation PINOCO-2D for diamond, which is a candidate stiff-ablator material for inertial fusion targets. The simulated laser imprinting amplitude is compared with experimental measurements of areal-density perturbations obtained by using face-on x-ray backlighting for diamond and polystyrene (PS) (the latter as a reference). The experimental results are well reproduced by the results of the PINOCO-2D simulation, which indicates that the imprinting amplitude due to nonuniform irradiation (average intensity, 4.0 × 1012 to 5.0 × 1013) differs by a factor of two to three between diamond and PS. The difference in laser imprinting is mainly related to the material density and compressibility. These parameters are key factors that determine the laser imprinting amplitude.

  5. Fusion Ash Separation in the Princeton Field-Reversed Configuration Reactor

    NASA Astrophysics Data System (ADS)

    Abbate, Joseph; Yeh, Meagan; McGreivy, Nick; Cohen, Samuel

    2016-10-01

    The Princeton Field-Reversed Configuration (PFRC) concept relies on low-neutron production by D-3He fusion to enable small, safe nuclear-fusion reactors to be built, an approach requiring rapid and efficient extraction of fusion ash and energy produced by D-3He fusion reactions. The ash exhaust stream would contain energetic (0.1-1 MeV) protons, T, 3He, and 4He ions and nearly 1e5 cooler (ca. 100 eV) D ions. The T extracted from the reactor would be a valuable fusion product in that it decays into 3He, which could be used as fuel. If the T were not extracted it would be troublesome because of neutron production by the D-T reaction. This paper discusses methods to separate the various species in a PFRC reactor's exhaust stream. First, we discuss the use of curved magnetic fields to separate the energetic from the cool components. Then we discuss exploiting material properties, specifically reflection, sputtering threshold, and permeability, to allow separation of the hydrogen from the helium isotopes. DOE Contract Number DE-AC02-09CH11466.

  6. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  7. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. Several topical reports are being prepared on the materials and processes required for the LIFE engine. Specific materials of interest include: (1) Baseline TRISO Fuel (TRISO); (2) Inert Matrix Fuel (IMF) & Other Alternative Solid Fuels; (3) Beryllium (Be) & Molten Lead Blankets (Pb/PbLi); (4) Molten Salt Coolants (FLIBE/FLiNaBe/FLiNaK); (5) Molten Salt Fuels (UF4 + FLIBE/FLiNaBe); (6) Cladding Materials for Fuel & Beryllium; (7) ODS FM Steel (ODS); (8) Solid First Wall (SFW); and (9) Solid-State Tritium Storage (Hydrides).« less

  8. Stochastic clustering of material surface under high-heat plasma load

    NASA Astrophysics Data System (ADS)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  9. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  10. Data fusion of multi-scale representations for structural damage detection

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-01-01

    Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.

  11. Comparison of joining processes for Haynes 230 nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Williston, David Hugh

    Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.

  12. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    DOE PAGES

    Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.; ...

    2015-08-05

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti 3SiC 2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects.more » Finite element elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti 3SiC 2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.« less

  13. Equation of state and shock compression of carbon-hydrogen and other ablator materials

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Militzer, B.; Whitley, H.

    2017-12-01

    Dynamic compression experiments in planetary interior studies and fusion sciences often implement carbon-hydrogen or other low-Z elements or compounds as ablators. Accurate quantum simulations of these materials enables theoretical investigation of the equation of state (EOS) over temperatures and pressures that are difficult to access experimentally, and can help guide the design of targets for future experiments. In this work, we use path integral Monte Carlo and density functional molecular dynamics to calculate the equation of state of a series of hydrocarbons and other low-Z materials (B, B4C, and BN). For the hydrocarbon with C:H=1:1, we predict the pressure-compression profile to agree remarkably with experiments at low pressures. At high pressures, we find the Hugoniot curve displays a single compression maximum of 4.7 that corresponds to K-shell ionization. This is slightly higher than that of glow-discharge polymers but both occur at the same pressure (0.47 Gbar). We study the linear mixing approximation for the EOS of hydrocarbons and demonstrate its validity at stellar core conditions. We examine the sensitivity of the fusion yield to the EOS of these candidate ablator materials in radiation-hydrodynamic simulations of a direct-drive implosion. We also make detailed comparisons of the EOS and atomic and electronic structure of C and BN, which is useful for systematic improvement of existing EOS models. Prepared by LLNL under Contract DE-AC52-07NA27344.

  14. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagatedmore » both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.« less

  15. Segmental kyphosis after cervical interbody fusion with stand-alone polyetheretherketone (PEEK) cages: a comparative study on 2 different PEEK cages.

    PubMed

    Kim, Chi Heon; Chung, Chun Kee; Jahng, Tae-Ahn; Park, Sung Bae; Sohn, Seil; Lee, Sungjoon

    2015-02-01

    Retrospective comparative study. Two polyetheretherketone (PEEK) cages of different designs were compared in terms of the postoperative segmental kyphosis after anterior cervical discectomy and fusion. Segmental kyphosis occasionally occurs after the use of a stand-alone cage for anterior cervical discectomy and fusion. Although PEEK material seems to have less risk of segmental kyphosis compared with other materials, the occurrence of segmental kyphosis for PEEK cages has been reported to be from 0% to 29%. There have been a few reports that addressed the issue of PEEK cage design. A total of 41 consecutive patients who underwent single-level anterior discectomy and fusion with a stand-alone cage were included. Either a round tube-type (Solis; 18 patients, S-group) or a trapezoidal tube-type (MC+; 23 patients, M-group) cage was used. The contact area between the cage and the vertebral body is larger in MC+ than in Solis, and anchoring pins were present in the Solis cage. The effect of the cage type on the segmental angle (SA) (lordosis vs. kyphosis) at postoperative month 24 was analyzed. Preoperatively, segmental lordosis was present in 12/18 S-group and 16/23 M-group patients (P=0.84). The SA was more lordotic than the preoperative angle in both groups just after surgery, with no difference between groups (P=0.39). At 24 months, segmental lordosis was observed in 9/18 S-group and 20/23 M-group patients (P=0.01). The patients in M-group were 7.83 times more likely than patients in S-group (P=0.04; odds ratio, 7.83; 95% confidence interval, 1.09-56.28) not to develop segmental kyphosis. The design of the PEEK cage used may influence the SA, and this association needs to be considered when using stand-alone PEEK cages.

  16. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less

  17. Feasibility study of a fission-suppressed Tokamak fusion breeder

    NASA Astrophysics Data System (ADS)

    Moir, R. W.; Lee, J. D.; Neef, W. S., Jr.; Berwald, D. H.; Garner, J. K.; Whitley, R. H.; Ghoniem, N.; Wong, C. P. C.; Maya, I.; Schultz, K. R.

