A Summary of the NASA Fusion Propulsion Workshop 2000
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)
2001-01-01
A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.
Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2003-01-01
To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2002-01-01
Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.
Bunker probe: A plasma potential probe almost insensitive to its orientation with the magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costea, S., E-mail: stefan.costea@uibk.ac.at; Schneider, B. S.; Schrittwieser, R.
Due to their ability to suppress a large part of the electron current and thus measuring directly the plasma potential, ion sensitive probes have begun to be widely tested and used in fusion devices. For these probes to work, almost perfect alignment with the total magnetic field is necessary. This condition cannot always be fulfilled due to the curvature of magnetic fields, complex magnetic structure, or magnetic field reconnection. In this perspective, we have developed a plasma potential probe (named Bunker probe) based on the principle of the ion sensitive probe but almost insensitive to its orientation with the totalmore » magnetic field. Therefore it can be used to measure the plasma potential inside fusion devices, especially in regions with complex magnetic field topology. Experimental results are presented and compared with Ball-Pen probe measurements taken under identical conditions. We have observed that the floating potential of the Bunker probe is indeed little affected by its orientation with the magnetic field for angles ranging from 90° to 30°, in contrast to the Ball-Pen probe whose floating potential decreases towards that of a Langmuir probe if not properly aligned with the magnetic field.« less
Revisited comparison of thermal instability theory with MARFE density limit experiment in TEXTOR.
NASA Astrophysics Data System (ADS)
Kelly, Frederick
2006-03-01
Density limit shots in TEXTOR [Tokamak EXperiment for Technology Oriented Research] that ended in MARFE [Multifaceted Asymmetric Radiation From the Edge] are analyzed by several thermal instability theories^1-7 with convective effects included. ^1W. M. Stacey, Phys. Plasmas 3, 2673 (1996); Phys. Plasmas 3, 3032 (1996); Phys. Plasmas 4, 134 (1997); Phys. Plasmas 4, 242 (1997). ^2W. M. Stacey, Plasma Phys. Contr. Fusion 39, 1245 (1997). ^3W. M. Stacey, Fusion Technol. 36, 38 (1999).^ ^4W. M. Stacey, Phys. Plasmas 7, 3464 (2000). ^5F. A. Kelly, W. M. Stacey, J. Rapp and M. Brix, Phys. Plasmas 8, 3382 (2001). ^6M. Z. Tokar and F. A. Kelly, Phys. Plasmas 10, 4378 (2003). ^7M. Z. Tokar, F. A. Kelly and X. Loozen, Phys. Plasmas 12, 052510 (2005).
Liquid surfaces for fusion plasma facing components—A critical review. Part I: Physics and PSI
Nygren, R. E.; Tabares, F. L.
2016-12-01
This review of the potential of robust plasma facing components (PFCs) with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions. In the paper are a set of questions and related criteria by which we will judge the progress and readiness of liquid surface PFCs. Part-II (separate paper) will cover R&D on the technology-oriented aspects of liquid surfaces including the liquid surfaces as integrated first walls in tritium breeding blankets, tritium retention and recovery, and safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Petrov, Yu. V.
2013-12-03
Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less
Simulations of carbon sputtering in fusion reactor divertor plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, J; Zepeda-Ruiz, L A; Gilmer, G H
2005-10-03
The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less
1979-01-01
The membranes of Limulus (horseshoe crab) sperm were examined before and during the acrosomal reaction by using the technique of freeze- fracturing and thin sectioning. We focused on three areas. First, we examined stages in the fusion of the acrosomal vacuole with the cell surface. Fusion takes place in a particle-free zone which is surrounded by a circlet of particles on the P face of the plasma membrane and an underlying circlet of particles on the P face of the acrosomal vauole membrane. These circlets of particles are present before induction. Up to nine focal points of fusion occur within the particle-free zone. Second, we describe a system of fine filaments, each 30 A in diameter, which lies between the acrosomal vacuole and the plasma membrane. These filaments change their orientation as the vacuole opens, a process that takes place in less than 50 ms. Membrane particles seen on the P face of the acrosomal vacuole membrane change their orientation at the same time and in the same way as do the filaments, thus indicating that the membrane particles and filaments are probably connected. Third, we examined the source and the point of fusion of new membrane needed to cover the acrosomal process. This new membrane is almost certainly derived from the outer nuclear envelope and appears to insert into the plasma membrane in a particle-free area adjacent to an area rich in particles. The latter is the region where the particles are probably connected to the cytoplasmic filaments. The relevance of these observations in relation to the process of fertilization of this fantastic sperm is discussed. PMID:582596
Reactor plasma facing component designs based on liquid metal concepts supported in porous systems
NASA Astrophysics Data System (ADS)
Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.
2017-01-01
The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.
GEM detector development for tokamak plasma radiation diagnostics: SXR poloidal tomography
NASA Astrophysics Data System (ADS)
Chernyshova, Maryna; Malinowski, Karol; Ziółkowski, Adam; Kowalska-Strzeciwilk, Ewa; Czarski, Tomasz; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Kolasiński, Piotr; Krawczyk, Rafał D.
2015-09-01
An increased attention to tungsten material is related to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. The proposed work refers to the studies of W influence on the plasma performances by developing new detectors based on Gas Electron Multiplier GEM) technology for tomographic studies of tungsten transport in ITER-oriented tokamaks, e.g. WEST project. It presents current stage of design and developing of cylindrically bent SXR GEM detector construction for horizontal port implementation. Concept to overcome an influence of constraints on vertical port has been also presented. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing creation of sustainable nuclear fusion reactors a step closer.
A contoured gap coaxial plasma gun with injected plasma armature.
Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
NASA Astrophysics Data System (ADS)
Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye
2016-10-01
Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.
The hybrid reactor project based on the straight field line mirror concept
NASA Astrophysics Data System (ADS)
Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.
2012-06-01
The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (keff = 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GWth.
Divertor target for magnetic containment device
Luzzi, Jr., Theodore E.
1982-01-01
In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.
Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Juergen; Aaron, A. M.; Bell, Gary L.
2015-10-20
Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of 5–20 MW/m 2 and ion fluxes up to 10 24 m -2s -1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated. Neutronics calculations to determine the dose rates of the samples were carried out for a large number of potential plasma-facing materials.« less
Imaging plasma membrane deformations with pTIRFM.
Passmore, Daniel R; Rao, Tejeshwar C; Peleman, Andrew R; Anantharam, Arun
2014-04-02
To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation.
Results of neutron irradiation of GEM detector for plasma radiation detection
NASA Astrophysics Data System (ADS)
Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.
2015-09-01
The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
A Novel Synaptic Vesicle Fusion Path in the Rat Cerebral Cortex: The “Saddle” Point Hypothesis
Zampighi, Guido A.; Serrano, Raul; Vergara, Julio L.
2014-01-01
We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that “rods” assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these “connector rods” to protein complexes involved in “docking” and “priming” vesicles to the active zone. Depending on their orientation, the “rods” define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere (“randomly”) in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called “indentations,” that are spaced 75–85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection (“saddle”) points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170–240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the “post-synaptic domains,” the overwhelming majority of the rectangular particles formed bands in the “non-synaptic” plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the hybridization of the R-SNARE synaptobrevin from parallel to antiparallel swings the synapse into this novel vesicle-fusion path. PMID:24959848
Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser
NASA Astrophysics Data System (ADS)
Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan
2015-02-01
With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.
Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser.
Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan
2015-02-05
With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.
NASA Astrophysics Data System (ADS)
Xu, Y. H.; Jachmich, S.; Weynants, R. R.; Huber, A.; Unterberg, B.; Samm, U.
2004-12-01
The self-organized criticality (SOC) behavior of the edge plasma transport has been studied using fluctuation data measured in the plasma edge and the scrape-off layer of Torus experiment of technology oriented research tokamak [H. Soltwisch et al., Plasma Phys. Controlled Fusion 26, 23 (1984)] before and during the edge biasing experiments. In the "nonshear" discharge phase before biasing, the fluctuation data clearly show some of the characteristics associated with SOC, including similar frequency spectra to those obtained in "sandpile" transport and other SOC systems, slowly decaying long tails in the autocorrelation function, values of Hurst parameters larger than 0.5 at all the detected radial locations, and a radial propagation of avalanchelike events in the edge plasma area. During the edge biasing phase, with the generation of an edge radial electric field Er and thus of Er×B flow shear, contrary to theoretical expectation, the Hurst parameters are substantially enhanced in the negative flow shear region and in the scrape-off layer as well. Concomitantly, it is found that the local turbulence is well decorrelated by the Er×B velocity shear, consistent with theoretical predictions.
A. Sakharov and Fusion Research
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2012-02-01
In the landmark paper by Tamm and Sakharov [1], a controlled nuclear fusion reactor based on an axisymmetric magnetic confinement configuration whose principles remain valid to this day, was proposed. In the light of present understanding of plasma physics the virtues (e.g. that of considering the D-D reaction) and the shortcomings of this paper are pointed out. In fact, relatively recent results of theoretical plasma physics (e.g. discovery of the so called second stability region) and advances in high field magnet technology have made it possible to identify the parameters of meaningful experiments capable of exploring D-D and D-^3He burn conditions. At the same time an experimental program (IGNIR) has been undertaken through a (funded) collaboration between Italy and Russia to investigate D-T plasmas close to ignition conditions based on an advanced high field toroidal confinement configuration. A. Sakharov envisioned a bolder approach to fusion research than that advocated by some of his contemporaries. The time taken to design and decide to fabricate the first experiment capable of reaching ignition conditions is due in part to the problem of gaining an adequate understanding the expected physics of fusion burning plasmas. However, most of the relevant financial effort has gone in the pursuit of slow and indirect enterprises complying with the ``playing it safe'' tendencies of large organizations or motivated by the purpose to develop technologies or maintain a high level of expertise in plasma physics to the expected benefit of other kinds of endeavors. The creativity demonstrated by A. Sakharov in dealing with civil rights and disarmament issues is needed, while maintaining our concerns for energy and the environment on a global scale, to orient the funding for fusion research toward a direct and well based scientific effort on concepts for which a variety of developments can be envisioned. These can span from uncovering new physics relevant, for instance, to high energy astrophysics to the feasibility of new neutron sources.[4pt] [1] A. Sakharov, Collected Scientific Works (Publ. Marcel Dekkes, Inc., New York, N.Y., 1982).
Hammond, Karl D.; Wirth, Brian D.
2014-10-09
Here, we present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as {1 1 1}-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately belowmore » the surface. The energies involved for helium-induced adatom formation on {1 1 1} and {2 1 1} surfaces are exoergic for even a single adatom very close to the surface, while {0 0 1} and {0 1 1} surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to {1 1 1} and {2 1 1} tungsten surfaces than is observed for {0 0 1} or {0 1 1} surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. Lastly, the layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.« less
Conference Report on the 4rd International Symposium on Lithium Applications
NASA Astrophysics Data System (ADS)
Tabares, F. L.; Hirooka, Y.; Maingi, R.; Mazzitelli, G.; Mirnov, V.; Nygren, R.; Ono, M.; Ruzic, D. N.
2016-12-01
The fourth International Symposium on Liquid Metal Application for Fusion Devices (ISLA-2015) was held on 28-30 September 2015 at Granada, Spain, with growing participation and interest from the community working on general aspects of liquid metal research for fusion energy development. The ISLA symposia remain the largest, and arguably, the most important meetings dedicated to liquid metal application for the magnetic fusion research. Overall, 43 presentations plus 7 posters were given, representing 28 institutions from 12 countries. The latest experimental results from 9 magnetic fusion devices were given in 17 presentations from NSTX and LTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), DIII-D (GA, USA), ISTTOK (IPFN, Portugal) and KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) liquid metals (LM) in magnetic confinement experiments (facility overviews), (II) LM in magnetic confinement experiments (topical issues), (III) laboratory experiments, (IV) LM tests in linear plasma devices, (V) LM theory/modeling (VI) LM technology and (VII) a special session on lithium-safety and lithium handling. There were contributions from fusion technology communities including IFMIF and TBM, which provided productive exchanges with physics-oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference), with the next workshop scheduled for Moscow, Russian Federation, in 2017.
Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser
Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan
2015-01-01
With the development of ultra-intense laser technology, MeV ions can be obtained from laser–foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre–Gaussian (LG) laser is used for the first time to examine laser–plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment. PMID:25651780
1992-02-01
Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-04-01
The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.
Improved two-point model for limiter scrape-off layer
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Kobayashi, M.; Feng, Y.
2004-10-01
An analytical model for a limiter scrape-off layer (SOL) is proposed, which takes self-consistently into account both conductive and convective contributions to the heat transport in SOL. The particle flows in the SOL main part are determined by considering the recycling of neutrals. The model allows us to interpret the results of numerical simulation by the code EMC3-EIRENE [Y. Feng, F. Sardei, P. Grigull, K. McCormick, J. Kisslinger, D. Reiter, and Y. Igitkhanov, Plasma Phys. Controlled Fusion 44, 611 (2002)] for the edge region of Tokamak Experiment for Technology Oriented Research (TEXTOR) [Proceedings of the 16th IEEE Symposium on Fusion Engineering, 1995 (Institute for Electrical and Electronics Engineers, Piscataway, NJ, 1995), p. 470].
Time-dependent modeling of dust injection in semi-detached ITER divertor plasma
NASA Astrophysics Data System (ADS)
Smirnov, Roman; Krasheninnikov, Sergei
2017-10-01
At present, it is generally understood that dust related issues will play important role in operation of the next step fusion devices, i.e. ITER, and in the development of future fusion reactors. Recent progress in research on dust in magnetic fusion devises has outlined several topics of particular concern: a) degradation of fusion plasma performance; b) impairment of in-vessel diagnostic instruments; and c) safety issues related to dust reactivity and tritium retention. In addition, observed dust events in fusion edge plasmas are highly irregular and require consideration of temporal evolution of both the dust and the fusion plasma. In order to address the dust-related fusion performance issues, we have coupled the dust transport code DUSTT and the edge plasma transport code UEDGE in time-dependent manner, allowing modeling of transient dust-induced phenomena in fusion edge plasmas. Using the coupled codes we simulate burst-like injection of tungsten dust into ITER divertor plasma in semi-detached regime, which is considered as preferable ITER divertor operational mode based on the plasma and heat load control restrictions. Analysis of transport of the dust and the dust-produced impurities, and of dynamics of the ITER divertor and edge plasma in response to the dust injection will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-06ER54852.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylor, Larry R.; Meitner, Steven J.
Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuelmore » atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.« less
NASA Astrophysics Data System (ADS)
Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.
2017-03-01
Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/ni, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.
Carbajal, L; Dendy, R O; Chapman, S C; Cook, J W S
2017-03-10
Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n_{α}/n_{i}, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.
Bang, W
2015-07-01
Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns.
Progress In Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George;
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).
Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...
2014-08-13
Here, quasi-optical imaging at sub-THz frequencies has had a major impact on fusion plasma diagnostics. Mm-wave imaging reflectometry utilizes microwaves to actively probe fusion plasmas, inferring the local properties of electron density fluctuations. Electron cyclotron emission imaging is a multichannel radiometer that passively measures the spontaneous emission of microwaves from the plasma to infer local properties of electron temperature fluctuations. These imaging diagnostics work together to diagnose the characteristics of turbulence. Important quantities such as amplitude and wavenumber of coherent fluctuations, correlation lengths and decor relation times of turbulence, and poloidal flow velocity of the plasma are readily inferred.
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.
Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse
Bang, W.
2015-07-02
Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less
Spherical torus fusion reactor
Martin Peng, Y.K.M.
1985-10-03
The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.
Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J
2016-09-01
The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
ERIC Educational Resources Information Center
Glasstone, Samuel
This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less
Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General
2017-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
Investigation of RF Emissions from Electric Field Dominated Plasmas
1989-03-31
David Rosenberg and Mr. Paul D. Spence, "RF Plasma Emissions Measured with Calibrated, Broadband Antenna". February 19 Mr. Antonino Carnevali, Fusion...plasma equipment exhibitors, and major Japanese i fusion facilities. November 20 Dr. Antonino Carnevalli, RPI and Fusion Energy Division, ORNL: "H av Ion
Research on Heating, Instabilities, Turbulence and RF Emission from Electric Field Dominated Plasmas
1989-07-01
Spence, "RF Plasma Emissions Measured with Calibrated, Broadband Antenna". February 19 Mr. Antonino Carnevali, Fusion Energy Division, ORNL,"Confinement...slides of the conference, plasma equipment exhibitors, and major Japanese fusion facilities. November 20 Dr. Antonino Carnevalli, RPI and Fusion Energy
Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...
2017-03-07
Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less
An emergency response team for membrane repair
NASA Technical Reports Server (NTRS)
McNeil, Paul L.; Kirchhausen, Tom
2005-01-01
On demand, rapid Ca(2+)-triggered homotypic and exocytic membrane-fusion events are required to repair a torn plasma membrane, and we propose that this emergency-based fusion differs fundamentally from other rapid, triggered fusion reactions. Emergency fusion might use a specialized protein and organelle emergency response team that can simultaneously promote impromptu homotypic fusion events between organelles and exocytic fusion events along the vertices between these fusion products and the plasma membrane.
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
Fusion plasma theory project summaries
NASA Astrophysics Data System (ADS)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.
A Burning Plasma Experiment: the role of international collaboration
NASA Astrophysics Data System (ADS)
Prager, Stewart
2003-04-01
The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.
Molecular Diagnostics of Fusion and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Fantz, U.
2005-05-01
The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.
Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen
2007-11-01
Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.
This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterberg, F.
2006-03-15
It is proposed to use the neutrons released from a deuterium-tritium or deuterium-deuterium fusion reaction to drive thermomagnetic currents in a plasma corona surrounding the fusion plasma through the heating of the corona with nuclear reactions by the neutrons released in the fusion reaction. Because the neutron reaction cross sections are larger for slow neutrons, it is proposed to slow them down in a moderator separated from the hot plasma of the corona, giving the configuration a striking similarity to a heterogeneous nuclear fission reactor. While in a fission reactor the separation makes possible a growing neutron chain reaction, itmore » here makes possible the autocatalytic amplification of the thermomagnetic currents by an increase of the fusion reaction rate through a rise of the plasma pressure by the magnetic pressure of the thermomagnetic currents. This is expected to substantially increase the n{tau} product over its Lawson value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
High-Gain High-Field Fusion Plasma
Li, Ge
2015-01-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion
NASA Astrophysics Data System (ADS)
Brambilla, Marco
1998-04-01
Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The general part concludes with a few chapters on waves, again covering a broad spectrum of topics in a very condensed form: cold plasma waves, Landau and cyclotron absorption, quasi-linear theory, power flow and ray tracing in non-uniform plasmas, the main radiofrequency heating scenarios (ion cyclotron, lower hybrid and electron cyclotron) and the most common velocity space instabilities. The second part describes tokamaks, reversed field pinches, stellarators and open ended systems, and ends with a short chapter on inertial fusion. Although more descriptive in nature, this part offers a succinct introduction to relatively advanced topics, particularly for the tokamak: MHD stability and density limits, non-inductive current drive, bootstrap current, improved confinement regimes and scaling laws of the confinement. Reference to the first, general part, allows an introduction to and explanation of many of the formulas in current use for the interpretation of experimental results. A nice feature of this part is also the concise but very readable introduction to the history of fusion research. The level of the presentation corresponds well to what one would expect in a course for postgraduate students: most topics are discussed rather briefly, but always quantitatively, the mathematics being mostly worked out in full. As should be clear from the description of the content, there is a strong bias towards concrete applications, at the expense of general principles: this goes so far that the derivation of the energy principle for ideal MHD instabilities and of the dielectric tensor of the hot plasma are relegated to appendices, in spite of the fact that the mathematics involved is by no means more complex than that of the applications discussed in the main text. The equations of magnetohydrodynamics are derived in Chapter 5 not as a particular closure of the hierarchy of moments of the Vlasov equation, but using a phenomenological approach. The space devoted to comments and explanations is kept to a minimum, and discussions of the limits of validity of the theoretical models used (Vlasov equation, MHD, cold plasma, etc.) are almost absent: this price had to be paid to condense so many topics in less than 400 pages. The text is nevertheless always clear and easy to follow. The new book will therefore be appreciated both by students entering fusion research and by many senior physicists, for example experimentalists with an interest in the theoretical aspects of their work, wishing to gain a rapid but not too superficial overview of the whole field. It can also be useful for teachers of plasma physics as a source of relevant examples on particular topics worked out in detail. For all the plasma physicists who do not already possess the previous volume by Prof. Miyamoto, it is a useful addition to their library.