    1984-12-01

    The preliminary conceptual design of a tokama fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m(2) and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 plus or minus 30% per fusion reaction. This results in the production of 4900 kg of (223)U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW sub e LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U308 depending on government financing or utility financing assumptions. Additional topics discussed include the Tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.

  18. Erosion tests of materials by energetic particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods ofmore » application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.« less

  19. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy.

    PubMed

    Hu, Jicheng; Zheng, Minghui; Nie, Zhiqiang; Liu, Wenbin; Liu, Guorui; Zhang, Bing; Xiao, Ke

    2013-01-01

    Secondary copper production has received much attention for its high emissions of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) reported in previous studies. These studies focused on the estimation of total PCDD/F and polychlorinated biphenyl (PCB) emissions from secondary copper smelters. However, large variations in PCDD/F and PCB emissions reported in these studies were not analyzed and discussed further. In this study, stack gas samples at different smelting stages (feeding-fusion, oxidation and deoxidization) were collected from four plants to investigate variations in PCDD/F and PCB emissions and characteristics during the secondary copper smelting process. The results indicate that PCDD/F emissions occur mainly at the feeding-fusion stage and these emissions contribute to 54-88% of the total emissions from the secondary copper smelting process. The variation in feed material and operating conditions at different smelting stages leads to the variation in PCDD/F emissions during the secondary copper smelting process. The total PCDD/F and PCB discharge (stack gas emission+fly ash discharge) is consistent with the copper scrap content in the raw material in the secondary copper smelters investigated. On a production basis of 1 ton copper, the total PCDD/F and dl-PCB discharge was 102, 24.8 and 5.88 μg TEQ t(-1) for the three plants that contained 100%, 30% and 0% copper scrap in their raw material feed, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    DOE PAGES

    Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; ...

    2016-08-05

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less

  1. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2015-03-01

    The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimensmore » when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.« less

  2. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcliffe, G. D., E-mail: gdsut@mit.edu; Milanese, L. M.; Orozco, D.

    2016-11-15

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less

  3. Modeling of Steady-state Scenarios for the Fusion Nuclear Science Facility, Advanced Tokamak Approach

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.

    2013-10-01

    A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.

  4. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang

    2018-06-01

    Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.

  5. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has been widely and expertly disseminated. We further acknowledge the efforts of the Chairman of the IFRC and of all authors and experts who contributed to this report on the present status of fusion research.

  6. Final Technical Report -- Bridging the PSI Knowledge Gap: A Multiscale Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whyte, Dennis

    2014-12-12

    The Plasma Surface Interactions (PSI) Science Center formed by the grant undertook a multidisciplinary set of studies on the complex interface between the plasma and solid states of matter. The strategy of the center was to combine and integrate the experimental, diagnostic and modeling toolkits from multiple institutions towards specific PSI problems. In this way the Center could tackle integrated science issues which were not addressable by single institutions, as well as evolve the underlying science of the PSI in a more general way than just for fusion applications. The overall strategy proved very successful. The research result and highlightsmore » of the MIT portion of the Center are primarily described. A particular highlight is the study of tungsten nano-tendril growth in the presence of helium plasmas. The Center research provided valuable new insights to the mechanisms controlling the nano-tendrils by developing coupled modeling and in situ diagnostic methods which could be directly compared. For example, the role of helium accumulation in tungsten distortion in the surface was followed with unique in situ helium concentration diagnostics developed. These depth-profiled, time-resolved helium concentration measurements continue to challenge the numerical models of nano-tendrils. The Center team also combined its expertise on tungsten nano-tendrils to demonstrate for the first time the growth of the tendrils in a fusion environment on the Alcator C-Mod fusion experiment, thus having significant impact on the broader fusion research effort. A new form of isolated nano-tendril “columns” were identified which are now being used to understand the underlying mechanisms controlling the tendril growth. The Center also advanced PSI science on a broader front with a particular emphasis on developing a wide range of in situ PSI diagnostic tools at the DIONISOS facility at MIT. For example the strong suppression of sputtering by the certain combination of light-species plasmas and metals was experimentally studied with independent measurement methods across the Center. This surprising result challenges the universal use of the binary-collision approximation in sputtering predictions and continues to be the subject of study. In order to address this issue MIT developed a new in situ erosion measurement technique based on ion beam analysis which can be used at elevated material temperatures. This exciting new technique is now being used to study material erosion in high performance plasma thrusters for space exploration and is being adopted to fusion experimental devices. This is an indicator of the positive synergies that arise from such a Center, with the research having impact beyond the initial area of study. The Center also served successfully as an organizing force for communication to the science community. The MIT members of the Center provided many high-profile overview presentations at prestigious international conferences and national workshops. The research resulted in three student theses and 24 peer-reviewed publications. PSI research continues to be identified as a critical area for fusion energy.« less

  7. Concept of DT fuel cycle for a fusion neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of thismore » device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, D.J.; Panitz, J.K.G.; Mattox, D.M.

    The erosion of materials by low energy ions is of concern in fusion reactors since high Z impurities in the plasma cause radiation cooling. Ion bombardment of the fusion reactor chamber walls arises from ions of fuel (D, T) material, gaseous impurities (O, C), and impurities from eroded components (Fe, Co, Ni, C, Mo, etc.) being accelerated across the wall sheath potential (0.1 to 1 keV). A Kaufman type ion source has been characterized for use with hydrogen, and subsequently used to determine the relative erosion rates of bulk Mo, C, Cu, coating of TiB/sub 2/, B/sub 4/C, Be, VBe/submore » 12/ and other materials. Ions of hydrogen (Z=1), argon (Z=18), and xenon (Z=54) at acceleration potentials of 250, 500, and 1000 V have been used to determine erosion yields.« less

  9. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  10. Review on the EFDA programme on tungsten materials technology and science

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  11. Percutaneous Thermal Ablation with Ultrasound Guidance. Fusion Imaging Guidance to Improve Conspicuity of Liver Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros

    PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time requiredmore » for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.« less

  12. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  13. Time-dependent modeling of dust injection in semi-detached ITER divertor plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Roman; Krasheninnikov, Sergei

    2017-10-01

    At present, it is generally understood that dust related issues will play important role in operation of the next step fusion devices, i.e. ITER, and in the development of future fusion reactors. Recent progress in research on dust in magnetic fusion devises has outlined several topics of particular concern: a) degradation of fusion plasma performance; b) impairment of in-vessel diagnostic instruments; and c) safety issues related to dust reactivity and tritium retention. In addition, observed dust events in fusion edge plasmas are highly irregular and require consideration of temporal evolution of both the dust and the fusion plasma. In order to address the dust-related fusion performance issues, we have coupled the dust transport code DUSTT and the edge plasma transport code UEDGE in time-dependent manner, allowing modeling of transient dust-induced phenomena in fusion edge plasmas. Using the coupled codes we simulate burst-like injection of tungsten dust into ITER divertor plasma in semi-detached regime, which is considered as preferable ITER divertor operational mode based on the plasma and heat load control restrictions. Analysis of transport of the dust and the dust-produced impurities, and of dynamics of the ITER divertor and edge plasma in response to the dust injection will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-06ER54852.

  14. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less

  15. Tritium

    DTIC Science & Technology

    2011-11-01

    fusion energy -production processes of the particular type of reactor using a lithium (Li) blanket or related alloys such as the Pb-17Li eutectic. As such, tritium breeding is intimately connected with energy production, thermal management, radioactivity management, materials properties, and mechanical structures of any plausible future large-scale fusion power reactor. JASON is asked to examine the current state of scientific knowledge and engineering practice on the physical and chemical bases for large-scale tritium

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ierardi, Anna Maria; Duka, Ejona; Radaelli, Alessandro

    AimTo evaluate the feasibility of image fusion (IF) of pre-procedural arterial-phase CT angiography or MR angiography with intra-procedural fluoroscopy for road-mapping in endovascular treatment of aorto-iliac steno-occlusive disease.Materials and MethodsBetween September and November, 2014, we prospectively evaluated 5 patients with chronic aorto-iliac steno-occlusive disease, who underwent endovascular treatment in the angiography suite. Fusion image road-mapping was performed using angiographic phase CT images or MR images acquired before and intra-procedural unenhanced cone-beam CT. Radiation dose of the procedure, volume of intra-procedural iodinated contrast medium, fluoroscopy time, and overall procedural time were recorded. Reasons for potential fusion imaging inaccuracies were also evaluated.ResultsImagemore » co-registration and fusion guidance were feasible in all procedures. Mean radiation dose of the procedure was 60.21 Gycm2 (range 55.02–63.75 Gycm2). The mean total procedure time was 32.2 min (range 27–38 min). The mean fluoroscopy time was 12 min and 3 s. The mean procedural iodinated contrast material dose was 24 mL (range 20–40 mL).ConclusionsIF gives Interventional Radiologists the opportunity to use new technologies in order to improve outcomes with a significant reduction of contrast media administration.« less

  17. RBM10-TFE3 Renal Cell Carcinoma: A Potential Diagnostic Pitfall Due to Cryptic Intrachromosomal Xp11.2 Inversion Resulting in False-negative TFE3 FISH.

    PubMed

    Argani, Pedram; Zhang, Lei; Reuter, Victor E; Tickoo, Satish K; Antonescu, Cristina R

    2017-05-01

    Xp11 translocation renal cell carcinoma (RCC) are defined by chromosome translocations involving the Xp11 breakpoint which results in one of a variety of TFE3 gene fusions. TFE3 break-apart florescence in situ hybridization (FISH) assays are generally preferred to TFE3 immunohistochemistry (IHC) as a means of confirming the diagnosis in archival material, as FISH is less sensitive to the variable fixation which can result in false positive or false negative IHC. Prompted by a case report in the cytogenetics literature, we identify 3 cases of Xp11 translocation RCC characterized by a subtle chromosomal inversion involving the short arm of the X chromosome, resulting in an RBM10-TFE3 gene fusion. TFE3 rearrangement was not detected by conventional TFE3 break-apart FISH, but was suggested by strong diffuse TFE3 immunoreactivity in a clean background. We then developed novel fosmid probes to detect the RBM10-TFE3 gene fusion in archival material. These cases validate RBM10-TFE3 as a recurrent gene fusion in Xp11 translocation RCC, illustrate a source of false-negative TFE3 break-apart FISH, and highlight the complementary role of TFE3 IHC and TFE3 FISH.

  18. Laser ablation under different electron heat conduction models in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  19. System and method for producing metallic iron

    DOEpatents

    Bleifuss, Rodney L [Grand Rapids, MN; Englund, David J [Bovey, MN; Iwasaki, Iwao [Grand Rapids, MN; Fosnacht, Donald R [Hermantown, MN; Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-01-17

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  20. Efficiency and Accuracy in Thermal Simulation of Powder Bed Fusion of Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Lindwall, J.; Malmelöv, A.; Lundbäck, A.; Lindgren, L.-E.

    2018-05-01

    Additive manufacturing by powder bed fusion processes can be utilized to create bulk metallic glass as the process yields considerably high cooling rates. However, there is a risk that reheated material set in layers may become devitrified, i.e., crystallize. Therefore, it is advantageous to simulate the process to fully comprehend it and design it to avoid the aforementioned risk. However, a detailed simulation is computationally demanding. It is necessary to increase the computational speed while maintaining accuracy of the computed temperature field in critical regions. The current study evaluates a few approaches based on temporal reduction to achieve this. It is found that the evaluated approaches save a lot of time and accurately predict the temperature history.

  1. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  2. In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics.

    PubMed

    Lee, Jae Hyup; Lee, Choon-Ki; Chang, Bong-Soon; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Hong, Kug Sun; Kim, Hwan

    2006-05-01

    To evaluate the possibility of novel CaO-SiO2-B2O3 glass-ceramics (CS10B) as a new bone replacement material, we compared the biodegradation and osteoconduction properties of CS10B, hydroxyapatite (HA), and tricalcium phosphate (TCP). Porous CS10B implants were prepared by the polymer sponge method. L5-6 single-level posterolateral spinal fusions were performed on 30 New Zealand white male rabbits. The animals were divided into three groups by implant material: CS10B, HA, and TCP. Radiographs were performed every 2 weeks. All animals were euthanized 12 weeks after surgery. The ratio of the area occupied by the ceramics by final and initial radiographs was calculated using radiomorphometric analysis. Uniaxial tensile strength was determined from seven cases in each group. The ratio of the area occupied by HA (88.7%+/-16.1%) was significantly higher than the others (p<0.005), and the ratio of the area occupied by CS10B (28.2%+/-9.3%) was significantly lower than those of HA and TCP (37%+/-9.6%, p<0.05). The mean values of the tensile strengths of the CS10B (182.7+/-19.9 N) and HA (191.4+/-33.5 N) were significantly higher (p<0.05) than that of TCP (141.1+/-28.2 N). CS10B had a fusion mass tensile strength similar to that of HA. Histological analysis confirmed that CS10B was well incorporated into the fusion mass. These findings suggest that CS10B is a possible bone replacement material. Copyright (c) 2006 Wiley Periodicals, Inc.

  3. Progress in Fast Ignition Studies with Electrons and Protons

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.

    2009-09-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  4. Analytical method for thermal stress analysis of plasma facing materials

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  5. Laser-fusion targets for reactors

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.