Holland, Chris [UC San Diego, San Diego, California, United States
2017-12-09
The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the âburning plasmaâ regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.
Fission and activation of uranium by fusion-plasma neutrons
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.; Mcfarland, D. R.
1978-01-01
Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, Jill; Corones, James; Batchelor, Donald
Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazeltine, Richard D.
The mission of the Institute for Fusion Studies has been to serve as a national center for theoretical fusion and plasma physics research. As an independent scientific group of critical size, its objectives were to conduct research on fundamental phenomena important to fusion; to serve as a center for fusion theory exchange activities with other countries; to exchange scientific developments with other academic disciplines; and to train students and postdoctoral fellows in fusion and plasma physics research.
Plasma-surface interaction in the context of ITER.
Kleyn, A W; Lopes Cardozo, N J; Samm, U
2006-04-21
The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.
Radiative transition of hydrogen-like ions in quantum plasma
NASA Astrophysics Data System (ADS)
Hu, Hongwei; Chen, Zhanbin; Chen, Wencong
2016-12-01
At fusion plasma electron temperature and number density regimes of 1 × 103-1 × 107 K and 1 × 1028-1 × 1031/m3, respectively, the excited states and radiative transition of hydrogen-like ions in fusion plasmas are studied. The results show that quantum plasma model is more suitable to describe the fusion plasma than the Debye screening model. Relativistic correction to bound-state energies of the low-Z hydrogen-like ions is so small that it can be ignored. The transition probability decreases with plasma density, but the transition probabilities have the same order of magnitude in the same number density regime.
Raman Sidescattering in Laser-Produced Plasmas.
1984-12-27
MENYUK AND N. M. EL-SIRAGY Labomtyjb Plasma and Fusion Energy Studies -~ University of Maryland College Park, MD 20 742 LnW. M. MANHEIMER2 Plasma...NOTATION *Laboratory for Plasma and Fusion Energy Studies, Univ. of Maryland, College Park, MD 20742 **Permanent Address: Physics Dept., Univ. of Tanta
Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki Okan
Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allain, Jean Paul
2014-08-08
This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieser, Patti; Hopkins, David
The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter. In this simulation of plasma turbulence inside PPPL's National Spherical Torus Experiment, the colorful strings represent higher and lower electron density in turbulent plasma as it circles around a donut-shaped fusion reactor; red and orange are higher density. This image is among those featured in the slide show, "Plasmas are Hot and Fusion is Cool," a production of PPPL and the Princeton University Broadcastmore » Center.« less
A Physics Exploratory Experiment on Plasma Liner Formation
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter
2002-01-01
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.
NASA Astrophysics Data System (ADS)
Linke, J.
2006-04-01
The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.
Progress in magnet design activities for the material plasma exposure experiment
Duckworth, Robert; Lumsdaine, Arnold; Rapp, Juergen; ...
2017-07-01
One of the critical challenges for the development of next generation fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or DEMO, is the understanding of plasma material interactions (PMI). Making progress in PMI research will require integrated facilities that can provide the types of conditions that will be seen in the first wall and divertor regions of future fusion facilities. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX), is proposed. In order to generate high ion fluence to simulate fusion divertor conditions, a steady-state plasma will be generated andmore » confined with superconducting magnets. Finally, the on-axis fields will range from 1 to 2.5 T in order to meet the requirements of the various plasma source and heating systems. Details on the pre-conceptual design of the magnets and cryogenic system are presented.« less
Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors
NASA Technical Reports Server (NTRS)
Roth, R. J.
1976-01-01
The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.
Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less
NASA Astrophysics Data System (ADS)
Patel, Umang; Joshipura, K. N.
2017-04-01
Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General
2016-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.
Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas
NASA Astrophysics Data System (ADS)
Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA
2008-12-01
Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.
Exploring lower-cost pathways to economical fusion power
Hsu, Scott C.
2017-08-04
This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less
Exploring lower-cost pathways to economical fusion power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Scott C.
This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.
Prada, Ilaria; Meldolesi, Jacopo
2016-08-09
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.
One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion
NASA Astrophysics Data System (ADS)
Santarius, John
2009-11-01
This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.
Conference report on the 3rd International Symposium on Lithium Application for Fusion Devices
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.; ...
2015-01-14
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices
NASA Astrophysics Data System (ADS)
Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.
2015-02-01
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.
Q, Break-even and the n{tau{sub E}} Diagram for Transient Fusion Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale M. Meade
1998-04-01
Q, break-even and the Lawson diagram are well defined and understood for steady-state fusion plasma conditions. Since many fusion experiments are transient, it is necessary to clarify the definitions for instantaneous Q values and break-even so that the Lawson diagram can be interpreted for transient plasma conditions. This discussion shows that there are two mathematically correct methods to describe the Lawson diagram for a transient plasma: the Lawson/TFTR method and the JET/JT-60 method. These methods are discussed in detail in this paper.
Theoretical Studies of Nonlinear Phenomena in Plasmas.
1984-02-14
AD-Ai38 762 THEORETICAL STUDIES OF NONLINEAR PHENOMENA IN PLASMAS i/i, (U) MARYLAND UNIV COLLEUE FHRK LAB FOR PLASMA AND FUSION ENERGY STUDIES H H...Tnvestiga-tor: H. Chen 4 j DTIC $ELECTE ~ ~.UNIVERSITY OF MARYLAND * S 4ABORATORY FOR PLASMA AND FUSION ENERGY STUDIES " ’ ..COLLEGE PARK, MARYLAND 4k
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
Current drive at plasma densities required for thermonuclear reactors.
Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A
2010-08-10
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
A Simple Model of a LINUS Fusion System with a Thick, Compressible, Resistive Liner.
1977-04-01
analysis of Ref. 1 to a plasma compressed by the inner shell only. If Q is the ratio of the fusion energy yield to the energy E initially in the...field B = 0.8 MG. A system designed to achieve fusion energy = plasma energy needs only Q = E^/E = 0.57, in which case r„ = 1.7 cm and E = 7-3 MJ.m 1...delivered to ehe plasma, Tji (1 - E„/E ) remain in the liner. *W O k. OJli units of fusion energy are produced, of which a fraction C is in
Lithium As Plasma Facing Component for Magnetic Fusion Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masayuki Ono
The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less
Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.
van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W
2017-08-04
Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
Fusion programs in applied plasma physics
NASA Astrophysics Data System (ADS)
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.
EDITORIAL: Plasma Surface Interactions for Fusion
NASA Astrophysics Data System (ADS)
2006-05-01
Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005). We are indebted to Lynda Saddiq and Fay Ownby, secretaries in the Physics Division of ORNL, whose special efforts, devotion, and expertise made possible both the Workshop and these Proceedings. J T Hogan, P S Krstic and F W Meyer Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372, USA
NASA Technical Reports Server (NTRS)
Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin
2004-01-01
This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.
Z-Pinch Plasma Neutron Sources
2006-03-24
deuterium into 9 to 14 keV (around 10 keV), which is well in the fusion energy range we are interested in. To make plasma radiation sources work, we...showing the 1-D dynamics of the pinch plasma implosion, temperature, fusion energy production and deposition for the conditions of shot Z1422. The minimum...histories of ion and electron temperatures, fusion energy production and energy deposition in ID RMHD run modeling deuterium shot Z1422. In our simulations
NASA Astrophysics Data System (ADS)
Kreter, Arkadi; Linke, Jochen; Rubel, Marek
2009-12-01
The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our knowledge is still limited, especially in relation to the behaviour of these metals in environments containing multiple species. There are many appealing issues related to material mixing and fuel retention that call for robust and comprehensive studies. In this sense, the aim of the workshop is not only to discuss hot topics, but also to identify the most important research areas and those that need urgent solutions. Another topic of foremost relevance to ITER is the development of plasma-facing components that are able to withstand extreme power fluxes, in particular, those during transient phases. Materials and production methods for high-heat-flux components have to be further developed and industrialized. A key requirement in this field is the development of non-destructive testing methods for the qualification of methods and quality assessment during production. Invited talks and contributed presentations therefore dealt with aspects of fundamental processes, experimental findings, advanced modelling and the technology of fusion reactor components. Several areas were selected as the major topics of PFMC-12: materials for the ITER-divertor (erosion, redeposition, fuel retention) carbon-based materials tungsten and tungsten coatings beryllium mixed materials (intentional and non-intentional) the ITER-Like Wall Project materials under high-heat-flux loads including transients (ELMs, disruptions) technology and testing of plasma-facing components neutron effects in plasma-facing materials. 26 invited lectures and oral contributions, and 131 posters were presented by participants from research laboratories and industrial companies. 210 researchers from 24 countries from all over the world participated in a lively and intense exchange of knowledge and ideas. The workshop was hosted by Forschungszentrum Jülich (FZJ), a centre where the integration of science and technology for fusion reactor materials has been a focus for decades. This is reflected by the operation of several devices vital for progress in fusion research. TEXTOR (Toroidal EXperiment for Technology Oriented Research) is a mission-oriented tokamak for the study of plasma-wall interactions and testing of materials in fusion environments. JUDITH-1 (JÜlich DIvertor Test facility in Hot-cell) and the recently started JUDITH-2 are the most powerful test beds for studies of material performance under steady-state or pulsed power loads. The results of testing in JUDITH establish the background for material qualification. The expertize of FZJ in fusion engineering is vital for the construction of the Wendelstein-7X stellarator in Greifswald and the diagnostics for the ITER plasma. Finally, there is a group of eminent theoreticians and modellers at work in FZJ. As a consequence, FZJ is the home of the supercomputer, High Performance Computing-For Fusion (HPC-FF). During the workshop, special guided laboratory tours were organized to get the participants acquainted with the experimental facilities at FZJ: TEXTOR, JUDITH and HPC-FF. The quality of the talks, posters and discussions, and the comfortable conference facilities were of great importance but activities outside fusion science also formed part of the workshop. A guided tour in the Old Town of Aachen was very much appreciated by all participants; a stroll in this beautiful place was not only a relaxing moment but also put participants in touch with a great deal of European history. Big and long-term projects always attract young, ambitious people. The recruitment of talented scientists is a conditio sine qua non for the future success and progress of fusion science and engineering. The enthusiasm of students is very important but not sufficient; it is the responsibility of older colleagues to get students acquainted with the major issues and challenges. For this reason, the workshop was preceded by a series of tutorials on plasma-wall interactions and properties, and testing of relevant materials. The lectures were met with a great response: not only did over thirty young colleagues register but also senior scientists registered for the course and were very active in discussions. The workshop was supported financially by Forschungszentrum Jülich and the ExtreMat Integrated Project, a programme for the development and study of new materials for extreme environments. We are very grateful to the staff of Forschungszentrum who helped with the organization. Our most cordial thanks and gratitude go to Yasmin Fattah, Angelika Hallmanns, Gabriele Knauf and Gerd Boeling for all their kindness and efficiency, which helped all of us to enjoy the meeting. We thank most sincerely our colleagues Gerald Pintsuk, Takeshi Hirai and Andrey Litnovsky for their most professional work in the construction and operation of the conference webpage, the preparation of the sessions and for all other elements that were vital for the smooth running of the meeting. We thank very much Marliese Felden and Ralf-Uwe Limbach who very kindly and professionally took care of the photographic documentation of the workshop. The proceedings of this workshop contains 67 peer-reviewed articles covering the contents of most of the invited presentations and a number of poster contributions which were pre-selected by the programme committee. The papers reflect the development and actual status of the field. We thank all participants for their contributions and the referees for their smooth and efficient peer-review. Thank you all for your hard work and co-operation. We are looking forward to seeing you at the next meeting; we invite you to come, though we are not yet able to say 'when' and 'where' we will meet next time. It is a special feature of this conference series that a new meeting is announced only when the community feels that there is substantial new material to be presented and discussed.
America COMPETES Act and the FY2010 Budget
2009-06-15
Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development...Spallation Neutron Source Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this...Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing
America COMPETES Act and the FY2010 Budget
2009-06-29
Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early
Distinct Requirements for HIV-Cell Fusion and HIV-mediated Cell-Cell Fusion*
Kondo, Naoyuki; Marin, Mariana; Kim, Jeong Hwa; Desai, Tanay M.; Melikyan, Gregory B.
2015-01-01
Whether HIV-1 enters cells by fusing with the plasma membrane or with endosomes is a subject of active debate. The ability of HIV-1 to mediate fusion between adjacent cells, a process referred to as “fusion-from-without” (FFWO), shows that this virus can fuse with the plasma membrane. To compare FFWO occurring at the cell surface with HIV-cell fusion through a conventional entry route, we designed an experimental approach that enabled the measurements of both processes in the same sample. The following key differences were observed. First, a very small fraction of viruses fusing with target cells participated in FFWO. Second, whereas HIV-1 fusion with adherent cells was insensitive to actin inhibitors, post-CD4/coreceptor binding steps during FFWO were abrogated. A partial dependence of HIV-cell fusion on actin remodeling was observed in CD4+ T cells, but this effect appeared to be due to the actin dependence of virus uptake. Third, deletion of the cytoplasmic tail of HIV-1 gp41 dramatically enhanced the ability of the virus to promote FFWO, while having a modest effect on virus-cell fusion. Distinct efficiencies and actin dependences of FFWO versus HIV-cell fusion are consistent with the notion that, except for a minor fraction of particles that mediate fusion between the plasma membranes of adjacent cells, HIV-1 enters through an endocytic pathway. We surmise, however, that cell-cell contacts enabling HIV-1 fusion with the plasma membrane could be favored at the sites of high density of target cells, such as lymph nodes. PMID:25589785
Multiple Antenna Implementation System (MAntIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.
1993-01-01
The MAntIS code was developed as an aid to the design of radio frequency (RF) antennas for fusion applications. The code solves for the electromagnetic fields in three dimensions near the antenna structure with a realistic plasma load. Fourier analysis is used in the two dimensions that are tangential to the plasma surface and backwall. The third dimension is handled analytically in a vacuum region with a general impedance match at the plasma-vacuum interface. The impedance tensor is calculated for a slab plasma using the ORION-lD code with all three electric field components included and warm plasma corrections. The codemore » permits the modeling of complicated antenna structures by superposing currents that flow on the surfaces of rectangular parallelepipeds. Specified current elements have feeders that continuously connect the current flowing from the ends of the strap to the feeders. The elements may have an arbitrary orientation with respect to the static magnetic field. Currents are permitted to vary along the length of the current strap and feeders. Parameters that describe this current variation can be adjusted to approximately satisfy boundary conditions on the current elements. The methods used in MAntIS and results for a primary loop antenna design are presented.« less
Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio
2014-06-01
It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly "trial and error," with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.
Ion distribution in the hot spot of an inertial confinement fusion plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; Guo, Zehua; Berk, Herb
2012-10-01
Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.
NASA Astrophysics Data System (ADS)
Li, Chenguang; Yang, Xianjun
2016-10-01
The Magnetized Plasma Fusion Reactor concept is proposed as a magneto-inertial fusion approach based on the target plasma created through the collision merging of two oppositely translating field reversed configuration plasmas, which is then compressed by the imploding liner driven by the pulsed-power driver. The target creation process is described by a two-dimensional magnetohydrodynamics model, resulting in the typical target parameters. The implosion process and the fusion reaction are modeled by a simple zero-dimensional model, taking into account the alpha particle heating and the bremsstrahlung radiation loss. The compression on the target can be 2D cylindrical or 2.4D with the additive axial contraction taken into account. The dynamics of the liner compression and fusion burning are simulated and the optimum fusion gain and the associated target parameters are predicted. The scientific breakeven could be achieved at the optimized conditions.
Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project
NASA Astrophysics Data System (ADS)
McGuire, Thomas
2017-10-01
The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.
Optical Guiding in the Separable Beam Limit,
1987-09-01
UNIV COLLEGE PARK LAB FOR PLASMA AND FUSION ENERGY STUDIES T M ANTONSEN ET AL SEP 87 UMLPF-BB-Bui UNCLASSIFIED N8884-6-K-2 85 F/G 9/2 N E m9h hOTCA...University of Maryland, D-Aiitiun f Laboratory for Plasma and Fusion Energy Studies Av-,-~t Codes DISTEIBTION GT TMNTA Approved for public releaBOI...Distfibution Unlimited OPTICAL GUIDING IN THE SEPARABLE BEAM LIMIT T. M. Antonsen, Jr. and B. Levush Laboratory for Plasma and Fusion Energy Studies University
Monte Carlo simulation of ion-material interactions in nuclear fusion devices
NASA Astrophysics Data System (ADS)
Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.
2017-06-01
One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.
Liu, Yanjie; Misamore, Michael J; Snell, William J
2010-05-01
The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.
National Spherical Torus Experiment (NSTX) and Planned Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yueng Kay Martin; Ono, M.; Kaye, S.
1998-01-01
The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less
Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment
NASA Technical Reports Server (NTRS)
1999-01-01
The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.
Review of the magnetic fusion program by the 1986 ERAB Fusion Panel
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.
1987-09-01
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.
Status and problems of fusion reactor development.
Schumacher, U
2001-03-01
Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.
Accelerator based fusion reactor
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei; Chao, Alexander Wu
2017-08-01
A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.
Plasma Physics Network Newsletter, no. 5
NASA Astrophysics Data System (ADS)
1992-08-01
The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.
Murphy, I G; Collins, J; Powell, A; Markl, M; McCarthy, P; Malaisrie, S C; Carr, J C; Barker, A J
2017-08-01
Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.
Fusion Power measurement at ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertalot, L.; Barnsley, R.; Krasilnikov, V.
2015-07-01
Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also tomore » the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)« less
Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.
Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro
2008-07-01
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.
High-Energy Electron Confinement in a Magnetic Cusp Configuration
NASA Astrophysics Data System (ADS)
Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni
2015-04-01
We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Amy; Callis, Richard; Efthimion, Philip
Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality.more » However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.« less
Dawson, John M.; Furth, Harold P.; Tenney, Fred H.
1988-12-06
Method for producing fusion power wherein a neutral beam is injected into a toroidal bulk plasma to produce fusion reactions during the time permitted by the slowing down of the particles from the injected beam in the bulk plasma.
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
NASA Astrophysics Data System (ADS)
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
Cryogenic pellet launcher adapted for controlling of tokamak plasma edge instabilities.
Lang, P T; Cierpka, P; Harhausen, J; Neuhauser, J; Wittmann, C; Gál, K; Kálvin, S; Kocsis, G; Sárközi, J; Szepesi, T; Dorner, C; Kauke, G
2007-02-01
One of the main challenges posed recently on pellet launcher systems in fusion-oriented plasma physics is the control of the plasma edge region. Strong energy bursts ejected from the plasma due to edge localized modes (ELMs) can form a severe threat for in-vessel components but can be mitigated by sufficiently frequent triggering of the underlying instabilities using hydrogen isotope pellet injection. However, pellet injection systems developed mainly for the task of ELM control, keeping the unwanted pellet fueling minimized, are still missing. Here, we report on a novel system developed under the premise of its suitability for control and mitigation of plasma edge instabilities. The system is based on the blower gun principle and is capable of combining high repetition rates up to 143 Hz with low pellet velocities. Thus, the flexibility of the accessible injection geometry can be maximized and the pellet size kept low. As a result the new system allows for an enhancement in the tokamak operation as well as for more sophisticated experiments investigating the underlying physics of the plasma edge instabilities. This article reports on the design of the new system, its main operational characteristics as determined in extensive test bed runs, and also its first test at the tokamak experiment ASDEX Upgrade.
2005-10-06
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor
NASA Astrophysics Data System (ADS)
Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.
2017-10-01
We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.
1999-01-01
Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.
Malik, Sundeep; Dolan, Terrance M; Maben, Zachary J; Hinkle, Patricia M
2015-11-13
The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.
Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J
2013-01-01
The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.
Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J
2015-06-26
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
The America COMPETES Act and the FY2009 Budget
2008-10-17
Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced...Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.20 The DOE Summer Institutes authorization in the act is $20 million in FY2009...corresponds to pre-existing High Energy Physics Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma
Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma
NASA Astrophysics Data System (ADS)
Kumar, Dilip; Haubold, Hans
The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.