    1987-01-01

    A laser target comprising a thermonuclear fuel capsule composed of a centrally located quantity of fuel surrounded by at least one or more layers or shells of material for forming an atmosphere around the capsule by a low energy laser prepulse. The fuel may be formed as a solid core or hollow shell, and, under certain applications, a pusher-layer or shell is located intermediate the fuel and the atmosphere forming material. The fuel is ignited by symmetrical implosion via energy produced by a laser, or other energy sources such as an electron beam machine or ion beam machine, whereby thermonuclear burn of the fuel capsule creates energy for applications such as generation of electricity via a laser fusion reactor.

  6. Tantalum coatings for inertial confinement fusion dry wall designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.H.; Green, L.

    1996-12-31

    The coating on a dry first wall inertial confinement fusion reactor must survive the target explosion and be ductile, inexpensive, and compatible with the materials in the target, i.e. have a high atomic number Z. Calculations indicate that tantalum is the best choice for the coating material. As a test of this design 1 mm tantalum coatings were plasma sprayed onto ferrite steel tubes. They were then subjected to 100 heating-cooling cycles which simulated the stressful thermal cycling which would be encountered during five years of plant startups and shutdowns. The coatings were undamaged and continued to bond well tomore » the steel. Furthermore, chemical reactions should not degrade tantalum coatings.« less

  7. Addressing Research and Development Gaps for Plasma-Material Interactions with Linear Plasma Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen

    Plasma-material interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma-facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma-facing components that allow for steadystate operation in a reactor to reach the neutron fluence required; the tritium inventory (storage) in the plasma-facing components, which can lead to potential safety concerns and reduction in the fuel efficiency; and it is relatedmore » to the technology of the plasma-facing components itself, which should demonstrate structural integrity under the high temperatures and high neutron fluence. While the dissipation of power exhaust can and should be addressed in high power toroidal devices, the interaction of the plasma with the materials can be best addressed in dedicated linear devices due to their cost effectiveness and ability to address urgent research and development gaps more timely. However, new linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma-facing components. Existing linear devices are limited either in their flux, their reactor-relevant plasma transport regimes in front of the target, their fluence, or their ability to test material samples a priori exposed to high neutron fluence. The proposed Material Plasma Exposure eXperiment (MPEX) is meant to address those deficiencies and will be designed to fulfill the fusion reactor-relevant plasma parameters as well as the ability to expose a priori neutron activated materials to plasmas.« less

  8. Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail.

    PubMed

    Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana

    2016-09-01

    Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing or fusion treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less

  10. [Application of a stand-alone interbody fusion cage based on a novel porous TiO2/glass composite. I. Implantation in the sheep cervical spine and radiological evaluation].

    PubMed

    Korinth, M C; Hero, T; Mahnken, A H; Ragoss, C; Scherer, K

    2004-12-01

    Animals are becoming more and more common as in vitro and in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examination human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO/glass composite (Ecopore) or polymethyl-methacrylate (PMMA) after discectomy. First experience with the use of the new material and its influence on the primary stability after in vitro application were gained. After fusion of 10 sheep cervical spines in the levels C2/3 and C4/5 in each case with PMMA and with an Ecopore-cage, radiologic as well as computertomographic examinations were performed postoperatively and every 4 weeks during the following 2 and 4 months, respectively. Apart from establishing our animal model, we analysed the radiological changes and the degree of bony fusion of the operated segments during the course. In addition we performed measurements of the corresponding disc space heights (DSH) and intervertebral angles (IVA) for comparison among each other, during the course and with the initial values. Immediately after placement of both implants in the disc spaces the mean DSH and IVA increased (34.8% and 53.9%, respectively). During the following months DSH decreased to a greater extent in the Ecopore-segments than in the PMMA-segments, even to a value below the initial value (p>0.05). Similarly, the IVA decreased in both groups in the postoperative time lapse, but more distinct in the Ecopore-segments (p<0.05). These changes in terms of a subsidence of the implants, were confirmed morphologically in the radiological examination in the course. The radiologically evaluated fusion, i.e. bony bridging of the operated segments, was more pronounced after implantation of an Ecopore-cage (83%), than after PMMA interposition (50%), but did not gain statistical significance. In this first in vivo examination of our new porous ceramic bone replacement material we showed its application in the spondylodesis model of the sheep cervical spine. Distinct radiological changes regarding evident subsidence and detectable fusion of the segments, operated on with the new biomaterial, were seen. We demonstrated the radiological changes of the fused segments during several months and analysed them morphologically, before the biomechanical evaluation will be presented in a subsequent publication.

  11. ANITA-IEAF activation code package - updating of the decay and cross section data libraries and validation on the experimental data from the Karlsruhe Isochronous Cyclotron

    NASA Astrophysics Data System (ADS)

    Frisoni, Manuela

    2017-09-01

    ANITA-IEAF is an activation package (code and libraries) developed in the past in ENEA-Bologna in order to assess the activation of materials exposed to neutrons with energies greater than 20 MeV. An updated version of the ANITA-IEAF activation code package has been developed. It is suitable to be applied to the study of the irradiation effects on materials in facilities like the International Fusion Materials Irradiation Facility (IFMIF) and the DEMO Oriented Neutron Source (DONES), in which a considerable amount of neutrons with energies above 20 MeV is produced. The present paper summarizes the main characteristics of the updated version of ANITA-IEAF, able to use decay and cross section data based on more recent evaluated nuclear data libraries, i.e. the JEFF-3.1.1 Radioactive Decay Data Library and the EAF-2010 neutron activation cross section library. In this paper the validation effort related to the comparison between the code predictions and the activity measurements obtained from the Karlsruhe Isochronous Cyclotron is presented. In this integral experiment samples of two different steels, SS-316 and F82H, pure vanadium and a vanadium alloy, structural materials of interest in fusion technology, were activated in a neutron spectrum similar to the IFMIF neutron field.

  12. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is limited and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical working experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, it is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium alloy option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  13. Postirradiation thermocyclic loading of ferritic-martensitic structural materials

    NASA Astrophysics Data System (ADS)

    Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.

    Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.

  14. Plasma Surface Interactions Common to Advanced Fusion Wall Materials and EUV Lithography - Lithium and Tin

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.

    2004-09-01

    Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.

  15. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  16. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket

    NASA Astrophysics Data System (ADS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2010-10-01

    A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 × 10 25 n m -2 ( E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-SiC-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance.

  17. [Carbon fiber-reinforced plastics as implant materials].

    PubMed

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  18. FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.

    2013-09-25

    Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiCmore » through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.« less

  19. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    NASA Astrophysics Data System (ADS)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  20. Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage

    PubMed Central

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-01-01

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers. PMID:25716328

  1. Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage.

    PubMed

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-02-26

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers.

  2. A phase field approach for multicellular aggregate fusion in biofabrication.

    PubMed

    Yang, Xiaofeng; Sun, Yi; Wang, Qi

    2013-07-01

    We present a modeling and computational approach to study fusion of multicellular aggregates during tissue and organ fabrication, which forms the foundation for the scaffold-less biofabrication of tissues and organs known as bioprinting. It is known as the phase field method, where multicellular aggregates are modeled as mixtures of multiphase complex fluids whose phase mixing or separation is governed by interphase force interactions, mimicking the cell-cell interaction in the multicellular aggregates, and intermediate range interaction mediated by the surrounding hydrogel. The material transport in the mixture is dictated by hydrodynamics as well as forces due to the interphase interactions. In a multicellular aggregate system with fixed number of cells and fixed amount of the hydrogel medium, the effect of cell differentiation, proliferation, and death are neglected in the current model, which can be readily included in the model, and the interaction between different components is dictated by the interaction energy between cell and cell as well as between cell and medium particles, respectively. The modeling approach is applicable to transient simulations of fusion of cellular aggregate systems at the time and length scale appropriate to biofabrication. Numerical experiments are presented to demonstrate fusion and cell sorting during tissue and organ maturation processes in biofabrication.

  3. How safe is safe enough. The relation of environmental characteristics and economic competitiveness in fusion-reactor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdren, J.P.

    The need for fusion energy depends strongly on fusion's potential to achieve ambitious safety goals more completely or more economically than fission can. The history and present complexion of public opinion about environment and safety gives little basis for expecting either that these concerns will prove to be a passing fad or that the public will make demands for zero risk that no energy source can meet. Hazard indices based on ''worst case'' accidents and exposures should be used as design tools to promote combinations of fusion-reactor materials and configurations that bring the worst cases down to levels small comparedmore » to the hazards people tolerate from electricity at the point of end use. It may well be possible, by building such safety into fusion from the ground up, to accomplish this goal at costs competitive with other inexhaustible electricity sources. Indeed, the still rising and ultimately indeterminate costs of meeting safety and environmental requirements in nonbreeder fission reactors and coal-burning power plants mean that fusion reactors meeting ambitious safety goals may be able to compete economically with these ''interim'' electricity sources as well.« less

  4. Comparison of aged polyamide powders for selective laser sintering

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Ibáñez, A.; Sánchez, A.; León, M. A.

    2012-04-01

    Selective Laser Sintering (SLS) is an additive manufacturing technology in which a three-dimensional object is manufactured layer by layer by melting powder materials with heat generated from a CO2 laser. However, a disadvantage of sintered materials is that the unsintered powder material during the process can be reused only a limited number of cycles, as during the heating phase in the sintering chamber the material remains at a temperature near the fusion point for a certain period of time and lose properties. This work shows the study of two polyamides (PA12)-based powders used in SLS with the aim of understanding the modification of their properties mainly with the temperature and the time at which they are exposed during the processing.

  5. Laser targets compensate for limitations in inertial confinement fusion drivers

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.

    2005-10-01

    Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

  6. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopya)

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie B.

    2012-05-01

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  7. Numerical analysis of the heat transfer and fluid flow in the butt-fusion welding process

    NASA Astrophysics Data System (ADS)

    Yoo, Jae Hyun; Choi, Sunwoong; Nam, Jaewook; Ahn, Kyung Hyun; Oh, Ju Seok

    2017-02-01

    Butt-fusion welding is an effective process for welding polymeric pipes. The process can be simplified into two stages. In heat soak stage, the pipe is heated using a hot plate contacted with one end of the pipe. In jointing stage, a pair of heated pipes is compressed against one another so that the melt regions become welded. In previous works, the jointing stage that is highly related to the welding quality was neglected. However, in this study, a finite element simulation is conducted including the jointing stage. The heat and momentum transfer are considered altogether. A new numerical scheme to describe the melt flow and pipe deformation for the butt-fusion welding process is introduced. High density polyethylene (HDPE) is used for the material. Flow via thermal expansion of the heat soak stage, and squeezing and fountain flow of the jointing stage are well reproduced. It is also observed that curling beads are formed and encounter the pipe body. The unique contribution of this study is its capability of directly observing the flow behaviors that occur during the jointing stage and relating them to welding quality.

  8. High resolution isotopic analysis of U-bearing particles via fusion of SIMS and EDS images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarolli, Jay G.; Naes, Benjamin E.; Garcia, Benjamin J.

    Image fusion of secondary ion mass spectrometry (SIMS) images and X-ray elemental maps from energy-dispersive spectroscopy (EDS) was performed to facilitate the isolation and re-analysis of isotopically unique U-bearing particles where the highest precision SIMS measurements are required. Image registration, image fusion and particle micromanipulation were performed on a subset of SIMS images obtained from a large area pre-screen of a particle distribution from a sample containing several certified reference materials (CRM) U129A, U015, U150, U500 and U850, as well as a standard reference material (SRM) 8704 (Buffalo River Sediment) to simulate particles collected on swipes during routine inspections ofmore » declared uranium enrichment facilities by the International Atomic Energy Agency (IAEA). In total, fourteen particles, ranging in size from 5 – 15 µm, were isolated and re-analyzed by SIMS in multi-collector mode identifying nine particles of CRM U129A, one of U150, one of U500 and three of U850. These identifications were made within a few percent errors from the National Institute of Standards and Technology (NIST) certified atom percent values for 234U, 235U and 238U for the corresponding CRMs. This work represents the first use of image fusion to enhance the accuracy and precision of isotope ratio measurements for isotopically unique U-bearing particles for nuclear safeguards applications. Implementation of image fusion is essential for the identification of particles of interests that fall below the spatial resolution of the SIMS images.« less

  9. Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognari, Peter J., III.

    2005-01-01

    Thermo-nuclear fusion may be the key to a high Isp, high specific power (low alpha) propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the ORION concept, is described. A passive tapered liner is launched behind a vehicle, through a hole in a pusher-plate, that is connected to the vehicle by a shock-absorbing mechanism. A dense FRC plasmoid is then accelerated to high velocity (in excess of 1,000 km/s) and shot through the hole into the liner, when it has reached a given point down-range. The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion bum in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by the pusher-plate, as in the classic ORION concept. However with this concept, the vehicle does not carry a magazine of pre-fabricated pulse-units. A magnetic nozzle may also be used, in place of the pusher-plate. Estimates of the conditions needed to achieve a sufficient gain will be presented, along with a description of the driver characteristics. The incorporation of this concept into the propulsion system of a spacecraft will also be discussed.

  10. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.