Fusion energy science: Clean, safe, and abundant energy through innovative science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.
Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.
Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H
2008-02-01
We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Neumeyer; M. Ono; S.M. Kaye
1999-11-01
The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.
Department of Defense Instrumentation Award.
1985-07-01
Office of Scientific Research Prepared by The Electrical Engineering Department and The Laboratory for Plasma and Fusion Energy Studies University of...Electrical Engineering Department Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Principal Investigator
Overview of the Fusion Z-Pinch Experiment FuZE
NASA Astrophysics Data System (ADS)
Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team
2016-10-01
Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y
2011-02-01
A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.
1999-05-12
The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.
Fusion yield: Guderley model and Tsallis statistics
NASA Astrophysics Data System (ADS)
Haubold, H. J.; Kumar, D.
2011-02-01
The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl. 396, 317-328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399-411). An interpretation for the pathway parameter is also given.
Fusion energy division annual progress report, period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less
Plasma-Jet Magneto-Inertial Fusion Burn Calculations
NASA Astrophysics Data System (ADS)
Santarius, John
2010-11-01
Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan, Vladislav Alexander
Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
Measurement of argon neutral velocity distribution functions near an absorbing boundary in a plasma
NASA Astrophysics Data System (ADS)
Short, Zachary; Thompson, Derek; Good, Timothy; Scime, Earl
2016-10-01
Neutral particle distributions are critical to the study of plasma boundary interactions, where ion-neutral collisions, e.g. via charge exchange, may modify energetic particle populations impacting the boundary surface. Neutral particle behavior at absorbing boundaries thus underlies a number of important plasma physics issues, such as wall loading in fusion devices and anomalous erosion in Hall thruster channels. Neutral velocity distribution functions (NVDFs) are measured using laser-induced fluorescence (LIF). Our LIF scheme excites the 1s4 non-metastable state of neutral argon with 667.913 nm photons. The subsequent decay emission at 750.590 nm is recorded synchronously with injection laser frequency. Measurements are performed near a grounded boundary immersed in a cylindrical helicon plasma, with the boundary plate oriented at an oblique angle to the magnetic field. NVDFs are recorded in multiple velocity dimensions and in a three-dimensional volume, enabling point-to-point comparisons with NVDF predictions from particle-in-cell models as well as comparisons with ion velocity distribution function measurements obtained in the same regions through Ar-II LIF. This work is supported by US National Science Foundation Grant Number PHYS-1360278.
Plasma physics goes beyond fusion
NASA Astrophysics Data System (ADS)
Franklin, Raoul
2008-11-01
I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.
Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed
2018-02-14
At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.
Cherenkov neutron detector for fusion reaction and runaway electron diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheon, MunSeong, E-mail: munseong@nfri.re.kr; Kim, Junghee
2015-08-15
A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.
Burning plasma regime for Fussion-Fission Research Facility
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2010-11-01
The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.
The orientation distribution of tunneling-related quantities
NASA Astrophysics Data System (ADS)
Seif, W. M.; Refaie, A. I.; Botros, M. M.
2018-03-01
In the nuclear tunneling processes involving deformed nuclei, most of the tunneling-related quantities depend on the relative orientations of the participating nuclei. In the presence of different multipole deformations, we study the variation of a few relevant quantities for the α-decay and the sub-barrier fusion processes, in an orientation degree of freedom. The knocking frequency and the penetration probability are evaluated within the Wentzel-Kramers-Brillouin approximation. The interaction potential is calculated with Skyrme-type nucleon-nucleon interaction. We found that the width of the potential pocket, the Coulomb barrier radius, the penetration probability, the α-decay width, and the fusion cross-section follow consistently the orientation-angle variation of the radius of the deformed nucleus. The orientation distribution patterns of the pocket width, the barrier radius, the logarithms of the penetrability, the decay width, and the fusion cross-section are found to be highly analogous to pattern of the deformed-nucleus radius. The curve patterns of the orientation angle distributions of the internal pocket depth, the Coulomb barrier height and width, as well as the knocking frequency simulate inversely the variation of the deformed nucleus radius. The predicted orientation behaviors will be of a special interest in predicting the optimum orientations for the tunneling processes.
Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion
NASA Astrophysics Data System (ADS)
Barnes, D. C.
2007-06-01
An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.
Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Ticoş, Cǎtǎlin M.; Wurden, Glen A.
2007-10-01
Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 1015m-3 electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas (˜10eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasouli, C.; Abbasi Davani, F.; Rokrok, B.
Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation hasmore » been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.« less
Plasma Physics Network Newsletter, No. 3
NASA Astrophysics Data System (ADS)
1991-02-01
This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.
Simulation of High-Beta Plasma Confinement
NASA Astrophysics Data System (ADS)
Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas
2017-10-01
The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.
Measurement of ion velocities in the locked Single Helical Axis state in MST RFP plasmas
NASA Astrophysics Data System (ADS)
Boguski, J.; Nornberg, M. D.; Chapman, B. E.; Cianciosa, M.; den Hartog, D. J.; Craig, D.; McCollam, K. J.; Nishizawa, T.; Xing, Z. A.
2017-10-01
Charge Exchange Recombination Spectroscopy (CHERS) provides the first core-localized measurements of the 3D ion flow structure in Single Helical Axis (SHAx) plasmas. In high-current and low-density (large Lundquist number) RFP plasmas, the island associated with the innermost resonant tearing mode can grow to large amplitude and envelop the magnetic axis creating a 3D equilibrium. Measurements of the flow profile with various orientations (phases) of the helical structure relative to the CHERS diagnostic were achieved by locking the plasma with resonant magnetic perturbations. The flows persist despite mode locking, and are correlated with the amplitude and phase of the innermost resonant tearing mode. At mid-radius, a dominantly m =2 poloidal flow structure appears relative to the phase of the helical core. Near the core, non-axisymmetric flows become less pronounced, and cannot be distinguished at the innermost radii. These results place more significant constraints on the nature of the flow structure than previous line-integrated spectroscopy measurements and challenge predictions of visco-resistive MHD models of these helical RFP plasmas. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.
Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He
NASA Astrophysics Data System (ADS)
Honig, Arnold; Sandorfi, Andrew
2007-06-01
An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tTokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of ˜15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at ˜108 K plasma core temperatures (˜5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactorfusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It will be introduced into the reactor by loading at high pressure into a thick-walled ICF-type polymer shell for injection into the plasma core with a room temperature injection gun. Based on current experience, polarizations of both D and 3He of ˜55% are projected, producing a fusion yield increase of about 15%. A collaboration is being developed for implementing this experiment at the DIII-D Ttokamak experiment at San Diego, operated by General Atomics for the U.S. Department of Energy. Calculations indicate a 10% fusion yield increase in the 14.6 MeV protons from the D-3He reaction will provide a statistically significant test of polarization retention in the plasma. Injection of the polarized fuels into a 4He or 1H plasma improves the discrimination of the effects of polarized fuels. Details of the HD fuel preparation, of the polarization processes, and of the injection into the plasma will beare presented. If the expected fusion reaction yield increase indicative of polarization retention is detected, a route to significantly improved second generation D-3He fusion would be established, as well as confidence to undertake the more difficult polarization of tritium, which would offer important cost savings and improved prospects of ignition in the ITER program.
Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.
ERIC Educational Resources Information Center
Fillo, J. A.
This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…
BOOK REVIEW: Controlled Fusion and Plasma Physics
NASA Astrophysics Data System (ADS)
Engelmann, F.
2007-07-01
This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of references, mostly to articles covering original research, allows the interested reader to go deeper into the various subjects. There are a few quite relevant areas which are essentially not covered in the book (plasma diagnostics; fuelling). The discussion of particle and power exhaust is limited to tokamaks and is somewhat scarce. Other points which I did not find fully satisfactory are: the index is too selective and does not really allow easy access to any specific subject. Cross references between different sections treating related topics are not always given. There are quite a lot of typographical errors which as far as cross references are concerned may be disturbing. A list of the symbols used would be a helpful supplement, especially since some of them appear with different meanings. There are apparent imperfections in the structure of certain chapters. While the English is sometimes unusual, this generally does not affect the readability. Overall, the book can be warmly recommended to all interested in familiarizing themselves with the physics of magnetic fusion.
Bang, W; Dyer, G; Quevedo, H J; Bernstein, A C; Gaul, E; Donovan, M; Ditmire, T
2013-02-01
The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6×10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed.
Plasma wall interaction, a key issue on the way to a steady state burning fusion device
NASA Astrophysics Data System (ADS)
Philipps, V.
2006-04-01
The International Tokamak Experimental Reactor (ITER), the first burning fusion plasma experiment based on the tokamak principle, is ready for construction. It is based on many years of fusion research resulting in a robust design in most of the areas. Present day fusion research concentrates on the remaining critical issues which are, to a large extent, connected with processes of plasma wall interaction. This is mainly due to extended duty cycle and the increase of the plasma stored energy in comparison with present-day machines. Critical topics are the lifetime of the plasma facing components (PFC) and the long-term tritium retention. These processes are controlled mainly by material erosion, both during steady state operation and transient power losses (disruptions and edge localized modes (ELMs)) and short- and long-range material migration and re-deposition. The extrapolation from present-day 'full carbon wall' devices suggests that the long-term tritium retention in a burning fusion device would be unacceptably high under these conditions allowing for only an unacceptable limited number of pulses in a D T mixture. As a consequence of this, research activities have been strengthened to understand in more detail the underlying processes of material erosion and re-deposition, to develop methods to remove retained tritium from the PFCs and remote areas of a fusion device and to explore these processes and the plasma performance in more detail with metallic PFC, such as beryllium (Be) and tungsten (W), which are foreseen for the ITER experiment. This paper outlines the main physical mechanisms leading to material erosion, migration and re-deposition and the associated fuel retention. It addresses the experimental database in these areas and describes the further research strategies that will be needed to tackle critical issues.
NASA Astrophysics Data System (ADS)
Stanic, M.; Cassibry, J. T.; Adams, R. B.
2013-05-01
Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
James, Declan J; Khodthong, Chuenchanok; Kowalchyk, Judith A; Martin, Thomas F J
2008-07-28
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protein receptor (SNARE)-dependent liposome fusion is inhibited. Inhibition by PI 4,5-P(2) likely results from its intrinsic positive curvature-promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P(2), suggesting that syntaxin sequesters PI 4,5-P(2) to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P(2), we test a PI 4,5-P(2)-binding priming factor required for vesicle exocytosis. Ca(2+)-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P(2) dependent. These results indicate that PI 4,5-P(2) regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield
NASA Astrophysics Data System (ADS)
Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco
2017-10-01
Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.
Fusion Propulsion Z-Pinch Engine Concept
NASA Technical Reports Server (NTRS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.;
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.
A direct fusion drive for rocket propulsion
NASA Astrophysics Data System (ADS)
Razin, Yosef S.; Pajer, Gary; Breton, Mary; Ham, Eric; Mueller, Joseph; Paluszek, Michael; Glasser, Alan H.; Cohen, Samuel A.
2014-12-01
The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium-helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma's Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun-Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg.
Medium-β free-boundary equilibria of a quasi-isodynamic stellarator
NASA Astrophysics Data System (ADS)
Mikhailov, M. I.; Drevlak, M.; Nührenberg, J.; Shafranov, V. D.
2012-06-01
Free-boundary MHD equilibria with magnetic surfaces in the vacuum region surrounding the plasma [E. Strumberger, Nucl. Fusion 37, 19 (1997); M. Drevlak, D. Monticello, and A. Reiman, Nucl. Fusion 45, 731 (2005)] are obtained for a quasi-isodynamic stellarator [A. A. Subbotin, M. I. Mikhailov, V. D. Shafranov et al., Nucl. Fusion 46, 921 (2006); M. I. Mikhailov, J. Nuhrenberg, and V. D. Shafranov, Plasma Phys. Rep. 35, 529 (2009)].
Medium-{beta} free-boundary equilibria of a quasi-isodynamic stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailov, M. I.; Drevlak, M.; Nuehrenberg, J.
Free-boundary MHD equilibria with magnetic surfaces in the vacuum region surrounding the plasma [E. Strumberger, Nucl. Fusion 37, 19 (1997); M. Drevlak, D. Monticello, and A. Reiman, Nucl. Fusion 45, 731 (2005)] are obtained for a quasi-isodynamic stellarator [A. A. Subbotin, M. I. Mikhailov, V. D. Shafranov et al., Nucl. Fusion 46, 921 (2006); M. I. Mikhailov, J. Nuhrenberg, and V. D. Shafranov, Plasma Phys. Rep. 35, 529 (2009)].
Flowing DPF Design for Propulsion Experiments
1993-08-01
plasma acceleration but not a pinch i.e., added fusion energy , as envisioned in a DPF. The outer electrode at the UI DPF is constructed of 24 rods which...many respects to a coaxial plasma accelerator or a magnetic plasmoid accelerator, the added fusion energy supplied by the pinch step greatly enhances...modified DPF in space propulsion. Using a scaled-up model. From this model, the contribution of fusion energy to thrust and specific impulse is estimated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.
A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injectionmore » system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.« less
NASA Astrophysics Data System (ADS)
Wu, Lingling
Three-dimensional simulations of the formation and implosion of plasma liners for the Plasma Jet Induced Magneto Inertial Fusion (PJMIF) have been performed using multiscale simulation technique based on the FronTier code. In the PJMIF concept, a plasma liner, formed by merging of a large number of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the nuclear fusion ignition. The propagation of a single jet with Mach number 60 from the plasma gun to the merging point was studied using the FronTier code. The simulation result was used as input to the 3D jet merger problem. The merger of 144, 125, and 625 jets and the formation and heating of plasma liner by compression waves have been studied and compared with recent theoretical predictions. The main result of the study is the prediction of the average Mach number reduction and the description of the liner structure and properties. We have also compared the effect of different merging radii. Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets have also been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium - xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium - tritium targets compressed by Mach 60 deuterium liners. In the most optimal setup for a given chamber size that contained a target with the initial radius of 20 cm compressed by 10 cm thick, Mach 60 xenon liner, the target ignition and fusion energy gain of 10 was achieved. Simulations also showed that composite deuterium - xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.
Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.
2006-07-05
The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra ormore » SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.« less
Electron cyclotron emission imaging and applications in magnetic fusion energy
NASA Astrophysics Data System (ADS)
Tobias, Benjamin John
Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and magnetic field line displacement during precursor oscillations associated with the sawtooth crash, a disruptive instability observed both in tokamak plasmas with high core current and in the magnetized plasmas of solar flares and other interstellar plasmas. Understanding both of these phenomena is essential for the future of magnetic fusion energy, and important new observations described herein underscore the advantages of imaging techniques in experimental physics.
Proposal for a novel type of small scale aneutronic fusion reactor
NASA Astrophysics Data System (ADS)
Gruenwald, J.
2017-02-01
The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.
NASA Astrophysics Data System (ADS)
Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.
2004-05-01
Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.
Progress in Mirror-Based Fusion Neutron Source Development.
Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V
2015-12-04
The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.
Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu
2010-03-01
The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characteristics of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.
Anomalous Resistivity of Auroral Field Lines.
1982-01-25
Anomalous Resistivity on Auroral Field Lines H-. L. R0VNLAND AND K. PAPADOPOULOS Laboratory for Plasma and Fusion Energy Studies$ University of Maryland...d in Stock 20, It difitir.oI from Reprt) It.SUPPLEMENTARY NOTES * Laboratory for Plasma and Fusion Energy Studies, University of NMarland, College
Deuterium-lithium plasma as a source of fusion neutrons
NASA Astrophysics Data System (ADS)
Chirkov, A. Yu; Vesnin, V. R.
2017-11-01
The concepts of deuterium-tritium (D-T) fusion neutron source are currently developed for hybrid fusion-fission systems and the waste transmutation ones. The need to use tritium technologies is a deterrent factor in this promising direction of energy production. Potential possibilities of using systems that do not require tritium developments are of a significant interest. A deuterium-deuterium (D-D) reaction is considered for the use in demonstration fusion neutron sources. The product of this reaction is tritium, which will burn in the plasma with the emission of fast neutrons. D-D reaction is significantly slower then D-T reaction. Present study shows an increase in neutron yield using a powerful injection of the beam of deuterium atoms. The reactions of the deuterium with lithium isotopes are considered. In some of these reactions, fast neutrons can be obtained. The results of the calculation of the neutron yield from the deuterium lithium plasma are discussed. The estimates of the parameters needed for the realization of a source of fusion neutrons are presented.
The next large helical devices
NASA Astrophysics Data System (ADS)
Iiyoshi, Atsuo; Yamazaki, Kozo
1995-06-01
Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.
Magnetic Inertial Confinement Fusion (MICF)
NASA Astrophysics Data System (ADS)
Miao, Feng; Zheng, Xianjun; Deng, Baiquan; Liu, Wei; Ou, Wei; Huang, Yi
2016-11-01
Based on the similarity in models of the early Sun and the 3-D common focal region of the micro-pinch in X-pinch experiments, a novel hybrid fusion configuration by continuous focusing of multiple Z-pinched plasma beams on spatially symmetric plasma is proposed. By replacing gravity with Lorentz force with subsequent centripetal spherical pinch, the beam-target fusion reactivity is enhanced in a quasi-spherical converging region, thus achieving MICF. An assessment, presented here, suggests that a practical fusion power source could be achieved using deuterium alone. Plasma instabilities can be suppressed by fast rotation resulting from an asymmetric tangential torsion in the spherical focal region of this configuration. Mathematical equivalence with the Sun allows the development of appropriate equations for the focal region of MICF, which are solved numerically to provide density, temperature and pressure distributions that produce net fusion energy output. An analysis of MICF physics and a preliminary experimental demonstration of a single beam are also carried out. supported by National Natural Science Foundation of China (Nos. 11374217 and 11176020)
NASA Astrophysics Data System (ADS)
Bruder, Daniel
2010-11-01
The DC Glow Discharge Exhibit is intended to demonstrate the effects a magnetic field produces on a plasma in a vacuum chamber. The display, which will be featured as a part of The Liberty Science Center's ``Energy Quest Exhibition,'' consists of a DC glow discharge tube and information panels to educate the general public on plasma and its relation to fusion energy. Wall posters and an information booklet will offer brief descriptions of fusion-based science and technology, and will portray plasma's role in the development of fusion as a viable source of energy. The display features a horse-shoe magnet on a movable track, allowing viewers to witness the effects of a magnetic field upon a plasma. The plasma is created from air within a vacuum averaging between 100-200 mTorr. Signage within the casing describes the hardware components. The display is pending delivery to The Liberty Science Center, and will replace a similar, older exhibit presently at the museum.
Advanced Plasma Propulsion for Human Missions to Jupiter
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Pearson, J. Boise
1999-01-01
This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...
2016-03-04
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geissel, Matthias; Awe, Thomas James; Bliss, David E.
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.
Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D
2012-10-01
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions
Rapp, J.
2017-07-12
Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less
The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, J.
Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less
Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion
NASA Astrophysics Data System (ADS)
Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.
1992-01-01
Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.
History of Nuclear Fusion Research in Japan
NASA Astrophysics Data System (ADS)
Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo
In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.
Physics Criteria for a Subscale Plasma Liner Experiment
Hsu, Scott C.; Thio, Yong C. Francis
2018-02-02
Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). Here, in this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Lastly, based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasmamore » liner experiment now under development.« less
Physics Criteria for a Subscale Plasma Liner Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Scott C.; Thio, Yong C. Francis
Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). Here, in this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Lastly, based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasmamore » liner experiment now under development.« less
EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award
NASA Astrophysics Data System (ADS)
Kikuchi, M.
2011-01-01
The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S888-97 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 781-7 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 541-7 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 133-41 Watanabe T.-H. et al 2006 Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 24-32 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618-24 Lipschultz B. et al 2007 Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189-205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 1112-20 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 667-76 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 1588-97 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 535-51 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 856-63 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 228-32 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 961-8 Urano H. et al 2007 H-mode pedestal structure in the variation of toroidal rotation and toroidal field ripple in JT-60U Nucl. Fusion 47 706-13 Günter S. et al 2007 Interaction of energetic particles with large and small scale instabilities Nucl. Fusion 47 920-8
An object-oriented framework for medical image registration, fusion, and visualization.