  11. Friction Stir Welding Development at NASA, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Gentz, Steve (Technical Monitor)

    2001-01-01

    Friction stir welding (FSW) is a solid state process that pan be used to join materials without melting. The process was invented by The Welding Institute (TWI), Cambridge, England. Friction stir welding exhibits several advantages over fusion welding in that it produces welds with fewer defects and higher joint efficiency and is capable of joining alloys that are generally considered non-weldable with a fusion weld process. In 1994, NASA-Marshall began collaborating with TWI to transform FSW from a laboratory curiosity to a viable metal joining process suitable for manufacturing hardware. While teamed with TWI, NASA-Marshall began its own FSW research and development effort to investigate possible aerospace applications for the FSW process. The work involved nearly all aspects of FSW development, including process modeling, scale-up issues, applications to advanced materials and development of tooling to use FSW on components of the Space Shuttle with particular emphasis on aluminum tanks. The friction stir welding process involves spinning a pin-tool at an appropriate speed, plunging it into the base metal pieces to be joined, and then translating it along the joint of the work pieces. In aluminum alloys the rotating speed typically ranges from 200 to 400 revolutions per minute and the translation speed is approximately two to five inches per minute. The pin-tool is inserted at a small lead angle from the axis normal to the work piece and requires significant loading along the axis of the tool. An anvil or reaction structure is required behind the welded material to react the load along the axis of the pin tool. The process requires no external heat input, filler material, protective shielding gas or inert atmosphere typical of fusion weld processes. The FSW solid-state weld process has resulted in aluminum welds with significantly higher strengths, higher joint efficiencies and fewer defects than fusion welds used to join similar alloys.

  12. Friction Stir Welding of ODS and RAFM Steels

    DOE PAGES

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  13. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearinger, J P

    This month's issue has the following articles: (1) Leveraging the National Ignition Facility to Meet the Climate-Energy Challenge--Commentary by George H. Miller; (2) The Journey into a New Era of Scientific Discoveries--The world's largest laser is dedicated on May 29, 2009; (3) Safe and Sustainable Energy with LIFE--A revolutionary technology to generate electricity, modeled after the National Ignition Facility, could either be a pure fusion energy source or combine the best of fusion and fission energy; (4) A Simulated Rehearsal for Battle--Livermore's Joint Conflict and Tactical Simulation is the most widely used tactical model in the world; (5) Improving Catalysismore » with a 'Noble' Material--By infusing carbon aerogels with platinum, researchers have produced a more affordable and efficient catalytic material; and (6) A Time Machine for Fast Neutrons--A new, robust time-projection chamber that provides directional detection of fast neutrons could greatly improve search methods for nuclear materials.« less

  15. Experimental comparison of photogrammetry for additive manufactured parts with and without laser speckle projection

    NASA Astrophysics Data System (ADS)

    Sims-Waterhouse, D.; Bointon, P.; Piano, S.; Leach, R. K.

    2017-06-01

    In this paper we show that, by using a photogrammetry system with and without laser speckle, a large range of additive manufacturing (AM) parts with different geometries, materials and post-processing textures can be measured to high accuracy. AM test artefacts have been produced in three materials: polymer powder bed fusion (nylon-12), metal powder bed fusion (Ti-6Al-4V) and polymer material extrusion (ABS plastic). Each test artefact was then measured with the photogrammetry system in both normal and laser speckle projection modes and the resulting point clouds compared with the artefact CAD model. The results show that laser speckle projection can result in a reduction of the point cloud standard deviation from the CAD data of up to 101 μm. A complex relationship with surface texture, artefact geometry and the laser speckle projection is also observed and discussed.

  16. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtainmore » their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.« less

  17. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  18. New Education/Outreach Materials from CPEP

    NASA Astrophysics Data System (ADS)

    Zaleskiewicz, Thad; Heeter, Robert; Lightner, G. Samuel; Reiland, Robert

    1997-11-01

    The Contemporary Physics Education Project (CPEP) introduces two variations of its successful teaching chart, "FUSION - Physics of a Fundamental Energy Source". The first new version is the POSTER size chart - 53x75 cm. This chart is intended for office or bulletin board display. The second is the laminated version of the NOTEbook (or student) size chart (43x28 cm). This semi-indestructible version also finds use as a placemat. These new materials complement the WALLsize FUSION chart (107x150 cm) and the regular (un-laminated) NOTEbook chart introduced last year. To promote effective classroom use of its educational materials, CPEP offers workshops for high school and college science teachers, including workshops presented at annual DPP and AAPT meetings. Sometimes these workshops are held in conjunction with other groups such as the Space Science Institute. For more information about CPEP, a not-for-profit corporation of teachers, educators and physicists, visit (http://pdg.lbl.gov/cpep.html).

  19. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    NASA Astrophysics Data System (ADS)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  20. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  1. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  2. Characterization of an electrothermal plasma source for fusion transient simulations

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  3. [Renal cell carcinoma with t(6;11)(p21.2;q13)/MALAT1-TFEB fusion: a clinical and pathological analysis].

    PubMed

    Xia, Qiuyuan; Shi, Shanshan; Shen, Qin; Wei, Xue; Wang, Xuan; Ma, Henghui; Lu, Zhenfeng; Zhou, Xiaojun; Rao, Qiu

    2015-12-01

    To study the clinicopathologic features, immunophenotype, differential diagnosis and prognosis of renal cell carcinoma (RCC) associated with t(6;11)(p21.2;q13)/MALAT1-TFEB gene fusion. A total of 9 cases of such rare tumor were selected for clinicopathologic, immunohistochemical and molecular analysis, with review of literature. The age of the patients ranged from 21 to 42 years (mean=31.3 years). The patients included four men and five women. Histologically, 4 of the 9 cases studied showed classic morphologic features of TFEB RCC, with hyaline material, pigments and psammoma bodies frequently identified. The remaining 5 cases demonstrated uncommon morphology, mimicking perivascular epithelioid cell neoplasm, clear cell RCC, chromophobe RCC or papillary RCC. Immunohistochemical study showed that TFEB and vimentin were positive in all cases. Most of the tumors studied also expressed Ksp-cadherin, E-cadherin, CD117, HMB45, Melan A and Cathepsin K. CKpan showed immunostaining in only 1 case. The staining for TFE3, CD10 and CK7 were all negative. TFEB gene rearrangement was detected in all the 9 cases studied using fluorescence in-situ hybridization. MALAT1-TFEB fusion gene was identified in 2 cases by polymerase chain reaction and direct sequencing. TFEB RCC seemed to be an indolent tumor. During a mean follow-up of 31 months, none developed tumor recurrence, progression, or metastasis. TFEB fusion-associated RCC is a rare neoplasm, tends to occur in young age group and carries an indolent behavior. Diagnosis relies on clinicopathologic findings and immunohistochemical analysis. TFEB break-apart FISH assay is a reliable tool in confirming the diagnosis.

  4. Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; van der Meiden, H. J.; Mayoral, M.-L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; de Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar, Ž.; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch.; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, S.; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W. M.; Voitkans, A.; von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; PFC contributors, WP

    2017-11-01

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.

  5. Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    DOE PAGES

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; ...

    2017-06-14

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less

  6. Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less

  7. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  8. Propagation of nuclear data uncertainties for fusion power measurements

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri

    2017-09-01

    Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  9. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  10. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marian, Jaime; Becquart, Charlotte S.; Domain, Christophe

    2017-06-09

    Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements with carefully validated predictions. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling ofmore » W both as a plasma-facing material exposed to He deposition as well as a bulk structural material subjected to fast neutron irradiation. We use a multiscale modeling approach –commonly used as the materials modeling paradigm– to define the outline of the paper and highlight recent advances using several classes of techniques and their interconnection. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining challenges and future research directions« less

  11. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    NASA Astrophysics Data System (ADS)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds. Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed. Testing with 14 MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of ⩾30 dpa (steels) 14 MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements.

  12. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Donato, A.; Montanari, R.; Sili, A.

    1996-10-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.

  13. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    NASA Astrophysics Data System (ADS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  14. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    PubMed

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  15. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less

  16. Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-06-01

    The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

  17. Isomer and Fluorination Effects among Fluorine Substituted Hydrocarbon C3/C4 Molecules in Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Patel, U. R.; Joshipura, K. N.

    2015-05-01

    Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.

  18. Computed tomography angiography-fluoroscopy image fusion allows visceral vessel cannulation without angiography during fenestrated endovascular aneurysm repair.

    PubMed

    Schwein, Adeline; Chinnadurai, Ponraj; Behler, Greg; Lumsden, Alan B; Bismuth, Jean; Bechara, Carlos F

    2018-07-01

    Fenestrated endovascular aneurysm repair (FEVAR) is an evolving technique to treat juxtarenal abdominal aortic aneurysms (AAAs). Catheterization of visceral and renal vessels after the deployment of the fenestrated main body device is often challenging, usually requiring additional fluoroscopy and multiple digital subtraction angiograms. The aim of this study was to assess the clinical utility and accuracy of a computed tomography angiography (CTA)-fluoroscopy image fusion technique in guiding visceral vessel cannulation during FEVAR. Between August 2014 and September 2016, all consecutive patients who underwent FEVAR at our institution using image fusion guidance were included. Preoperative CTA images were fused with intraoperative fluoroscopy after coregistering with non-contrast-enhanced cone beam computed tomography (syngo 3D3D image fusion; Siemens Healthcare, Forchheim, Germany). The ostia of the visceral vessels were electronically marked on CTA images (syngo iGuide Toolbox) and overlaid on live fluoroscopy to guide vessel cannulation after fenestrated device deployment. Clinical utility of image fusion was evaluated by assessing the number of dedicated angiograms required for each visceral or renal vessel cannulation and the use of optimized C-arm angulation. Accuracy of image fusion was evaluated from video recordings by three raters using a binary qualitative assessment scale. A total of 26 patients (17 men; mean age, 73.8 years) underwent FEVAR during the study period for juxtarenal AAA (17), pararenal AAA (6), and thoracoabdominal aortic aneurysm (3). Video recordings of fluoroscopy from 19 cases were available for review and assessment. A total of 46 vessels were cannulated; 38 of 46 (83%) of these vessels were cannulated without angiography but based only on image fusion guidance: 9 of 11 superior mesenteric artery cannulations and 29 of 35 renal artery cannulations. Binary qualitative assessment showed that 90% (36/40) of the virtual ostia overlaid on live fluoroscopy were accurate. Optimized C-arm angulations were achieved in 35% of vessel cannulations (0/9 for superior mesenteric artery cannulation, 12/25 for renal arteries). Preoperative CTA-fluoroscopy image fusion guidance during FEVAR is a valuable and accurate tool that allows visceral and renal vessel cannulation without the need of dedicated angiograms, thus avoiding additional injection of contrast material and radiation exposure. Further refinements, such as accounting for device-induced aortic deformation and automating the image fusion workflow, will bolster this technology toward optimal routine clinical use. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2014-06-30

    The use of SiC and SiC-composites in fission or fusion environments appears to require joining methods for assembling systems. The international fusion community has designed miniature torsion specimens for joint testing and for irradiation in HFIR. Therefore, miniature torsion joints were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC that were tested in shear prior to and after HFIR irradiation. However, these torsion specimens fail out-of-plane, which causes difficulties in determining a shear strength for the joints or for comparing unirradiated and irradiated joints. A finite element damage model has been developedmore » that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The implications for torsion shear joint data based on this sample design are discussed.« less

  20. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  1. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  2. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  3. Error analysis for fast scintillator-based inertial confinement fusion burn history measurements

    NASA Astrophysics Data System (ADS)

    Lerche, R. A.; Ognibene, T. J.

    1999-01-01

    Plastic scintillator material acts as a neutron-to-light converter in instruments that make inertial confinement fusion burn history measurements. Light output for a detected neutron in current instruments has a fast rise time (<20 ps) and a relatively long decay constant (1.2 ns). For a burst of neutrons whose duration is much shorter than the decay constant, instantaneous light output is approximately proportional to the integral of the neutron interaction rate with the scintillator material. Burn history is obtained by deconvolving the exponential decay from the recorded signal. The error in estimating signal amplitude for these integral measurements is calculated and compared with a direct measurement in which light output is linearly proportional to the interaction rate.

  4. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  5. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  6. High-performance fused indium gallium arsenide/silicon photodiode

    NASA Astrophysics Data System (ADS)

    Kang, Yimin

    Modern long haul, high bit rate fiber-optic communication systems demand photodetectors with high sensitivity. Avalanche photodiodes (APDs) exhibit superior sensitivity performance than other types of photodetectors by virtual of its internal gain mechanism. This dissertation work further advances the APD performance by applying a novel materials integration technique. It is the first successful demonstration of wafer fused InGaAs/Si APDs with low dark current and low noise. APDs generally adopt separate absorption and multiplication (SAM) structure, which allows independent optimization of materials properties in two distinct regions. While the absorption material needs to have high absorption coefficient in the target wavelength range to achieve high quantum efficiency, it is desirable for the multiplication material to have large discrepancy between its electron and hole ionization coefficients to reduce noise. According to these criteria, InGaAs and Si are the ideal materials combination. Wafer fusion is the enabling technique that makes this theoretical ideal an experimental possibility. APDs fabricated on the fused InGaAs/Si wafer with mesa structure exhibit low dark current and low noise. Special device fabrication techniques and high quality wafer fusion reduce dark current to nano ampere level at unity gain, comparable to state-of-the-art commercial III/V APDs. The small excess noise is attributed to the large difference in ionization coefficients between electrons and holes in silicon. Detailed layer structure designs are developed specifically for fused InGaAs/Si APDs based on principles similar to those used in traditional InGaAs/InP APDs. An accurate yet straightforward technique for device structural parameters extraction is also proposed. The extracted results from the fabricated APDs agree with device design parameters. This agreement also confirms that the fusion interface has negligible effect on electric field distributions for devices fabricated from high quality fusion materials. The feasibility of fused InGaAs/Si APD for analog systems is also explored. Preliminary two-tone measurement shows that a moderately high dynamic range of 70 dBc/Hz1/2 for broadband Spur Free Dynamic Range (SFDR) or 82 dBc/Hz2/3 suboctave SFDR, up to 50 muA of optical current, can be achieved. The theoretical analyses of SNR show that fused InGaAs/Si APD receivers can provide larger Signal-to-Noise Ratio (SNR) than their III/V counterparts.