Zhu, Yang-Ming; Cochoff, Steven M
2006-06-01
An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.
Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U
NASA Astrophysics Data System (ADS)
Barchfeld, Robert Adam
Worldwide demand for power, and in particular electricity, is growing. Increasing population, expanding dependence on electrical devices, as well as the development of emerging nations, has created significant challenges for the power production. Compounding the issue are concerns over pollution, natural resource supplies, and political obstacles in troubled parts of the world. Many believe that investment in renewable energy will solve the expected energy crisis; however, renewable energy has many shortfalls. Consequently, additional sources of energy should be explored to provide the best options for the future. Electricity from fusion power offers many advantages over competing technologies. It can potentially produce large amounts of clean energy, without the serious concerns of fission power plant safety and nuclear waste. Fuel supplies for fusion are plentiful. Fusion power plants can be operated as needed, without dependence on location, or local conditions. However, there are significant challenges before fusion can be realized. Many factors currently limit the effectiveness of fusion power, which prevents a commercial power plant from being feasible. Scientists in many countries have built, and operate, experimental fusion plants to study the fusion process. The leading examples are magnetic confinement reactors known as tokamaks. At present, reactor gain is near unity, where the fusion power output is nearly the same as the power required to operate the reactor. A tenfold increase in gain is what reactors such as ITER hope to achieve, where 50 MW will be used for plasma heating, magnetic fields, and so forth, with a power output of 500 MW. Before this can happen, further research is required. Loss of particle and energy confinement is a principal cause of low performance; therefore, increasing confinement time is key. There are many causes of thermal and particle transport that are being researched, and the prime tools for conducting this research are plasma diagnostics. Plasma diagnostics collect data from fusion reactors in a number of different ways. Among these are far infrared (FIR) laser based systems. By probing a fusion plasma with FIR lasers, many properties can be measured, such as density and density fluctuations. This dissertation discusses the theory and design of two laser based diagnostic instruments: 1) the Far Infrared Tangential Interferometer and Polarimeter (FIReTIP) systems, and 2) the High-ktheta Scattering System. Both of these systems have been designed and fabricated at UC Davis for use on the National Spherical Torus Experiment - Upgrade (NSTX-U), located at Princeton Plasma Physics Laboratory (PPPL). These systems will aid PPPL scientists in fusion research. The FIReTIP system uses 119 ?m methanol lasers to pass through the plasma core to measure a chord averaged plasma density through interferometry. It can also measure the toroidal magnetic field strength by the way of polarimetery. The High-ktheta Scattering System uses a 693 GHz formic acid laser to measure electron scale turbulence. Through collective Thomson scattering, as the probe beam passes through the plasma, collective electron motion will scatter power to a receiver with the angle determined by the turbulence wavenumber. This diagnostic will measure ktheta from 7 to 40 cm-1 with a 4-channel receiver array. The High-ktheta Scattering system was designed to facilitate research on electron temperature gradient (ETG) modes, which are believed to be a major contributor to anomalous transport on NSTX-U. The design and testing of these plasma diagnostics are described in detail. There are a broad range of components detailed including: optically pumped gas FIR lasers, overmoded low loss waveguide, launching and receiving optical designs, quasi-optical mixers, electronics, and monitoring and control systems. Additionally, details are provided for laser maintenance, alignment techniques, and the fundamentals of nano-CNC-machining.
Current Status of the Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2002-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). An experimental GDM device has been constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. An initial shakedown of the device is currently underway with initial experiments slated to occur in late 2001. This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. The high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. The high plasma density results in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. The device has been constructed to allow a considerable degree of flexibility in its configuration thus permitting the experiment to grow over time without necessitating a great deal of additional fabrication.
Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform
NASA Astrophysics Data System (ADS)
Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic
2015-11-01
The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.
Recent progress in understanding electron thermal transport in NSTX
Ren, Y.; Belova, E.; Gorelenkov, N.; ...
2017-03-10
The anomalous level of electron thermal transport inferred in magnetically confined configurations is one of the most challenging problems for the ultimate realization of fusion power using toroidal devices: tokamaks, spherical tori and stellarators. It is generally believed that plasma instabilities driven by the abundant free energy in fusion plasmas are responsible for the electron thermal transport. The National Spherical Torus eXperiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557) provides a unique laboratory for studying plasma instabilities and their relation to electron thermal transport due to its low toroidal field, high plasma beta, low aspect ratio and largemore » ExB flow shear. Recent findings on NSTX have shown that multiple instabilities are required to explain observed electron thermal transport, given the wide range of equilibrium parameters due to different operational scenarios and radial regions in fusion plasmas. Here we review the recent progresses in understanding anomalous electron thermal transport in NSTX and focus on mechanisms that could drive electron thermal transport in the core region. The synergy between experiment and theoretical/ numerical modeling is essential to achieving these progresses. The plans for newly commissioned NSTX-Upgrade will also be discussed.« less
Systematic analysis of advanced fusion fuel in inertial fusion energy
NASA Astrophysics Data System (ADS)
Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.
1997-04-01
Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.
Z-Pinch fusion-based nuclear propulsion
NASA Astrophysics Data System (ADS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.
2013-02-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.
Funding for the 2ND IAEA technical meeting on fusion data processing, validation and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwald, Martin
The International Atomic Energy Agency (IAEA) will organize the second Technical Meeting on Fusion Da Processing, Validation and Analysis from 30 May to 02 June, 2017, in Cambridge, MA USA. The meeting w be hosted by the MIT Plasma Science and Fusion Center (PSFC). The objective of the meeting is to provide a platform where a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolation needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucialmore » for a knowledge based understanding of the physical processes governing the dynamics of these plasmas. The meeting will aim at fostering, in particular, discussions of research and development results that set out or underline trends observed in the current major fusion confinement devices. General information on the IAEA, including its mission and organization, can be found at the IAEA websit Uncertainty quantification (UQ) Model selection, validation, and verification (V&V) Probability theory and statistical analysis Inverse problems & equilibrium reconstru ction Integrated data analysis Real time data analysis Machine learning Signal/image proc essing & pattern recognition Experimental design and synthetic diagnostics Data management« less
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Regions of Stability of FEL Oscillators,
1987-10-01
EGION5 OF STABILITY OF FEL OCCILLATORS(U) MARYLAND 1/1 UNIV COLLEGE PARK LAB FOR PLASMA AND FUSION ENERGY STUDIES B LEVUSH ET AL OCT 87 UNLPF-88...MARYLAND j LABRATRY ORPLASMA AND FUSION ENERGY . STUDIES...:’ COLLEGE PARK, MARYLANI) ’ 20742- a 0.6.3 ~0 DT!C IlELEcTEI REGIONS OF STABILITY OF FEL...University of Maryland, Laboratory for Plasma and Fusion Energy Studies ~IT~UTION ST TEMEN Approved iom public :elOOS61=D triution Unli __e REGIONS OF
A two photon absorption laser induced fluorescence diagnostic for fusion plasmasa)
NASA Astrophysics Data System (ADS)
Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.
2012-10-01
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm2), narrow bandwidth (0.1 cm-1) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D; Thio, Y F
In a fusion reactor based on the Magnetized Target Fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1 to 10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief physic analysis of the processes associated with creation of plasma electrodes ismore » discussed.« less
Relevance of advanced nuclear fusion research: Breakthroughs and obstructions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppi, Bruno, E-mail: coppi@mit.edu
2016-03-25
An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less
Overview of FAR-TECH's magnetic fusion energy research
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.
2017-10-01
FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Correll, Don; Heeter, Robert; Alvarez, Mitch
2000-10-01
In response to many inquiries for a list of plasma terms, a database driven Plasma Dictionary website (plasmadictionary.llnl.gov) was created that allows users to submit new terms, search for specific terms or browse alphabetic listings. The Plasma Dictionary website contents began with the Fusion & Plasma Glossary terms available at the Fusion Energy Educational website (fusedweb.llnl.gov). Plasma researchers are encouraged to add terms and definitions. By clarifying the meanings of specific plasma terms, it is envisioned that the primary use of the Plasma Dictionary website will be by students, teachers, researchers, and writers for (1) Enhancing literacy in plasma science, (2) Serving as an educational aid, (3) Providing practical information, and (4) Helping clarify plasma writings. The Plasma Dictionary website has already proved useful in responding to a request from the CRC Press (www.crcpress.com) to add plasma terms to its CRC physics dictionary project (members.aol.com/physdict/).
Plasma Studies in the SPECTOR Experiment as Target Development for MTF
NASA Astrophysics Data System (ADS)
Ivanov, Russ; Young, William; the Fusion Team, General
2016-10-01
General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.
Fusion Energy and Stopping Power in a Degenerate DT Pellet Driven by a Laser-Accelerated Proton Beam
NASA Astrophysics Data System (ADS)
Mehrangiz, M.; Ghasemizad, A.; Jafari, S.; Khanbabaei, B.
2016-06-01
In this paper, we have improved the fast ignition scheme in order to have more authority needed for high-energy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma. It is found that the wavelength of 0.53 μm and the intensity of about 1020 W/cm2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances. Supported by the Research Council of University of Guilan
Papadopulos, Andreas; Martin, Sally; Tomatis, Vanesa M; Gormal, Rachel S; Meunier, Frederic A
2013-12-04
Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.
Overview of the FuZE Fusion Z-Pinch Experiment
NASA Astrophysics Data System (ADS)
Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.
2017-10-01
Successful results of the sheared flow stabilized (SFS) Z-pinch from ZaP and ZaP-HD have motivated the new FuZE project to scale the plasma performance to fusion conditions. The SFS Z-pinch is immune to the instabilities that plague the conventional Z-pinch yet maintains the same favorable radial scaling. The plasma density and temperature increase rapidly with decreasing plasma radius, which naturally leads to a compact configuration at fusion conditions. The SFS Z-pinch is being investigated as a novel approach to a compact fusion device in a collaborative ARPA-E ALPHA project with the University of Washington and Lawrence Livermore National Laboratory. The project includes an experimental effort coupled with high-fidelity physics modeling using kinetic and fluid simulations. Along with scaling law analysis, computational and experimental results from the FuZE device are presented. This work is supported by an award from US ARPA-E.
Some new classification methods for hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia
2006-10-01
Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.
Polarisation of the Balmer-α emission in crossed electric and magnetic fields
NASA Astrophysics Data System (ADS)
Thorman, Alex
2018-03-01
An analysis of the polarisation structure of the Balmer-α emission in the presence of electric and magnetic fields is presented, with an emphasis on motional Stark effect polarimetry for fusion plasma diagnostics. When the fields are orthogonal, as is the case for neutral heating beams injected into a magnetised plasma, some degeneracy remains in the Stark-Zeeman energy levels and the magnetic quantum number is not well defined. The polarisation structure from the degenerate states is underdetermined and therefore volatile to weaker interactions that resolve this degeneracy, a critical subtlety that has previously been overlooked. A perturbation theory analysis finds distinct polarisation structures for the σ emission that apply when the fine-structure and microscopic electric fields are considered. It is found that only the σ ± 1 polarisation orientation is sensitive to upper-state populations (which are non-statistically weighted for neutral beam injection into a target gas), but with appropriate viewing geometries and beam injection directions the effect can be made negligible.
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacón, L.; Cappello, S.
2010-08-01
With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfiglio, Daniele; Chacon, Luis; Cappello, Susanna
2010-01-01
With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacon, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code inmore » cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.« less
Plasma Physics Lab and the Tokamak Fusion Test Reactor, 1989
None
2018-01-16
From the Princeton University Archives: Promotional video about the Plasma Physics Lab and the new Tokamak Fusion Test Reactor (TFTR), with footage of the interior, machines, and scientists at work. This film is discussed in the audiovisual blog of the Seeley G. Mudd Manuscript Library, which holds the archives of Princeton University.
1981-02-01
GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81...GCiteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University oflMaryland College Park, Maryland 20742 i AflS1RACi Parametric
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
Interactive Plasma Physics Education Using Data from Fusion Experiments
NASA Astrophysics Data System (ADS)
Calderon, Brisa; Davis, Bill; Zwicker, Andrew
2010-11-01
The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.
Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S. C.; Langendorf, S. J.; Yates, K. C.
Here, we describe an experiment to form and characterize a section of a spherically imploding plasma liner by merging six supersonic plasma jets that are launched by newly designed contoured-gap coaxial plasma guns. This experiment is a prelude to forming a fully spherical imploding plasma liner using many dozens of plasma guns, as a standoff driver for plasma-jet-driven magneto-inertial fusion. The objectives of the six-jet experiments are to assess the evolution and scalings of liner Mach number and uniformity, which are important metrics for spherically imploding plasma liners to compress magnetized target plasmas to fusion conditions. Lastly, this article describesmore » the design of the coaxial plasma guns, experimental characterization of the plasma jets, six-jet experimental setup and diagnostics, initial diagnostic data from three- and six-jet experiments, and the high-level objectives of associated numerical modeling.« less
Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner
Hsu, S. C.; Langendorf, S. J.; Yates, K. C.; ...
2017-12-18
Here, we describe an experiment to form and characterize a section of a spherically imploding plasma liner by merging six supersonic plasma jets that are launched by newly designed contoured-gap coaxial plasma guns. This experiment is a prelude to forming a fully spherical imploding plasma liner using many dozens of plasma guns, as a standoff driver for plasma-jet-driven magneto-inertial fusion. The objectives of the six-jet experiments are to assess the evolution and scalings of liner Mach number and uniformity, which are important metrics for spherically imploding plasma liners to compress magnetized target plasmas to fusion conditions. Lastly, this article describesmore » the design of the coaxial plasma guns, experimental characterization of the plasma jets, six-jet experimental setup and diagnostics, initial diagnostic data from three- and six-jet experiments, and the high-level objectives of associated numerical modeling.« less
Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket
NASA Astrophysics Data System (ADS)
Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki
2018-05-01
A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Skinner, C.H.; Brooks, J.N.
2001-01-10
The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less
Development of advanced high heat flux and plasma-facing materials
NASA Astrophysics Data System (ADS)
Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.
2017-09-01
Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.
Analytic expression for poloidal flow velocity in the banana regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, M.
The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.
First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems
NASA Astrophysics Data System (ADS)
Göksel, B.; Mashek, I. Ch
2017-04-01
A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.
Flux Compression Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.
Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro
2013-02-01
Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.
NASA Astrophysics Data System (ADS)
Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams
2001-03-01
ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.
NASA Astrophysics Data System (ADS)
Beklemishev, A. D.; Tajima, T.
1994-02-01
The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-01-01
The quantum shielding effects on the nuclear fusion reaction process are investigated in quantum plasmas. The closed expression of the classical turning point for the Gamow penetration factor in quantum plasmas is obtained by the Lambert W-function. The closed expressions of the Gamow penetration factor and the cross section for the nuclear fusion reaction in quantum plasmas are obtained as functions of the plasmon energy and the relative kinetic energy by using the effective interaction potential with the WKB analysis. It is shown that the influence of quantum screening suppresses the Sommerfeld reaction factor. It is also shown that the Gamow penetration factor increases with an increase of the plasmon energy. It is also shown that the quantum shielding effect enhances the deuterium formation by the proton-proton reaction in quantum plasmas. In addition, it is found that the energy dependences on the reaction cross section and the Gamow penetration factor are more significant in high plasmon-energy domains.
Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L
2012-10-01
High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles
Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang
2014-01-01
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832
Magnetized target fusion: An ultra high energy approach in an unexplored parameter space
NASA Astrophysics Data System (ADS)
Lindemuth, I. R.
Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.
High-gain magnetized inertial fusion.
Slutz, Stephen A; Vesey, Roger A
2012-01-13
Magnetized inertial fusion (MIF) could substantially ease the difficulty of reaching plasma conditions required for significant fusion yields, but it has been widely accepted that the gain is not sufficient for fusion energy. Numerical simulations are presented showing that high-gain MIF is possible in cylindrical liner implosions based on the MagLIF concept [S. A. Slutz et al Phys. Plasmas 17, 056303 (2010)] with the addition of a cryogenic layer of deuterium-tritium (DT). These simulations show that a burn wave propagates radially from the magnetized hot spot into the surrounding much denser cold DT given sufficient hot-spot areal density. For a drive current of 60 MA the simulated gain exceeds 100, which is more than adequate for fusion energy applications. The simulated gain exceeds 1000 for a drive current of 70 MA.
Gorelenkov, N. N.
2016-10-01
As a fundamental plasma oscillation the compressional Alfvén waves (CAW) are interesting for plasma scientists both academically and in applications for fusion plasmas. They are believed to be responsible for the ion cyclotron emission (ICE) observed in many tokamaks. The theory of CAW and ICE was significantly advanced at the end of 20th century in particular motivated by first DT experiments on TFTR and subsequent JET DT experimental studies. More recently, ICE theory was advanced by ST (or spherical torus) experiments with the detailed theoretical and experimental studies of the properties of each instability signal. There the instability responsible formore » ICE signals previously indistinguishable in high aspect ratio tokamaks became the subjects of experimental studies. We discuss further the prospects of ICE theory and its applications for future burning plasma (BP) experiments such as the ITER tokamak-reactor prototype being build in France where neutrons and gamma rays escaping the plasma create extremely challenging conditions for fusion alpha particle diagnostics.a« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.
2015-05-01
The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Hierarchical information fusion for global displacement estimation in microsensor motion capture.
Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong
2013-07-01
This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.
SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less
Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas
NASA Astrophysics Data System (ADS)
Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul
2016-10-01
In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.
NASA Astrophysics Data System (ADS)
Soto, Leopoldo; Pavéz, Cristián; Moreno, José; Altamirano, Luis; Huerta, Luis; Barbaglia, Mario; Clausse, Alejandro; Mayer, Roberto E.
2017-08-01
We report on D-D fusion neutron emission in a plasma device with an energy input of only 0.1 J, within a range where fusion events have been considered very improbable. The results presented here are the consequence of scaling rules we have derived, thus being the key point to assure the same energy density plasma in smaller devices than in large machines. The Nanofocus (NF)—our device—was designed and constructed at the P4 Lab of the Chilean Nuclear Energy Commission. Two sets of independent measurements, with different instrumentation, were made at two laboratories, in Chile and Argentina. The neutron events observed are 20σ greater than the background. The NF plasma is produced from a pulsed electrical discharge using a submillimetric anode, in a deuterium atmosphere, showing empirically that it is, in fact, possible to heat and compress the plasma. The strong evidence presented here stretches the limits beyond what was expected. A thorough understanding of this could possibly tell us where the theoretical limits actually lie, beyond conjectures. Notwithstanding, a window is thus open for low cost endeavours for basic fusion research. In addition, the development of small, portable, safe nonradioactive neutron sources becomes a feasible issue.
Ignition threshold for non-Maxwellian plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, Michael J., E-mail: hay@princeton.edu; Fisch, Nathaniel J.; Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543
2015-11-15
An optically thin p-{sup 11}B plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-{sup 11}B, themore » minimum Lawson criteria and minimum ρR required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and ρR, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-{sup 11}B plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal.« less
Educational Outreach at the M.I.T. Plasma Fusion Center
NASA Astrophysics Data System (ADS)
Censabella, V.
1996-11-01
Educational outreach at the MIT Plasma Fusion Center consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a new and improved C-MOD Jr, a confinement video game which helps students to discover how computers manipulate magnetic pulses to keep a plasma confined for as long as possible. Also on display will be an educational toy created by the Cambridge Physics Outlet, a PFC spin-off company. The PFC maintains a Home Page on the World Wide Web, which can be reached at http://cmod2.pfc.mit.edu/.
Semi-analytic model of plasma-jet-driven magneto-inertial fusion
Langendorf, Samuel J.; Hsu, Scott C.
2017-03-01
A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less
Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating
Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane
1986-04-22
Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.
Study of Magnetic Reconnection
1988-11-01
and disruptions in the Tosca tokamak, Nuclear Fusion 19, 115-119, 1979. 9. Stenzel, R. L., W. Gekelman and N. Wild, Magnetic field line reconnection...Acknowledgments. The authors gratefully acknowledge the techni- plasma diffusion due to polycliromatic fluctuations, Nucl. Fussion , cal support and...sans collisions, in: Proceedings of the Conference on Plasma Physics and Controlled Nuclear Fusion, International Atomic Energy Agency, Vienna
Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.