  7. LDRD Final Report 15-ERD-037 Matthews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Manyalibo J.

    2017-10-26

    The physics and materials science involved in laser materials processing of metals was studied experimentally using custom-built test beds and in situ diagnostics. Special attention was given to laser-based powder bed fusion additive manufacturing processes, a technology critically important to the stockpile stewardship program in NNSA. New light has been shed on several phenomena such as laser-driven spatter, material displacement and morphology changes. The results presented here and in publications generated by this work have proven impactful and useful to both internal and external communities. New directions in additive manufacturing research at LLNL have been enabled, along with new scientificmore » capabilities that can serve future program needs.« less

  8. Treatment of the Cornea Using Transcytotic Delivery into the Tear Film

    DTIC Science & Technology

    2015-12-01

    early April 2013; however, we continue to produce additional material as required (Fig. 4). In milestone 3 we initiated in vivo evaluation of...SI, the minimum and maximum values are 12.4 and 34.4. 8 Aim 2) characterize Lacritin-ELP fusion proteins and evaluate as therapeutic agents...0.0001). Data were analyzed by a two-way ANOVA followed by Tukey’s multiple comparisons test (n=9). 10 Having evaluated the lacritin-ELP fusion in

  9. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  10. The thermal properties of beeswaxes: unexpected findings.

    PubMed

    Buchwald, Robert; Breed, Michael D; Greenberg, Alan R

    2008-01-01

    Standard melting point analyses only partially describe the thermal properties of eusocial beeswaxes. Differential scanning calorimetry (DSC) revealed that thermal phase changes in wax are initiated at substantially lower temperatures than visually observed melting points. Instead of a sharp, single endothermic peak at the published melting point of 64 degrees C, DSC analysis of Apis mellifera Linnaeus wax yielded a broad melting curve that showed the initiation of melting at approximately 40 degrees C. Although Apis beeswax retained a solid appearance at these temperatures, heat absorption and initiation of melting could affect the structural characteristics of the wax. Additionally, a more complete characterization of the thermal properties indicated that the onset of melting, melting range and heat of fusion of beeswaxes varied significantly among tribes of social bees (Bombini, Meliponini, Apini). Compared with other waxes examined, the relatively malleable wax of bumblebees (Bombini) had the lowest onset of melting and lowest heat of fusion but an intermediate melting temperature range. Stingless bee (Meliponini) wax was intermediate between bumblebee and honeybee wax (Apini) in heat of fusion, but had the highest onset of melting and the narrowest melting temperature range. The broad melting temperature range and high heat of fusion in the Apini may be associated with the use of wax comb as a free-hanging structural material, while the Bombini and Meliponini support their wax structures with exogenous materials.

  11. Improvement of information fusion-based audio steganalysis

    NASA Astrophysics Data System (ADS)

    Kraetzer, Christian; Dittmann, Jana

    2010-01-01

    In the paper we extend an existing information fusion based audio steganalysis approach by three different kinds of evaluations: The first evaluation addresses the so far neglected evaluations on sensor level fusion. Our results show that this fusion removes content dependability while being capable of achieving similar classification rates (especially for the considered global features) if compared to single classifiers on the three exemplarily tested audio data hiding algorithms. The second evaluation enhances the observations on fusion from considering only segmental features to combinations of segmental and global features, with the result of a reduction of the required computational complexity for testing by about two magnitudes while maintaining the same degree of accuracy. The third evaluation tries to build a basis for estimating the plausibility of the introduced steganalysis approach by measuring the sensibility of the models used in supervised classification of steganographic material against typical signal modification operations like de-noising or 128kBit/s MP3 encoding. Our results show that for some of the tested classifiers the probability of false alarms rises dramatically after such modifications.

  12. Measurement of the ^12C+^12C Fusion Reaction with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Henderson, D.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Esbensen, H.; Fernandez-Niello, J. O.; Jiang, C. L.; Lighthall, J. C.; Marley, S. T.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.

    2012-10-01

    The fusion of the ^12C+^12C system is of great interest in nuclear structure and nuclear astrophysics. Above the Coulomb barrier, the excitation function of this system exhibits oscillations, which are not well understood. There is also a significant discrepancy between the experimental fusion cross-section and recent coupled-channel calculations that is not present in other carbon systems. To address these issues, we have re-measured the fusion excitation function for ^12,13C+^12C in the energy range of 10 MeV < Ecm < 20 MeV using a Multi-Sampling Ionization Chamber (MUSIC) detector. The gas of the ionization chamber (CH4) served as both the target material and the counter gas. One of the main advantages of this method is that the excitation function is measured over a large range of energies using only one beam energy. This method has been proven to be successful and it will be used to measure fusion reactions in other light systems. The experimental results will be presented and compared to previous experimental data and theoretical models.

  13. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production.

    PubMed

    Volli, Vikranth; Purkait, M K

    2015-10-30

    This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact toroids called Field-Reversed Configurations. As reported earlier, it appears that the existing pulsed-power Shiva Star facility at the Air Force Research Laboratory in Albuquerque, NM can satisfy the heating requirements by means of imploding a thin metal cylinder (called a "liner") surrounding an FRC of the type presently being developed. The proposed next step is an integrated liner-on-plasma experiment in which an FRC would be heated to 10 keV by the imploding liner.

  15. Helium Catalyzed D-D Fusion in a Levitated Dipole

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.

    2003-10-01

    Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.

  16. RF models for plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter

    2013-09-01

    Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.

  17. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    NASA Astrophysics Data System (ADS)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.

  18. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  19. Automatic image fusion of real-time ultrasound with computed tomography images: a prospective comparison between two auto-registration methods.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-11-01

    Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P < 0.001] and complete (median, 34.0 s [range, 26-66 s] vs. 47.5 s [range, 32-90]; P = 0.001] image fusion. Registration error of Positioning auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.

  20. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion.

    PubMed

    Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun; Ha, Yoon

    2016-07-01

    To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might induce non-union after surgery with hydroxyapatite DBM.

Top