Turrell, A E; Sherlock, M; Rose, S J
2014-06-20
Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30) m(-3) and temperatures around 1 keV.
Superconductivity and fusion energy—the inseparable companions
NASA Astrophysics Data System (ADS)
Bruzzone, Pierluigi
2015-02-01
Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.
Helium Catalyzed D-D Fusion in a Levitated Dipole
NASA Astrophysics Data System (ADS)
Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.
2003-10-01
Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.
Fusion power for space propulsion.
NASA Technical Reports Server (NTRS)
Roth, R.; Rayle, W.; Reinmann, J.
1972-01-01
Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.
Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Colin Stuart
The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictionsmore » for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.« less
Magnetic Helicity Injection and Thermal Transport
NASA Astrophysics Data System (ADS)
Moses, Ronald; Gerwin, Richard; Schoenberg, Kurt
1999-11-01
In magnetic helicity injection, a current is driven between electrodes, parallel to the magnetic field in the edge plasma of a machine.^1 Plasma instabilities distribute current throughout the plasma. To model the injection of magnetic helicity, K, into an arbitrary closed surface, K is defined as the volume integral of A^.B. To make K unique, a gauge is chosen where the tangential surface components of A are purely solenoidal. If magnetic fields within a plasma are time varying, yet undergo no macroscopic changes over an extended period, and if the plasma is subject to an Ohm’s law with Hall terms, then it is shown that no closed magnetic surfaces with sustained internal currents can exist continuously within the plasma.^2 It is also shown that parallel thermal transport connects all parts of the plasma to the helicity injection electrodes and requires the electrode voltage difference to be at least 2.5 to 3 times the peak plasma temperature. This ratio is almost independent of the length of the electron mean-free path. If magnetic helicity injection is to be used for fusion-grade plasmas, then high-voltage, high-impedance injection techniques must be developed. ^1T. R. Jarboe, Plasma Physics and Controlled Fusion, V36, 945-990 (June 1994). ^2R. W. Moses, 1991 Sherwood International Fusion Theory Conference, Seattle, WA (April 22-24, 1991).
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
James, Declan J; Kowalchyk, Judith; Daily, Neil; Petrie, Matt; Martin, Thomas F J
2009-10-13
Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.
NASA Astrophysics Data System (ADS)
Andreev, N. E.; Gorbunov, Leonid M.; Tikhonchuk, Vladimir T.
1994-09-01
A brief analysis is made of the most important nonlinear processes which result from the interaction of laser radiation with thermonuclear targets. lt is shown that problems in the physics of the plasma corona should be an essential part of any programme of research on laser controlled thermonuclear fusion. A list is given of the problems that have to be solved first before going to the next level of laser energies.
Alpha channeling in a rotating plasma.
Fetterman, Abraham J; Fisch, Nathaniel J
2008-11-14
The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi
The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
Plasma source development for fusion-relevant material testing
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...
2017-05-01
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Plasma source development for fusion-relevant material testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Results of subscale MTF compression experiments
NASA Astrophysics Data System (ADS)
Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General
2016-10-01
In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.
78 FR 48863 - Fusion Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... of Science (DOE), on long-range plans, priorities, and strategies for advancing plasma science...
Runaway Geneeration In Disruptions Of Plasmas In TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, E. D.; Bell, M. G.; Taylor, G.
2014-03-31
Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lastingmore » runaway plasmas, Parail-Pogutse instabilities were observed.« less
NASA Astrophysics Data System (ADS)
Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.
2012-12-01
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?
NASA Astrophysics Data System (ADS)
Strelkov, V. S.
2017-12-01
This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion can be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1-10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.
Fusion/Astrophysics Teacher Research Academy
NASA Astrophysics Data System (ADS)
Correll, Donald
2005-10-01
In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.
Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Anne
The tokamak is a type of toroidal device used to confine a fusion plasma using large magnetic fields. Tokamaks and stellarators the leading devices for confining plasmas for fusion, and the capability to predict performance in these magnetically confined plasmas is essential for developing a sustainable fusion energy source. The magnetic configuration of tokamaks and stellarators does not exist in Nature, yet, the fundamental processes governing transport in fusion plasmas are universal – turbulence and instabilities, driven by inhomogeneity and asymmetry in the plasma, conspire to transport heat and particles across magnetic field lines and can play critical roles inmore » impurity confinement and generation of intrinsic rotation. Turbulence exists in all plasmas, and in neutral fluids as well. The study of turbulence is essential to developing a fundamental understanding of the nature of the fourth state of matter, plasmas. Experimental studies of turbulence in tokamaks date back to early scattering observations from the late 1970s. Since that time, great advances in turbulence diagnostics have been made, all of which have significantly enhanced our knowledge and understanding of turbulence in tokamaks. Through comparisons with advanced gyrokinetic theory and turbulent-transport models a great deal of evidence exists to implicate turbulent-driven transport as an important mechanism determining transport in all channels: heat, particle and momentum However, prediction and control of turbulent-driven transport remains elusive. Key to development of predictive transport models for magnetically confined fusion plasmas is validation of the nonlinear gyrokinetic transport model, which describes transport due to turbulence. Validation of gyrokinetic codes must include detailed and quantitative comparisons with measured turbulence characteristics, in addition to comparisons with inferred transport levels and equilibrium profiles. For this reason, advanced plasma diagnostics for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for testing and validating predictive models for the transport of heat and particles in fusion plasmas due to turbulence. Once validated, the models are used to predict performance in ITER and other burning plasmas, such as the MIT ARC design. Most recently, data from the newly developed, so-called “CECE diagnostic” [Cima 1995, White 2008] and “nT phase angle measurements” [Haese 1999, White 2010] ]will be combined with data from density fluctuation diagnostics at ASDEX Upgrade to support a long-term program of physics research in turbulence and transport that will allow for more stringent testing and validation of gyrokinetic turbulent-transport codes. This work directly impacts the development of predictive transport models in the U.S. FES program, such as TGLF, developed by General Atomics, which are used to predict performance in ITER and other burning plasma devices as part of advancing the development of fusion energy sciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Grote, D. P.; Vay, J. L.
2015-05-29
The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.
NASA Astrophysics Data System (ADS)
Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.
2018-04-01
A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.
First wall for polarized fusion reactors
Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.
1988-01-01
Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.
Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle
NASA Astrophysics Data System (ADS)
Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.
2017-03-01
The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.
Control of plasma stored energy for burn control using DIII-D in-vessel coils
Hawryluk, Richard J.; Eidietis, Nicholas W.; Grierson, Brian A.; ...
2015-04-09
A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator that modifies the confinement time can be used to adjust the fusion power. In relativelymore » low collisionality DIII-D discharges, the application of nonaxisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Furthermore, gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.« less
Bang, W; Barbui, M; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T
2013-09-01
We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.
Design of a tokamak fusion reactor first wall armor against neutral beam impingement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, R.A.
1977-12-01
The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less
Plasma Display at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Bruder, Dan; Gilligan, Nick; Tarman, Lisa; Ferris, Pamella; Morgan, James; Delooper, John; Zwicker, Andrew
2009-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey -- New York City region. PPPL in collaboration with the LSC has had a display at the center since 2007 More than 1.5 million visitors have come to the museum since the plasma display has been introduced. The plasma display has had significant use during that time frame. During the summer of 2009 a redesigned plasma exhibit was created by a student teacher-team using the lessons learned from the existing exhibit. The display includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma and see how plasma can be used for fusion research. The goal of the display is to allow an individual to see a plasma and understand the potential benefits of fusion energy.
Physics through the 1990s: Plasmas and fluids
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José
2014-12-15
The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{supmore » 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.« less
U. S. fusion programs: Struggling to stay in the game
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, M.
Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less
Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E
2015-01-01
The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, K., E-mail: karol.malinowski@ncbj.gov.pl; Sadowski, M. J.; Szydlowski, A.
2015-01-15
The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.
RF models for plasma-surface interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter
2013-09-01
Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred
2017-10-01
To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
NASA Astrophysics Data System (ADS)
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Selective cell-surface labeling of the molecular motor protein prestin
McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.
2011-01-01
Prestin, a multipass transmembrane protein whose N- an C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. PMID:21651892
Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, Robert A.; Paterson, Reay G.; Jardetzky, Theodore S.
2006-01-05
Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxovirusesmore » (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described.« less
INTRODUCTION: Status report on fusion research
NASA Astrophysics Data System (ADS)
Burkart, Werner
2005-10-01
A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has been widely and expertly disseminated. We further acknowledge the efforts of the Chairman of the IFRC and of all authors and experts who contributed to this report on the present status of fusion research.
NASA Astrophysics Data System (ADS)
Sanchez, R.; Newman, D. E.
2015-12-01
The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional equations to capture SOC dynamics. Most of these models, based on the use of fractional transport equations and related concepts, could prove useful both in reactor operation and experiment control and design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpern, Federico D.; Bateman, Glenn; Kritz, Arnold H.
2006-06-15
A revised version of the ISLAND module [C. N. Nguyen et al., Phys. Plasmas 11, 3604 (2004)] is used in the BALDUR code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)] to carry out integrated modeling simulations of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)], Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 (2002)] tokamak discharges in order to investigate the adverse effects of multiple saturated magnetic islands driven by neoclassical tearing modes (NTMs). Simulations are carried outmore » with a predictive model for the temperature and density pedestal at the edge of the high confinement mode (H-mode) plasma and with core transport described using the Multi-Mode model. The ISLAND module, which is used to compute magnetic island widths, includes the effects of an arbitrary aspect ratio and plasma cross sectional shape, the effect of the neoclassical bootstrap current, and the effect of the distortion in the shape of each magnetic island caused by the radial variation of the perturbed magnetic field. Radial transport is enhanced across the width of each magnetic island within the BALDUR integrated modeling simulations in order to produce a self-consistent local flattening of the plasma profiles. It is found that the main consequence of the NTM magnetic islands is a decrease in the central plasma temperature and total energy. For the DIII-D and JET discharges, it is found that inclusion of the NTMs typically results in a decrease in total energy of the order of 15%. In simulations of ITER, it is found that the saturated magnetic island widths normalized by the plasma minor radius, for the lowest order individual tearing modes, are approximately 24% for the 2/1 mode and 12% for the 3/2 mode. As a result, the ratio of ITER fusion power to heating power (fusion Q) is reduced from Q=10.6 in simulations with no NTM islands to Q=2.6 in simulations with fully saturated NTM islands.« less
Health physics measurement of Princeton Tokamaks, 1977-1987.
Stencel, J R; Gilbert, J D; Couch, J G; Griesbach, O A; Fennimore, J J; Greco, J M
1989-06-01
The Princeton Plasma Physics Laboratory (PPPL) began fusion experiments in 1951. In the early years, the major health physics concerns were associated with x radiation produced by energetic electrons in the plasma. Within the past year, neutron and 3H production from 2H-2H (represented hereafter as D-D) reactions has increased significantly on the larger fusion devices. Tritium retention noted in graphite tiles underscores the significance of material selection in present and future 3H-fueled fusion devices. This paper reports on operational health physics radiation measurements made on various PPPL machines over the past 10 y.
NASA Astrophysics Data System (ADS)
Jones, Robert
2017-10-01
I have suggested that fusion researchers should put more effort into the study of beta > 1 or wall confined plasmas. Magneto-Inertial Fusion and Magnetized Target Fusion projects at Los Alamos National Laboratory are recent examples of this sort of work. Unfortunately, theoretical studies of such systems may be employing overly optimistic models of the magnetic thermal insulation. One might well expect such systems to have stochastic field lines. If that is the case then we might want to employ turbulent thermal insulation as suggested in my papers: Current Science, pg 991, 1988 and Bull. Am. Phys. Soc., Nov. 4, 2009.
An exploration of advanced X-divertor scenarios on ITER
NASA Astrophysics Data System (ADS)
Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.
2014-07-01
It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created XD configurations reproduces what was presented in the earlier XD papers (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA) CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502). Consequently, the same advantages accrue, but no close-in PF coils are employed.
One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel
2017-10-01
One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.
A Laboratory Astrophysical Jet to Study Canonical Flux Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Setthivoine
Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficientmore » with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.« less
NASA Astrophysics Data System (ADS)
Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas
2012-10-01
Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.
Lynn, Alan G; Gilmore, Mark
2014-11-01
Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.
Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less
NASA Astrophysics Data System (ADS)
Grewe, L.
2013-05-01
This paper explores the current practices in social data fusion and analysis as it applies to consumer-oriented applications in a slew of areas including business, economics, politics, sciences, medicine, education and more. A categorization of these systems is proposed and contributions to each area are explored preceded by a discussion of some special issues related to social data and networks. From this work, future paths of consumer-based social data analysis research and current outstanding problems are discovered.
Cell fusion and nuclear fusion in plants.
Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya
2016-12-01
Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, J.M.; Peuron, A.U.
1980-07-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
NASA Astrophysics Data System (ADS)
Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.
2001-08-01
The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.
Effects of magnetization on fusion product trapping and secondary neutron spectraa)
NASA Astrophysics Data System (ADS)
Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.
2015-05-01
By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.
Addressing Research and Development Gaps for Plasma-Material Interactions with Linear Plasma Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Juergen
Plasma-material interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma-facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma-facing components that allow for steadystate operation in a reactor to reach the neutron fluence required; the tritium inventory (storage) in the plasma-facing components, which can lead to potential safety concerns and reduction in the fuel efficiency; and it is relatedmore » to the technology of the plasma-facing components itself, which should demonstrate structural integrity under the high temperatures and high neutron fluence. While the dissipation of power exhaust can and should be addressed in high power toroidal devices, the interaction of the plasma with the materials can be best addressed in dedicated linear devices due to their cost effectiveness and ability to address urgent research and development gaps more timely. However, new linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma-facing components. Existing linear devices are limited either in their flux, their reactor-relevant plasma transport regimes in front of the target, their fluence, or their ability to test material samples a priori exposed to high neutron fluence. The proposed Material Plasma Exposure eXperiment (MPEX) is meant to address those deficiencies and will be designed to fulfill the fusion reactor-relevant plasma parameters as well as the ability to expose a priori neutron activated materials to plasmas.« less
Z-Pinch Fusion for Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
SPIELMAN,RICK B.
2000-01-01
Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.
Directed Energy HPM, PP, & PPS Efforts: Magnetized Target Fusion - Field Reversed Configuration
2006-08-04
interior. 15. SUBJECT TERMS Magnetized Target Fusion (MTF), Field-Reversed Configuration (FRC), Alternative Confinement Concepts, Fusion Energy 16...research, the Department of Energy’s Office of Fusion Energy Studies (DOE OFES). Sections 2 through 4, which follow, describe in detail SAIC’s, FabTek’s...the plasma physics areas (FRCs and fusion energy ) in which we are working. The conference paper was submitted at this time, as well, and will
Triton burnup in plasma focus plasmas
NASA Astrophysics Data System (ADS)
Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi
1995-04-01
Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3
Development of the dense plasma focus for short-pulse applications
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.
2017-01-01
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.
Neutron-Irradiated Samples as Test Materials for MPEX
Ellis, Ronald James; Rapp, Juergen
2015-10-09
Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less
Factors regulating the abundance and localization of synaptobrevin in the plasma membrane
Dittman, Jeremy S.; Kaplan, Joshua M.
2006-01-01
After synaptic vesicle fusion, vesicle proteins must be segregated from plasma membrane proteins and recycled to maintain a functional vesicle pool. We monitored the distribution of synaptobrevin, a vesicle protein required for exocytosis, in Caenorhabditis elegans motor neurons by using a pH-sensitive synaptobrevin GFP fusion protein, synaptopHluorin. We estimated that 30% of synaptobrevin was present in the plasma membrane. By using a panel of endocytosis and exocytosis mutants, we found that the majority of surface synaptobrevin derives from fusion of synaptic vesicles and that, in steady state, synaptobrevin equilibrates throughout the axon. The surface synaptobrevin was enriched near active zones, and its spatial extent was regulated by the clathrin adaptin AP180. These results suggest that there is a plasma membrane reservoir of synaptobrevin that is supplied by the synaptic vesicle cycle and available for retrieval throughout the axon. The size of the reservoir is set by the relative rates of exo- and endocytosis. PMID:16844789
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisham, L. R.; Kwan, J. W.
2008-08-01
Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, andmore » with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.« less
Final report on the Magnetized Target Fusion Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Slough
Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator was made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. A high density FRC plasmoid is to be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) are obtained in the reevant regime of interest. The process still needs to be optimized, and a final design for implementation at AFRL must now be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less
MHD Effects of a Ferritic Wall on Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.
NASA Astrophysics Data System (ADS)
Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.
2018-03-01
Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.
Effect of the Edge Radial Electric Field on Neutral Particle Measurements
NASA Astrophysics Data System (ADS)
Guldi, C.; Heidbrink, W. W.; Beitzel, T. A.; Burrell, K. H.
2000-10-01
Neutral particle measurements in ASDEX were originally interpreted as evidence that the edge radial electric field Er changes gradually at the L-H transition.(W. Herrmann et al.), Phys. Rev. Lett. 75 (1995) 4401. We have relocated an analyzer to an orientation similar to the ASDEX analyzer: at the outer midplane viewing perpendicular ions midway between toroidal field coils. The electric field is measured by charge-exchange recombination and motional stark effect diagnostics. The passive charge exchange signal from the relocated analyzer is usually undetectable but, in discharges with large E_r, the flux of 5 keV neutrals can resemble ASDEX signals. The combined effects of ripple trapping and E_r× B_φ drifts(J.A. Heikkinen et al.), Plasma Phys. Contr. Fusion 40 (1998) 679. may explain the results.
Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...
2016-08-01
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10 14 ions/(cm 2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less
Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F
2016-08-01
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.
NASA Astrophysics Data System (ADS)
Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.
2016-08-01
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.
Ohmic ignition with high engineering beta based on the RFP
NASA Astrophysics Data System (ADS)
Sarff, J. S.; Anderson, J. K.; Chapman, B. E.; McCollam, K. J.
2017-10-01
The RFP configuration allows the possibility of ohmic ignition for fusion energy, eliminating the need for auxiliary heating by rf or neutral beam injection. Complex plasma-facing antennas and NBI sources are therefore not required, simplifying the difficult fusion materials challenge. While all toroidal configurations require a volume-average 〈 B 〉 >= 5 T, the field strength at the magnet in the RFP is only Bcoil 3T since plasma current generates almost all of the field. Engineering beta is therefore maximized. We summarize access to ohmic ignition by examining a Lawson-like power balance for an RFP fusion plasma comparable to the ARIES-AT advanced tokamak, which generates neutron wall loading Pn / A 5 MW/m2. The required energy confinement for ohmic ignition in an RFP is similar to that for a tokamak. Confinement in MST is comparable to a same-size, same-field tokamak plasma, but 〈 B 〉 in MST is only 1/20th that required for fusion. While transport could ultimately be dominated by micro turbulence, extrapolation of stochastic transport using Lundquist number scaling for MHD tearing indicates standard RFP confinement (not enhanced by current profile control) could be sufficient to access ohmic ignition. This bolsters the possibility for steady-state inductive sustainment using oscillating field current drive. The high beta and classical energetic ion confinement measured in MST also bolster the RFP's fusion potential. Work supported by U.S. DoE.
Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas
NASA Astrophysics Data System (ADS)
Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.
2016-04-01
In this work, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to :mmultiscripts>(d ,n )3He . The experiment was performed with the Texas Petawatt Laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H ) . After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the :mmultiscripts>(d ,n )3He and 3He(d ,p )4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d +d case (lower Gamow energies), for the d +3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.
Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas
Lattuada, D.; Barbarino, M.; Bonasera, A.; ...
2016-04-19
In this paper, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to 2H(d,n) 3He. The experiment was performed with the Texas Petawatt Laser, which delivered 150–270 fs pulses of energy ranging from 90 to 180 J to D 2 or CD 4 molecular clusters (where D denotes 2H). After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume ofmore » the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the 2H(d,n) 3He and 3He(d,p) 4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d+d case (lower Gamow energies), for the d+ 3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.« less
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.
2016-12-01
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.
Realizing Steady State Tokamak Operation for Fusion Energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2009-11-01
Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; ...
2016-09-14
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, M.; Taylor, C. N.; Pawelko, R. J.
2016-04-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstratesmore » that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.« less
Characterization of an electrothermal plasma source for fusion transient simulations
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2018-01-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.
Proposed Generation and Compression of a Target Plasma for MTF
1995-07-01
essential ingredient that has been implicit in the quest: a net energy gain. That is, they do not provide more fusion energy than the energy require...to establish the fusion conditions. This points to the primary motivation for the quest, a fusion energy production system. Such a system is
Thermonuclear Fusion: An Energy Source for the Future
ERIC Educational Resources Information Center
Drummond, William E.
1973-01-01
Discusses current research in thermonuclear fusion with particular emphasis on the problem of confining hot plasma. Recent experiments indicate that magnetic bottles called tokamaks may achieve the necessary confinement times, and this break-through has given renewed optimism to the feasibility of commercial fusion power by the turn of the…
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
High-Q plasmas in the TFTR tokamak
NASA Astrophysics Data System (ADS)
Jassby, D. L.; Barnes, C. W.; Bell, M. G.; Bitter, M.; Boivin, R.; Bretz, N. L.; Budny, R. V.; Bush, C. E.; Dylla, H. F.; Efthimion, P. C.; Fredrickson, E. D.; Hawryluk, R. J.; Hill, K. W.; Hosea, J.; Hsuan, H.; Janos, A. C.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kamperschroer, J.; Kieras-Phillips, C.; Kilpatrick, S. J.; LaMarche, P. H.; LeBlanc, B.; Mansfield, D. K.; Marmar, E. S.; McCune, D. C.; McGuire, K. M.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Owens, D. K.; Park, H. K.; Paul, S. F.; Pitcher, S.; Ramsey, A. T.; Redi, M. H.; Sabbagh, S. A.; Scott, S. D.; Snipes, J.; Stevens, J.; Strachan, J. D.; Stratton, B. C.; Synakowski, E. J.; Taylor, G.; Terry, J. L.; Timberlake, J. R.; Towner, H. H.; Ulrickson, M.; von Goeler, S.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K.-L.; Young, K. M.; Zarnstorff, M. C.; Zweben, S. J.
1991-08-01
In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength Sn and D-D fusion power gain QDD are realized in the neutral-beam-fueled and heated ``supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, Sn increases approximately as P1.8b. The highest-Q shots are characterized by high Te (up to 12 keV), Ti (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad Te profiles, and lower Zeff. Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the ``carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, QDD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [ne(0)/
Kinetic advantage of controlled intermediate nuclear fusion
NASA Astrophysics Data System (ADS)
Guo, Xiaoming
2012-09-01
The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.
Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B
2016-01-01
HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
NASA Astrophysics Data System (ADS)
Belloni, Fabio; Margarone, Daniele; Picciotto, Antonino; Schillaci, Francesco; Giuffrida, Lorenzo
2018-02-01
The possibility of triggering an avalanche reaction in laser-driven p-11B fusion by the effect of collisional energy transfer from α particles to protons has recently been debated, especially in connection to the high yield of α particles (4 × 108 per laser shot) achieved on engineered targets at the Prague Asterix Laser System (PALS), with a pulse of 500 J, 0.3 ns FWHM. We elucidate this controversial subject within the framework of a simple two-population model for protons, based on the binary collision theory in a plasma. We find an avalanche characteristic time of almost 1 μs for the 675 keV fusion cross section resonance in typical PALS plasma, upon idealized confinement conditions. This avalanche time is one order of magnitude higher than previously reported, meaning that no such process can substantially develop in plasma at the PALS on the 675 keV resonance, not even in the most optimistic confinement scenarios. Nevertheless, we put forward for further investigation that more realistic conditions for setting up the avalanche regime could rather be attained by suitably targeting the narrow 163 keV resonance in the fusion cross section, also in connection to recently proposed laser-driven magnetic trapping techniques.
Analytical method for thermal stress analysis of plasma facing materials
NASA Astrophysics Data System (ADS)
You, J. H.; Bolt, H.
2001-10-01
The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.
Pellet fuelling requirements to allow self-burning on a helical-type fusion reactor
NASA Astrophysics Data System (ADS)
Sakamoto, R.; Miyazawa, J.; Yamada, H.; Masuzaki, S.; Sagara, A.; the FFHR Design Group
2012-08-01
Pellet refuelling conditions to sustain a self-burning plasma have been investigated by extrapolating the confinement property of the LHD plasma, which appears to be governed by a gyro-Bohm-type confinement property. The power balance of the burning plasma is calculated taking into account the profile change with pellet deposition and subsequent density relaxation. A self-burning plasma is achieved within the scope of conventional pellet injection technology. However, a very small burn-up rate of 0.18% is predicted. Higher velocity pellet injection is effective in improving the burn-up rate by deepening particle deposition, whereas deep fuelling leads to undesirable fluctuation of the fusion output.
Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.
2010-10-01
A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.
NASA Astrophysics Data System (ADS)
Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group
2017-06-01
This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.
Can a Penning ionization discharge simulate the tokamak scrape-off plasma conditions?
NASA Technical Reports Server (NTRS)
Finkenthal, M.; Littman, A.; Stutman, D.; Kovnovich, S.; Mandelbaum, P.; Schwob, J. L.; Bhatia, A. K.
1990-01-01
The tokamak scrape-off (the region between the vacuum vessel wall and the magnetically confined fusion plasma edge), represents a source/sink for the hot fusion plasma. The electron densities and temperatures are in the ranges 10 to the 11th - 10 to the 13th/cu cm and 1-40 eV, respectively (depending on the size, magnetic field intensity and configuration, plasma current, etc). In the work reported, the electron temperature and density have been estimated in a Penning ionization discharge by comparing its spectroscopic emission in the VUV with that predicted by a collisional radiative model. An attempt to directly compare this emission with that of the tokamak edge is briefly described.
NASA Astrophysics Data System (ADS)
Frenje, J.; Li, C. K.; Séguin, F.; Zylstra, A.; Rinderknecht, H.; Petrasso, R.; Delettrez, J.; Glebov, V.; Sangster, T.
2013-10-01
We report on the first quantitative measurements of charged-particle stopping in Inertial-Confinement-Fusion (ICF) plasmas at various conditions. In these experiments, four charged fusion products from the DD and D3He reactions in D3He gas-filled filled implosions were used to determine the stopping power of ICF plasmas at electron temperatures (Te) , ion temperatures (Ti) , and areal densities (ρR) in the range of 0.6-4.0 keV, 3-14 keV and 2-10 mg/cm2, respectively. The resulting data, in the form of measured energy downshift of the charged fusion products, clearly indicate that the stopping-power function depends strongly on Te. It was also observed that the stopping-power function change in characteristics for higher-density implosions in which ions and electrons equilibrate faster, resulting in higher Te relative to Ti and higher ρR s. These results will be modelled by Landau-Spitzer theory and contrasted to different stopping-power models. This work was partially supported by the US DOE, NLUF, LLE, and GA.
NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sovinec, C. R.; Gianakon, T. A.; Held, E. D.; Kruger, S. E.; Schnack, D. D.
2003-05-01
Nonlinear numerical studies of macroscopic modes in a variety of magnetic fusion experiments are made possible by the flexible high-order accurate spatial representation and semi-implicit time advance in the NIMROD simulation code [A. H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)]. Simulation of a resistive magnetohydrodynamics mode in a shaped toroidal tokamak equilibrium demonstrates computation with disparate time scales, simulations of discharge 87009 in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] confirm an analytic scaling for the temporal evolution of an ideal mode subject to plasma-β increasing beyond marginality, and a spherical torus simulation demonstrates nonlinear free-boundary capabilities. A comparison of numerical results on magnetic relaxation finds the n=1 mode and flux amplification in spheromaks to be very closely related to the m=1 dynamo modes and magnetic reversal in reversed-field pinch configurations. Advances in local and nonlocal closure relations developed for modeling kinetic effects in fluid simulation are also described.
Ultra-High Intensity Magnetic Field Generation in Dense Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, Nathaniel J.
2014-01-08
The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-energy-density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-energy-density plasma the ideas for steady-state current drive developed for low-energy-density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-energy-density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less
Thermomagnetic burn control for magnetic fusion reactor
Rawls, John M.; Peuron, Unto A.
1982-01-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
NASA Technical Reports Server (NTRS)
Miernik, Janie
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.
NASA Astrophysics Data System (ADS)
Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu
Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.
An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas
NASA Technical Reports Server (NTRS)
De, B. R.; Srnka, L. J.
1978-01-01
Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.
Developing the IVIG biomimetic, Hexa-Fc, for drug and vaccine applications
Czajkowsky, Daniel M.; Andersen, Jan Terje; Fuchs, Anja; Wilson, Timothy J.; Mekhaiel, David; Colonna, Marco; He, Jianfeng; Shao, Zhifeng; Mitchell, Daniel A.; Wu, Gang; Dell, Anne; Haslam, Stuart; Lloyd, Katy A.; Moore, Shona C.; Sandlie, Inger; Blundell, Patricia A.; Pleass, Richard J.
2015-01-01
The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a ~20 nm oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FcγRIIb, and DC-SIGN) with high avidity and specificity, whilst eliminating significant clinical limitations of monomeric Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected orientation of high-mannose glycans on the human Fc that provides greater accessibility to potential binding partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactions with the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical. PMID:25912958
Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression
NASA Astrophysics Data System (ADS)
Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen
2016-10-01
Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a
NASA Astrophysics Data System (ADS)
Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas
2014-10-01
Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.
Hora, H.; Korn, G.; Eliezer, S.; ...
2016-10-11
Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabovemore » $$10^{20}~\\text{cm}~\\text{s}^{-2}$$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $$f_{\\text{NL}}$$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).« less
Critical need for MFE: the Alcator DX advanced divertor test facility
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.
2013-10-01
Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.
Strategies for advantageous differential transport of ions in magnetic fusion devices
Kolmes, E. J.; Ochs, I. E.; Fisch, N. J.
2018-03-26
In a variety of magnetized plasma geometries, it has long been known that highly charged impurities tend to accumulate in regions of higher density. This “collisional pinch” is modified in the presence of additional forces, such as those might be found in systems with gravity, fast rotation, or non-negligible space charge. In the case of a rotating, cylindrical plasma, there is a regime in which the radially outermost ion species is intermediate in both mass and charge. As a result, this could have implications for fusion devices and plasma mass filters.
Strategies for advantageous differential transport of ions in magnetic fusion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolmes, E. J.; Ochs, I. E.; Fisch, N. J.
In a variety of magnetized plasma geometries, it has long been known that highly charged impurities tend to accumulate in regions of higher density. This “collisional pinch” is modified in the presence of additional forces, such as those might be found in systems with gravity, fast rotation, or non-negligible space charge. In the case of a rotating, cylindrical plasma, there is a regime in which the radially outermost ion species is intermediate in both mass and charge. As a result, this could have implications for fusion devices and plasma mass filters.
Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex.
Erez, Noam; Paran, Nir; Maik-Rachline, Galia; Politi, Boaz; Israely, Tomer; Schnider, Paula; Fuchs, Pinhas; Melamed, Sharon; Lustig, Shlomo
2009-09-29
Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes). This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within") or by infection with a high amount of virus particles per cell (fusion "from without"). Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.
Magnetic Nozzle Simulation Studies for Electric Propulsion
NASA Astrophysics Data System (ADS)
Tarditi, Alfonso
2010-11-01
Electric Propulsion has recently re-gained interest as one of the key technologies to enable NASA's long-range space missions. Options are being considered also in the field of aneutronic fusion propulsion for high-power electric thrusters. To support these goals the study of the exhaust jet in a plasma thruster acquires a critical importance because the need of high-efficiency generation of thrust. A model of the plasma exhaust has been developed with the 3D magneto-fluid NIMROD code [1] to study the physics of the plasma detachment in correlation with experimentally relevant configurations. The simulations show the role of the plasma diamagnetism and of the magnetic reconnection process in the formation of a detached plasma. Furthermore, in direct fusion-propulsion concepts high-energy (MeV range) fusion products have to be efficiently converted into a slower and denser plasma jet (with specific impulse down to few 1000's seconds, for realistic missions in the Solar System). For this purpose, a two-stage conversion process is being modeled where high-energy ions are non-adiabatically injected and confined into a magnetic duct leading to the magnetic nozzle, transferring most of their energy into their gyro-motion and drifting at slower speed along with the plasma propellant. The propellant acquires then thermal energy that gets converted into the direction of thrust by the magnetic nozzle. [1] C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004).
Lagutina, Irina V.; Valentine, Virginia; Picchione, Fabrizio; Harwood, Frank; Valentine, Marcus B.; Villarejo-Balcells, Barbara; Carvajal, Jaime J.; Grosveld, Gerard C.
2015-01-01
Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice. PMID:25659124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Xiaoming
The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion verymore » difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.« less
Selective cell-surface labeling of the molecular motor protein prestin.
McGuire, Ryan M; Silberg, Jonathan J; Pereira, Fred A; Raphael, Robert M
2011-06-24
Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. Copyright © 2011 Elsevier Inc. All rights reserved.
A hybrid model for computing nonthermal ion distributions in a long mean-free-path plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua; Berk, Herb
2014-10-01
Non-thermal ions, especially the suprathermal ones, are known to make a dominant contribution to a number of important physics such as the fusion reactivity in controlled fusion, the ion heat flux, and in the case of a tokamak, the ion bootstrap current. Evaluating the deviation from a local Maxwellian distribution of these non-thermal ions can be a challenging task in the context of a global plasma fluid model that evolves the plasma density, flow, and temperature. Here we describe a hybrid model for coupling such constrained kinetic calculation to global plasma fluid models. The key ingredient is a non-perturbative treatment of the tail ions where the ion Knudsen number approaches or surpasses order unity. This can be sharply constrasted with the standard Chapman-Enskog approach which relies on a perturbative treatment that is frequently invalidated. The accuracy of our coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space. Although our specific application examples will be drawn from laboratory controlled fusion experiments, the general approach is applicable to space and astrophysical plasmas as well. Work supported by DOE.
NASA Astrophysics Data System (ADS)
Winslow, D. L.; Carter, K. R.; Chatterjee, R.; Huang, H.; Phillips, P. E.; Rowan, W. L.; Kuang, G. L.; Li, J. G.; Luo, J. R.; Wan, B. N.; Wan, Y. X.; Xie, J. K.
1998-11-01
A team from the Fusion Research Center at the University of Texas at Austin visited the HT-7 Tokamak at the Institute of Plasma Physics at the Chinese Academy of Sciences in Hefei, Anhui, China to study the effects of lower hybrid current drive (LHCD) in the HT-7 plasma. HT-7(HT-7 Group, Fusion Energy 1996 Vol. 1, 685 (1997).) is a medium-sized (R = 1.22 m) tokamak with superconducting toroidal field coils and long--pulse capabilities utilizing LHCD to assist ohmic current drive. Core and edge diagnostics supported by a stand-alone data acquisition system were installed for the spring 1998 campaign. The diagnostics included an ECE radiometer which allows determination of both electron temperature profiles and fluctuation levels in the core plasma and an H_α array detector for measurement of turbulence in regions not easily accessible to probes. In addition, a reciprocating Langmuir probe system was developed for use on HT-7 and should be available for the next campaign. The effects of LHCD upon fluctuation levels in the plasma will be discussed.
The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores*
Quevedo, María F.; Lucchesi, Ornella; Bustos, Matías A.; Pocognoni, Cristian A.; De la Iglesia, Paola X.
2016-01-01
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction. PMID:27613869
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Okabayashi, M.; Zanca, P.; Strait, E. J.; ...
2016-11-25
Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabayashi, M.; Zanca, P.; Strait, E. J.
Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Zanca, P.; Strait, E. J.; Garofalo, A. M.; Hanson, J. M.; In, Y.; La Haye, R. J.; Marrelli, L.; Martin, P.; Paccagnella, R.; Paz-Soldan, C.; Piovesan, P.; Piron, C.; Piron, L.; Shiraki, D.; Volpe, F. A.; DIII-D, The; RFX-mod Teams
2017-01-01
Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. Here β N is defined as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.
Critical Technology Demonstration of Plasma Focus Type MPD Thrusters
1992-05-01
33 APPENDICES A. Estimation of Propulsion Enhancement by Fusion Energy Addition in the DPF. ...... .. 36 B. Modified Run-Down...of fusion energy which greatly reduces the energy storage/recirculation needed for a standard MPD thruster. Electric propulsion is not new to the Air...advantage of added fusion energy . Preliminary estimates, summarized in Appendix A, indicate that, with advances in the state of the art, the ratio of ( fusion
Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, Atsushi; Hashimoto, Naohiro
2008-01-15
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shijia, E-mail: wangsg@mail.ustc.edu.cn; Wang, Shaojie
2015-04-15
The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITERmore » inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by 60%, with the central pressure also significantly raised.« less
Effects of magnetization on fusion product trapping and secondary neutron spectra
Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...
2015-05-14
In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less
Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder
2009-12-01
gas fusion, and all other elements were measured by direct current plasma emission spectroscopy. The analysis showed a relatively high amount of...measured by direct current plasma emission spectroscopy, and oxygen was detected by inert gas fusion. The results show that carbon and cobalt levels...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
NASA Astrophysics Data System (ADS)
Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.
2009-12-01
A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.
Simulation of RF-fields in a fusion device
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Witte, Dieter; Bogaert, Ignace; De Zutter, Daniel
2009-11-26
In this paper the problem of scattering off a fusion plasma is approached from the point of view of integral equations. Using the volume equivalence principle an integral equation is derived which describes the electromagnetic fields in a plasma. The equation is discretized with MoM using conforming basis functions. This reduces the problem to solving a dense matrix equation. This can be done iteratively. Each iteration can be sped up using FFTs.
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Dinklage, Andreas; Turkin, Yuriy; Bozhenkov, Sergey; Geiger, Joachim; Fuchert, Golo; Bosch, Hans-Stephan; Rahbarnia, Kian; Thomsen, Henning; Neuner, Ulrich; Klinger, Thomas; Langenberg, Andreas; Trimiño Mora, Humberto; Kornejew, Petra; Hirsch, Matthias; Pablant, Novimir
2017-01-01
The first physics operation phase on the stellarator experiment Wendelstein 7-X was successfully completed in March 2016 after about 10 weeks of operation. Experiments in this phase were conducted with five graphite limiters as the primary plasma-facing components. Overall, the results were beyond the expectations published shortly before the start of operation [Sunn Pedersen et al., Nucl. Fusion 55, 126001 (2015)] both with respect to parameters reached and with respect to physics themes addressed. We report here on some of the most important plasma experiments that were conducted. The importance of electric fields on global confinement will be discussed, and the obtained results will be compared and contrasted with results from other devices, quantified in terms of the fusion triple product. Expected values for the triple product in future operation phases will also be described and put into a broader fusion perspective. PMID:29104420
Baseline high heat flux and plasma facing materials for fusion
NASA Astrophysics Data System (ADS)
Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.
2017-09-01
In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).
Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.
Lai, J; Domier, C W; Luhmann, N C
2014-03-01
Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.
Ion cyclotron emission from energetic fusion products in tokamak plasmas: A full-wave calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.
1989-06-01
A full-wave ion cyclotron resonant heating (ICRH) code has been modified to allow calculation of cyclotron emission from energetic ions in tokamaks. The immediate application is to fusion alpha particles in near-ignition devices. This permits detailed evaluation of proposed alpha particle diagnostics (Proceedings of the Thirteenth European Conference on Controlled Fusion and Plasma Heating, Schliersee, Federal Republic of Germany, 1986, edited by G. Briffod and M. Kaufmann (European Physical Society, Petit-Lancy, Switzerland, 1986), Part 1, Vol. 2, p. 37.) This full-wave approach automatically takes into account wall reflections, standing waves, and plasma absorption and overcomes the difficulties inherent in attemptingmore » to apply conventional geometrical optics to long wavelengths. By calculating the coherent radiation field caused by an ensemble of localized current sources (and retaining the phase information), the directivity of pickup antennas is correctly represented.« less
Realizing steady-state tokamak operation for fusion energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2011-03-01
Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.
Three-dimensional drift kinetic response of high-β plasmas in the DIII-D tokamak.
Wang, Z R; Lanctot, M J; Liu, Y Q; Park, J-K; Menard, J E
2015-04-10
A quantitative interpretation of the experimentally measured high-pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon β limit, is achieved. The self-consistent inclusion of the drift kinetic effects in magnetohydrodynamic (MHD) modeling [Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)] successfully resolves an outstanding issue of the ideal MHD model, which significantly overpredicts the plasma-induced field amplification near the no-wall limit, as compared to experiments. The model leads to quantitative agreement not only for the measured field amplitude and toroidal phase but also for the measured internal 3D displacement of the plasma. The results can be important to the prediction of the reliable plasma behavior in advanced fusion devices, such as ITER [K. Ikeda, Nucl. Fusion 47, S1 (2007)].
A review of laser-plasma interaction physics of indirect-drive fusion
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.
2013-10-01
The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.
Torrisi, Lorenzo
2014-10-23
Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.
Cui, Shaohua; Zhang, Wei; Xiong, Liwen; Pan, Feng; Niu, Yanjie; Chu, Tianqing; Wang, Huimin; Zhao, Yizhuo; Jiang, Liyan
2017-01-10
Capture-based next-generation sequencing (NGS) is a potentially useful diagnostic method to measure tumor tissue DNA in blood as it can identify concordant mutations between cell-free DNA (cfDNA) and primary tumor DNA in lung cancer patients. In this study, the sensitivity, specificity and accuracy of capture-based NGS for detecting ALK fusion in plasma cfDNA was assessed. 24 patients with tissue ALK-positivity and 15 who did not harbor ALK fusion were enrolled. 13 ALK-positive samples were identified by capture-based NGS among the 24 samples with tissue ALK-positivity. In addition to EML4-ALK, 2 rare fusion types (FAM179A-ALK and COL25A1-ALK) were also identified. The overall sensitivity, specificity and accuracy for all cases were 54.2%, 100% and 71.8%, respectively. For patients without distant metastasis (M0-M1a) and patients with distant metastasis (M1b), the sensitivities were 28.6% and 64.7%, respectively. In the 15 patients who received crizotinib, the estimated median PFS was 9.93 months. Thus, captured-based NGS has acceptable sensitivity and excellent specificity for the detection of ALK fusion in plasma cfDNA, especially for patients with distant metastasis. This non-invasive method is clinically feasible for detecting ALK fusion in patients with advanced-stage NSCLC who cannot undergo traumatic examinations or have insufficient tissue samples for molecular tests.
3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems
NASA Astrophysics Data System (ADS)
Hançerliogulları, Aybaba; Cini, Mesut
2013-10-01
In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).
NASA Astrophysics Data System (ADS)
Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji
This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.
Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J.; Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
2016-08-15
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less
Characterization of a deuterium-deuterium plasma fusion neutron generator
NASA Astrophysics Data System (ADS)
Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.
2018-01-01
We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III
1985-05-01
Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.
Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G
2013-12-01
This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2014-02-01
The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting consequences of plasma instabilities in complex fusion environment, which are of serious concern for successful energy production.
Characterization of an electrothermal plasma source for fusion transient simulations
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...
2018-01-21
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
Characterization of an electrothermal plasma source for fusion transient simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating
Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.
1983-11-16
It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.
Numerical modelling of electromagnetic loads on fusion device structures
NASA Astrophysics Data System (ADS)
Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben
2014-03-01
In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.
Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com
2016-05-06
Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Polarimetric Thomson scattering for high Te fusion plasmas
NASA Astrophysics Data System (ADS)
Giudicotti, L.
2017-11-01
Polarimetric Thomson scattering (TS) is a technique for the analysis of TS spectra in which the electron temperature Te is determined from the depolarization of the scattered radiation, a relativistic effect noticeable only in very hot (Te >= 10 keV) fusion plasmas. It has been proposed as a complementary technique to supplement the conventional spectral analysis in the ITER CPTS (Core Plasma Thomson Scattering) system for measurements in high Te, low ne plasma conditions. In this paper we review the characteristics of the depolarized TS radiation with special emphasis to the conditions of the ITER CPTS system and we describe a possible implementation of this diagnostic method suitable to significantly improve the performances of the conventional TS spectral analysis in the high Te range.
Development of the dense plasma focus for short-pulse applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, N.; Blasco, M.; Breeding, K.
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less
Simulation of the target creation through FRC merging for a magneto-inertial fusion concept
NASA Astrophysics Data System (ADS)
Li, Chenguang; Yang, Xianjun
2017-04-01
A two-dimensional magnetohydrodynamics model has been used to simulate the target creation process in a magneto-inertial fusion concept named Magnetized Plasma Fusion Reactor (MPFR) [C. Li and X. Yang, Phys. Plasmas 23, 102702 (2016)], where the target plasma created through Field reversed configuration (FRC) merging was compressed by an imploding liner driven by the pulsed-power driver. In the scheme, two initial FRCs (Field reversed configurations) are translated into the region where FRC merging occurs, bringing out the target plasma ready for compression. The simulations cover the three stages of the target creation process: formation, translation, and merging. The factors affecting the achieved target are analyzed numerically. The magnetic field gradient produced by the conical coils is found to determine how fast the FRC is accelerated to peak velocity and the collision merging occurs. Moreover, it is demonstrated that FRC merging can be realized by real coils with gaps showing nearly identical performance, and the optimized target by FRC merging shows larger internal energy and retained flux, which is more suitable for the MPFR concept.
The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra
NASA Astrophysics Data System (ADS)
Murphy, T. J.
2014-07-01
Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.
Development of the dense plasma focus for short-pulse applications
Bennett, N.; Blasco, M.; Breeding, K.; ...
2017-01-05
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less
Burn Control in Fusion Reactors via Isotopic Fuel Tailoring
NASA Astrophysics Data System (ADS)
Boyer, Mark D.; Schuster, Eugenio
2011-10-01
The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).
Negative specific heat of a magnetically self-confined plasma torus
Kiessling, Michael K.-H.; Neukirch, Thomas
2003-01-01
It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553
Production of field-reversed mirror plasma with a coaxial plasma gun
Hartman, Charles W.; Shearer, James W.
1982-01-01
The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.
Production of field-reversed mirror plasma with a coaxial plasma gun
Hartman, C.W.; Shearer, J.W.
The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.
Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...
2017-04-27
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweben, S. J.; Terry, J. L.; Stotler, D. P.
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
Data Strategies to Support Automated Multi-Sensor Data Fusion in a Service Oriented Architecture
2008-06-01
and employ vast quantities of content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the...UDDI), Simple Order Access Protocol (SOAP), Java, Maritime Domain Awareness (MDA), Business Process Execution Language for Web Service (BPEL4WS) 16...content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the development of a distributed
Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria
2014-10-09
Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided.
Fusion of Geophysical Images in the Study of Archaeological Sites
NASA Astrophysics Data System (ADS)
Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.
2011-12-01
This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image. In the resultant image appear clear linear and ellipsoid features corresponding to potential archaeological relics.
NASA Astrophysics Data System (ADS)
Meade, Dale
2010-01-01
Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.
Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M
2007-07-15
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.
NASA Astrophysics Data System (ADS)
Winfrey, A. Leigh
Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An ablation-free capillary discharge computer code has been developed to model plasma flow and acceleration of pellets for fusion fueling in magnetic fusion reactors. Two case studies with and without ablation, including different source configurations have been studied here. Velocities necessary for fusion fueling have been achieved. New additions made to the code model incorporate radial heat and energy transfer and move ETFLOW towards being a 2-D model of the plasma flow. This semi 2-D approach gives a view of the behavior of the plasma inside the capillary as it is affected by important physical parameters such as radial thermal heat conduction and their effect on wall ablation.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia Finley
The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart Zweben; Samuel Cohen; Hantao Ji
Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.
Direct Fusion Drive for a Human Mars Orbital Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paluszek, Michael; Pajer, Gary; Razin, Yosef
2014-08-01
The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.
PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers
NASA Astrophysics Data System (ADS)
Takizuka, Tomonori
2008-07-01
This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in physics understanding of dynamics, mitigation and control of ELMs J Rice (MIT, USA): Spontaneous rotation and momentum transport in tokamak plasmas K Ida (NIFS, Japan): Transport barriers in non-axisymmetric magnetic fields F Jenko (IPP, Germany): Transport barriers: Recent progress in theory and simulation T Hoang (CEA, France): Internal transport barriers: Projection to ITER Every talk satisfied the objective of the meeting. A discussion period followed each invited talk in order to expand physics understandings, projection capabilities, and the direction of research around the topic. Short talks were presented by contributing speakers in addition to questions, answers, comments and discussion among the participants. For each topic there was an associated poster session for contributed papers, and lively discussion took place in front of every poster. Through the meeting six invited papers and 77 contributed papers were presented in total. The final session of the meeting was devoted to summaries; R Groebner, T S Hahm and K Ida of the IAC summarized the fruits of topics 1 and 2, 3 and 5, and 4 and 6, respectively. I would like to thank Dr A Malaquias, the IAEA Scientific Secretary, for his continuous support and useful suggestions on the arrangements of the meeting. I am very grateful to the IAC members for their cooperation in selecting topics and invited speakers, and for their important advices on the meeting strategy and proceedings publication. I also wish to express my gratitude to LOC colleagues for their hard work organizing the meeting. Young students of the University of Tsukuba helped us during the meeting. Financial and personel support from JAEA and the University of Tsukuba were essential. Finally I would like to acknowledge the participants of the meeting and the referees for the present proceedings. All of the above contributions contributed to the success of the meeting. Tomonori Takizuka Editor Group photograph International Advisory Committee T Takizuka (Japan Atomic Energy Agency, Japan: Chair) R J Groebner (General Atomics, USA) T S Hahm (Princeton Plasma Physics Laboratory, USA) A E Hubbard (MIT Plasma Science and Fusion Center, USA) K Ida (National Institute for Fusion Science, Japan) S V Lebedev (Ioffe Institute, Russia) G Saibene (EFDA CSU Garching, Germany) W Suttrop (Max-Plank-Institut für Plasmaphysik, Germany) Additional information about this meeting (H-mode-TM-11) is available in its homepage http://www-jt60.naka.jaea.go.jp/h-mode-tm-11/. List of Participants N Aiba (Japan Atomic Energy Agency, Japan) T Akiyama (National Institute for Fusion Science, Japan) N Asakura (Japan Atomic Energy Agency, Japan) L G Askinazi (Ioffe Institute, Russia) M N A Beurskens (EURATOM/UKAEA Fusion Association, UK) J D Callen (University of Wisconsin, USA) T Cho (University of Tsukuba, Japan) P C DeVries (EURATOM/UKAEA Fusion Association, UK) X T Ding (Southwestern Institute of Physics, China) E J Doyle (University of California, Los Angels, USA) A Fukuyama (Kyoto University, Japan) P Gohil (General Atomics, USA) R J Groebner (General Atomics, USA) T S Hahm (Princeton Plasma Physics Laboratory, USA) N Hayashi (Japan Atomic Energy Agency, Japan) Y Higashiyama (Nagoya University, Japan) Y Higashizono (University of Tsukuba, Japan) M Hirata (University of Tsukuba, Japan) G T Hoang (Association Euratom-CEA sur la Fusion Controle, France) G M D Hogeweij (FOM-Institute for Plasma Physics Rijnhuizen, The Netherlands) M Honda (Japan Atomic Energy Agency, Japan) L D Horton (Max-Plank-Institut für Plasmaphysik, Germany) W A Houlberg (ITER Organization) A E Hubbard (MIT Plasma Science and Fusion Center, USA) J W Hughes (MIT Plasma Science and Fusion Center, USA) M Ichimura (University of Tsukuba, Japan) K Ida (National Institute for Fusion Science, Japan) T Ido (National Institute for Fusion Science, Japan) T Imai (University of Tsukuba, Japan) F Imbeaux (Association Euratom-CEA sur la Fusion Controle, France) A Itakura (University of Tsukuba, Japan) K Itoh (National Institute for Fusion Science, Japan) S-I Itoh (Kyushu University, Japan) F Jenko (Max-Plank-Institut für Plasmaphysik, Germany) D Kalupin (Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Germany) Y Kamada (Japan Atomic Energy Agency, Japan) N Kasuya (National Institute for Fusion Science, Japan) I Katanuma (University of Tsukuba, Japan) M Kimura (Kyushu University, Japan) A Kirk (EURATOM/UKAEA Fusion Association, UK) S Kitajima (Tohoku University, Japan) S Kobayashi (Kyoto University, Japan) T Kobuchi (Tohoku University, Japan) J Kohagura (University of Tsukuba, Japan) P T Lang (Max-Plank-Institut für Plasmaphysik, Germany) S V Lebedev (Ioffe Institute, Russia) A W Leonard (General Atomics, USA) J Q Li (Kyoto University, Japan) A Malaquias (International Atomic Energy Agency) Y R Martin (Centre de Recherches en Physique des Plasmas, EPFL, Switzerland) C J McDevitt (University of California, San Diego, USA) D C McDonald (EURATOM/UKAEA Fusion Association, UK) H Meyer (EURATOM/UKAEA Fusion Association, UK) C A Michael (National Institute for Fusion Science, Japan) K Miki (Kyushu University, Japan) R Minami (University of Tsukuba, Japan) T Minami (National Institute for Fusion Science, Japan) Y Miyata (University of Tsukuba, Japan) N Miyato (Japan Atomic Energy Agency, Japan) Y Motegi (University of Tsukuba, Japan) V Mukhovatov (ITER Organization) S Murakami (Kyoto University, Japan) Y Nagashima (Kyushu University, Japan) Y Nakashima (University of Tsukuba, Japan) T Numakura (University of Tsukuba, Japan) S Ohshima (National Institute for Fusion Science, Japan) T Oishi (National Institute for Fusion Science, Japan) T Onjun (Sirindhorn International Institute of Technology, Thailand) T H Osborne (GENERAL Atomics, USA) N Oyama (Japan Atomic Energy Agency, Japan) T Ozeki (Japan Atomic Energy Agency, Japan) V Parail (EURATOM/UKAEA Fusion Association, UK) A Polevoi (ITER Organization, France) J E Rice (MIT Plasma Science and Fusion Center, USA) F Ryter (Max-Plank-Institut für Plasmaphysik, Germany) H Saimaru (University of Tsukuba, Japan) R Sakamoto (National Institute for Fusion Science, Japan) Y Sakamoto (Japan Atomic Energy Agency, Japan) M Sasaki (University of Tokyo, Japan) Y Shi (Institute of Plasma Physics, Chinese Academy of Science, China) A Shimizu (National Institute for Fusion Science, Japan) T Shimozuma (National Institute for Fusion Science, Japan) P B Snyder (General Atomics, USA) C Suzuki (National Institute for Fusion Science, Japan) H Takahashi (National Institute for Fusion Science, Japan) Y Takahashi (Nagoya University, Japan) Y Takeiri (National Institute for Fusion Science, Japan) H Takenaga (Japan Atomic Energy Agency, Japan) M Takeuchi (Nagoya University, Japan) T Takizuka (Japan Atomic Energy Agency, Japan) N Tamura (National Institute for Fusion Science, Japan) K Tanaka (National Institute for Fusion Science, Japan) S Tokuda (Japan Atomic Energy Agency, Japan) S Tokunaga (Kyushu University, Japan) G Turri (Centre de Recherches en Physique des Plasmas, EPFL, Switzerland) H Urano (Japan Atomic Energy Agency, Japan) H Utoh (Tohok University, Japan) K Uzawa (Kyoto University, Japan) M Valovic (EURATOM/UKAEA Fusion Association, UK) L Vermare (Max-Plank-Institut für Plasmaphysik, Germany) F Watanabe (Nagoya University, Japan) M Yagi (Kyushu University, Japan) Y Yamaguchi (University of Tsukuba, Japan) K Yamazaki (Nagoya University, Japan) M Yokoyama (National Institute for Fusion Science, Japan) M Yoshida (Japan Atomic Energy Agency, Japan) M Yoshinuma (National Institute for Fusion Science, Japan)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripin, B.H.; Grun, J.; Herbst, M.J.
Laser plasma interaction experiments have now advanced to the point where very quantitative measurements are required to elucidate the physic issues important for laser fusion and other applications. Detailed time-resolved knowledge of the plasma density, temperature, velocity gradients, spatial structure, heat flow characteristics, radiation emission, etc, are needed over tremendou ranges of plasma density and temperature. Moreover, the time scales are very short, aggrevating the difficulty of the measurements further. Nonetheless, such substantial progress has been made in diagnostic development during the past few years that we are now able to do well diagnosed experiments. In this paper the authorsmore » review recent diagnostic developments for laser-plasma interactions, outline their regimes of applicability, and show examples of their utility. In addition to diagnostics for the high densities and temperature characteristic of laser fusion physics studies, diagnostics designed to study the two-stream interactions of laser created plasma flowing through an ambient low density plasma will be described.« less
Z-Pinch Pulsed Plasma Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason;
2010-01-01
Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4. Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.
Laser Boron Fusion Reactor With Picosecond Petawatt Block Ignition
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Eliezer, Shalom; Wang, Jiaxiang; Korn, Georg; Nissim, Noaz; Xu, Yan-Xia; Lalousis, Paraskevas; Kirchhoff, Gotz J.; Miley, George H.
2018-05-01
For developing a laser boron fusion reactor driven by picosecond laser pulses of more than 30 petawatts power, advances are reported about computations for the plasma block generation by the dielectric explosion of the interaction. Further results are about the direct drive ignition mechanism by a single laser pulse without the problems of spherical irradiation. For the sufficiently large stopping lengths of the generated alpha particles in the plasma results from other projects can be used.
1990-11-01
V., Grunberger, L. and Prior, W., "Observation of Solar Flare Type Processes in the Laboratory," in Solar Magnetic Fields, Symposium No. 43 of the...RF/FUS/84/6, Associazione EURATOM--Comitato Nazionale Energia Nucleare sulla Fusione, Centro di Frascati, Rome, Italy, September 1984. Brzosko, J. S...Energy Deuteron Beam Generation in Plasma Focus," Report No. 80.5, Associazione EURATOM--Comitato Nazionale Energia Nucleare sulla Fusione, Centro di
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dendy, R.O.; McClements, K.G.; Lashmore-Davies, C.N.
1994-10-01
A mechanism is proposed for the excitation of waves at harmonics of the injected ion cyclotron frequencies in neutral beam-heated discharges in the Tokamak Fusion Test Reactor (TFTR) [[ital Proceedings] [ital of] [ital the] 17[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating] (European Physical Society, Petit-Lancy, Switzerland, 1990), p. 1540]. Such waves are observed to originate from the outer midplane edge of the plasma. It is shown that ion cyclotron harmonic waves can be destabilized by a low concentration of sub-Alfvenic deuterium or tritium beam ions, provided these ions havemore » a narrow distribution of speeds parallel to the magnetic field. Such a distribution is likely to occur in the edge plasma, close to the point of beam injection. The predicted instability gives rise to wave emission at propagation angles lying almost perpendicular to the field. In contrast to the magnetoacoustic cyclotron instability proposed as an excitation mechanism for fusion-product-driven ion cyclotron emission in the Joint European Torus (JET) [Phys. Plasmas [bold 1], 1918 (1994)], the instability proposed here does not involve resonant fast Alfven and ion Bernstein waves, and can be driven by sub-Alfvenic energetic ions. It is concluded that the observed emission from TFTR can be driven by beam ions.« less
Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jaemin, E-mail: jmj1103@kirams.re.kr; Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul; Conboy, Irina M., E-mail: iconboy@berkeley.edu
2011-10-14
Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generallymore » but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.« less
Intense fusion neutron sources
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Lai, Yen-Ting; Jiang, Lin; Chen, Wuyang; Yeates, Todd O
2015-11-01
Connecting proteins together in prescribed geometric arrangements is an important element in new areas of biomolecular design. In this study, we characterize the degree of three-dimensional orientational control that can be achieved when two protein domains that have alpha-helical termini are joined using an alpha-helical linker. A fusion between naturally oligomeric protein domains was designed in this fashion with the intent of creating a self-assembling 12-subunit tetrahedral protein cage. While the designed fusion protein failed to assemble into a tetrahedral cage in high yield, a series of crystal structures showed that the two fused components were indeed bridged by an intact alpha helix, although the fusion protein was distorted from the intended ideal configuration by bending of the helix, ranging from 7 to 35°. That range of deviation in orientation creates challenges for designing large, perfectly symmetric protein assemblies, although it should offer useful outcomes for other less geometrically demanding applications in synthetic biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Magnetized Target Fusion Collaboration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John
Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less
On the Heating of Ions in Noncylindrical Z-Pinches
NASA Astrophysics Data System (ADS)
Svirsky, E. B.
2018-01-01
The method proposed here for analyzing processes in a hot plasma of noncylindrical Z-pinches is based on separation of the group of high-energy ions into a special fraction. Such ions constitute an insignificant fraction ( 10%) of the total volume of the Z-pinch plasma, but these ions contribute the most to the formation of conditions in which the pinch becomes a source of nuclear fusion products and X-ray radiation. The method allows a quite correct approach to obtaining quantitative estimates of the plasma parameters, the nuclear fusion energy yield, and the features of neutron fluxes in experiments with Z-pinches.
Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons.
Cazzaniga, C; Nocente, M; Tardocchi, M; Croci, G; Giacomelli, L; Angelone, M; Pillon, M; Villari, S; Weller, A; Petrizzi, L; Gorini, G
2013-12-01
Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on (79)Br, (81)Br, and (139)La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E. J.; Green, D. L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E.J.; Green, D.L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.
2017-05-01
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.
Bertelli, N.; Valeo, E. J.; Green, D. L.; ...
2017-04-03
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
NASA Astrophysics Data System (ADS)
Wang, Hongbei; Cui, Xiaoqian; Feng, Chunlei; Li, Yuanbo; Zhao, Mengge; Luo, Guangnan; Ding, Hongbin
2017-11-01
Plasma Facing Components (PFCs) in a magnetically confined fusion plasma device will be exposed to high heat load and particle fluxes, and it would cause PFCs' surface morphology to change due to material erosion and redeposition from plasma wall interactions. The state of PFCs' surface condition will seriously affect the performance of long-pulse or steady state plasma discharge in a tokamak; it will even constitute an enormous threat to the operation and the safety of fusion plasma devices. The PFCs' surface morphology evolution measurement could provide important information about PFCs' real-time status or damage situation and it would help to a better understanding of the plasma wall interaction process and mechanism. Meanwhile through monitoring the distribution of dust deposition in a tokamak and providing an upper limit on the amount of loose dust, the PFCs' surface morphology measurement could indirectly contribute to keep fusion operational limits and fusion device safety. Aiming at in situ dynamic monitoring PFCs' surface morphology evolution, a laboratory experimental platform DUT-SIEP (Dalian University of Technology-speckle interferometry experimental platform) based on the speckle interferometry technique has been constructed at Dalian University of Technology (DUT) in China. With directional specific designing and focusing on the real detection condition of EAST (Experimental Advanced Superconducting Tokamak), the DUT-SIEP could realize a variable measurement range, widely increased from 0.1 μm to 300 μm, with high spatial resolution (<1 mm) and ultra-high time resolution (<2 s for EAST measuring conditions). Three main components of the DUT-SIEP are all integrated and synchronized by a time schedule control and data acquisition terminal and coupled with a three-dimensional phase unwrapping algorithm, the surface morphology information of target samples can be obtained and reconstructed in real-time. A local surface morphology of the real divertor tiles adopted from EAST has been measured, and the feasibility and reliability of this new experimental platform have been demonstrated.
Nuclear Fusion prize laudation Nuclear Fusion prize laudation
NASA Astrophysics Data System (ADS)
Burkart, W.
2011-01-01
Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna, Austria References [1] Sabbagh S. et al 2006 Nucl. Fusion 46 635-44 [2] Rice J.E. et al 2007 Nucl. Fusion 47 1618-24
Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling
NASA Astrophysics Data System (ADS)
Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang
2017-12-01
Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.
Stabilized Liner Compressor: The Return of Linus
NASA Astrophysics Data System (ADS)
Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan
2015-11-01
To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.
NASA Astrophysics Data System (ADS)
Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert
2013-11-01
Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.
Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion
NASA Technical Reports Server (NTRS)
Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.
2005-01-01
A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.
PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K; Hirshman, Steven Paul; Wingen, Andreas
The ability to sustain magnetically confined plasma in a state of stable equilibrium is crucial for optimal and cost-effective operations of fusion devices like tokamaks and stellarators. The Variational Moments Equilibrium Code (VMEC) is the de-facto serial application used by fusion scientists to compute magnetohydrodynamics (MHD) equilibria and study the physics of three dimensional plasmas in confined configurations. Modern fusion energy experiments have larger system scales with more interactive experimental workflows, both demanding faster analysis turnaround times on computational workloads that are stressing the capabilities of sequential VMEC. In this paper, we present PARVMEC, an efficient, parallel version of itsmore » sequential counterpart, capable of scaling to thousands of processors on distributed memory machines. PARVMEC is a non-linear code, with multiple numerical physics modules, each with its own computational complexity. A detailed speedup analysis supported by scaling results on 1,024 cores of a Cray XC30 supercomputer is presented. Depending on the mode of PARVMEC execution, speedup improvements of one to two orders of magnitude are reported. PARVMEC equips fusion scientists for the first time with a state-of-theart capability for rapid, high fidelity analyses of magnetically confined plasmas at unprecedented scales.« less
Revitalizing Fusion via Fission Fusion
NASA Astrophysics Data System (ADS)
Manheimer, Wallace
2001-10-01
Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000
Refined Calculations of Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Schmit, Paul; Knapp, Patrick; Hansen, Stephanie; Gomez, Matthew; Hahn, Kelly; Sinars, Daniel; Peterson, Kyle; Slutz, Stephen; Sefkow, Adam; Awe, Thomas; Harding, Eric; Jennings, Christopher
2014-10-01
Diagnosing the degree of magnetic flux compression at stagnation in magneto-inertial fusion (MIF) is critical for charting the performance of any MIF concept. In pure deuterium plasma, the transport of high-energy tritons produced by the aneutronic DD fusion reaction depends strongly on the magnetic field. The tritons probe and occasionally react with the fuel, emitting secondary DT neutrons. We show that the DT/DD neutron yield ratio and the secondary DT neutron spectra can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The amount of fuel-pusher mix also can be constrained by secondary reactions. We discuss the sensitivity to plasma inhomogeneities of the calculations and outline methods to relate secondary yields to alpha particle energy deposition in ignition-relevant experiments employing DT fuel. We compare our calculations to recent tests of the Magnetized Liner Inertial Fusion (MagLIF) concept on the Z Pulsed Power Facility. Supported in part by the SNL Truman Fellowship, which is part of the LDRD Program, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of SNL under its U.S. DoE Contract No. DE-AC04-94AL85000.
Antimatter Driven P-B11 Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Kammash, Terry; Martin, James; Godfroy, Thomas
2002-01-01
One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.
Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, Eric J.; Yousefi, Hamid R.
2014-10-15
Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less
Thermonuclear instabilities and plasma edge transport in tokamaks
NASA Astrophysics Data System (ADS)
Fulop, Tunde Maria
High-energy ions generated by fusion reactions in a burning fusion plasma may give rise to different types of wave instabilities. The present thesis investigates two types of such instabilities which recently have been observed in fusion experiments: the Toroidal Alfvén Eigenmode (TAE) instability and the magnetoacoustic cyclotron instability (MCI) which is predicted to give rise to ion cyclotron emission (ICE). The TAE instability may degrade the confinement of fusion-produced high energy alpha particles and adversely affect the possibilities of reaching ignition. The present work derives it generalized expression for the linear growth rate of the instability, by including the effects of finite orbit width and finite Larmor radius of energetic particles, as well as the effects of mode localization and the possible mode excitation by both passing and trapped energetic ions. ICE does not threaten the plasma performance, but it might be useful as a fast ion diagnostic. The ICE originates from the MCI involving fast magnetoacoustic waves driven unstable by toroidicity-affected cyclotron resonance with fast ions. In the present thesis a detailed numerical and analytical investigation of this instability is presented, that explains most of the experimental ICE features observed in JET and TFTR. Moreover, the radial and poloidal localization of the fast magnetoacoustic eigenmodes is investigated, including the effects of toroidicity, ellipticity, the presence of a subpopulation of high energy ions and various profiles of the bulk ion density. In a fusion reactor, the transport of the particles near the edge have a strong influence on the global confinement of the plasma. In the edge region, where neutral atoms and impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. In this thesis, we explore the effect of neutral particles on the ion flow shear in the edge region. Furthermore, the neoclassical transport theory in an impure, toroidally rotating plasma is extended to allow for steeper pressure and temperature gradients than are usually considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T. E.
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Evans, T. E.
2016-03-01
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Fusion Research in Ioffe Institute
NASA Astrophysics Data System (ADS)
Askinazi, L. G.; Afanasyev, V. I.; Altukhov, A. B.; Bakharev, N. N.; Belokurov, A. A.; Bulanin, V. V.; Bykov, A. S.; Chernyshev, F. V.; Chugunov, I.; Dyachenko, V. V.; Esipov, L. A.; Gin, D.; Goncharov, P. R.; Gurchenko, A. D.; Gusakov, E. Z.; Gusev, V. K.; Heuraux, S.; Iblyaminova, A. D.; Irzak, M. A.; Kantor, M. Yu.; Kaveeva, E. G.; Kiviniemi, T.; Khilkevitch, E. M.; Khitrov, S. A.; Khromov, N. A.; Kornev, V. A.; Kouprienko, D. V.; Kurskiev, G. S.; Lashkul, S. I.; Lebedev, S. V.; Leerink, S.; Melnik, A. D.; Minaev, V. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Nesenevich, V. G.; Niskala, P.; Novokhatsky, A. N.; Patrov, M. I.; Perevalov, A. A.; Petrov, M. P.; Petrov, A. V.; Petrov, Yu. V.; Popov, A. Yu.; Rozhansky, V. A.; Rozhdestvenskiy, V. V.; Sakharov, N. V.; Saveliev, A. N.; Senichenkov, I. Yu.; Sergeev, V. Yu.; Shchegolev, P. B.; Shatalin, S. V.; Shcherbinin, O. N.; Shevelev, A. E.; Sidorov, A. V.; da Silva, F.; Smirnov, A. I.; Stepanov, A. Yu.; Sysoeva, E. V.; Teplova, N. V.; Tolstyakov, S. Yu.; Tukachinsky, A. S.; Varfolomeev, V. I.; Vekshina, E. O.; Vildjunas, M. I.; Voronin, A. V.; Voskoboinikov, S. P.; Wagner, F.; Yashin, A. Yu.; Zhubr, N. A.
2015-10-01
In this paper we present the fusion related activities of the Plasma Physics Division at the Ioffe Institute. The first experiments on lower hybrid current drive (LHCD) in a spherical tokamak performed at the Globus-M tokamak (R = 0.36 m, a = 0.24 m, Bt = 0.4 T, Ip = 200 kA) with a novel poloidally oriented grill resulted in an RF driven current of up to 30 kA at (100 kW, 2.5 GHz), exceeding the modelling predictions. At the FT-2 tokamak (R = 0.56 m, a = 0.08 m, Bt = 3 T, Ip = 30 kA) experiments with a traditional toroidally oriented grill revealed no strong dependence of the LHCD density limit on the H/D ratio in spite of LH resonance densities differing by a factor of 3. Microwave Doppler reflectometry (DR) at the Globus-M, and DR and heavy ion beam probe measurements at the tokamak TUMAN-3M (R = 0.53 m, a = 0.24 m, Bt = 1.0 T, Ip = 190 kA) demonstrated geodesic acoustic mode (GAM) suppression at the L to H transition. Observations at FT-2 using Doppler Enhanced Scattering showed that the GAM amplitude is anti-correlated both spatially and temporally to the drift turbulence level and electron thermal diffusivity. For the first time turbulence amplitude modulation at the GAM frequency was found both experimentally and in global gyrokinetic modelling. A model of the L-H transition is proposed based on this effect. The loss mechanisms of energetic ions' (EI) were investigated in the neutral beam injection (NBI) experiments on Globus-M and TUMAN-3M. Empirical scaling of the 2.45 MeV DD neutron rate for the two devices shows a strong dependence on toroidal field Bt1.29 and plasma current Ip1.34 justifying the Bt and Ip increase by a factor of 2.5 for the proposed upgrade of Globus-M. Bursts of ˜1 MHz Alfvenic type oscillations correlating with sawtooth crashes were observed in ohmic TUMAN-3M discharges. The possibility of low threshold parametric excitation of Bernstein and upper hybrid waves trapped in drift-wave eddies resulting in anomalous absorption in electron cyclotron resonance heating (ECRH) experiments in toroidal plasmas was identified theoretically. A novel method of radial correlation Doppler reflectometry is shown to be capable of measuring the turbulence wave-number spectrum in realistic 2D geometry. On the progress in design and fabrication of three diagnostics for ITER developed in the Ioffe institute is reported: neutral particle analysis, divertor Thomson scattering and gamma spectroscopy.
Object-oriented code SUR for plasma kinetic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, V.D.; Sigov, Y.S.
1995-12-31
We have developed a self-consistent simulation code based on object-oriented model of plasma (OOMP) for solving the Vlasov/Poisson (V/P), Vlasov/Maxwell (V/M), Bhatnagar-Gross-Krook (BGK) as well as Fokker-Planck (FP) kinetic equations. The application of an object-oriented approach (OOA) to simulation of plasmas and plasma-like media by means of splitting methods permits to uniformly describe and solve the wide circle of plasma kinetics problems, including those being very complicated: many-dimensional, relativistic, with regard for collisions, specific boundary conditions etc. This paper gives the brief description of possibilities of the SUR code, as a concrete realization of OOMP.
Pardridge, William M; Boado, Ruben J
2009-10-01
Glial-derived neurotrophic factor (GDNF) is a potential therapy for stroke, Parkinson's disease, or drug addiction. However, GDNF does not cross the blood-brain barrier (BBB). GDNF is re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR), which acts as a molecular Trojan horse to deliver the GDNF across the BBB. The pharmacokinetics (PK), toxicology, and safety pharmacology of the HIRMAb-GDNF fusion protein were investigated in Rhesus monkeys. The fusion protein was administered as an intravenous injection at doses up to 50 mg/kg over a 60 h period to 56 Rhesus monkeys. The plasma concentration of the HIRMAb-GDNF fusion protein was measured with a 2-site sandwich ELISA. No adverse events were observed in a 2-week terminal toxicology study, and no neuropathologic changes were observed. The PK analysis showed a linear relationship between plasma AUC and dose, a large systemic volume of distribution, as well as high clearance rates of 8-10 mL/kg/min. A no-observable-adverse-effect level is established in the Rhesus monkey for the acute administration of the HIRMAb-GDNF fusion protein. The fusion protein targeting the insulin receptor has a PK profile similar to a classical small molecule.
The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores.
Quevedo, María F; Lucchesi, Ornella; Bustos, Matías A; Pocognoni, Cristian A; De la Iglesia, Paola X; Tomes, Claudia N
2016-10-28
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings.
Oliver, James B; Kupinski, Pete; Rigatti, Amy L; Schmid, Ansgar W; Lambropoulos, John C; Papernov, Semyon; Kozlov, Alexei; Spaulding, John; Sadowski, Daniel; Chrzan, Z Roman; Hand, Robert D; Gibson, Desmond R; Brinkley, Ian; Placido, Frank
2011-03-20
Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.
Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor
NASA Astrophysics Data System (ADS)
Hirooka, Y.; Sato, H.; Ishihara, K.; Yabuuchi, T.; Tanaka, K. A.
2014-02-01
Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108-10 W cm-2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.
NASA Astrophysics Data System (ADS)
Zonca, Fulvio; Chen, Liu
2007-11-01
We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles
2017-07-24
Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.
Recombination of H atoms on the dust in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir
2015-07-15
We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.
Present status of liquid metal research for a fusion reactor
NASA Astrophysics Data System (ADS)
Tabarés, Francisco L.
2016-01-01
Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
Dust remobilization in fusion plasmas under steady state conditions
NASA Astrophysics Data System (ADS)
Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-02-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.
2012-09-07
This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magnetomore » Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.« less
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA
2008-10-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-10-10
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2013-06-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2016-07-05
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-10-31
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-04-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA
2009-08-04
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-03-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Stopping power in D6Li plasmas for target ignition studies
NASA Astrophysics Data System (ADS)
Cortez, Ross J.; Cassibry, Jason T.
2018-02-01
The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.
Recent Progress on Spherical Torus Research and Implications for Fusion Energy Development Path
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2014-10-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A =R0 / a) reduced to A near 1.5, well below the normal tokamak operating range of A equal to 2.5 or greater. As the aspect ratio is reduced, the ideal tokamak beta (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural plasma elongation which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to the longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in the UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all areas of fusion research, including fundamental fusion energy science as well as technological innovation. These results suggest exciting future prospects for ST research in both the near and longer term. The talk will summarize the key physics results from worldwide ST experiments, and describe ST community plans to provide the database for FNSF design while improving predictive capabilities for ITER and beyond. This work supported by DoE Contract No. DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Romanelli, Gherardo; Mignone, Andrea; Cervone, Angelo
2017-10-01
Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the operation of the magnetic nozzle, the device meant to exploit the fusion energy and generate thrust. One of the last pulsed fusion magnetic nozzle design is the so called multi-coil parabolic reaction chamber: the reaction is thereby ignited at the focus of an open parabolic chamber, enclosed by a series of coaxial superconducting coils that apply a magnetic field. The field, beside confining the reaction and preventing any contact between hot fusion plasma and chamber structure, is also meant to reflect the explosion and push plasma out of the rocket. Reflection is attained thanks to electric currents induced in conductive skin layers that cover each of the coils, the change of plasma axial momentum generates thrust in reaction. This working principle has yet to be extensively verified and computational Magneto-Hydro Dynamics (MHD) is a viable option to achieve that. This work is one of the first detailed ideal-MHD analysis of a multi-coil parabolic reaction chamber of this kind and has been completed employing PLUTO, a freely distributed computational code developed at the Physics Department of the University of Turin. The results are thus a preliminary verification of the chamber's performance. Nonetheless, plasma leakage through the chamber structure has been highlighted. Therefore, further investigations are required to validate the chamber design. Implementing a more accurate physical model (e.g. Hall-MHD or relativistic-MHD) is thus mandatory, and PLUTO shows the capabilities to achieve that.
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-01-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-03-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves
NASA Astrophysics Data System (ADS)
Miao, Feng; Zheng, Xianjun; Deng, Baiquan
2015-05-01
Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel particles. This leads to an innovative theory for dense plasma, and its result shows good agreement with independent data derived from the solar energy output. An analysis of the first Z-pinch machine in mankind's history exhibiting neutron emission leads to a derived deuterium plasma beam density greater than that of water, with plasma velocities exceeding 10000 km/s. Fusion power could be achieved by the intersection of four such pinched plasma beams with powerful head-on collisions in their common focal region due to the beam and target enhanced reaction. supported by the Fund for the Construction of Graduate Degree of China (No. 2014XWD-S0805)
MHD simulation of plasma compression experiments
NASA Astrophysics Data System (ADS)
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, Ahmed
2015-03-31
This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtainmore » their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.« less
EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.
2014-11-01
We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.
NASA Astrophysics Data System (ADS)
Winterberg, F.
The combination of metallic shells imploded with chemical explosives and the recently proposed magnetic booster target inertial fusion concept, could make possible the fissionless ignition of small thermonuclear explosions. In the magnetic booster concept a very dense but magnetically confined thermonuclear plasma of low yield serves as the trigger for an inertially confined thermonuclear plasma of high yield. For the most easily ignitable fusion reaction, the DT reaction, this could lead to a fissionless bomb propulsion system, with the advantage to have a much smaller yield of the pure fusion bombs as compared to either fission- or fission-induced fusion bombs, previously proposed for propulsion. Typically, the proposed propulsion concept should give a specific impulse of ˜ 3000 secs, corresponding to an exhaust velocity of ˜ 30 km/sec. If the energy released in each pure fusion bomb is of the order of 10 18 erg or the order of 100 tons of TNT, and if one fusion explosion per second takes place, the average thrust is of the order 10 3 tons. The propulsion system appears ideally suited for the fast economical transport of large spacecraft within the solar system.
Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong
2016-10-18
Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.
An assessment for the erosion rate of DEMO first wall
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2018-01-01
In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.